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Abstract

In this paper, we solve the following quadratic ρ-functional inequalities

‖f(x+ y)+f(x− y)− 2f(x)− 2f(y)‖ ≤ ‖ρ(2f(
x+ y

2
) + 2f(

x− y
2

)− f(x)− f(y))‖,

where ρ is a fixed complex number with |ρ| < 1, and

‖2f(
x+ y

2
)+2f(

x− y
2

)− f(x)− f(y)‖ ≤ ‖ρ(f(x+ y) + f(x− y)− 2f(x)− 2f(y))‖,

where ρ is a fixed complex number with |ρ| < 1
2 . By using the direct method, we prove the Hyers-Ulam

stability of these inequalities in complex matrix normed spaces, and prove the Hyers-Ulam stability of
quadratic ρ-functional equations associated with these inequalities in complex matrix normed spaces. c©2016
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Keywords: Hyers-Ulam stability, matrix normed space, quadratic ρ-functional equation, quadratic
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1. Introduction and preliminaries

The first stability problem concerning with the group homomorphisms was raised by Ulam [13] and
affirmatively solved by Hyers [5]. Hyers’ result was generalized by Aoki [1] for additive mappings and by
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Rassias [11] for linear mappings by considering an unbounded Cauchy difference. The paper [11] of Rassias
has provided a lot of influence during the last three decades in the development of a generalization of the
Hyers-Ulam stability concept. In 1994, a generalization of the Rassias’ theorem was obtained by Găvruţă
[4] by replacing the bound ε(‖x‖p + ‖y‖p) by a general control function ϕ(x, y) in the spirit of the Rassias
approach.

The functional equation
f(x+ y) + f(x− y) = 2f(x) + 2f(y), (1.1)

is called a quadratic functional equation. In particular, every solution of the quadratic functional equation
is said to be a quadratic mapping. The Hyers-Ulam stability problem for the quadratic functional equation
(1.1) was proved by Skof [12] for mappings from a normed space to a Banach space. Cholewa [2] noticed
that Skof’s theorem remains true if the domain is replaced by an Abelian group. In 1992, Czerwik [3] gave
a generalization of the Skof–Cholewa’s result.

The following functional equation

2f(
x+ y

2
) + 2f(

x− y
2

) = f(x) + f(y), (1.2)

is called a Jensen-type quadratic equation (see [6]). In [6], Jang et al. proved the Hyers-Ulam stability of
the equation (1.2) in fuzzy Banach spaces. In 2014, Wang et al. [14] investigated some stability results for
Jensen-type quadratic functional equation (1.2) in intuitionistic fuzzy normed spaces.

In this paper, we consider the following two quadratic ρ-functional inequalities

‖f(x+ y)+f(x− y)− 2f(x)− 2f(y)‖ ≤ ‖ρ(2f(
x+ y

2
) + 2f(

x− y
2

)− f(x)− f(y))‖, (1.3)

where ρ is a fixed complex number with |ρ| < 1, and

‖2f(
x+ y

2
)+2f(

x− y
2

)− f(x)− f(y)‖ ≤ ‖ρ(f(x+ y) + f(x− y)− 2f(x)− 2f(y))‖, (1.4)

where ρ is a fixed complex number with |ρ| < 1
2 , in complex matrix Banach spaces. More precisely, we solve

the problem of the quadratic ρ-functional inequalities (1.3) and (1.4), and prove the Hyers-Ulam stability of
the quadratic ρ-functional inequalities (1.3) and (1.4) in complex matrix Banach spaces by using the direct
method. Moreover, we prove the Hyers-Ulam stability of quadratic ρ-functional equations associated with
the quadratic ρ-functional inequalities (1.3) and (1.4) in complex matrix Banach spaces.

Following [7, 8, 10], we will also use the following notations. The set of all (m × n)-matrices in X will
be denoted by Mm,n(X). When m = n, the matrix Mm,n(X) will be written as Mn(X). The symbol
ej ∈ M1,n(C) will denote the row vector whose j-th component is 1 and the other components are 0.
Similarly, Eij ∈Mn(C) will denote the n× n matrix whose (i, j)-component is 1 and the other components
are 0. The n × n matrix whose (i, j)-component is x and the other components are 0 will be denoted by
Eij ⊗ x ∈Mn(X). For x ∈Mn(X), y ∈Mk(X),

x⊕ y =

(
x 0
0 y

)
.

Let (X, ‖ · ‖) be a normed space. Note that (X, {‖ · ‖n}) is a matrix normed space if and only if
(Mn(X), ‖·‖n) is a normed space for each positive integer n and ‖AxB‖k ≤ ‖A‖‖B‖‖x‖n holds for A ∈Mk,n,
x = [xij ] ∈ Mn(X) and B ∈ Mn,k, and that (X, {‖ · ‖n}) is a matrix Banach space if and only if X is a
Banach space and (X, {‖ · ‖n}) is a matrix normed space.

A matrix normed space (X, ‖·‖n) is called an L∞-matrix normed space if ‖x⊕y‖n+k = max{‖x‖n, ‖y‖k}
holds for all x ∈Mn(X) and all y ∈Mk(X).

Let E,F be vector spaces. For a given mapping h : E → F and a given positive integer n, define
hn : Mn(E)→Mn(F ) by

hn([xij ]) = [h(xij)]

for all [xij ] ∈Mn(E).
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Lemma 1.1 ([7, 8, 10]). Let (X, {‖ · ‖n}) be a matrix normed space. Then

(1) ‖Ekl ⊗ x‖n = ‖x‖ for x ∈ X;

(2) ‖xkl‖ ≤ ‖[xij ]‖n ≤
n∑

i,j=1
‖xij‖ for [xij ] ∈Mn(X);

(3) lim
n→∞

xn = x if and only if lim
n→∞

xijn = xij for xn = [xijn], x = [xij ] ∈Mk(X).

Throughout this paper, let (X, {‖ · ‖n}) be a matrix normed space and (Y, {‖ · ‖n}) be a matrix Banach
space.

2. Stability of the quadratic ρ-functional inequality (1.3) in complex matrix normed spaces

In this section, we prove the Hyers-Ulam stability of the quadratic ρ-functional inequality (1.3) in complex
matrix normed spaces. We assume that ρ is a fixed complex number with |ρ| < 1.

Lemma 2.1. Let V and W be complex normed spaces. A mapping f : V →W satisfies

‖f(x+ y)+f(x− y)− 2f(x)− 2f(y)‖ ≤ ‖ρ(2f(
x+ y

2
) + 2f(

x− y
2

)− f(x)− f(y))‖

for all x, y ∈ V if and only if f : V →W is quadratic.

Proof. The proof is similar to the proof of [9, Lemma 2.2].

Corollary 2.2. A mapping f : V →W satisfies

‖f(x+ y)+f(x− y)− 2f(x)− 2f(y)‖ = ‖ρ(2f(
x+ y

2
) + 2f(

x− y
2

)− f(x)− f(y))‖

for all x, y ∈ V if and only if f : V →W is quadratic.

Theorem 2.3. Let r, θ be positive real numbers with r < 2, and let f : X → Y be a mapping such that

‖fn([xij ] + [yij ]) + fn([xij ]− [yij ])− 2fn([xij ])− 2fn([yij ])‖n

≤ ‖ρ(2fn(
[xij ] + [yij ]

2
) + 2fn(

[xij ]− [yij ]

2
)− fn([xij ])− fn([yij ]))‖n

+
n∑

i,j=1

θ(‖xij‖r + ‖yij‖r) (2.1)

for all x = [xij ], y = [yij ] ∈Mn(X). Then there exists a unique quadratic mapping Q : X → Y such that

‖fn([xij ])−Qn([xij ])‖n ≤
n∑

i,j=1

2θ

4− 2r
‖xij‖r (2.2)

for all x = [xij ] ∈Mn(X).

Proof. When n = 1, (2.1) is equivalent to

‖f(a+ b) + f(a− b)− 2f(a)− 2f(b)‖ ≤ ‖ρ(2f(
a+ b

2
) + 2f(

a− b
2

)− f(a)− f(b))‖ (2.3)

+ θ(‖a‖r + ‖b‖r)
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for all a, b ∈ X. By letting a = b = 0 in (2.3), we get ‖2f(0)‖ ≤ |ρ|‖2f(0)‖, implying that f(0) = 0. Next,
by letting b = a in (2.3), we obtain

‖f(2a)− 4f(a)‖ ≤ 2θ‖a‖r (2.4)

for all a ∈ X. It follows from (2.4) that

‖f(a)− 1

4
f(2a)‖ ≤ 1

2
θ‖a‖r

for all a ∈ X. Hence

‖ 1

4l
f(2la)− 1

4m
f(2ma)‖ ≤

m−1∑
j=l

‖ 1

4j
f(2ja)− 1

4j+1
f(2j+1a)‖

≤ 1

2

m−1∑
j=l

2rj

4j
θ‖a‖r (2.5)

for all nonnegative integers m and l with m > l and all a ∈ X. It follows from (2.5) that the sequence

{f(2
na)

4n } is a Cauchy sequence in Y for all a ∈ X. Since Y is complete, the sequence {f(2
na)

4n } is convergent.
So one can define the mapping Q : X → Y by

Q(a) = lim
n→∞

1

4n
f(2na) (2.6)

for all a ∈ X. Moreover, by letting l = 0 and passing the limit m→∞ in (2.5), we get

‖f(a)−Q(a)‖ ≤ 2θ

4− 2r
‖a‖r (2.7)

for all a ∈ X.
Now, we show that the mapping Q is quadratic. It follows from (2.3) and (2.6) that

‖Q(a+ b) +Q(a− b)− 2Q(a)− 2Q(b)‖ = lim
n→∞

1

4n
‖f(2n(a+ b)) + f(2n(a− b))− 2f(2na)− 2f(2nb)‖

≤ lim
n→∞

1

4n
‖ρ(2f(

2n(a+ b)

2
) + 2f(

2n(a− b)
2

)− f(2na)− f(2nb))‖

+ lim
n→∞

2rn

4n
θ(‖a‖r + ‖b‖r)

= ‖ρ(2Q(
a+ b

2
) + 2Q(

a− b
2

)−Q(a)−Q(b))‖

for all a, b ∈ X. Thus, by Lemma 2.1, the mapping Q : X → Y is quadratic.
To prove the uniqueness of Q, let Q′ : X → Y be another quadratic mapping satisfying (2.2). Let n = 1.

Then we get

‖Q(a)−Q′(a)‖ = ‖ 1

4n
Q(2na)− 1

4n
Q′(2na)‖

≤ ‖ 1

4n
Q(2na)− 1

4n
f(2na)‖+ ‖ 1

4n
Q′(2na)− 1

4n
f(2na)‖

≤ 4θ

4− 2r
2rn

4n
‖a‖r

for all a ∈ X. By letting n→∞ in the above inequality, we get Q(a) = Q′(a) for all a ∈ X, which gives the
conclusion.
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By Lemma 1.1 and (2.7), we get

‖fn([xij ])−Qn([xij ])‖n ≤
n∑

i,j=1

2θ

4− 2r
‖xij‖r

for all x = [xij ] ∈Mn(X). Thus Q : X → Y is a unique quadratic mapping satisfying (2.2), as desired. This
completes the proof of the theorem.

Theorem 2.4. Let r, θ be positive real numbers with r > 2, and let f : X → Y be a mapping satisfying (2.1)
for all x = [xij ], y = [yij ] ∈Mn(X). Then there exists a unique quadratic mapping Q : X → Y such that

‖fn([xij ])−Qn([xij ])‖n ≤
n∑

i,j=1

2θ

2r − 4
‖xij‖r (2.8)

for all x = [xij ] ∈Mn(X).

Proof. It follows from (2.4) that

‖f(a)− 4f(
a

2
)‖ ≤ 2

2r
θ‖a‖r

for all a ∈ X. Hence

‖4lf(
a

2l
)− 4mf(

a

2m
)‖ ≤

m−1∑
j=l

‖4jf(
a

2j
)− 4j+1f(

a

2j+1
)‖

≤ 2

2r

m−1∑
j=l

4j

2rj
θ‖a‖r (2.9)

for all nonnegative integers m and l with m > l and all a ∈ X. It follows from (2.9) that the sequence
{4nf( a

2n )} is a Cauchy sequence in Y for all a ∈ X. Since Y is complete, the sequence {4nf( a
2n )} is

convergent. So one can define the mapping Q : X → Y by

Q(a) = lim
n→∞

4nf(
a

2n
)

for all a ∈ X. Moreover, by letting l = 0 and passing the limit m→∞ in (2.9), we get

‖f(a)−Q(a)‖ ≤ 2θ

2r − 4
‖a‖r

for all a ∈ X. The rest of the proof is similar to that of Theorem 2.3 and thus it is omitted.

By the triangle inequality, we obtain

‖fn([xij ] + [yij ]) + fn([xij ]− [yij ])− 2fn([xij ])− 2fn([yij ])‖n

− ‖ρ(2fn(
[xij ] + [yij ]

2
) + 2fn(

[xij ]− [yij ]

2
)− fn([xij ])− fn([yij ]))‖n

≤ ‖fn([xij ] + [yij ]) + fn([xij ]− [yij ])− 2fn([xij ])− 2fn([yij ])

− ρ(2fn(
[xij ] + [yij ]

2
) + 2fn(

[xij ]− [yij ]

2
)− fn([xij ])− fn([yij ]))‖n.

As corollaries of Theorems 2.3 and 2.4, we obtain the Hyers-Ulam stability results for the quadratic
ρ-functional equation associated with the quadratic ρ-functional inequality (1.3) in complex matrix Banach
spaces.
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Corollary 2.5. Let r, θ be positive real numbers with r < 2, and let f : X → Y be a mapping such that

‖fn([xij ] + [yij ]) + fn([xij ]− [yij ])− 2fn([xij ])− 2fn([yij ])

− ρ(2fn(
[xij ] + [yij ]

2
) + 2fn(

[xij ]− [yij ]

2
)− fn([xij ])− fn([yij ]))‖n ≤

n∑
i,j=1

θ(‖xij‖r + ‖yij‖r) (2.10)

for all x = [xij ], y = [yij ] ∈ Mn(X). Then there exists a unique quadratic mapping Q : X → Y satisfying
(2.2) for all x = [xij ] ∈Mn(X).

Corollary 2.6. Let r, θ be positive real numbers with r > 2, and let f : X → Y be a mapping satisfying
(2.10) for all x = [xij ], y = [yij ] ∈ Mn(X). Then there exists a unique quadratic mapping Q : X → Y
satisfying (2.8) for all x = [xij ] ∈Mn(X).

Remark 2.7. If ρ is a real number such that −1 < ρ < 1 and Y is a real Banach space, then all the assertions
in this section remain valid.

3. Stability of the quadratic ρ-functional inequality (1.4) in complex matrix normed spaces

In this section, we prove the Hyers-Ulam stability of the quadratic ρ-functional inequality (1.4) in complex
matrix normed spaces. We assume that ρ is a fixed complex number with |ρ| < 1

2 .

Lemma 3.1. Let V and W be complex normed spaces. A mapping f : V →W satisfies

‖2f(
x+ y

2
)+2f(

x− y
2

)− f(x)− f(y)‖ ≤ ‖ρ(f(x+ y) + f(x− y)− 2f(x)− 2f(y))‖

for all x, y ∈ V if and only if f : V →W is quadratic.

Proof. The proof is similar to the proof of [9, Lemma 3.1].

Corollary 3.2. A mapping f : V →W satisfies

‖2f(
x+ y

2
)+2f(

x− y
2

)− f(x)− f(y)‖ = ‖ρ(f(x+ y) + f(x− y)− 2f(x)− 2f(y))‖

for all x, y ∈ V if and only if f : V →W is quadratic.

Theorem 3.3. Let r, θ be positive real numbers with r < 2, and let f : X → Y be a mapping such that

‖2fn(
[xij ] + [yij ]

2
) + 2fn(

[xij ]− [yij ]

2
)− fn([xij ])− fn([yij ])‖n

≤ ‖ρ(fn([xij ] + [yij ]) + fn([xij ]− [yij ])− 2fn([xij ])− 2fn([yij ]))‖n (3.1)

+

n∑
i,j=1

θ(‖xij‖r + ‖yij‖r)

for all x = [xij ], y = [yij ] ∈Mn(X). Then there exists a unique quadratic mapping Q : X → Y such that

‖fn([xij ])−Qn([xij ])‖n ≤
n∑

i,j=1

2rθ

4− 2r
‖xij‖r (3.2)

for all x = [xij ] ∈Mn(X).
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Proof. When n = 1, (3.1) is equivalent to

‖2f(
a+ b

2
) + 2f(

a− b
2

)− f(a)− f(b)‖

≤ ‖ρ(f(a+ b) + f(a− b)− 2f(a)− 2f(b))‖+ θ(‖a‖r + ‖b‖r)
(3.3)

for all a, b ∈ X. By letting a = b = 0 in (3.3), we get ‖2f(0)‖ ≤ |ρ|‖2f(0)‖, implying that f(0) = 0. Next,
by letting b = 0 in (3.3), we obtain

‖f(2a)− 4f(a)‖ ≤ 2rθ‖a‖r (3.4)

for all a ∈ X. It follows from (2.4) that

‖f(a)− 1

4
f(2a)‖ ≤ 2r

4
θ‖a‖r

for all a ∈ X. Hence

‖ 1

4l
f(2la)− 1

4m
f(2ma)‖ ≤

m−1∑
j=l

‖ 1

4j
f(2ja)− 1

4j+1
f(2j+1a)‖

≤ 2r

4

m−1∑
j=l

2rj

4j
θ‖a‖r

(3.5)

for all nonnegative integers m and l with m > l and all a ∈ X. It follows from (3.5) that the sequence

{f(2
na)

4n } is a Cauchy sequence in Y for all a ∈ X. Since Y is complete, the sequence {f(2
na)

4n } is convergent.
So one can define the mapping Q : X → Y by

Q(a) = lim
n→∞

1

4n
f(2na) (3.6)

for all a ∈ X. Moreover, by letting l = 0 and passing the limit m→∞ in (3.5), we get

‖f(a)−Q(a)‖ ≤ 2rθ

4− 2r
‖a‖r

for all a ∈ X.
Now, we show that the mapping Q is quadratic. It follows from (3.3) and (3.6) that

‖2Q(
a+ b

2
) + 2Q(

a− b
2

)−Q(a)−Q(b)‖ = lim
n→∞

1

4n
‖2f(

2n(a+ b)

2
) + 2f(

2n(a− b)
2

)− f(2na)− f(2nb)‖

≤ lim
n→∞

1

4n
‖ρ(f(2n(a+ b)) + f(2n(a− b))− 2f(2na)− 2f(2nb))‖

+ lim
n→∞

2rn

4n
θ(‖a‖r + ‖b‖r)

= ‖ρ(Q(a+ b) +Q(a− b)− 2Q(a)− 2Q(b))‖

for all a, b ∈ X. Thus, by Lemma 3.1, the mapping Q : X → Y is quadratic. The rest of the proof is similar
to that of Theorem 2.3 and thus it is omitted.

Theorem 3.4. Let r, θ be positive real numbers with r > 2, and let f : X → Y be a mapping satisfying (3.1)
for all x = [xij ], y = [yij ] ∈Mn(X). Then there exists a unique quadratic mapping Q : X → Y such that

‖fn([xij ])−Qn([xij ])‖n ≤
n∑

i,j=1

2rθ

2r − 4
‖xij‖r (3.7)

for all x = [xij ] ∈Mn(X).



Z. Wang, C. Park, J. Nonlinear Sci. Appl. 9 (2016), 5344–5352 5351

Proof. It follows from (3.4) that

‖f(a)− 4f(
a

2
)‖ ≤ θ‖a‖r

for all a ∈ X. Hence

‖4lf(
a

2l
)− 4mf(

a

2m
)‖ ≤

m−1∑
j=l

‖4jf(
a

2j
)− 4j+1f(

a

2j+1
)‖

≤
m−1∑
j=l

4j

2rj
θ‖a‖r (3.8)

for all nonnegative integers m and l with m > l and all a ∈ X. It follows from (3.8) that the sequence
{4nf( a

2n )} is a Cauchy sequence in Y for all a ∈ X. Since Y is complete, the sequence {4nf( a
2n )} converges.

So one can define the mapping Q : X → Y by

Q(a) = lim
n→∞

4nf(
a

2n
)

for all a ∈ X. Moreover, by letting l = 0 and passing the limit m→∞ in (3.8), we get

‖f(a)−Q(a)‖ ≤ 2rθ

2r − 4
‖a‖r

for all a ∈ X. The rest of the proof is similar to that of Theorem 3.3 and thus it is omitted.

By the triangle inequality, we obtain

‖2fn(
[xij ] + [yij ]

2
) + 2fn(

[xij ]− [yij ]

2
)− fn([xij ])− fn([yij ])‖n

− ‖ρ(fn([xij ] + [yij ]) + fn([xij ]− [yij ])− 2fn([xij ])− 2fn([yij ]))‖n

≤ ‖2fn(
[xij ] + [yij ]

2
) + 2fn(

[xij ]− [yij ]

2
)− fn([xij ])− fn([yij ])

− ρ(fn([xij ] + [yij ]) + fn([xij ]− [yij ])− 2fn([xij ])− 2fn([yij ]))‖n.

As corollaries of Theorems 3.3 and 3.4, we obtain the Hyers-Ulam stability results for the quadratic
ρ-functional equation associated with the quadratic ρ-functional inequality (1.4) in complex matrix Banach
spaces.

Corollary 3.5. Let r, θ be positive real numbers with r < 2, and let f : X → Y be a mapping such that

‖2fn(
[xij ] + [yij ]

2
) + 2fn(

[xij ]− [yij ]

2
)− fn([xij ])− fn([yij ])

− ρ(fn([xij ] + [yij ]) + fn([xij ]− [yij ])− 2fn([xij ])− 2fn([yij ]))‖n ≤
n∑

i,j=1

θ(‖xij‖r + ‖yij‖r)
(3.9)

for all x = [xij ], y = [yij ] ∈ Mn(X). Then there exists a unique quadratic mapping Q : X → Y satisfying
(3.2) for all x = [xij ] ∈Mn(X).

Corollary 3.6. Let r, θ be positive real numbers with r > 2, and let f : X → Y be a mapping satisfying (3.9)
for all x = [xij ], y = [yij ] ∈ Mn(X). Then there exists a unique quadratic mapping Q : X → Y satisfying
(3.7) for all x = [xij ] ∈Mn(X).

Remark 3.7. If ρ is a real number such that −1 < ρ < 1 and Y is a real Banach space, then all the assertions
in this section remain valid.
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