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Abstract

This paper discusses the stochastic nuclear spin generator systems under the influence of white noise.
We prove the existence of a unique solution and a stationary distribution for stochastic nuclear spin gen-
erator systems. We analyze long-time behaviour of random attractor of the distributions of the solutions.
Furthermore, we prove that the random attractor contains of only one point for particular parameters or
can converge weakly to a stationary distribution. Numerical experiments illustrate the results. c©2016 All
rights reserved.
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1. Introduction

The nuclear spin generator chaotic systems was founded in 1963 by S. Sherman [14] for a third-order
system generated by a autonomous differential equation which describes the behaviour of a typical nuclear
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reactor problem. A classical nuclear spin generator chaotic systems is written by
ẋ(t) = −βx+ y,
ẏ(t) = −x− βy + βkyz,
ż(t) = αβ − αβz − αky2,

(1.1)

with initial value (x0, y0, z0) = u0, where x denotes a neutron density; y denotes temperature which is
associated with the fuel; z denotes temperature which is associated with the moderator or coolant; and
parameters α, β and γ are nonnegative real numbers. This system exhibits the paradox of abundant nonlinear
phenomenon for different parameter condition. So it is “ a better archetypal system than the Lorenz system”
[3]. Recently, there has been an increasing interest in investigating the nonlinear dynamics of nuclear spin
generator (NSG) [10, 15–18, 20].

On the contrary, Vreeke [18] has pointed out that the parameters in the nuclear spin generator systems
exhibit random fluctuation to a greater or lesser extent due to the local magnetic field of the nuclei in the
sample. Scholars in general estimate them by average values plus some error terms. Usually, basing on the
well-known central limit theorem, the distribution of residuals follows normal, that is, the corresponding
Itô’s-type of the stochastic NSG system is defined by

du = (−Au−B(u) + f)dt+G(u)dWt, u(0) = u0, 0 ≤ t ≤ T <∞ (1.2)

with the initial value u0 independent of FP
t for all t ≥ 0, where Wt is independent Brownian motions. The

coefficients of the drift are given by

A =

 β −1 0
1 β 0
0 0 αβ

 , B =

 0
−βkyz
βky2

 , f =

 0
0
αβ

 .
The noise term G(u) : <3 → <{3×m}-matrices satisfies a linear growth condition and a Lipschitz.

We also interest in the asymptotic behavior of the stochastic nuclear spin generator systems. To investi-
gate the stochastic ultimate bound, stationary distributions and random attractor for a stochastic dynamical
system is important but quite challenging task in general [1, 2, 4–9, 12, 13, 21, 22]. Some results in recent
literature in general have been obtained by the construction of Lyapunov functionals. Although a very useful
method for proving the stationary distributions and random attractor, the construction of a Lyapunov func-
tional is usually a very difficult task, and involves long computations. Moreover, a new Lyapunov functional
is often required for each model under consideration. However, our approach does not require to make use
of Lyapunov functional methods, and apply Krylov-Bogolyubov methods to a quite general framework.

To the best of the author’s knowledge, comparably little progress has been made by now. Since the
nonlinear part of the nuclear spin generator systems does not satisfy a linear growth condition, we cannot
apply the existence and uniqueness standard theorems that prove the existence of a unique solution. In this
paper, firstly, basing on truncation function methods, we prove the existence and uniqueness of the solution.
Secondly, using Krylov-Bogolyubov methods, we prove the existence a stationary distribution and a random
attractor. Finally, we prove that the random attractor contains of only one point for particular parameters
or can converge weakly to a stationary distribution.

2. Preliminaries and notations

Let {Ω,F ,P} be a probability space. We define a flow θ of maps θt: Ω→ Ω with t ∈ R, i.e.,

θ0 = idΩ θt ◦ θs = θt+s s, t ∈ R,

(for brevity we write θt ◦ θs = θtθs) such that (t, ω) → θtω is F ⊗ B(R)-measurable and θtP = P (measure
preserving). In addition, P is assumed to be ergodic with respect to the flow θ. We call {Ω,F ,P, θtt∈R} or
θ for short, a metric dynamical system.
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Definition 2.1 ([19]). Let t ∈ <+, ξt be a homogeneous Markov process on the measure space (<d,B(<d))
with transition probability P (t, x,A). If for any f ∈ Cb(B(<d)), where Cb(B(<d)) denotes the space of all
continuous bounded function on <d, the associated operators Tt are defined by

Ttf(x) =

∫
Red

f(y)P (t, x, dy) = Exf(ξt), t ∈ <+,

which are continuous at x ∈ <d, i.e., Tt : Cb → Cb, the Markov process ξ(t) is said to satisfy the Feller
property.

Definition 2.2 ([19]). For all A ∈ B and ν ∈M1(<d), defining operators

νTt(A) =

∫
<d
P (t, x,A)ν(dx), t ∈ <+,

then a measure µ ∈M1(<d) is called stationary distribution if µ = µTt for all t ≥ 0.

Definition 2.3 ([19]). For f ∈ Cb(<d) and ν ∈M1(<d), defining the natural pairing

〈f, ν〉 =

∫
<d
f(x)ν(dx),

then Tt is the dual Tt, i.e., 〈Ttf, ν〉 = 〈f, νTt〉.

Definition 2.4 ([1]). Let f, g : <d → <d, t ∈ [t0, T ] and ω ∈ Ω. A function φ : t → x is called solution in
the sense of Stratonovich of the initial value problem

dx

dt
= f(x) + g(x) ◦Wt, x(t0) = x0 ∈ <d,

if there exists a neighborhood N (ω) (we identify ω(t) = Wt(ω)) and a solution operators Φ : N (ω) →
C0(<,<d) which is continuous with Φ(ω) = φ such that Φ($) is for all $ ∈ N (ω) ∩ C1(<,<) a solution of
the ordinary differential equation

dx

dt
= f(x) + g(x)

d$(t)

dt
, x(t0) = x0 ∈ <d.

Definition 2.5 ([2]). Let D be the set of all nonempty random sets {K(ω)}ω∈Ω, where K(ω) is compact,
such that K(ω) is contained in a ball with center zero and measurable radius r(ω) such that for all ω ∈ Ω
and for all λ > 0

lim
t→∞

e−λtr(θ−tω) = 0.

Definition 2.6 ([2]). Let φ be a random dynamical system (RDS). A probability measure µ on (Ω×<d,F⊗
B(<d)) is called invariant measure w.r.t. φ if

(i) Θ(t)µ = µ for all t ∈ T, where Θ(t)(ω, x) := (θtω, φ(t, ω)x). The {Θ(t)}t is called a skew-product flow;

(ii) πΩµ = P, where πΩ is the projection of Ω×<d onto Ω.

Definition 2.7 ([2]). Let D be an inclusion closed system. A random compact set A ∈ D is called D-
attractor of a RDS φ, if

(i) A is invariant, i.e., φ(t, ω,A(ω)) = A(θtω), for all t > 0, ω ∈ Ω;

(ii) A is D-attracting, i.e., for all ω ∈ Ω and D ∈ D,

lim
t→+∞

dist(φ(t, θ−tω,D(θ−tω)), B(ω)) = 0,

where dist(A,B) = supx∈A infy∈B d(x, y) is the usual Hausdorff semi-metric.
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Theorem 2.8 ([2]). Let φ be continuous RDS and let D be an IC-system. Moreover, let B ∈ D be a random
compact set which is D-absorbing. Then there exists a unique D-attractor A ∈ D for the cocycle φ given by

A(ω) =
⋂
t≥0

⋃
t≥τ φ(τ, θ−τω), B(θ−τω).

If B(ω) is connected then so is A(ω).

Lemma 2.9. Let ui = (xi, yi, zi) ∈ <3 for i = 1, 2, 3.

(1) The matrix A is positive definite, i.e., (Au, u) ≥ βmin{1, α}‖u‖2.

(2) The function B̃(u2, u3) = (0,−y2z3, y2y3) has the following properties:

(i) BT (u) = kβB̃(u, u),

(ii) B̃(u2, u3) is bilinear,

(iii)
(
B̃(u2, u3), u1

)
= −

(
B̃(u2, u1), u3

)
, in particular

(
B̃(u2, u3), u3

)
= 0,

(iv) ‖B̃(u2, u3)‖ ≤ ‖u2‖‖u3‖,
(v) |

(
BT (u2)−BT (u3), u2 − u3

)
| ≤ ‖u3‖

2‖u2−u3‖
4L + L|x2 − x3|2.

Proof.

(1) For u = (x, y, x) ∈ <3, we have

(Au, u) = βx2 + βy2 + αβz2 ≥ γ‖u‖2,

where γ = βmin{1, α}, (Au, u) = 0 if and only if u = 0. Next, we show that the assertion (2) is
correct.

(i) By the definition of B̃, let u = (x, y, z), we have

kβB̃(u, u) = (0,−yz, y2) = (0,−kβyz, kβy2) = BT (u).

(ii) By the definition of B̃, for all k1, k2 ∈ <, we have

B̃(u2, k1u3 + k2u3) =(0,−y2(k1z3 + k2z3), y2(k1y3 + k2y3))

=k1(0,−y2z3, y2y3) + k2(0,−y2z3, y2y3)

=k1B̃(u2, u3) + k2B̃(u2, u3),

B̃(k1u2 + k2u2, u3) =(0,−(k1y2 + k2y2)z3, (k1y2 + k2y2)y3))

=k1(0,−y2z3, y2y3) + k2(0,−y2z3, y2y3)

=k1B̃(u2, u3) + k2B̃(u2, u3).

By the definition of the bilinear, the assertion (ii) is correct.

(iii) By the definition of B̃ and the scalar product, we have(
B̃(u2, u3), u1

)
= ((0,−y2z3, y2y3), (x1, y1, z,1 )) = −y1y2z3 + z1y2y3,(

B̃(u2, u1), u3

)
= ((0,−y2z1, y2y1), (x3, y3, z,3 )) = −z1y2y3 + y1y2z3,(

B̃(u2, u3), u1

)
= −

(
B̃(u2, u1), u3

)
,

in particular (
B̃(u2, u3), u3

)
= ((0,−y2z3, y2y3), (x3, y3, z,3 )) = −y2y3z3 + y2y3z3 = 0.

Then, the assertion (iii) is correct.
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(iv) By the definition of B̃, we have

‖B̃(u2, u3)‖ = ‖(0,−y2z3, y2y3)‖ =
√
y2

2z
2
3 + y2

2y
2
3 ≤

√
x2

2 + y2
2 + z2

2

√
x2

3 + y2
3 + z2

3 ≤ ‖u2‖‖u3‖.

Then, the assertion (iv) is correct.

(v) By the bilinearity of B̃ and using the Schwarz inequality, we get

|
(
BT (u2)−BT (u3), u2 − u3

)
| = | −

(
BT (u2), u3

)
−
(
BT (u3), u2

)
|

= |
(
BT (u2, u3), u2 − u3

)
−
(
BT (u3, u3), u2 − u3

)
|

= |
(
BT (u2 − u3, u3), u2 − u3

)
|

≤
(√

2λ
)−1
‖u3‖‖u2 − u3‖

√
2λ|x2 − x3|

≤ (4λ)−1 ‖u3‖2‖u2 − u3‖2 + λ|x2 − x3|,

where λ is a positive constant.

3. Stationary distribution

In this section, we will prove the existence of a unique solution and a stationary distribution for the
stochastic nuclear spin generator systems.

Theorem 3.1. Let p ∈ N be even and E‖u0‖p < ∞. Then there exists a pathwise unique almost sure
continuous solution in system (1.2).

Proof. Let HN ∈ C1(<3,<) with

HN (u) =

{
1, for ‖u‖ ≤ N,
0, for ‖u‖ ≥ N + 1.

Setting BN (u) := HN (u)B(u), then system (1.2) is modified by

duN = (−ANu−BN (uN ) + f)dt+G(uN )dWt, uN (0) = u0, 0 ≤ t ≤ T, (3.1)

where u0 is independent of FP
t for t ≥ 0 such that E‖u0‖2 <∞.

Step 1: We show that system (1.2) has a continuous unique solution which is FP
t -measurable. Due to the

“truncation” function HN ∈ C1(<3,<), the nonlinear part BN (u) of system (3.1) is also differentiable, and
its derivative is a continuous compact support. Therefore, the nonlinear part BN (u) satisfies a linear growth
condition and is continuous bounded. It is easy to see that all the other coefficients of system (3.1) satisfy
Lipschitz condition and a linear growth condition. Then, by the existence and uniqueness standard theorem
[1], it is easy to know that the assertions are directly proved.

Step 2: We will prove that there exists a constant Kp := K(T,E‖u0‖p, p) independent of N satisfying
E‖uN‖p ≤ Kp for all t ∈ [0, T ]. Define the Lyapunov function

V (u) = ‖u‖p =
(
x2 + y2 + z2

) p
2

for p ∈ N even. Applying the chain rule to equation (3.1), we get

d‖uN‖p =p‖uN‖p−2 [−(AuN , uN )− (HN (uN )B(uN ), uN ) + (f, uN )] dt

+
(
p
(p

2
− 1
)
‖uN‖p−4trace

(
uNu

T
NG(uN )GT (uN )

)
+
p

2
‖uN‖p−2trace

(
G(uN )GT (uN )

))
+ p‖uN‖p−2uTNG(uN )dWt.

(3.2)
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By the properties of Lemma 2.9, we get

(B(uN ), uN ) = HN (uN )(B(uN ), uN ) = 0.

All the other terms of equation (3.2) are bounded. Therefore,
(1) If α > 1, we have

−(Au, u) + (f, u) = −βx2 − βy2 − αβz2 + αβz

= −β‖u‖2 − (α− 1)β

(
z − α

2(α− 1)

)2

+
α2β

4(α− 1)

≤ −β‖u‖2 +
α2β

4(α− 1)
.

(2) If α ≤ 1, we have

−(Au, u) + (f, u) = −βx2 − βy2 − αβz2 + αβz

= −l‖u‖2 − (αβ − 1)

(
z − αβ

2(αβ − 1)

)2

+
α2β2

4(αβ − 1)

≤ −‖u‖2 +
α2β2

4(αβ − 1)
,

(3.3)

where l = min{1, β}, αβ ≥ 1. Since the trace of uuTG(u)GT (u) is no more than one eigenvalue, we conclude
form (

uuTG(u)GT (u)
)
u =

(
uTG(u)GT (u)u

)
u,

that
trace

(
uNu

T
NG(uN )GT (uN )

)
≤ ‖uN‖2‖G(uN )‖2.

From (3.2), we get

d‖uN‖p =− pl‖uN‖pdt+ p‖uN‖p−2 α2β2

4(αβ − 1)
dt

+
p

2
(p− 1) ‖uN‖p−2‖G(uN )‖2dt+ p‖uN‖p−2uTNG(uN )dWt + ξ(t)dt,

(3.4)

where l = min{1, β}, αβ ≥ 1 and ξ(t) is an adapted process. For M ∈ N, define the stopping time

τM := inf{t ∈ [0, T ] : ‖u‖ ≥M}.

Note that ∫ t∧τM

0
g(s)ds ≤

∫ t

0
g(s ∧ τM )ds

for all f(t) ≥ 0. Since
‖uN (s ∧ τM )‖q ≤M q for all q > 0

and using the linear growth condition

‖G(u)‖2 ≤ L2(1 + ‖u‖2),

we obtain

E
∫ t∧τM

0
p‖uN (s)‖p−2uTN (s)G(uN (s))dWs = 0.
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From (3.4), we get

E‖uN (t ∧ τM )‖p ≤E‖uN (0)‖p +

∫ t

0

(
−pl + L2 p

2
(p− 1)

)
E‖uN (s ∧ τM )‖pds

+

∫ t

0

p

2

(
α2β2

2(αβ − 1)
+ L2 (p− 1)

)
E‖uN (s ∧ τM )‖p−2ds.

(3.5)

When p = 2, (3.5) becomes

E‖uN (t ∧ τM )‖2 ≤E‖uN (0)‖2 +

∫ t

0

(
−pl + L2 p

2
(p− 1)

)
E‖uN (s ∧ τM )‖2ds

+

∫ t

0

p

2

(
α2β2

2(αβ − 1)
+ L2 (p− 1)

)
ds.

By Gronwall’s inequality, we have
sup
t∈[0,T ]

E‖uN (t ∧ τM )‖2 ≤ K2,

where K2 is a positive constant. By recursive computation, it is easy to know that there exists a constant
Kp satisfying

E‖uN (t ∧ τM )‖p ≤E‖uN (0)‖p +

∫ t

0

((
−pl + L2 p

2
(p− 1)

)
E‖uN (s ∧ τM )‖p +K2Kp−2

)
ds

≤Kp.

(3.6)

It is easy to show that the stopping time satisfies τM → T as M →∞. Since the solution uN is continuous
in t, the norm ‖uN (t ∧ τM )‖p is bounded. Therefore, it converges ω-wise to ‖uN (t)‖p as M → ∞. By the
nonnegative bounded of the norm and Fatou’s lemma, we obtain that for t ≤ T

E‖uN (t)‖p = E lim
M→∞

‖uN (t ∧ τM )‖p ≤ lim inf
M→∞

E‖uN (t ∧ τM )‖p ≤ Kp.

Step 3: We will show that there exists a positive constant K̃p := K̃(T,E‖u0‖p, p) independent ofN satisfying

E sup
t∈[0,T ]

‖uN‖p ≤ K̃p for all t ∈ [0, T ]. From (3.1) and (3.3), we have

du2
N (t) =2uN (t)(−AuN (t) + f −B(u))dt+GT (uN (t))G(uN (t))dt+ uTN (t)G(uN (t))dWt

≤
(

α2β2

2(αβ − 1)
+GT (uN (t))G(uN (t))

)
dt+ uTN (t)G(uN (t))dWt

and

u2
N (t) ≤u2

N (0) +

∫ t

0

(
α2β2

2(αβ − 1)
+GT (uN (s))G(uN (s))

)
ds

+

∫ t

0
uTN (s)G(uN (s))dWs.

If p > 2, using the inequality ∣∣∣∣∣
N∑
i=1

ai

∣∣∣∣∣
m

≤ Nm−1
N∑
i=1

|ai|m for m ≥ 1,

we obtain

E sup
t∈[0,T ]

‖uN (t ∧ τM )‖p ≤3
p−2
2 EupN (0) + 3

p−2
2 E

∣∣∣∣∫ T

0

(
α2β2

2(αβ − 1)
+ ‖G(uN (s))‖2

)
ds

∣∣∣∣
p
2

+ 3
p−2
2 E sup

t∈[0,T ]

∣∣∣∣∫ t

0
uTN (s)G(uN (s))dWs

∣∣∣∣
p
2

.
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By Fubini’s theorem and using Step 2, we get

E
∣∣∣∣∫ T

0

(
α2β2

2(αβ − 1)
+ ‖G(uN (s))‖2

)
ds

∣∣∣∣
p
2

≤E
∣∣∣∣∫ T

0

(
α2β2

2(αβ − 1)
+ ‖G(uN (s))‖2

)
ds

∣∣∣∣
p
2

≤3
p−2
2 T

p−2
p

∫ T

0

((
α2β2

2(αβ − 1)

) p
2

+ Lp + LpKp

)
ds

=3
p−2
2 T

p−2
p

((
α2β2

2(αβ − 1)

) p
2

+ Lp + LpKp

)
T = K̃1

p ,

where K̃1
p is bounded constant. Using the Burkholder-Davis-Gundt inequality [8], we can estimate the

stochastic integral by

E sup
t∈[0,T ]

∣∣∣∣∫ t

0
uTN (s)G(uN (s))dWs

∣∣∣∣
p
2

≤ CpE
∣∣∣∣∫ T

0
‖uN (s)G(uN (s))‖2ds

∣∣∣∣
p
4

,

where Cp =
(

34
p

) p
4

is positive constant for 0 < p < 4 and Cp =

(
p
p
2+1

2
p
2+2( p2−1)

p
2−1

)
for p ≥ 4. By similar way,

we handle the Lebesgue integral, hence there exists a constant K̃2
p such that

E

(
sup
t∈[0,T ]

‖uN (t ∧ τM )‖p
)
≤ 3

p−2
2

(
EupN (0) + K̃1

p + K̃2
p

)
≤ K̃p.

Since the solution uN (t) is continuous at t, thus sup
t∈[0,T ]

‖uN (t ∧ τM )‖p is bounded and converges ω-wise to

sup
t∈[0,T ]

‖uN (t)‖p as M →∞. Hence, using Fatou’s Lemma, we have

E sup
t∈[0,T ]

‖uN (t)‖p = E lim
M→∞

sup
t∈[0,T ]

‖uN (t ∧ τM )‖p

≤ lim inf
M→∞

E sup
t∈[0,T ]

‖uN (t ∧ τM )‖p ≤ K̃p.
(3.7)

Step 4: By Step 1, it is easy to see that system (3.1) has the solution uN (t). Using Chebyshev’s inequality
and Step 3, we obtain

P {τM < T} ≤P

{
sup
t∈[0,T ]

‖uN (t)‖ ≥ N

}
≤

E sup
t∈[0,T ]

‖uN (t)‖2

N2

≤
K̃p

(
T,E‖u0‖2, 2

)
N2

N→∞−−−−→ 0.

Note that we can find an N0(ω) satisfying τN0(ω) = T for almost every ω ∈ Ω. Moreover, we have

BN ′(u) = BN (u) = B(u), N ′ ≥ N > 0

for all ‖u‖ ≤ N. Hence, by Theorem 2 in Gihman and Skorokhog [[4], p.44], it implies τN ′ ≥ τN and
uu0N ′(·, ω) = uu0N (·, ω) on [0, τN ] for all N ′ ≥ N > 0. Thus if τN = T , it is easy to see that τN ′ = T for all
N ′ ≥ N > 0. Therefore, the set {ω : τN = T} is monotonically increasing and converges to Ω as N → ∞.
Note that uu0N is only a version of u(·) on [0, τN ], that is, there is an exceptional P-null set N (N). In fact,
there exist countable many such sets, and the union over all these P-null sets is also a null set. Furthermore,
since uN (t) is continuous as well as converges uniformly in t to u(t), hence, u(t) is continuous at t.



Z. Huang, J. Nonlinear Sci. Appl. 9 (2016), 5410–5427 5418

To complete the proof, we must show that the limit function u(t) actually solves the nuclear spin
equation. For t = 0, this is true, because u(0) = u0 for all N ∈ N. Since BN (uN (t ∧ τN )) = B(u(t ∧ τN ))
and uN (t ∧ τN ) = u(t ∧ τN ) for all t ≤ T , then almost sure convergence of τN to T implies

P

{
sup
t∈[0,T ]

∥∥∥∥∫ t

t0

(A(uN (s)− u(s)) + (f − f)) +BN (u(s)−B(u(s))) ds

+

∫ t

t0

(G(uN (s))−G(u(s))) dWS

∥∥∥∥ > 0

}
≤ P{τM < t} N→∞−−−−→ 0.

Hence u(·) is a solution of the stochastic nuclear spin generator system (1.2) on [0, T ].

Corollary 3.2. The solution u(t) of stochastic nuclear spin generator system (1.2) with E‖u0‖2 < ∞
possesses the following properties:

(i) u(t) is FP
t ⊗ B([0, T ])-measurable and is a Markov process.

(ii) In addition, if E‖u0‖p <∞ for p ∈ N, then there is a positive constant K̃(T,E‖u0‖p, p) > 0 satisfying

E

(
sup
t∈[0,T ]

‖ut‖p
)
≤ E‖ut‖p ≤ K̃(T,E‖u0‖p, p), ∀t ∈ [0, T ].

Furthermore, for every deterministic as well as bounded set B⊂<3, the positive constant sup
u0∈B

K̃(T,E‖u0‖p, p)

is finite, where u0 is deterministic.

Proof.

(i) Denote by Ft the minimal %-algebra of events relative to which u(0) and Ws for s ≤ t are measurable, and
Ht the %-algebra generated by W (s)−W (t) for s ≥ t. It is obvious that the events of the %-algebra Ht are
independent of those Ft. The value of uu0,t(s) is completely determined by the increments W (v)−W (t) for
v ≥ t and is measurable w.r.t. Ht. We note that u(s) = uu(t),t(s) since for s > t, u(s) and uu(t),t(s) satisfy

u(s) = ut +

∫ s

t
(−Av −B(v) + f)dv +

∫ s

t
G(v)dWv,

whose solution is unique. Therefore, u(s) = h(u(t), ω), where h(u(t), ω) is a random function independent

of the event of Ft. Assume h(u(t), ω) =
N∑
i=1

ψi(u)λi(ω), where ψi is a nonrandom function. Then for any

random variable ζ and ξ, measurable w.r.t. Ft, we have

E (h(ξ, ω)ζ) = E

(
N∑
i=1

ψi(ξ)λi(ω)ζ

)
= E

(
N∑
i=1

ψi(ξ)ζEλi(ω)ζ

)
.

Since
N∑
i=1

ψi(ξ)Eλi(ω) can be approximated by an arbitrary measurable bounded function. Then

Eh(ξ, ω)ζ = E

(
N∑
i=1

ψi(ξ)ζEλi(ω)ζ

)
= E

(
E

(
N∑
i=1

ψi(ξ)ζλi(ω)

)
ζ

)
.

By passage to the limit, we get
E (h(ξ, ω)|Ft) = Eh(ξ, ω).
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Therefore, we find

E(χA(u(s))|Ft) = EχA(uut(s)) = P (t, ut,A) = P((uut(s)) ∈ A).

By the definition of Markov process, we prove that u(t) is FP
t ⊗ B([0, T ])-measurable and is homogeneous

Markov process.

(ii) By Step 3 in proof of Theorem 3.1, we can prove that there exist the asserted constant. By Step 2
in proof of Theorem 3.1, we can prove that E‖u‖ is bounded. Ever bounded set B is contained in a ball
of appropriate radius R and center zero. Let ‖u0‖ = R, the assertion holds to dependent on a bounded
constant by equation (3.6) and (3.7), respectively.

Corollary 3.3. Let E‖u0‖2 < ∞. If either L2 < 2l or G(u) ≤ L2, then there is a positive constant
K
(
E‖u0‖2, 2

)
satisfying

sup
t∈[0,∞]

E‖u(t)‖2 ≤ K
(
E‖u0‖2, 2

)
.

Proof. By the proof of Step 2 given in proof of Theorem 3.1, it is easy to show that the bounded constant

−pl + pL2

2 is negative which is only dependent on the initial value but independent of t.

Remark 3.4. The G(u) of intensities of random noises influence on the bound for the nuclear spin generator
system (1.1). However if G(u) = 0, p = 2, then the deterministic nuclear spin generator system (1.1) implies
that

lim sup
t→∞

‖u(t)‖2 ≤ α2β2

4(αβ − 1)
.

Proof. One can present a proof for the deterministic case that there exists an attractor in to which every
solution enters in finite time. Under conditions of the Theorem 3.1, if G(u) 6= 0, p = 2, we have

lim sup
t→∞

E‖u(t)‖2 ≤ α2β2 + 2L2(αβ − 1)

2(αβ − 1)(2− L2)
. (3.8)

That is, the positively invariant set for nuclear spin generator system (1.1) has changed. The results show
that the white noise can make the solution bounds to undergo change under some conditions. It pointed
out that the parameters in the nuclear spin generator system (1.1) exhibit random fluctuation.

Lemma 3.5. Let g ∈ Cb(<3). Then operators Tt (respectively Tt) of the stochastic nuclear spin generator
system (1.2) are

(i) continuous w.r.t. to t, i.e., Ttng(x)
tn→t0−−−−→ Tt0g(x), and weakly continuous at t, i.e.,∫

<3

g(x)d(µTtn)(x)
tn→t0−−−−⇀

∫
<3

g(x)d(µTt0)(x);

(ii) continuous w.r.t. to x (Feller), i.e., Ttg(xn)
tn→t0−−−−→ Ttg(x0), and weakly continuous at x, i.e.,∫

<3

g(x)d(δxnTt)(x)
tn→t0−−−−⇀

∫
<3

g(x)d(δx0Tt)(x).

Proof.

(i) By Theorem 3.1, it is easy to known that the solution of system (1.2) is continuous at t, and f is continuous
bounded for all t ≥ 0. By Lebesgue’s theorem, we obtain

Tff(x) = Ef(ux(t)) = E lim
n→∞

f(ux(tn)) = lim
n→∞

Ef(ux(tn)) = lim
n→∞

Ttnf(x)

for any sequence tn → t0 and all x ∈ <d. Therefore, the operators Ttf(x) are continuous at t.
Using the natural pairing 〈Ttf, µ〉 = 〈f, µTt〉 and Definition 2.3, then operators Ttf(x) are weakly

continuous at t.
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(ii) For every ε1 and ε2 > 0, there exists an n0(x0, t) > 0 satisfying

P{‖ux(t)− ux0(t)‖ > ε1} < ε2

for all n > n0(x0, t) and every sequence xn → x0. By Chebyshev’s inequality and Corollary 3.2, there exists
an N(T, ε2) satisfying

P

{
sup
t∈[0,T ]

‖uxi(t)‖ ≥ N

}
≤ K̃max

N2
<
ε2

3
(3.9)

for a given sequence xn → x0 and for all N > N(T, ε2) and xi(i ∈ N).
Since Step 1 in proof of Theorem 3.1, it is easy to know that the solution uN is continuous w.r.t. the

initial value. Therefore, there exists an n0(t, x0) > 0 satisfying

P{‖uxN (t)− ux0N (t)‖ > ε1} <
ε2

3
(3.10)

for all n > n0(t, x0).
Using equations (3.9) and (3.10), there exists a positive constant n0(t, x0) satisfying

P{‖uxn(t)− ux0(t)‖ > ε1} =P {{‖uxn(t)‖ < N} ∩ {‖ux0(t)‖ < N} ∩ {‖uxn(t)− ux0(t)‖ > ε1}}
+ P {{‖uxn(t)‖ ≥ N} ∪ {‖ux0(t)‖ ≥ N} ∩ {‖uxn(t)− ux0(t)‖ > ε1}}

≤P{‖uxn(t)− ux0(t)‖ > ε1}+ P{‖uxn(t)‖ ≥ N}+ P{‖ux0(t)‖ ≥ N}

<
ε2

3
+
ε2

3
+
ε2

3
= ε2

for all n > n0(t, x0). Therefore, it is easy to know that the solution is continuous. By the theorem of
dominate convergence, we know that E|f(uxn(t)) − f(ux0(t))| converges to zero as n → ∞. Hence the
operators Ttf(x) are continuous at x.

Using again the natural pairing 〈Ttf, µ〉 = 〈f, µTt〉 and Definition 2.3, then operators Ttf(x) are weakly
continuous at x.

Theorem 3.6. If L2 < 2 and E‖u0‖ < ∞, then, there exists a stationary distribution for the stochastic
nuclear spin generator systems.

Proof. Denoting the operators Tt generated by the solution of the stochastic nuclear spin system and δu0 is
a Dirac-measure. Let 0 = t0 ≤ . . . ≤ tn = t be partition of the internal [0, t] and set ∆n = max1≤i≤n−1(ti −
ti−1). By the linear combinations of measure, we obtain∫

<3

HN(u)‖u‖2d
(

1

t

∫ t

0
δu0Tτ (u)dτ

)
=

∫
<3

HN(u)‖u‖2d

(
1

t

n∑
i=1

δu0Tti(u)(ti − ti−1)

)

=
1

t

n∑
i=1

∫
<3

HN(u)‖u‖2d (δu0Tti(u)) (ti − ti−1).

By Lemma 3.5, it is easy to see that δu0Tti is weakly continuous at t. Therefore, the limit of the right hand
side as ∆n → 0 is a well-defined Riemann integral. We define∫ t

0
δu0Tτ (u)dτ = w-lim

∆n−→0

n∑
i=1

δu0Tti(u)(ti − ti−1).

It is easy to see that the limit of the left hand side also exists as ∆n −→ 0. Hence, we obtain∫
<3

HN(u)‖u‖2d
(

1

t

∫ t

0
δu0Tτ (u)dτ

)
=

1

t

∫ t

0

∫
<3

HN(u)‖u‖2d (δu0Tτ (u)) dτ.
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Note that the truncation function HN(u) defined in Theorem 3.1 and HN(u)‖u‖2 ≤ ‖u‖2.
By Corollary 3.3, it is easy to show that there exists a constant K(E‖u0‖2, 2) independent of t satisfying∫

<3

Tt‖u‖2dδu0(u) = E‖uu0(t)‖2 ≤ K
(
E‖u0‖2, 2

)
,

where the conjugated operators Tt are defined in Lemma 3.5. Using Chebyshev’s inequality and Levi’s
theorem, we get

(
1

t

∫ t

0
δu0Tτdτ

)
{‖u‖ > r} ≤ 1

r2
lim
N→∞

∫
<3

HN(u)‖u‖2d
(

1

t

∫ t

0
δu0Tτ (u)dτ

)
=

1

r2
lim
N→∞

1

t

∫ t

0

∫
<3

HN(u)‖u‖2d (δu0Tτ (u)) dτ

=
1

r2
lim
N→∞

1

t

∫ t

0

∫
<3

TtHN(u)‖u‖2d (δu0) dτ

≤ 1

r2
lim
N→∞

1

t

∫ t

0
K
(
E‖u0‖2, 2

)
dτ

=
K
(
E‖u0‖2, 2

)
r2

r→∞−−−→ 0.

Therefore, for every ε > 0, there is a compact set Λε ⊂ <3 satisfying µ(Λε) ≥ 1− ε for all µ ∈ Γ defined by

Γ =

{
1

t

∫ t

0
δu0Tτdτ

}
t>0

.

By Theorem 6.7 in Parthasarathy [11, p.47], it is easy to know that this is sufficient for the relative com-
pactness of Γ. Since Γ is relatively compact, there exists a sequence tn →∞ satisfying

Γ 3 µ = w-lim
n−→∞

1

tn

∫ tn

0
δu0Tτdτ.

Since the operators Tt are weakly continuous at t, we can change the order of Tt and weak limit. As the
mapping t→ δu0Tt is weakly continuous at t, using the dual operators Tt and Feller property, we have∫

<3

HN(u)‖u‖2d
(∫ t

0
δu0Tτ (u)dτTs(u)

)
=

∫ t

0

(∫
<3

Ts
(
HN(u)‖u‖2

)
d (δu0Tτ (u))

)
dτ

=

∫
<3

HN(u)‖u‖2d
(∫ t

0
δu0Tτ+s(u)dτ

)
h=τ+s

======

∫
<3

HN(u)‖u‖2d
(∫ t+s

s
δu0Th(u)dh

)
.

Then, we have

µTs = w-lim
n−→∞

(
1

tn

∫ tn+s

s
δu0Thdh

)
= w-lim
n−→∞

(
1

tn

∫ tn

0
δu0Thdh+

1

tn

∫ tn+s

tn

δu0Thdh−
1

tn

∫ s

0
δu0Thdh

)
.

Since
1

tn

∫ tn+s

tn

δu0Thdh
tn→∞−−−−→ 0,

1

tn

∫ s

0
δu0Thdh

tn→∞−−−−→ 0,
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then

µTs = w-lim
n−→∞

(
1

tn

∫ tn+s

s
δu0Thdh

)
= µ.

Therefore, by Definition 2.2, µ is an invariant measure. That is, the stochastic nuclear spin generator
systems (1.2) possesses a stationary distribution.

4. Random attractor

In this section we will prove the existence of random attractors for the stochastic nuclear spin generator
system.

Theorem 4.1. Let the noise coefficient G(u) =
√
γu and the initial value u0 ∈ <3, then there exists a

solution in the sense of Stratonovich for stochastic nuclear spin generator system (1.2). Furthermore, a
continuous RDS φ : <+×Ω×<3 → <3 is generated by the solution operators uu0(t, ω) of stochastic nuclear
spin generator system (1.2) via the relation

φ(t, ω, u0) := uu0(t, ω) over (Ω,F ,P).

Proof. First, we consider the following time varying equation

dv(t)

dt
= −Av(t)− e−

√
γω(t)B(e

√
γω(t)v(t)) + e−

√
γω(t)f, v(0) = e−

√
γω(0)u0

with u0 ∈ <3. By the proof of Theorem 3.1, we obtain

d‖v(t)‖2

dt
≤ −2l‖v(t)‖2 +

α2β2

2(αβ − 1)
e−2
√
γω(t), ‖v(0)‖2 = ‖u0‖2.

As for every closed time interval, ω ∈ Ω is bounded, then ‖v(t)‖2 is also bounded but depending on u0 and
ω for every fixed t ≥ 0. Since the coefficient satisfies the local Lipschitz condition, there exists a solution
for all t ≥ 0. Moreover, the solution is continuous at (t, ω, u0). The function defined by φ(t, ω, u0) =
v(t, ω, u0)e

√
γω(t) is also continuous at (t, ω, u0). Furthermore, φ(t, ω, u0) solves the following equation

du(t)

dt
= −Au(t)−B(u(t)) + f +

√
γu(t)

dω(t)

dt
, ω ∈ C∞(<,<), u(0) = u0.

Therefore, φ(t, ω, u0) is a solution in the sense of Stratonovich.
Basing on the uniqueness of the solution and (θtω(·))′ = ω′(t+ ·), it is easy to prove that the solution of

system (1.2) has the cocycle property for ω ∈ C1(<,<). By the continuity of the solution in ω ∈ C0(<,<)
and t, it is easy to know that the perfect cocycle property of the solution u(t) is continuous at ω ∈ C0(<,<)
and t. Note that the exceptional P-null set of the solution is independent on the initial value. Therefore,
the solution operators uu0(t, ω) of stochastic nuclear spin generator system (1.2) generate a continuous RDS
φ : <+ × Ω×<3 → <3.

Theorem 4.2. Let α ≤ 1, αβ > 1 and the noise coefficient G(u) =
√
γu, then the stochastic nuclear spin

generator system (1.2) possesses a D-absorbing set defined by

D(ω) =

{
u ∈ <3 : ‖u‖2 ≤ r̃(ω) = (1 + σ)

α2β2

2(αβ − 1)

∫ 0

−∞
e2t−2

√
γω(t)dt

}
,

with σ > 0 and for all

ω ∈ Ω1 := {ω ∈ Ω : lim
t→±∞

ω(t)

t
= 0}.
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Proof. By the equation (3.3), we have

d‖u‖2 = (−2‖u‖2 +
α2β2

2(αβ − 1)
+ ξ(t))dt+ 2

√
γ‖u‖2 ◦ dWt (4.1)

with an adapted process ξ(t) ≤ 0 and initial value ‖u(0)‖ = ‖u0‖. Note that φ(t, ω, u0) solves the equation
(4.1). We will compute the following equation

ψ(t, ω, x) = x2e−2t+2
√
γω(t) +

α2β2

2(αβ − 1)

∫ t

0
e2(s−t)+2

√
γω(t)−2

√
γω(s)ds. (4.2)

It is easy to see that φ(t, ω, u0) ≤ ψ(t, ω, u0). Replacing ω(t) by θ−tω(t) in equation (4.2), we have

lim
t→∞

ψ(t, θ−tω(t), x) := r2(ω) =
α2β2

2(αβ − 1)

∫ 0

−∞
e2s−2

√
γω(s)ds.

Since, for all initial values u0, ψ(t, ω, u0) converges to the solution r2(ω) which is the stationary solution of
equation (4.2). It is easy to see that D(ω) with r̃2(ω) := (1 + ρ)r2(ω) for a fixed ρ > 0 defines an absorbing
set for the cocycle φ.

Let gε,p(t) = εt+ pω(t) with ε > 0, p ∈ < and t ≤ 0. As the paths of the Wiener process satisfy the law
of the iterated logarithm, hence we get

sup
t∈(−∞,0]

gε,p(t) =: κε,p(ω) <∞.

Now let ε > 0 satisfying (σ − 2ε) > 0 and (2− ε) > 0. Then we have

e(σ−2ε)t

∫ 0

−t
e(2−ε)τegε,−2

√
γ(t+τ)+gε,2√γ(t)dτ ≤

e(σ−2ε)t + κε,−2
√
γ + κε,2√γ

2− ε
t→−∞−−−−→ 0,

therefore, we obtain

lim
t→−∞

eσt
∫ 0

t
e2τ−2

√
γθtω(t)dτ = 0.

Thus, we get
lim

t→+∞
e−σ r̃(θ−tω) = 0.

Hence, the random compact set D(ω) belongs to D. Moreover, given an A ∈ D, then A(ω) is defined by
including in a ball of radius r̂(ω). Inserting r̂(ω) in equation (4.2), it is easy to know that A is absorbed by
D(ω) when r̂(ω)e−2+2

√
γω(t) converges to zero.

Theorem 4.3. Let α ≤ 1, αβ > 1,E‖u0‖2 <∞ and the noise coefficient G(u) =
√
γu. Moreover, let

0 ≤ γ < 16(αβ − 1)(β − α)− αβ2

16(αβ − 1)(β − α)
.

Then the stochastic nuclear spin generator system (1.2) possesses a one point random attractor, i.e., B(ω) =
{a(ω)}, where {a(ω)} is a random fixed point.

Proof. By the equation (4.2) and stochastic Itô integral, we obtain

dψ(t, ω, x) =x2e−2t+2
√
γω(t)(−2 + 2γ)dt+

α2β2

2(αβ − 1)
dt

+
α2β2

2(αβ − 1)
(−2 + 2γ)dt

∫ t

0
e2(s−t)+2

√
γω(t)−2

√
γω(s)ds

=(−2 + 2γ)

(
x2e−2t+2

√
γω(t) +

α2β2

2(αβ − 1)

∫ t

0
e2(s−t)+2

√
γω(t)−2

√
γω(s)ds

)
+

α2β2

2(αβ − 1)
dt

=(−2 + 2γ)ψ(t, ω, x)dt+
α2β2

2(αβ − 1)
dt,
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thus,

d

dt
Eψ(t, ω, x) = (−2 + 2γ)Eψ(t, ω, x) +

α2β2

2(αβ − 1)
, ψ(0, ω, x) = x. (4.3)

Then the solution corresponding to the equation (4.3) is

Eψ(t, ω, x) = xe−2(1−γ)t +
α2β2

4(1− γ)(αβ − 1)

(
1− e−2(1−γ)t

)
.

Since γ < 1, we have

Er̃2(ω) = (1 + σ)
α2β2

4(1− γ)(αβ − 1)
.

Consider u1(t) and u2(t) as two different solutions contained in the random attractor. By the (v) of
Lemma 2.9 with L = β − α, we have

‖u1(t)− u2(t)‖2 =‖u1(0)− u2(0)‖2

− 2

∫ t

0

(
β|x1(s)− x2(s)|2 + β|y1(s)− y2(s)|2 + αβ|z1(s)− z2(s)|2

)
ds

+ 2

∫ t

0
(B(u1(s))−B(u2(s)), u1(s)− u2(s)) ds+ 2

√
γ

∫ t

0
‖u1(s)− u2(s)‖2 ◦ dWs

≤‖u1(0)− u2(0)‖2 − 2

∫ t

0

(
β|x1 − x2|2 + β|y1 − y2|2 + αβ|z1 − z2|2

)
ds

+ 2(4L)−1

∫ t

0
‖u2(s)‖‖u1(s)− u2(s)‖2ds+ 2L

∫ t

0
|x1(s)− x2(s)|2ds

+ 2
√
γ

∫ t

0
‖u1(s)− u2(s)‖2 ◦ dWs

=‖u1(0)− u2(0)‖2 − 2α

∫ t

0
‖u1(s)− u2(s)‖2ds+ 2

√
γ

∫ t

0
‖u1(s)− u2(s)‖2 ◦ dWs

+
1

2(β − α)

∫ t

0
‖u2(s)‖‖u1(s)− u2(s)‖2ds.

Hence, we obtain the following inequality

‖u1(t)− u2(t)‖2 ≤ ‖u1(0)− u2(0)‖2 exp

(
t

(
−2α+

1

2(β − α)

1

t

∫ t

0
‖u2(s)‖ds+ 2

√
γ
ω(t)

t

))
.

As the random attractor is a only subset of D-absorbing set D(ω), taking two initial value in D(ω), we also
estimate

‖uxθ−tω(s)‖2 ≤ r̃2(θ−t+sω) for all s, t ≥ 0

and compute

lim
tn→∞

sup
x∈A(θ−tω)

1

tn

∫ tn

0
‖uxθ−tω(s)‖2ds ≤ (1 + ρ)

α2β2

4(1− γ)(αβ − 1)
lim
tn→∞

1

tn

∫ 0

−tn

∫ 0

−∞
e2τ−2

√
γθsω(τ)dτds

= (1 + ρ)
α2β2

4(1− γ)(αβ − 1)

for a sequence tn → ∞. By the two-side ergodic theorem [2], there is a sequence tn → ∞ so that the last
transformation is true for a set Ω′ of full measure. It is obvious that the supremum of the difference of two
solution converges to zero if

1 > (1 + ρ)
αβ2

16(1− γ)(αβ − 1)(β − α)
.
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Therefore, the random attractor consists in no more than one point {a(ω)} which is a random fixed point
by the definition of random attractors.

Corollary 4.4. Let φ be an RDS generated by the solution of the stochastic nuclear spin generator system
on <d, if φ possesses a one point attractor a(ω) of φ w.r.t. an inclusion closed system (IC-system) D so
that contains all deterministic compact sets, then

w- lim
t−→∞

µTt = Eδa(·) = P {a ∈ ·}

for every µ ∈ P(<3).

Proof. Let f ∈ Cb(<3), note that EX(·) = EX(θ−t·) for any random variable X with finite expectation. By
the definition of natural pairing and using Lebesgue’s theorem, we have

lim
t→∞

∫
<3

f(x)d(µTt(x)) = lim
t→∞

∫
<3

Ef(φ(t, ·, x))d(µ(x))

= lim
t→∞

∫
<3

Ef(φ(t, θ−t·, x))d(µ(x))

=

∫
<3

E lim
t→∞

f(φ(t, θ−t·, x))d(µ(x))

=

∫
<3

Ef(a(·))d(µ(x))

= Ef(a(·))

=

∫
<3

f(x)d(Eδa(·))(x).

Then, we get
w-lim
t−→∞

µTt = Eδa(·) = P {a ∈ ·} .

Then the assertion is true.

Corollary 4.5. If the random D-attractor possesses only a one point, B(ω) = {a(ω)}, then the stochastic
nuclear spin generator system possesses a unique stationary distribution % = Eδa(·).

Proof. Let %1 and %2 denote two stationary distributions. By Corollary 4.4, we have

%1 = w-lim
t−→∞

%1Tt = Eδa(·) = w-lim
t−→∞

%2Tt = %2.

Then there exists a unique stationary distribution of the stochastic nuclear spin generator system.

5. Numerical simulation results

According to our analytical results, the stochastic nuclear spin systems is bounded and possesses a one
point random attractor under conditions specified in Corollary 3.3 and Theorem 4.3. We now try and
support our analytical results by simulations (Fig.1–4).

For the stochastic nuclear spin system, formula (3.8) given in Remark 3.4 can provide estimations for
the boundaries of the attractive sets formula (4.1) given in Theorem 4.2. System (1.2) can possesses a one
point random attractor. The numerical results indicate that except for the case γi, all other cases exhibit
either generalized Lorenz attractor or generalized Chen attractor. To illustrate the stochastic effects clearly,
we performed simulations first for the deterministic case and a corresponding stochastic simulation (Fig.
1–4). The parameter values used in simulations have all been taken from published papers [3, 14, 16, 18].
The typical values for α, β and k are chosen to satisfy formula (3.8) or (4.1) and the values of γi are varied
from 0 to 1.
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Figure 1: Condition of Theorem 4.3 or Corollary 3.3: 0 < α ≤ 1 and αβ > 1. Simulated phase portraits of the stability of
the bifurcation periodic solution of the nuclear spin systems (1.2) with the initial conditions α = 0.9, β = 1.12, k = 21.5 and
γ1 = 0.8, γ1 = 0.5, γ1 = 0.2. Blue represent the simulation of the x-y-z of deterministic nuclear spin systems. Red represent the
simulation of the x-y-z of stochastic nuclear spin systems.

Figure 2: Condition of Theorem 4.3 or Corollary 3.3: 0 < α ≤ 1 and αβ > 1. Simulated phase portraits of the stochastic nuclear
spin systems (1.2) with the initial conditions α = 0.9, β = 1.12, k = 21.5 and γ1 = 0.8, γ1 = 0.5, γ1 = 0.2. Blue represent the
simulation of the y-z of deterministic nuclear spin systems. Red represent the simulation of the y-z of stochastic nuclear spin
systems.

Figure 3: Condition: 0 < α < 1 and αβ < 1. Simulated phase portraits of the stochastic nuclear spin systems (1.2) with the
initial conditions α = 0.495, β = 1.4, k = 21.5 and γ1 = 0.8, γ1 = 0.5, γ1 = 0.2. Blue represent the simulation of the x-y of
deterministic nuclear spin systems. Red represent the simulation of the x-y of stochastic nuclear spin systems.

Figure 4: Condition: 0 < α < 1 and αβ < 1. Simulated phase portraits of the stochastic nuclear spin systems (1.2) with the
initial conditions α = 0.495, β = 1.4, k = 21.5 and γ1 = 0.8, γ1 = 0.5, γ1 = 0.2. Blue represent the simulation of the x-z of
deterministic nuclear spin systems. Red represent the simulation of the x-z of stochastic nuclear spin systems.
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