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Abstract

A topological space (X , τ ) is called epinormal if there is a coarser topology τ ′ on X such that (X ,
τ ′ ) is T4. We investigate this property and present some examples to illustrate the relationships between
epinormality and other weaker kinds of normality. ©2016 All rights reserved.
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1. Introduction

In this paper, we investigate a new topological property called epinormality which was presented by
Arhangel'skĭi. We prove that submetrizability and T4 imply epinormality but the converse is not true in
general. We present some examples to show that epinormality and some weaker versions of normality, such
as mild normality, almost normality, and π-normality, are independent from each other. Throughout this
paper, we denote an ordered pair by 〈x, y〉, the set of positive integers by N, and the set of real numbers by
R. A space X is normal if any two disjoint closed sets can be separated by two disjoint open sets. A T4

space is a T1 normal space and a Tychonoff (T3 1
2
) space is a T1 completely regular space. For a subset A of

a space X, intA and A denote the interior and the closure of A, respectively. An ordinal γ is the set of all
ordinal α such that α < γ. The first infinite ordinal is ω0 and the first uncountable ordinal is ω1.

2. Epinormality

Definition 2.1 (Arhangel'skĭi, 2012). A topological space (X , τ ) is called epinormal if there is a coarser
topology τ ′ on X such that (X , τ ′ ) is T4.
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Recall that a topological space (X , τ ) is called submetrizable if there exists a metric d on X such that
the topology τ d on X generated by d is coarser than τ , i.e., τ d ⊆ τ , see [5]. Obviously, any T4 space
is epinormal, just by taking τ ′ = τ , but the converse is not true in general. For example, the square of
the Sorgenfrey line, see [12], is epinormal which is not normal. It is epinormal because it is submetrizable,
since, by definitions, any submetrizable space is epinormal. The converse of the last statement is not true
in general. For example, ω1 + 1 is epinormal being T2-compact, hence T4. But it is not submetrizable,
because if ω1 + 1 was submetrizable, then there would be a metric d on ω1 + 1 such that the topology τ d on
ω1 + 1 generated by d is coarser than the usual ordered topology. This means that (ω1 + 1,τ d) is perfectly
normal. So, the closed set {ω1} is a Gδ-set in (ω1 + 1,τ d), i.e., {ω1} = ∩n∈NUn, where Un ∈τ d, hence Un is
open in the usual ordered topology on ω1 + 1, which is a contradiction. Epinormality and normality do not
imply each other. For example, the Niemytzki plane is epinormal being submetrizable, but it is not normal
by Jones’ lemma. Any indiscrete space which has more than one element is an example of a normal space
which is not epinormal. In Example 2.10 below, we give a Tychonoff space which is not epinormal. Observe
that if τ ′ and τ are topologies on X such that τ ′ is coarser than τ and (X, τ ′ ) is Ti, i ∈ {0, 1, 2}, then so
is (X, τ ). So, we can conclude the following.

Theorem 2.2. Every epinormal space is Hausdorff.

We can separate in epinormal spaces disjoint compact subsets by a continuous real-valued function. It
is the Urysohn’s version for epinormality.

Theorem 2.3. Let (X , τ ) be an epinormal space. Then for each disjoint compact subsets A and B of (X ,
τ ) there exists a continuous function f : X −→ I, where I = [0, 1] is considered with its usual topology,
such that f(x) = 0 for each x ∈ A and f(x) = 1 for each x ∈ B.

Proof. Let (X , τ ) be any epinormal space, then there is a coarser topology τ ′ than τ such that (X , τ ′ )
is T4. Let A and B be any disjoint compact subsets of (X , τ ). Then A and B are both closed in (X ,
τ ′ ). Apply Urysohn’s lemma, then there exists a continuous function f : (X , τ ′ ) −→ I such that f(x) = 0
for each x ∈ A and f(x) = 1 for each x ∈ B. Since τ ′ is coarser than τ , then f : (X , τ )−→ I is still
continuous.

Theorem 2.4. Epinormality is a topological property.

Proof. Let (X , τ ) be any epinormal space. Assume that (X , τ )∼= (Y ,S ). Let τ ′ be a coarser topology
on X such that (X , τ ′ ) is T4. Let f : (X , τ )−→ (Y ,S ) be a homeomorphism. Define a topology S ′ on
Y by S ′= { f(U) : U ∈ τ ′ }. Then S ′ is a coarser than S and (Y ,S ′ ) is T4.

Theorem 2.5. Epinormality is an additive property.

Proof. Let (Xα , τα) be an epinormal space for each α ∈ Λ. For each α ∈ Λ, let τ ′α be a topology on Xα,
coarser than τα such that (Xα ,τ ′α ) is T4. Since T1 and normality are both additive [4], then ⊕α∈Λ(Xα ,τ ′α )
is T4, and its topology is coarser than the topology on ⊕α∈Λ(Xα ,τα ).

Since metrizability is countable multiplicative and T2-compactness is multiplicative, then we conclude
the following statement about the multiplicity of epinormality.

Theorem 2.6. For each α ∈ Λ, let (Xα , τα ) be an epinormal space such that the witness of epinormality
(Xα , τ ′α ) is T2-compact for each α ∈ Λ, or metrizable for each α ∈ Λ, where Λ is countable. Then∏
α∈Λ(Xα , τα ) is epinormal.

We still do not know if epinormality is multiplicative or not.
There are various methods of generating a new topological space from a given one. In 1929, Alexandroff

introduced his method by constructing the double circumference space [1]. In 1968, Engelking generalized
this construction to an arbitrary space as follows [3]: Let X be any topological space and X ′ = X × {1}.
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Note that X∩X ′ = ∅. Let A(X) = X∪X ′. For simplicity, for an element x ∈ X, we will denote the element
〈x, 1〉 in X ′ by x′ and for a subset B ⊆ X let B′ = {x′ : x ∈ B} = B × {1} ⊆ X ′. For each x′ ∈ X ′, let
B(x′) = {{x′}}. For each x ∈ X, let B(x) = {U ∪ (U ′ \ {x′}) : U is open in X with x ∈ U }. Let τ denote
the unique topology on A(X) which has {B(x) : x ∈ X} ∪ {B(x′) : x′ ∈ X ′} as its neighborhood system.
A(X) with this topology is called the Alexandroff Duplicate of X. In [2], the following theorem was proved.

Theorem 2.7. If (X ,S) is epinormal, then so is its Alexandroff duplicate (A(X), τ ).

Recall that a subset E of a space X is called closed domain [4] (called also, regularly closed, κ-closed
[11]) if E = intE. It is clear that the closure of an open set is a closed domain.

Theorem 2.8. If X is pseudocompact epinormal space of cardinality less than continuum, then X is T4.

Proof. Let (X , τ ) be a pseudocompact epinormal space of cardinality less than continuum and let τ ′ be a
topology on X such that (X , τ ′ ) is T4 and τ ′ ⊆ τ . Observe that we have (X , τ ′ ) is also pseudocompact.
Since any pseudocompact normal space is countably compact, [4, 3.10.21], then (X , τ ′ ) is countably
compact and Hausdorff, since it is of cardinality less than continuum, then (X , τ ′ ) is also first countable.

We show that τ ′ ⊇ τ . Let C be any closed set in (X , τ ). Consider the family W = {W = U τ : U ∈ τ
and C ⊆ U}. Clearly we have C =

⋂
{W : W ∈ W}. Since pseudocompactness is hereditary with respect to

the closed domains, see [4], W is pseudocompact in (X , τ ) for each W ∈ W. Hence W is pseudocompact in
(X , τ ′ ) for each W ∈ W. Since pseudocompact subsets of first countable Tychonoff space are closed, [13],
then W is closed in (X , τ ′ ) for each W ∈ W. Thus C is closed in (X , τ ′ ) and hence τ ′ = τ . Therefore,
(X , τ ) is T4.

From the above proof, we conclude the following.

Corollary 2.9. If X is pseudocompact epinormal first countable space, then X is T4.

Here is an example of a Tychonoff separable first countable pseudocompact space which is not epinormal.

Example 2.10. For simplicity, we will denote the first infinite ordinal ω0 just by ω. Two countably infinite
sets are called almost disjoint if their intersection is finite. Call a subfamily of [ω]ω = {A ⊂ ω : A is infinite}
a mad family on ω if it is a maximal (with respect to inclusion) pairwise almost disjoint subfamily. Let
A be a pairwise almost disjoint subfamily of [ω]ω. The Mrówka space Ψ(A) is defined as follows: The
underlying set is ω∪A, the points of ω are isolated and a basic open neighborhood of A ∈ A has the form
{A} ∪ (A \ F ), with F ∈ [ω]<ω, i.e., F is a finite subset of ω, [14]. It is well-known, see [14], that there
exists an almost disjoint family A ⊂ [ω]ω such that |A| > ω and Ψ(A) is a Tychonoff, first countable,
separable, and locally compact space which is not countably compact nor normal. Moreover, A is a mad
family if and only if Ψ(A) is pseudocompact.

Now, the Mrówka space Ψ(A), where A ⊂ [ω]ω is mad is first countable and pseudocompact which is
not normal. So, by Corollary 2.9, it cannot be epinormal.

3. Epinormality and other weaker versions of normality.

A topological space X is called C-normal if there exist a normal space Y and a bijective function
f : X −→ Y such that the restriction f|C : C −→ f(C) is a homeomorphism for each compact subspace
C ⊆ X, [7]. It is clear that any epinormal space is C-normal, but the converse is not true in general. For
example, R with the left ray topology, [12], is C-normal, because it is normal, but it is not epinormal because
it is not T2 by Theorem 2.2. Another example is the above Mrówka space Ψ(A), where A ⊂ [ω]ω is mad. It
is C-normal because it is locally compact [7].

A topological space X is called L-normal if there exist a normal space Y and a bijective function
f : X −→ Y such that the restriction f|C : C −→ f(C) is a homeomorphism for each Lindelöf subspace
C ⊆ X, [9]. It was proved in [9] that “If X is T3 separable L-normal and of countable tightness, then X is
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normal (T4)”. Now, the Sorgenfrey line is submetrizable, thus the Sorgenfrey line square is submetrizable,
hence epinormal. Since the Sorgenfrey line square is first countable Tychonoff separable non-normal space,
see [12], then it is not L-normal. R with the left ray topology is L-normal, because it is normal, but it is
not epinormal because it is not T2.

A topological space X is called mildly normal [10] (called also, κ-normal [11]) if for any two disjoint
closed domains E and F of X, there exist two disjoint open sets U and V such that E ⊆ U and F ⊆ V .
In general, epinormality and mild normality do not imply each other. (R , τ p) is not epinormal, as it is not
T2, but it is mildly normal as the only closed domains are R and the empty set. Here is an example of an
epinormal space which is not mildly normal.

Example 3.1. Let P and Q denote the irrationals and the rationals, respectively. For each p ∈ P and
n ∈ N, let pn = 〈p, 1

n〉 ∈ R2. For each p ∈ P, fix a sequence (p?n)n∈N of rationals such that p′n = 〈p?n, 0〉 −→
〈p, 0〉, where the convergence is taken in R2 with its usual topology U . For each p ∈ P and n ∈ N,
let An(〈p, 0〉) = {p′k : k ≥ n} and Bn(〈p, 0〉) = {pk : k ≥ n}. Now, for each p ∈ P and n ∈ N, let
Un(〈p, 0〉) = {〈p, 0〉} ∪ An(〈p, 0〉) ∪ Bn(〈p, 0〉). Let X = {〈x, 0〉 ∈ R2 : x ∈ R} ∪ {〈p, 1

n〉 = pn : p ∈ P and
n ∈ N}. For each q ∈ Q, let B(〈q, 0〉) = {{〈q, 0〉}}. For each p ∈ P, let B(〈p, 0〉) = {Un(〈p, 0〉) : n ∈ N}.
For each p ∈ P and each n ∈ N, let B(pn) = {{pn}}. Denote by τ the unique topology on X that has
{B(〈x, 0〉),B(pn) : x ∈ R, p ∈ P, n ∈ N} as its neighborhood system. Let Z = {〈x, 0〉 : x ∈ R}. That is,
Z is the x-axis. Then (Z, τ Z ) ∼= (R , RS ), where RS is the rational sequence topology, see [12]. X is
submetrizable, hence epinormal. But it is not mildly normal, see [7].

A space X is called almost normal [8] if for any two disjoint closed subsets A and B of X one of which
is closed domain, there exist two disjoint open subsets U and V of X such that A ⊆ U and B ⊆ V . A
subset A of a space X is called π-closed [6] if A is a finite intersection of closed domains. A space X is called
π-normal [6] if for any two disjoint closed subsets A and B of X one of which is π-closed, there exist two
disjoint open subsets U and V of X such that A ⊆ U and B ⊆ V . A space X is called quasi-normal [15]
if for any two disjoint π-closed subsets A and B of X, there exist two disjoint open subsets U and V of X
such that A ⊆ U and B ⊆ V , see also [6].

Epinormality and π-normality are independent from each other. For example, the half-disc topological
space is not π-normal, see [6], but it is epinormal because it is submetrizable. The real numbers R with
the countable complement topology is π-normal being weakly extremally disconnected, see [6], but it is not
epinormal since it is not Hausdorff.

Epinormality and almost normality do not imply each other. For example, the Michael product is not
almost normal, see [8], but it is epinormal because it is submetrizable. (R , τ p), where τ p is the particular
point topology, p ∈ R [8], is almost normal being weakly extremally disconnected, see [8], but it is not
epinormal as it is not Hausdorff.

Quasi-normality does not imply epinormality. For example, R with the finite complement topology is
quasi-normal as the only π-closed subsets are R and the empty set. But it is not epinormal because it is not
Hausdorff.
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