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Abstract

The solutions of the perturbed Riemann problem for the chromatography system of Langmuir isotherm
with one inert component are constructed in completely explicit forms when the initial data are taken as
three piecewise constant states. The wave interaction problem is investigated in detail by using the method of
characteristics. In addition, the generalized Riemann problem with the delta-type initial data is considered
and the delta contact discontinuity is discovered. Moreover, the strength of delta contact discontinuity
decreases linearly at a constant rate and then the delta contact discontinuity degenerates to be the contact
discontinuity when across the critical point. c©2016 all rights reserved.
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1. Introduction

Chromatography is the terminology adopted by engineers and chemists to describe a process of separating
two chemical components in a fluid phase [16]. Various mathematical models are used to understand and
analyze dynamic composition front in chromatographic columns and thus it is necessary to develop the theory
of nonlinear chromatography system in order to investigate the separation process of chromatography. It
is well-known that the Langmuir model [12] is very effective to describe a variety of real systems in the
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local equilibrium theory of chromatography [16]. The process of Langmuir isotherm can be described
by the system of conservation laws to account for convection and exchange between the adsorbed phases
and the fluid at the thermodynamic equilibrium [13]. Thus, it is very necessary to look for the exact
solutions of these models associated with suitable initial and boundary value conditions to describe different
chromatographic behaviors. Fortunately, it is amenable to give an appropriate treatment in the theory of
hyperbolic conservation laws. Recently, several generalizations of the Langmuir model within the time scale
calculus have been proposed in [2]. In addition, the Langmuir model was also modified in [3, 4] by taking
into account some nonlinear effects such as diffusion and condensation.

In this paper, we are concerned with the chromatography separation of two chemical species through a
Langmuir isotherm reactor [15, 16] when one component is inert and the other component is active, which
can be described by the following hyperbolic system of conservation laws

ut = 0,

vt + (
kv

1 + u+ v
)x = 0,

(1.1)

where u, v are the non-negative functions of the variables (x, t) ∈ R×R+, which stand for the concentrations
of the species. The system (1.1) can be derived from the more general two-component chromatography
system [16, 25] 

ut + (
k1u

1 + u+ v
)x = 0,

vt + (
k2v

1 + u+ v
)x = 0,

(1.2)

by letting k1 = 0 and k2 = k, where k1, k2 ∈ [0, 1] are all known constants dependent on the nature of
the Langmuir isotherm. If k1 = k2 is taken in (1.2), then it is called as the simplified chromatography
system, which has been widely studied such as in [1, 19, 23] recently. It is well-known that a component
with concentration u (or v) is called as inert if k1 = 0 (or k2 = 0) is taken [5]. Thus, the mass balances of the
two chemical components in the process of chromatography separation governed by the Langmuir isotherm
can be described by the system (1.1) when the component u is inert and the component v is active.

It is easy to see that the chromatography system (1.1) is strictly hyperbolic and the first characteristic
field is linearly degenerated and while the second characteristic field is genuinely nonlinear. It is noteworthy
that the system (1.1) belongs to the Temple class [25] for the shock curve coincides with the rarefaction
one in the (u, v) phase plane. One of the main purposes in this paper is to construct the global solutions
of the particular Cauchy problem for the system (1.1) when the initial data are taken to be three piecewise
constant states as

(u, v)(x, 0) =


(u−, v−), −∞ < x < −ε,
(um, vm), −ε < x < ε,
(u+, v+), ε < x < +∞,

(1.3)

in which ε > 0 is arbitrarily small. It is worthwhile to notice that the initial data (1.3) may be viewed as
the perturbation of the corresponding Riemann initial data

(u, v)(x, 0) =

{
(u−, v−), −∞ < x < 0,
(u+, v+), 0 < x < +∞. (1.4)

Thus, the particular Cauchy problem (1.1) and (1.3) is often called as the perturbed Riemann problem
(or the double Riemann problems) below. The Riemann problem is of great importance in the theory of
chromatography and needs to be considered when a stream of a given composition is fed to a column initially
saturated at a different composition or the saturation of an initially clean column with a feedstream has
constant concentrations of the two solutions [16]. It can be seen that the solutions of Riemann problem (1.1)
and (1.4) consist of constant states separated by elementary waves including rarefaction wave, shock wave
and contact discontinuity. To study the perturbed Riemann problem (1.1) and (1.3), it is essential to study
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the wave interaction problem for the system (1.1). The method adopted in this paper is to first construct
the solutions of the perturbed Riemann problem (1.1) and (1.3) in the (u, v) phase plane and consequently
map them onto the (x, t) physical plane. In fact, this type of initial data (1.3) has been widely used to study
all kinds of chromatography systems such as in [10, 20, 24, 27] for the reason that the wave interaction
problem is one of the most basic problems [16] in the study of chromatography separation process. More
precisely, the three piecewise constant initial states (1.3) should be taken when we deal with the problem of
multi-component separation by the chromatographic cycle [16]. The perturbed Riemann problem (1.1) and
(1.3) is one of the most important questions in the theory of chromatography and the fundamental features
of wave interactions for the system (1.1) can be examined thoroughly by studying the perturbed Riemann
problem (1.1) and (1.3).

In this paper, the wave interaction problem for the system (1.1) has been investigated in detail by using
the method of characteristics and then the global solutions of the perturbed Riemann problem (1.1) and
(1.3) have been constructed in completely explicit forms for all the possible situations. During the process of
wave interaction, the propagation speeds of shock and rarefaction waves are delivered and then the explicit
expressions of shock curves are given. It is interesting to observe that the propagation speeds of shock and
rarefaction waves increase or decrease when across the contact discontinuity which depends on the choice
of initial data. Furthermore, the stability of solutions to the Riemann problem (1.1) and (1.4) can also be
analyzed under the particular small perturbation (1.3) of the Riemann initial data (1.4) which is summarized
in the theorem below.

Theorem 1.1. The limits of the global solutions to the perturbed Riemann problem (1.1) and (1.3) are
identical with the corresponding Riemann solutions of (1.1) and (1.4) when the limit ε→ 0 is taken. Thus,
the Riemann solutions are stable with respect to the particular small perturbations (1.3) of the Riemann
initial data (1.4).

Recently, the delta shock wave has been observed experimentally in [11, 14] for the local equilibrium
model of two-component nonlinear chromatography attributed to a mixed competitive-cooperative general-
ized Langmuir isotherm. In fact, the delta shock wave is a nonclassical and singular transition front between
two constant composition states that may occur in the theory of chromatography due to the competitive-
cooperative interaction between two chemical components. The delta shock wave may be regarded as a trav-
eling spike superposed on a discontinuity to separate the initial and feed states [13]. Thus, the delta shock
wave can also be seen as a reasonable supplement of classical waves involving the rarefaction wave, shock
wave and contact discontinuity in the theory of chromatography. Consequently, the study of delta shock
wave for all kinds of chromatography systems has attracted extensive attention such as in [8, 18, 20, 23, 26].
Thus, it is natural to study the generalized Riemann problem for the chromatography system (1.1) with the
delta-type initial data

(u, v)(x, 0) =


(u−, v−), −∞ < x < 0,
(u0,mδ(x)), x = 0,
(u+, v+), 0 < x < +∞,

(1.5)

where the symbol δ indicates the standard Dirac delta function. In other words, it may be assumed that
the occurrence of a spike with infinitely high concentration [22] appears initially without loss of generality
and then the spike propagation can be observed. During the construction of solutions to the generalized
Riemann problem (1.1) and (1.5), the delta contact discontinuity is captured which is the Dirac delta
function supported on the line x = 0 of contact discontinuity. It is interesting to discover that the strength
of delta contact discontinuity decreases linearly at a constant rate and then becomes zero at the critical
point, such that the delta contact discontinuity will degenerate to be the contact discontinuity when across
the critical point. That is to say, the position of spike keeps invariant and the height of spike decreases
linearly with respect to the time t such that the spike disappears in finite time for the generalized Riemann
problem (1.1) and (1.5).

The paper is organized as follows: In Section 2, we obtain the solutions of the Riemann problem (1.1)
and (1.4). In Section 3, we mainly discuss all kinds of wave interactions when the initial data are taken to
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be three piecewise constant states and then the global solutions of the perturbed Riemann problem (1.1)
and (1.3) are constructed completely. In Section 4, the generalized Riemann problem with delta-type initial
data is considered and the solutions are constructed. At the end, the conclusion is drawn in Section 5.

2. The Riemann problem

In this section, we need to solve the Riemann problem (1.1) and (1.4) by using the standard technique
such as in the classical books [6, 7, 9, 17, 21]. The eigenvalues of (1.1) are

λ1 = 0, λ2 =
k(1 + u)

(1 + u+ v)2
,

such that λ1 < λ2 holds for arbitrary u and v. Thus, the system (1.1) is strictly hyperbolic in the quarter
of (u, v) phase plane. The corresponding right eigenvectors for the system (1.1) are −→r1 = (u + 1, v)T and
−→r2 = (0, 1)T , respectively. Let us use the notation ∇ = ( ∂

∂u ,
∂
∂v ) to stand for the gradient operator. We have

∇λ1·−→r1 = 0 for the first characteristic field λ1, therefore the first characteristic field λ1 is linearly degenerated.
Thus, the wave associated with λ1 is the contact discontinuity denoted by J . On the other hand, we have
∇λ2 · −→r2 = −2k(u+1)

(1+u+v)3
6= 0 for the second characteristic field λ2, such that the second characteristic field λ2 is

genuinely nonlinear. Thus, the wave associated with λ2 will be either the shock wave (denoted by S) or the
rarefaction wave (denoted by R).

Let us first consider the smooth solutions. If u(x, t) is a solution of the Riemann problem (1.1) and (1.4),
then u(αx, αt) is also a solution of the Riemann problem (1.1) and (1.4) for any α > 0. Thus, it is natural
to consider the solution of the Riemann problem (1.1) and (1.4) which only depends on ξ = x

t . Therefore,
the Riemann problem (1.1) and (1.4) is reduced to the following boundary value problem for the ordinary
differential equations 

− ξuξ = 0,

− ξvξ +
( kv

1 + u+ v

)
ξ

= 0,
(2.1)

associated with the boundary condition (u, v)(±∞) = (u±, v±). Let us rewrite (2.1) into the following form ξ 0
−kv

(1 + u+ v)2
k(1 + u)

(1 + u+ v)2
− ξ

( uξ
vξ

)
=

(
0
0

)
.

Thus, for the given left state (u−, v−), the contact discontinuity curve which is a wave of the first charac-
teristic family can be expressed by

J(u−, v−) :

{
ξ = λ1 = 0,
v

1 + u
=

v−
1 + u−

,

and the rarefaction wave curve which is a wave of second characteristic family can be expressed by

R(u−, v−) :

 ξ = λ2 =
k(1 + u)

(1 + u+ v)2
,

u = u−, v < v−.

Let us turn to the discontinuous solutions. For a discontinuous curve x = x(t), the Rankine-Hugoniot
relation 

σ[u] = 0,

σ[v] =
[ kv

1 + u+ v

]
,
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should hold, where σ = dx
dt is the propagation speed of the discontinuity and [u] = ur−ul is the jump across

the discontinuity with ul = u(x(t)− 0, t) and ur = u(x(t) + 0, t), etc. By a simply calculation, we can also
obtain the contact discontinuity which is a wave of the first characteristic family

J(u−, v−) :

{
τ = 0,
v

1 + u
=

v−
1 + u−

,

and the shock wave which is a wave of the second characteristic family

S(u−, v−) :

 σ =
k(1 + u−)

(1 + u− + v−)(1 + u+ v)
,

u = u−, v > v−.

6

-

v

u

S
J

R

(u−, v−)

0-1

q

Figure 1: For the given left state (u−, v−), the (u, v) phase plane is shown for the Riemann problem (1.1) and (1.4).

Clearly, the system (1.1) is attributed to the so-called Temple class [25] for the reason that the shock
curve coincides with the rarefaction one in the (u, v) phase plane. Let us draw Figure 1 to illustrate this
situation. In summary, for the given left state (u−, v−), there exist two kinds of Riemann solutions to (1.1)
and (1.4) described below.

(1) When v+
u++1 >

v−
u−+1 , the Riemann solution is a contact discontinuity J followed by a shock wave S

(u, v)(x, t) =


(u−, v−), −∞ < x < 0,(
u+,

(u+ + 1)v−
u− + 1

)
, 0 < x < σt,

(u+, v+), σt < x < +∞,

in which σ = k(1+u−)
(1+u−+v−)(1+u++v+) is the propagation speed of the shock wave.

(2) When v+
u++1 <

v−
u−+1 , the Riemann solution is a contact discontinuity J followed by a rarefaction wave R

(u, v)(x, t) =



(u−, v−), −∞ < x < 0,(
u+,

(u+ + 1)v−
u− + 1

)
, 0 < x < λ2

(
u+,

(u+ + 1)v−
u− + 1

)
t,

(u+, v), λ2

(
u+,

(u+ + 1)v−
u− + 1

)
t < x < λ2

(
u+, v+)t,

(u+, v+), λ2(u+, v+)t < x < +∞,

in which the state variable v in R varies from (u++1)v−
u−+1 to v+.
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3. Construction of global solutions to the perturbed Riemann problem (1.1) and (1.3)

In this section, we are planing to construct the global solutions of the perturbed Riemann problem (1.1)
and (1.3) for all kinds of situations. In other words, we need to study all the possible wave interactions for
the system (1.1) by employing the method of characteristics.

Case 1. J + S and J + S.

First of all, we need to consider the case that both a contact discontinuity followed by a shock wave
emitting from the initial points (−ε, 0) and (ε, 0) (see Figure 2). Obviously, the occurrence of this case
depends on the condition

v+
u+ + 1

>
vm

um + 1
>

v−
u− + 1

.

For the sufficiently small time t, the solution may be represented succinctly as:

(u−, v−) + J1 + (u1, v1) + S1 + (um, vm) + J2 + (u2, v2) + S2 + (u+, v+),

in which the states (u1, v1) and (u2, v2) are given respectively by

(u1, v1) =
(
um,

(um + 1)v−
u− + 1

)
, (u2, v2) =

(
u+,

(u+ + 1)vm
um + 1

)
. (3.1)

The propagation speed of S1 is σ1 = k(1+u1)
(1+um+vm)(1+u1+v1)

> 0 and that of J2 is τ2 = 0, such that S1 will
interact with J2 at a finite time t1 and the interaction point is given by{

x1 = ε,

x1 + ε = σ1t1,
(3.2)

which means that

(x1, t1) =
(
ε,

2ε(1 + u1 + v1)(1 + um + vm)

k(1 + u1)

)
. (3.3)

At the point (x1, t1), a new local Riemann problem will be formulated where the initial data are taken
to be

(u, v)(x, 0) =

{
(u1, v1), x < ε,
(u2, v2), x > ε.

Furthermore, the solution of the new local Riemann problem at the point (x1, t1) is a contact discontinuity
J2 followed by a shock wave S3. Analogously, the intermediate state (u3, v3) between J2 and S3 can also be
obtained by

(u3, v3) =
(
u2,

(u2 + 1)v1
u1 + 1

)
,

in which (u1, v1) and (u2, v2) are given by (3.1). Then, we use the following lemma to describe the interaction
between S2 and S3 (see Figure 2).

Lemma 3.1. If u+ > um, then we have σ1 > σ3, namely the shock wave S1 decelerates when it passes
through J2. Otherwise if u+ < um, then we have σ1 < σ3, namely the shock wave S1 accelerates when it
passes through J2.

Proof. The propagation speeds of S1 and S3 can be computed respectively by

σ1 =
k(1 + u1)

(1 + um + vm)(1 + u1 + v1)
, σ3 =

k(1 + u3)

(1 + u2 + v2)(1 + u3 + v3)
. (3.4)
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Figure 2: The interaction between J + S and J + S is displayed when
v+

u++1
> vm

um+1
>

v−
u−+1

and u+ > um.

Then, we have

σ1 − σ3 = k
(1 + u1)(1 + u3 + v3)(1 + u2 + v2)− (1 + u3)(1 + u1 + v1)(1 + um + vm)

(1 + um + vm)(1 + u1 + v1)(1 + u2 + v2)(1 + u3 + v3)

= k
[(1 + u1)(1 + u3) + v3(1 + u1)](1 + u2 + v2)− [(1 + u3)(1 + u1) + v1(1 + u3)](1 + um + vm)

(1 + um + vm)(1 + u1 + v1)(1 + u2 + v2)(1 + u3 + v3)

=
k[(1 + u1)(1 + u3) + v3(1 + u1)](u2 + v2 − um − vm)

(1 + um + vm)(1 + u1 + v1)(1 + u2 + v2)(1 + u3 + v3)

=
k(1 + u1)(u2 + v2 − um − vm)

(1 + um + vm)(1 + u1 + v1)(1 + u2 + v2)
,

in which v3(1 + u1) = v1(1 + u3) has been used. If u+ > um, then we have v2 > vm and u2 > um, such that
σ1 > σ3. Otherwise if u+ < um, then σ1 < σ3 can be achieved similarly. The proof is completed.

Finally, we consider the coalescence of two shock waves belonging to the same family shown below.

Lemma 3.2. The two shock waves S3 and S2 belonging to the second family coalesce into a new shock wave
of the second family.

Proof. The propagation speed of S2 is

σ2 =
k(1 + u2)

(1 + u2 + v2)(1 + u+ + v+)
,

which, together with (3.4), yields

σ3 − σ2 =
k(1 + u2)(v+ − v3)

(1 + u3 + v3)(1 + u2 + v2)(1 + u+ + v+)
> 0,

in which u+ = u2 = u3 and v+ > v2 > v3 have been used. Hence, S3 catches up with S2 in finite time and
the intersection (x2, t2) is determined by {

x2 − ε = σ2t2,
x2 − ε = σ3(t2 − t1),

which yields

(x2, t2) =
(
ε+

2ε(1 + u2)(1 + u1 + v1)(1 + um + vm)

(1 + u1)(1 + u2 + v2)(v+ − v3)
,
2ε(1 + u1 + v1)(1 + um + vm)(1 + u+ + v+)

k(1 + u1)(v+ − v3)

)
.

It can be seen from u3 = u+ that the two states (u+, v+) and (u3, v3) can also be connected by a shock
wave directly. Thus, after t2, S2 and S3 coalesce into a new shock wave S4 whose propagation speed is

σ4 =
k(1 + u3)

(1 + u3 + v3)(1 + u+ + v+)
.

It is easy to get σ3 > σ4 > σ2. The proof is completed.
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Case 2. J + S and J +R.

For this case, we need to cope with the situation that the Riemann solution at (−ε, 0) is J1 + S1 and at
(ε, 0) is J2 +R2. On this occasion, the initial data (1.3) should satisfy the condition

vm
um + 1

> max
( v−
u− + 1

,
v+

u+ + 1

)
.

The solution of (1.1) and (1.3) for sufficiently small t may be indicated as

(u−, v−) + J1 + (u1, v1) + S1 + (um, vm) + J2 + (u2, v2) +R2 + (u+, v+).

Here and below the states (u1, v1), (u2, v2), and (u3, v3) have the same presentations as those in Case 1.
As in Case 1, S1 collides with J2 at the point (x1, t1) which has the same expression with (3.3). After

the time t1, the new local Riemann problem whose left state is (u1, v1) and right state is (u2, v2) can also
be solved by a contact discontinuity J2 and a shock wave denoted by S3. The result of Lemma 3.1 can also
be obtained here in contrast with the two propagation speeds of S1 and S3. Therefore, we are now in a
position to consider the situation that the shock wave S3 penetrates the rarefaction wave R2 which can be
summarized below.

Lemma 3.3. The shock wave S3 catches up with the wave back of the rarefaction wave R2 in finite time
and consequently begins to penetrate R2. More precisely, if v+

u++1 > v−
u−+1 , then S3 is able to cancel the

whole R2 thoroughly. Otherwise, if v+
u++1 <

v−
u−+1 , then S3 penetrates R2 partially and finally has the line

x = ε+ k(1+u3)t
(1+u3+v3)2

in R2 as its asymptotic line.

Proof. One can see that the propagation speed of S3 is given by (3.4) and that of the wave back of R2 is
calculated by

ξ2(u2, v2) =
k(1 + u2)

(1 + u2 + v2)2
.

By virtue of u2 = u3 and v2 > v3, we have

σ3 − ξ2(u2, v2) =
k(1 + u2)(v2 − v3)

(1 + u3 + v3)(1 + u2 + v2)2
> 0,

thus S3 keeps up with the wave back of R2 at the point (x2, t2) which is computed by{
x2 − ε = σ3(t2 − t1),
x2 − ε = ξ2(u2, v2) · t2,

(3.5)

in which t1 is given by (3.3). Thus, we have

(x2, t2) =
(
ε+

2ε(1 + u2)(1 + u1 + v1)(1 + um + vm)

(1 + u1)(1 + u2 + v2)(v2 − v3)
,
2ε(1 + u1 + v1)(1 + um + vm)(1 + u2 + v2)

k(1 + u1)(v2 − v3)

)
. (3.6)

Consequently, S3 begins to penetrate R2 after the time t2. During the process of penetration, we denote
it with S4 whose propagation speed is determined by

dx

dt
=

k(1 + u3)

(1 + u3 + v3)(1 + u+ v)
,

x− ε =
k(1 + u)t

(1 + u+ v)2
,

x(t2) = x2,

(3.7)

where (u, v) changes from (u2, v2) to (u+, v+). Taking into account u = u2 = u3 = u+, differentiating (3.7)
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with respect to t leads to

d2x

dt2
= − k(1 + u3)

(1 + u3 + v3)(1 + u3 + v)2
· dv
dt
,

dx

dt
=

k(1 + u3)

(1 + u3 + v)2
− 2k(1 + u3)t

(1 + u3 + v)3
· dv
dt
. (3.8)

--

6
v

u−1 0

*
6+

?−f 1f
mf

2f
+f J1

S1J2

R2
q q

q
q
q

6 J1 J2
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x−ε ε
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+
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m
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3
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Figure 3: The interaction between J + S and J +R is shown when u+ < um and
v+

u++1
<

v−
u−+1

< vm
um+1

.

It yields dv
dt < 0 by substituting the first equation of (3.7) into (3.8). Furthermore, we have d2x

dt2
> 0,

which means that S3 accelerates during the process of penetration. On the other hand, it follows from (3.6)
and (3.7) that the curve of the shock wave S4 is determined by

√
x− ε =

√
k(1 + u3)t

1 + u3 + v3
− 1

1 + u3 + v3

√
2ε(1 + u2)(1 + u1 + v1)(1 + um + vm)(v2 − v3)

(1 + u1)(1 + u2 + v2)
.

Therefore, there exist two possible solutions as follows:

(a) If v+
u++1 >

v−
u−+1 , then S4 is able to cross the whole R2 completely and terminates at the point (x3, t3)

which is given by
x3 − ε = ξ2(u+, v+)t3,

√
x3 − ε =

√
k(1 + u3)t3

1 + u3 + v3
− 1

1 + u3 + v3

√
2ε(1 + u2)(1 + u1 + v1)(1 + um + vm)(v2 − v3)

(1 + u1)(1 + u2 + v2)
,

such that we have

(x3, t3) =
(
ε+

2ε(1 + u+)(1 + u1 + v1)(1 + um + vm)(v2 − v3)
(1 + u1)(1 + u2 + v2)(v3 − v+)2

,
2ε(1 + u1 + v1)(1 + um + vm)(v2 − v3)(1 + u+ + v+)2

k(1 + u1)(1 + u2 + v2)(v3 − v+)2

)
. (3.9)

After the penetration, we denote the shock wave with S5 whose propagation speed is

σ5 =
k(1 + u3)

(1 + u3 + v3)(1 + u+ + v+)
. (3.10)

(b) If v+
u++1 <

v−
u−+1 , then S4 cannot cancel the entire R2 thoroughly and ultimately has the characteristic

line x = ε+ k(1+u3)t
(1+u3+v3)2

in R2 as the asymptotic line (see Figure 3).
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Case 3. J +R and J + S.

In this case, we consider that the Riemann solution at (−ε, 0) is J1 + R1 and at (ε, 0) is J2 + S2. This
case happens if and only if

vm
um + 1

< min
( v−
u− + 1

,
v+

u+ + 1

)
is satisfied. When t is small enough, the solution of (1.1) and (1.3) is

(u−, v−) + J1 + (u1, v1) +R1 + (um, vm) + J2 + (u2, v2) + S2 + (u+, v+).

Let us first consider the interaction between R1 and J2 and use the following lemma to depict it.

Lemma 3.4. The rarefaction wave R1 passes through J2 and then a transmitted rarefaction wave denoted
by R2 is generated during the process of penetration. If u+ > um, then the rarefaction wave slows down
across J2. On the contrary, if u+ < um, then it speeds up across J2.

Proof. The propagation speed of J2 is τ2 = 0 and those of the characteristic lines in R1 are

ξ1(u
−, v−) =

k(1 + u−)

(1 + u− + v−)2
> 0,

where the states (u−, v−) in R1 vary from (u1, v1) to (um, vm). It is obvious that the rarefaction wave R1 can
across J2 absolutely. In addition, J2 interacts with the wave front of R1 at the point which is determined by{

x1 = ε,

x1 + ε = ξ1(um, vm)t1,

which yields

(x1, t1) =
(
ε,

2ε(1 + um + vm)2

k(1 + um)

)
. (3.11)

On the other hand, the intersection of J2 and the wave back of R1 can also be calculated by

(x2, t2) =
(
ε,

2ε(1 + u1 + v1)
2

k(1 + u1)

)
.

Now, let us compare the propagation speeds of rarefaction waves before and after penetration when
across J2. The state (u−, v−) in R1 becomes the matched one (u+, v+) in R2 when acrosses J2, which should
satisfy

v+

u+ + 1
=

v−

u− + 1
. (3.12)

The propagation speeds of the matched characteristic lines in R1 and R2 can be calculated respectively by

ξ1(u
−, v−) =

k(1 + u−)

(1 + u− + v−)2
, ξ2(u

+, v+) =
k(1 + u+)

(1 + u+ + v+)2
.

Then, we have

ξ1(u
−, v−)− ξ2(u+, v+)

= k
(1 + u−)(1 + u+ + v+)2 − (1 + u+)(1 + u− + v−)2

(1 + u− + v−)2(1 + u+ + v+)2

= k
[(1 + u−)(1 + u+) + v+(1 + u−)](1 + u+ + v+)− [(1 + u+)(1 + u−) + v−(1 + u+)](1 + u− + v−)

(1 + u− + v−)2(1 + u+ + v+)2

=
k[(1 + u−)(1 + u+) + v+(1 + u−)](u+ + v+ − u− − v−)

(1 + u− + v−)2(1 + u+ + v+)2
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=
k(1 + u−)(u+ + v+ − u− − v−)

(1 + u− + v−)2(1 + u+ + v+)
,

in which (3.12) has been used. If u+ > um, then we have u+ > u− and v+ > v−, such that ξ1(u
−, v−) >

ξ2(u
+, v+), which means that R1 decelerates when it passes through J2. Otherwise, if u+ < um, then we

have u+ < u− and v+ < v−, such that ξ1(u
−, v−) < ξ2(u

+, v+), which means that R1 accelerates when it
passes through J2. Thus, the conclusion of the lemma can be drawn.

--
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.

On the other hand, the rarefaction wave R2 continues to move forwards and penetrates the shock wave
S2 which can be summarized in the following lemma.

Lemma 3.5. If v+
u++1 > v−

u−+1 , then S2 has the ability to cancel the whole R2 thoroughly. Otherwise, if
v+

u++1 <
v−

u−+1 , then S2 penetrates R2 partially and eventually takes the characteristic line x = ε+ k(1+u+)t
(1+u++v+)2

in R2 as its asymptotic line.

Proof. The propagation speed of S2 and that of the wave front in R2 are computed respectively by

σ2 =
k(1 + u2)

(1 + u2 + v2)(1 + u+ + v+)
, ξ2(u2, v2) =

k(1 + u2)

(1 + u2 + v2)2
.

Noticing that u2 = u+ and v+ > v2, it is easy to know

ξ2(u2, v2)− σ2 =
k(1 + u2)(v+ − v2)

(1 + u2 + v2)2(1 + u+ + v+)
> 0.

Equivalently, the wave back of R2 catches up with the shock wave S2 in finite time. In fact, the intersection
is determined by {

x3 − ε = ξ2(u2, v2)(t3 − t1),
x3 − ε = σ2t3,

in which (x1, t1) is given by (3.11), which enables us to have

(x3, t3) =
(
ε+

2ε(1 + um + vm)

v+ − v2
,
2ε(1 + u+ + v+)(1 + um + vm)2

k(1 + um)(v+ − v2)

)
.

After the time t3, the shock wave starts to penetrate R2 with varying propagation speeds and is labeled
by S3 during the process of penetration. The curve of S3 may be determined by

dx

dt
=

k(1 + u+)

(1 + u+ + v+)(1 + u+ + v+)
,

x− ε =
k(1 + u+)

(1 + u+ + v+)2
(t− t),

x(t3) = x3,
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in which t changes from t1 to t2 and (u+, v+) is the corresponding state that the characteristic line starting
from the point (ε, t) in R2 arrives at S3. For our knowledge, it is impossible to calculate the explicit form
for the curve of S3 due to the fact that R2 is a non-centered rarefaction wave. Depending on the relation
between v+

u++1 and v−
u−+1 , there are two possible situations as follows:

(a) If v+
u++1 >

v−
u−+1 , then S3 is able to cancel the entire R2 thoroughly (see Figure 4). The shock wave is

denoted with S4 after penetration whose propagation speed is given by

σ4 =
k(1 + u−)

(1 + u− + v−)(1 + u+ + v+)
.

(b) If v+
u++1 <

v−
u−+1 , then S2 cannot penetrate the whole R2 completely and at last has the characteristic

line x = ε+ k(1+u+)t
(1+u++v+)2

associated with the state (u3, v3) in R2 as its asymptotic line.

Case 4. J +R and J +R.

In the end, we consider the situation that there are both J +R originating from (−ε, 0) and (ε, 0). This
case arises when

v+
u+ + 1

<
vm

um + 1
<

v−
u− + 1

is satisfied. The solution of (1.1) and (1.3) for sufficiently small t may be symbolized as

(u−, v−) + J1 + (u1, v1) +R1 + (um, vm) + J2 + (u2, v2) +R2 + (u+, v+).

--
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and u+ > um.

Similar to that in Case 3, the forward rarefaction wave R1 penetrates J2 at a time. This penetration
also gives rise to a transmitted rarefaction wave R3. In addition, the propagation speed will change and
obey the same rule in Lemma 3.4 when the rarefaction wave R1 crosses the contact discontinuity J2. On
the other hand, the wave front of R3 is parallel to the wave back of R2, such that these two waves R2 and
R3 cannot interact with each other (see Figure 5).

4. The generalized Riemann problem with delta-type initial data

In this section, we draw our attention on the generalized Riemann problem for the system (1.1) with the
delta-type initial data (1.5). In order to construct the solution of the generalized Riemann problem (1.1)
and (1.5), we should also consider the particular Cauchy problem for the system (1.1) with the following
perturbed Riemann initial data

(u, v)(x, 0) =


(u−, v−), −∞ < x < −ε,
(u0,

m

2ε
), −ε < x < ε,

(u+, v+), ε < x < +∞,
(4.1)
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in which ε(> 0) is sufficiently small. Then, the solutions of (1.1) and (1.5) can be obtained by letting ε→ 0
in the solutions of (1.1) and (4.1).

Obviously, m
2ε(1+u0)

is much bigger than v−
u−+1 as well as v+

u++1 for ε sufficiently small. Provided that

ε is a sufficiently small positive number, the Riemann solution emitting from (−ε, 0) is always a contact
discontinuity J1 followed by a shock wave S1 and the Riemann solution emitting from (ε, 0) is always a
contact discontinuity J2 followed by a rarefaction wave R2, respectively. As in Case 2, S1 interacts with J2
at the point determined by (3.2), which yields

(x1, t1) =
(
ε,

2ε(1 + u− + v−)(1 + u0 + m
2ε)

k(1 + u−)

)
. (4.2)

At the point (x1, t1), a new Riemann problem with the initial data

(u1, v1) =
(
u0,

(1 + u0)v−
1 + u−

)
, (u2, v2) =

(
u+,

m(1 + u+)

2ε(1 + u0)

)
, (4.3)

is formed. Analogously, the Riemann solution is also a contact discontinuity J2 followed by a shock wave
S3, in which the intermediate state (u3, v3) is given by

(u3, v3) =
(
u+,

(1 + u+)v−
1 + u−

)
. (4.4)

After that, S3 begins to penetrate the rarefaction wave R2 at the point which is determined by (3.5), which
together with (4.2) gives

(x2, t2) =
(
ε+

k(1 + u2)t1
(1 + u2 + v2)(v2 − v3)

,
(1 + u2 + v2)t1

v2 − v3

)
. (4.5)

Making use of the relation between v−
u−+1 and v+

u++1 , there are also two possibilities which are similar as that

in Lemma 3.3. Besides, when v−
u−+1 <

v+
u++1 , S4 is able to cancel R2 entirely and the process ends at the

point given by (3.9), where the intermediate states are given by (4.3) and (4.4). It follows from (4.2) and
(4.5) that

lim
ε→0

(x1, t1) =
(

0,
m(1 + u− + v−)

k(1 + u−)

)
, lim

ε→0
x2 = 0. (4.6)

By making use of (3.5), we have

lim
ε→0

t1
t2

= lim
ε→0

σ3 − ξ2(u2, v2)
σ3

= lim
ε→0

(
1− (1 + u0)(1 + u− + v−)

(1 + u−)(1 + u0 + m
2ε)

)
= 1. (4.7)

On the other hand, taking into account (4.3) and (4.4), it follows from (3.4) that

lim
ε→0

σ3 = lim
ε→0

k(1 + u−)(1 + u0)

(1 + u+)(1 + u− + v−)(1 + u0 + m
2ε)

= 0. (4.8)

For convenience, let us denote t = m(1+u−+v−)
k(1+u−) . It is clear to see from (4.6) and (4.7) that both the points

(x1, t1) and (x2, t2) will tend to the same point (0, t) in the limit ε→ 0 situation. Furthermore, it is observed
from (4.8) that the shock wave S3 is also compressed at the point (0, t) in the limit ε→ 0 situation. Thus,
the shock wave S4 starts to propagate from the point (0, t) in the limit ε→ 0 situation. On the other hand,
it follows from (3.9) that

lim
ε→0

(x3, t3) =
(m(1 + u+)(1 + u−)(1 + u− + v−)

(v− − v+ + u+v− − u−v+)2
,
m(1 + u−)(1 + u− + v−)(1 + u+ + v+)2

k(v− − v+ + u+v− − u−v+)2

)
.
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It follows from (3.7) that the tangent slope of S4 at the point (x2, t2) can be calculated by

dx

dt

∣∣∣
(x2,t2)

=
(√k(1 + u3)

1 + u3 + v3
·
√
x− ε
t

)∣∣∣
(x2,t2)

=
k(1 + u−)(1 + u0)

(1 + u+)(1 + u− + v−)(1 + u0 + m
2ε)

,

such that we have lim
ε→0

dx
dt |(x2,t2) = 0. That is to say, the shock curve S4 is tangent to the t−axis at the point

(0, t) in the limit ε → 0 situation. Finally, it can be seen from (3.10) that the propagation speed of S5 is
unchanged in the limit ε→ 0 situation.

--
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, the solution of the particular Cauchy problem (1.1) and (4.1) is shown for the given sufficiently

small ε on the left-hand side and the solution of the generalized Riemann problem (1.1) and (1.5) is shown which is the limit
ε→ 0 of the solution of (1.1) and (4.1) on the right-hand side.

Now, let us consider the limit ε→ 0 situation for the rarefaction wave R2. First of all, the propagation
speed of the wave front of R2 is also ξ2(u+, v+) = k(1+u+)

(1+u++v+)2
which remains unchanged after taking the

limit ε→ 0. On the other hand, about the wave back of R2, we have

lim
ε→0

ξ2(u2, v2) = lim
ε→0

k(1 + u0)
2

(1 + u+)(1 + u0 + m
2ε)

2
= 0,

which means that the wave back of R2 coincides with the t−axis.
In the end, let us turn our attention on the mass accumulation on the t−axis in the limit ε→ 0 situation.

Let us use x1(t) and x2(t) to denote the curves of S1 and the wave back ofR2, which are expressed respectively
by

x1(t) =
k(1 + u−)t

(1 + u− + v−)(1 + u0 + m
2ε)
− ε, x2(t) =

k(1 + u0)
2t

(1 + u+)(1 + u0 + m
2ε)

+ ε.

In what follows, let us calculate the mass of v in the region (−ε, ε) as below

βε(t) =

∫ x1(t)

−ε
v1dx+

∫ ε

x1(t)
vmdx+

∫ x2(t)

ε
v2dx

=

∫ x1(t)

−ε

(1 + u0)v−
1 + u−

dx+

∫ ε

x1(t)

m

2ε
dx+

∫ x2(t)

ε

1 + u+
1 + u0

· m
2ε
dx

=
(1 + u0)v−

1 + u−
· (x1(t) + ε) +

m

2ε
· (ε− x1(t)) +

1 + u+
1 + u0

· m
2ε
· (x2(t)− ε)

=
(1 + u0)v−

1 + u−
·
( k(1 + u−)t

(1 + u− + v−)(1 + u0 + m
2ε)

)
+
m

2ε
·
(

2ε− k(1 + u−)t

(1 + u− + v−)(1 + u0 + m
2ε)

)
+

1 + u+
1 + u0

· m
2ε
·
( k(1 + u0)

2t

(1 + u+)(1 + u0 + m
2ε)

)
,

which enables us to have

lim
ε→0

βε(t) = m− k(1 + u−)t

1 + u− + v−
.
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Thus, we can see that the two contact discontinuities J1 and J2 coalesce into the delta contact discontinuity
δJ on the t−axis before the time t in the limit ε → 0 situation. But the strength of the delta contact
discontinuity δJ decreases linearly at the rate k(1+u−)

1+u−+v−
and becomes zero at the point (0, t). Thus, the delta

contact discontinuity δJ degenerates to be the contact discontinuity J after the time t.
If v−

1+u−
< v+

1+u+
, then the shock wave S4 is able to penetrate R2 completely in the limit ε→ 0 situation

(see Figure 6). Otherwise, if v−
1+u−

> v+
1+u+

, then the shock wave S4 cannot penetrate R2 completely and

eventually takes the characteristic line x = k(1+u+)t
(1+u++v+)2

in R2 as its asymptotic line in the limit ε → 0

situation. Thus, we can obtain the solutions of the generalized Riemann problem (1.1) and (1.5) by taking
the limit ε→ 0 of the solutions to the particular Cauchy problem (1.1) and (4.1). Furthermore, it is easily
seen that the solutions of the generalized Riemann problem (1.1) and (1.5) also converge to the corresponding
solutions of the Riemann problem (1.1) and (1.4) when the limit m→ 0 is taken.

5. Conclusion

So far, we have finished the discussion for all kinds of wave interactions and the global solutions of the
perturbed Riemann problem (1.1) and (1.3) have been constructed completely. It is clear to see that the
large-time asymptotic states of the global solutions to the perturbed Riemann problem (1.1) and (1.3) are
exactly the corresponding Riemann solutions of (1.1) and (1.4) and the asymptotic behaviors of the solutions
to the perturbed Riemann problem (1.1) and (1.3) are governed completely by the Riemann initial data
(u±, v±). Thus, the Riemann solutions are stable with respect to the particular small perturbations (1.3) of
the Riemann initial data (1.4) and the proof of Theorem 1.1 has been finished in view of the above analysis.
In addition, the generalized Riemann problem for the system (1.1) with the delta-type initial data (1.5) can
also be considered by virtue of the solutions of the perturbed Riemann problem (1.1) and (4.1) and then
the delta contact discontinuity is captured and observed clearly.
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