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Abstract

In this paper, we introduce a viscosity iterative algorithm for finding common solution of variational
inequality for Lipschitzian and strongly monotone operators and the split equality common fixed-point
problem for firmly quasi-nonexpansive operators. We prove the strong convergence of the proposed algorithm
which does not need any prior information about the bounded linear operator norms. c©2016 All rights
reserved.
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1. Introduction and preliminaries

Throughout this paper, we always assume that H is a real Hilbert space with the inner product 〈·, ·〉
and the norm ‖ · ‖. Let I denote the identity operator on H. Let T : H → H be a mapping. A point x ∈ H
is said to be a fixed point of T provided Tx = x. In this paper, we use F (T ) to denote the fixed point set
of T .

Let F : H → H be a nonlinear operator. Let C be a nonempty closed convex subset of H. The classical
variational inequality, denoted by V I(F,C), is to find u ∈ C such that

〈Fu, v − u〉 ≥ 0, ∀v ∈ C.
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The theory of variational inequalities has played an important role in the study of a wide class of
problems arising in pure and applied sciences including mechanics, optimization and optimal control, partial
differential equation, operations research and engineering sciences. During the last decades, this problem
has been studied by many authors (see [6, 9, 17, 20, 22]).

In [25], Yamada introduced the following hybrid iterative method

xk+1 = Txk − µλkF (Txk), k ≥ 0,

for solving variational inequality
〈Fx∗, x− x∗〉 ≥ 0, x ∈ F (T ),

where T is a nonexpansive operator and F is a κ-Lipschitzian and η-strongly monotone operator on H with
κ > 0, η > 0, 0 < µ < 2η/k2.

Tian [21] introduced the following general iterative method

xk+1 = αkσf(xk) + (I − µαkF )Txk, k ≥ 0,

for solving variational inequality

〈(σf − µF )x∗, x− x∗〉 ≤ 0, x ∈ F (T ),

where T is a nonexpansive operator, f is ρ-contraction, F is a κ-Lipschitzian and η-strongly monotone

operator on H with κ > 0, η > 0, 0 < µ < 2η/k2 and 0 < σ < µ(η − µκ2

2 )/ρ.
Let C and Q be nonempty closed convex subset of real Hilbert spaces H1 and H2, respectively. The split

feasibility problem (SFP) is to find a point

x ∈ C, such that Ax ∈ Q, (1.1)

where A : H1 → H2 is a bounded linear operator. The SFP in finite-dimensional Hilbert spaces was
first introduced by Censor and Elfving [10] for the modeling inverse problems which arise from the phase
retrievals and in the medical image reconstruction [4].

Note that if the split feasibility problem (1.1) is consistent (i.e., (1.1) has a solution) then (1.1) can be
formulated as a fixed point equation by using the fact

PC(I − γA∗(I − PQ)A)x∗ = x∗, (1.2)

where PC and PQ are the (orthogonal) projection onto C and Q, respectively, γ > 0 is any positive constant
and A∗ denotes the adjoint of A. That is, x∗ solves the SFP (1.1) if and only if x∗ solves the fixed point
equation (1.2) (see [24] for the details). This implies that we can use the fixed point algorithms (see
[2, 23, 24]) to solve SFP. To solve (1.2), Byrne [4] proposed his CQ algorithm which generates a sequence
{xk} by

xk+1 = PC(I − γA∗(I − PQ)A)xk, k ∈ N,

where γ ∈ (0, 2λ) with λ being the spectral radius of the operator A∗A.
Censor and Segal [12] introduced the following split common fixed-point problem (SCFP):

find x∗ ∈ F (U), such that Ax∗ ∈ F (T ), (1.3)

where A : H1 → H2 is a bounded linear operator, U : H1 → H1 and T : H2 → H2 are two nonexpansive
operators with nonempty fixed-point sets F (U) = C and F (T ) = Q. SCFP is in itself at the core of the
modeling of many inverse problems in various areas of mathematics and physical sciences and has been used
to model significant real-world inverse problems in many areas (see [11]).

To solve (1.3), Censor and Segal [12] proposed and proved, in finite-dimensional spaces, the convergence
of the following algorithm:

xk+1 = U(xk + γAt(T − I)Axk), k ∈ N,
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where γ ∈ (0, 2λ) with λ being the largest eigenvalue of the matrix AtA (At stands for matrix transposition).
Let H1, H2, H3 be real Hilbert spaces, let C ⊂ H1, Q ⊂ H2 be two nonempty closed convex sets, let

A : H1 → H3, B : H2 → H3 be two bounded linear operators, let U : H1 → H1 and T : H2 → H2 be
two firmly quasi-nonexpansive operators. In [18], Moudafi introduced the following split equality problem
(SEP):

find x ∈ C, y ∈ Q, such that Ax = By, (1.4)

and split equality common fixed-point problem (SECFP):

find x ∈ F (U), y ∈ F (T ), such that Ax = By, (1.5)

which allows asymmetric and partial relations between the variables x and y. The interest is to cover many
situation, for instance in decomposition methods for PDE’s, applications in game theory and in intensity-
modulated radiation therapy (IMRT). In decision sciences, this allows to consider agents who interplay only
via some components of their decision variables (see [1]). In (IMRT), this amounts to envisage a weak
coupling between the vector of doses absorbed in all voxels and that of the radiation intensity (see [5]).

If H2 = H3 and B = I, then the SECFP (1.5) reduces to the SCFP (1.3). For solving the SECFP (1.5),
Moudafi [18] introduced the following alternating algorithm{

xk+1 = U(xk − γkA∗(Axk −Byk)),
yk+1 = T (yk + γkB

∗(Axk+1 −Byk)),
(1.6)

for firmly quasi-nonexpansive operators U and T , where non-decreasing sequence γk ∈ (ε,min ( 1
λA
, 1
λB

)− ε),
λA, λB stand for the spectral radius of A∗A and B∗B, respectively.

Very recently, Moudafi [19] introduced the following simultaneous iterative method to solve SECFP (1.5):{
xk+1 = U(xk − γkA∗(Axk −Byk)),
yk+1 = T (yk + γkB

∗(Axk −Byk)),
(1.7)

for firmly quasi-nonexpansive operators U and T , where γk ∈ (ε, 2
λA+λB

− ε), λA, λB stand for the spectral
radius of A∗A and B∗B, respectively.

Note that in the algorithms (1.6) and (1.7) mentioned above, the determination of the stepsize {γk}
depends on the operator (matrix) norms ‖A‖ and ‖B‖ (or the largest eigenvalues of A∗A and B∗B ). In
order to implement the above algorithms for solving SECFP (1.5), one has first to compute (or, at least,
estimate) operator norms of A and B, which is in general not an easy work in practice. To overcome this
difficulty, López et al. [16] and Zhao and Yang [28] presented a helpful method for estimating the stepsizes
which do not need prior knowledge of the operator norms for solving the split feasibility problems and
multiple-set split feasibility problems, respectively.

Some algorithms have been invented to solve SECFP (1.5) (see [13, 14, 27] and references therein). In
this paper, inspired and motivated by the works mentioned above, to get the strong convergence of the
algorithm, we introduce the viscosity iterative algorithm without prior knowledge of operators norms for
finding common solution of variational inequality for Lipschitzian and strongly monotone operators and the
split equality common fixed-point problem for firmly quasi-nonexpansive operators. The organization of
this paper is as follows. Some useful definitions and results are listed for the convergence analysis of the
iterative algorithm in the Section 2. In Section 3, the strong convergence theorem of the proposed general
iterative algorithm is obtained.

2. Preliminaries

In this paper, we use → and ⇀ to denote the strong convergence and weak convergence, respectively.
We use ωw(xk) = {x : ∃xkj ⇀ x} stand for the weak ω-limit set of {xk} and use Γ stand for the solution set
of the SECFP (1.5).
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Definition 2.1. An operator T : H → H is said to be

(i) nonexpansive if ‖Tx− Ty‖ ≤ ‖x− y‖, for all x, y ∈ H.
(ii) quasi-nonexpansive if F (T ) 6= ∅ and ‖Tx− q‖ ≤ ‖x− q‖, for all x ∈ H and q ∈ F (T ).

(iii) firmly nonexpansive if ‖Tx− Ty‖2 ≤ ‖x− y‖2 − ‖(x− y)− (Tx− Ty)‖2, for all x, y ∈ H.
(iv) firmly quasi-nonexpansive if F (T ) 6= ∅ and ‖Tx − q‖2 ≤ ‖x − q‖2 − ‖x − Tx‖2, for all x ∈ H and

q ∈ F (T ).

Remark 2.2. A firmly quasi-nonexpansive operator is also called a separating operator [7], cutter operator [8],
directed operators [12, 26], or class-T operator which was introduced by Bauschke and Combettes [3]. Firmly
quasi-nonexpansive operators are important because they include many types of nonlinear operators arising
in applied mathematics such as approximation and convex optimization. For instance, the subgradient
projection T of a continuous convex function f : H → R is a firmly quasi-nonexpansive operator. Recall
that the subgradient projection T is defined by assuming the level set {x ∈ H : f(x) ≤ 0} 6= ∅,

Tx :=

{
x− f(x)

‖g(x)‖2 g(x), f(x) > 0,

x, f(x) ≤ 0,

where g is a selection of the subdifferential ∂f(i.e., g(x) ∈ ∂f(x) for all x ∈ H).

Particularly, projections are firmly quasi-nonexpansive operators. Recall that, given a closed convex
subset C of a Hilbert space H, the projection PC : H → C assigns each x ∈ H to its closest point from C,
defined by

PCx = argminz∈C‖x− z‖.
It is well-known that PCx is characterized by the inequality:

PCx ∈ C, 〈x− PCx, z − PCx〉 ≤ 0, z ∈ C.

Lemma 2.3 ([3, 8]). The fixed point set of a firmly quasi-nonexpansive operator is closed and convex.

We also need other classes of operators.

Definition 2.4. An operator T : H → H is called demiclosed at the origin, if for any sequence {xn} which
weakly converges to x, and if the sequence {Txn} strongly converges to 0, then Tx = 0.

Definition 2.5. An operator T : H → H is called contraction with constant 0 < ρ < 1, if for any x, y ∈ H,

‖Tx− Ty‖ ≤ ρ‖x− y‖.

Definition 2.6. An operator T : H → H is called κ-Lipschitzian operater with constant κ > 0, if for any
x, y ∈ H,

‖Tx− Ty‖ ≤ κ‖x− y‖.

Definition 2.7. An operator F : H → H is called η-strongly monotone with constant η > 0, if for any
x, y ∈ H,

〈x− y, Fx− Fy〉 ≥ η‖x− y‖2.

Let F be a κ-Lipschitzian and η-strongly monotone operator on H with κ > 0, η > 0. Assume that
µ > 0, α ∈ [0, 1], we have, for any x, y ∈ H,

‖(I − µαF )x− (I − µαF )y‖2 =‖(x− y)− µα(Fx− Fy)‖2

=‖x− y‖2 − 2µα〈x− y, Fx− Fy〉+ µ2α2‖Fx− Fy‖2

≤‖x− y‖2 − 2µαη‖x− y‖2 + µ2α2κ2‖x− y‖2

≤[1− α(2µη − µ2κ2)]‖x− y‖2,

(2.1)

which implies that I−µαF is
√

1− α(2µη − µ2κ2)-Lipschitzian. It is easy to see that I−µαF is contraction
if 0 < µ < 2η

k2
, α ∈ [0, 1]. The following lemma is easy to prove.
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Lemma 2.8. Let H be a Hilbert space, f be a contraction with constant 0 < ρ < 1 and F be a η-strongly
monotone operator on H with η > 0. Then, for µ > 0 and 0 < σ < µη

ρ ,

〈x− y, (µF − σf)x− (µF − σf)y〉 ≥ (µη − σρ)‖x− y‖2, x, y ∈ H.

That is, µF − σf is µη − σρ-strongly monotone operator.

In real Hilbert space, we easily get the following results:

‖x+ y‖2 ≤ ‖x‖2 + 2〈y, x+ y〉, ∀x, y ∈ H; (2.2)

2〈x, y〉 = ‖x‖2 + ‖y‖2 − ‖x− y‖2 = ‖x+ y‖2 − ‖x‖2 − ‖y‖2, ∀x, y ∈ H. (2.3)

We end this section by the following lemma, which are important in convergence analysis for our iterative
algorithm.

Lemma 2.9 ([15]). Assume {sk} is a sequence of nonnegative real numbers such that{
sk+1 ≤ (1− λk)sk + λkδk, k ≥ 0,

sk+1 ≤ sk − ηk + µk, k ≥ 0,

where {λk} is a sequence in (0, 1), {ηk} is a sequence of nonnegative real numbers and {δk} and {µk} are
two sequences in R such that

(i) Σ∞k=1λk =∞;

(ii) limk→∞ µk = 0;

(iii) liml→∞ ηkl = 0, implies lim supl→∞ δkl ≤ 0, for any subsequence {kl} ⊂ {k}.

Then limk→∞ sk = 0.

3. Strong convergence result of viscosity iterative algorithm for SECFP (1.5)

In this section we introduce a viscosity iterative algorithm for finding common solution of variational
inequality for Lipschitzian and strongly monotone operators and the split equality common fixed-point
problem for firmly quasi-nonexpansive operators. Here the stepsizes {γk} do not depend on the operator
norms ‖A‖ and ‖B‖ and we prove the strong convergence of the proposed algorithm.

Algorithmm 3.1. Let f1 : H1 → H1 and f2 : H2 → H2 be two contractions with constants ρ1, ρ2 ∈ [0, 1),
αk ∈ [0, 1] and F : H → H is a κ-Lipschitzian and η-strongly monotone with κ > 0, η > 0. Choose an initial
guess x0 ∈ H1, y0 ∈ H2 arbitrarily. Assume that the k-th iterate xk ∈ H1, yk ∈ H2 has been constructed,
then we calculate the (k + 1)-th iterate (xk+1, yk+1) via the formula:

uk = xk − γkA∗(Axk −Byk),
xk+1 = σαkf1(xk) + (I − µαkF )U(uk),

vk = yk + γkB
∗(Axk −Byk),

yk+1 = σαkf2(xk) + (I − µαkF )T (vk).

The stepsize γk is chosen in such a way that

γk ∈
(
ε,min{τ, 2‖Axk −Byk‖2

‖A∗(Axk −Byk)‖2 + ‖B∗(Axk −Byk)‖2
} − ε

)
, k ∈ Ω (3.1)

for small enough ε, otherwise, γk = γ (γ being any nonnegative value), where the set of indices Ω = {k :
Axk −Byk 6= 0},

τ =
2‖AxN −ByN‖2

‖A∗(AxN −ByN )‖2 + ‖B∗(AxN −ByN )‖2
,

and N = min{k : k ∈ Ω}.
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Lemma 3.2. Assume the solution set Γ of (1.5) is nonempty. Then γk defined by (3.1) is well-defined.

Proof. Take (x, y) ∈ Γ, i.e., x ∈ F (U), y ∈ F (T ) and Ax = By. We have

〈A∗(Axk −Byk), xk − x〉 = 〈Axk −Byk, Axk −Ax〉,

and
〈B∗(Axk −Byk), y − yk〉 = 〈Axk −Byk, By −Byk〉.

By adding the two above equalities and by taking into account the fact that Ax = By, we obtain

‖Axk −Byk‖2 = 〈A∗(Axk −Byk), xk − x〉+ 〈B∗(Axk −Byk), y − yk〉
≤ ‖A∗(Axk −Byk)‖ · ‖xk − x‖+ ‖B∗(Axk −Byk)‖ · ‖y − yk‖.

Consequently, for k ∈ Ω, that is, ‖Axk−Byk‖ > 0, we have ‖A∗(Axk−Byk)‖ 6= 0 or ‖B∗(Axk−Byk)‖ 6= 0.
This leads that γk is well-defined.

Theorem 3.3. Let H1, H2, H3 be real Hilbert spaces. Given two bounded linear operators A : H1 → H3,
B : H2 → H3, let U : H1 → H1 and T : H2 → H2 be firmly quasi-nonexpansive operators with the solution
set Γ of (1.5) is nonempty. Let f1 : H1 → H1 and f2 : H2 → H2 be two contractions with constants ρ1,
ρ2 ∈ [0, 1) and F : H → H be a κ-Lipschitzian and η-strongly monotone. Assume that we choose µ, β and σ

such that 0 < µ < 2η
κ2

, 0 < β < τ
2 , 0 < σ < min{

√
β(τ−2β)
ρ , µηρ }, where τ = 2µη − µ2κ2 and ρ = max{ρ1, ρ2}.

Let the sequence {(xk, yk)} be generated by Algorithm 3.1. Assume that the following conditions are satisfied:

(1) limk→∞ αk = 0 and
∑∞

k=0 αk =∞;

(2) U − I and T − I are demiclosed at origin.

Then sequence {(xk, yk)} strongly converges to a solution (x∗, y∗) of (1.5) which solves the variational
inequality problem: {

〈(σf1 − µF )x∗, x− x∗〉 ≤ 0,

〈(σf2 − µF )y∗, y − y∗〉 ≤ 0,
(x, y) ∈ Γ. (3.2)

Proof. Since f1, f2 are two contractions and F is Lipschitzian, we have µF − σf1 and µF − σf2 are Lip-
schitzian. By Lemma 2.8, µF − σf1 and µF − σf2 are strongly monotone, so the variational inequality
(3.2) has only one solution. From assumption on µ we have τ > 0. Let (x∗, y∗) ∈ Γ be the solution of the
variational inequality problem (3.2). Then x∗ ∈ F (U), y∗ ∈ F (T ) and Ax∗ = By∗. We have

‖uk − x∗‖2 =‖xk − γkA∗(Axk −Byk)− x∗‖2

=‖xk − x∗‖2 − 2γk〈xk − x∗, A∗(Axk −Byk)〉+ γ2k‖A∗(Axk −Byk)‖2.
(3.3)

By using the equality (2.3), we have

−2〈xk − x∗, A∗(Axk −Byk)〉 =− 2〈Axk −Ax∗, Axk −Byk〉
=− ‖Axk −Ax∗‖2 − ‖Axk −Byk‖2 + ‖Byk −Ax∗‖2.

(3.4)

By (3.3) and (3.4), we obtain

‖uk − x∗‖2 ≤‖xk − x∗‖2 − γk‖Axk −Ax∗‖2 − γk‖Axk −Byk‖2

+ γk‖Byk −Ax∗‖2 + γ2k‖A∗(Axk −Byk)‖2.

Similarly, we have

‖vk − y∗‖2 ≤‖yk − y∗‖2 − γk‖Byk −By∗‖2 − γk‖Axk −Byk‖2

+ γk‖Axk −By∗‖2 + γ2k‖B∗(Axk −Byk)‖2.
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By adding the two last inequalities and by taking into account the fact that Ax∗ = By∗, we obtain

‖uk − x∗‖2 + ‖vk − y∗‖2 ≤‖xk − x∗‖2 + ‖yk − y∗‖2

− γk[2‖Axk −Byk‖2 − γk(‖A∗(Axk −Byk)‖2

+ ‖B∗(Axk −Byk)‖2)].
(3.5)

With assumption on γk we obtain

‖uk − x∗‖2 + ‖vk − y∗‖2 ≤ ‖xk − x∗‖2 + ‖yk − y∗‖2. (3.6)

It follows from (2.1) that

‖(I − µαkF )U(uk)− (I − µαkF )x∗‖2 ≤ (1− αkτ)‖U(uk)− x∗‖2.

By the fact that U is a firmly quasi-nonexpansive operator, it follows from (2.2) that

‖xk+1 − x∗‖2 =‖σαkf1(xk) + (I − µαkF )U(uk)− x∗‖2

=‖σαkf1(xk) + (I − µαkF )U(uk)− (I − µαkF )x∗ − µαkFx∗‖2

≤(1− αkτ)‖U(uk)− x∗‖2 + 2αk〈σf1(xk)− µFx∗, xk+1 − x∗〉
≤(1− αkτ)‖uk − x∗‖2 + 2αk‖σf1(xk)− µFx∗‖ · ‖xk+1 − x∗‖.

Obviously, we have

‖σf1(xk)− µFx∗‖ · ‖xk+1 − x∗‖ ≤ β‖xk+1 − x∗‖2 +
1

4β
‖σf1(xk)− µFx∗‖2.

So, we can obtain

‖xk+1 − x∗‖2 ≤ (1− αkτ)‖uk − x∗‖2 + 2αkβ‖xk+1 − x∗‖2 +
αk
2β
‖σf1(xk)− µFx∗‖2,

which implies that

(1− 2αkβ)‖xk+1 − x∗‖2 ≤(1− αkτ)‖uk − x∗‖2 +
αk
2β

(‖σf1(xk)− σf1(x∗) + σf1(x
∗)− µFx∗‖2)

≤(1− αkτ)‖uk − x∗‖2 +
αkσ

2ρ21
β
‖xk − x∗‖2 +

αk
β
‖σf1(x∗)− µFx∗‖2.

Hence, we obtain

‖xk+1 − x∗‖2 ≤
1− αkτ

1− 2αkβ
‖uk − x∗‖2 +

αkσ
2ρ21

β(1− 2αkβ)
‖xk − x∗‖2

+
αk

β(1− 2αkβ)
‖σf1(x∗)− µFx∗‖2.

Similarly, we have

‖yk+1 − y∗‖2 ≤
1− αkτ

1− 2αkβ
‖vk − y∗‖2 +

αkσ
2ρ22

β(1− 2αkβ)
‖yk − y∗‖2

+
αk

β(1− 2αkβ)
‖σf2(y∗)− µFy∗‖2.

By adding up the last two inequalities and by using (3.6) and setting sk = ‖xk − x∗‖2 + ‖yk − y∗‖2, we
get

sk+1 ≤
1− αkτ + αkσ

2ρ2

β

1− 2αkβ
sk +

αk
β(1− 2αkβ)

(‖σf1(x∗)− µFx∗‖2 + ‖σf2(y∗)− µFy∗‖2),
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where ρ = max{ρ1, ρ2}. So,

sk+1 ≤
1− αk(τ − σ2ρ2

β )

1− 2αkβ
sk

+
αk(τ − 2β − σ2ρ2

β )

1− 2αkβ

1

β(τ − 2β − σ2ρ2

β )
(‖σf1(x∗)− µFx∗‖2 + ‖σf2(y∗)− µFy∗‖2).

From 0 < β < τ
2 and 0 < σ <

√
β(τ−2β)
ρ , we have τ − 2β − σ2ρ2

β > 0. Since αk → 0, we have

0 ≤
αk(τ−2β−σ

2ρ2

β
)

1−2αkβ ≤ 1, for large enough k ∈ N . Since

αk(τ − 2β − σ2ρ2

β )

1− 2αkβ
+

1− αk(τ − σ2ρ2

β )

1− 2αkβ
= 1,

without loss of generality, it follows from the induction that

sk ≤ max
{
s0,

1

β(τ − 2β − σ2ρ2

β )
(‖σf1(x∗)− µFx∗‖2 + ‖σf2(y∗)− µFy∗‖2)

}
for k ≥ 0. Then we have {xk} and {yk} are bounded. It follows that {uk}, {vk}, {f1(xk)} and {f2(yk)} are
bounded. Note that U is a firmly quasi-nonexpansive operator, we have

‖xk+1 − x∗‖2 =‖αk(σf1(xk)− µFx∗) + (I − µαkF )U(uk)− (I − µαkF )Ux∗‖2

=α2
k‖σf1(xk)− µFx∗‖2 + ‖(I − µαkF )U(uk)− (I − µαkF )Ux∗‖2

+ 2αk〈(I − µαkF )U(uk)− (I − µαkF )Ux∗, σf1(xk)− µFx∗〉
≤(1− αkτ)‖uk − x∗‖2 + α2

k‖σf1(xk)− µFx∗‖2

+ 2αk[〈U(uk)− Ux∗, σf1(xk)− µFx∗〉
− µαk〈FU(uk)− FUx∗, σf1(xk)− µFx∗〉]
≤(1− αkτ)‖uk − x∗‖2 + α2

k‖σf1(xk)− µFx∗‖2

+ 2αk〈U(uk)− Ux∗, σf1(xk)− σf1(x∗)〉
+ 2αk〈U(uk)− Ux∗, σf1(x∗)− µFx∗〉
+ 2µα2

k‖FU(uk)− FUx∗‖ · ‖σf1(xk)− µFx∗‖
≤(1− αkτ)‖uk − x∗‖2 + α2

k‖σf1(xk)− µFx∗‖2

+ 2αk(β‖U(uk)− Ux∗‖2 +
1

4β
‖σf1(xk)− σf1(x∗)‖2)

+ 2αk〈U(uk)− Ux∗, σf1(x∗)− µFx∗〉
+ 2µα2

kκ‖U(uk)− x∗‖ · ‖σf1(xk)− µFx∗‖
≤(1− αkτ)‖uk − x∗‖2 + α2

k‖σf1(xk)− µFx∗‖2 + 2αkβ‖uk − x∗‖2

+
αkσ

2ρ21
2β

‖xk − x∗‖2 + 2αk〈U(uk)− Ux∗, σf1(x∗)− µFx∗〉

+ 2µα2
kκ‖uk − x∗‖ · ‖σf1(xk)− µFx∗‖

=(1− αkτ + 2αkβ)‖uk − x∗‖2 + α2
k‖σf1(xk)− µFx∗‖2

+
αkσ

2ρ2

2β
‖xk − x∗‖2 + 2αk〈U(uk)− Ux∗, σf1(x∗)− µFx∗〉

+ 2µα2
kκ‖uk − x∗‖ · ‖σf1(xk)− µFx∗‖.

(3.7)
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Similarly, we have

‖yk+1 − y∗‖2 ≤(1− αkτ + 2αkβ)‖vk − y∗‖2 + α2
k‖σf2(yk)− µFy∗‖2

+
αkσ

2ρ2

2β
‖yk − y∗‖2 + 2αk〈T (vk)− Ty∗, σf2(y∗)− µFy∗〉

+ 2µα2
kκ‖vk − y∗‖ · ‖σf2(yk)− µFy∗‖.

(3.8)

So, by (3.6), (3.7) and (3.8) we obtain

sk+1 ≤[1− αk(τ − 2β − σ2ρ2

2β
)]sk

+ αk(τ − 2β − σ2ρ2

2β
){αk(‖σf1(xk)− µFx

∗‖2 + ‖σf2(yk)− µFy∗‖2)
τ − 2β − σ2ρ2

2β

+
2(〈U(uk)− x∗, σf1(x∗)− µFx∗〉+ 〈T (vk)− y∗, σf2(y∗)− µFy∗〉)

τ − 2β − σ2ρ2

2β

+
2µαkκ(‖uk − x∗‖ · ‖σf1(xk)− µFx∗‖+ ‖vk − y∗‖ · ‖σf2(yk)− µFy∗‖)

τ − 2β − σ2ρ2

2β

}

=(1− λk)sk + λkδk,

where

λk =αk(τ − 2β − σ2ρ2

2β
),

δk =
1

τ − 2β − σ2ρ2

2β

{αk(‖σf1(xk)− µFx∗‖2 + ‖σf2(yk)− µFy∗‖2)

+ 2(〈U(uk)− x∗, σf1(x∗)− µFx∗〉+ 〈T (vk)− y∗, σf2(y∗)− µFy∗〉)
+ 2µαkκ(‖uk − x∗‖ · ‖σf1(xk)− µFx∗‖+ ‖vk − y∗‖ · ‖σf2(yk)− µFy∗‖)}.

On the other hand, since U is firmly quasi-nonexpansive we have

‖xk+1 − x∗‖2 =‖αkσf1(xk) + (I − αkµF )U(uk)− x∗‖2

=‖αkσf1(xk) + (I − αkµF )U(uk)− (I − αkµF )x∗ − αkµFx∗‖2

≤(1− αkτ)‖U(uk)− x∗‖2 + 2αk〈σf1(xk)− µFx∗, xk+1 − xk〉
≤(1− αkτ)‖uk − x∗‖2 − (1− αkτ)‖U(uk)− uk‖2

+ 2αk‖σf1(xk)− µFx∗‖ · ‖xk+1 − x∗‖
≤(1− αkτ)‖uk − x∗‖2 − (1− αkτ)‖U(uk)− uk‖2

+ 2αk(
1

4β
‖σf1(xk)− µFx∗‖2 + β‖xk+1 − x∗‖2).

Hence, we can obtain

‖xk+1 − x∗‖2 ≤
1− αkτ

1− 2αkβ
‖uk − x∗‖2 −

1− αkτ
1− 2αkβ

‖U(uk)− uk‖2

+
αk

2β(1− 2αkβ)
‖σf1(xk)− µFx∗‖2.

Similarly, we have

‖yk+1 − y∗‖2 ≤
1− αkτ

1− 2αkβ
‖vk − y∗‖2 −

1− αkτ
1− 2αkβ

‖T (vk)− vk‖2

+
αk

2β(1− 2αkβ)
‖σf2(yk)− µFy∗‖2.
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By adding up the last two inequalities and by using (3.5), it follows from τ > 2β that

sk+1 ≤
1− αkτ

1− 2αkβ
(‖uk − x∗‖2 + ‖vk − y∗‖2)

− 1− αkτ
1− 2αkβ

(‖U(uk)− uk‖2 + ‖T (vk)− vk‖2)

+
αk

2β(1− 2αkβ)
(‖σf1(xk)− µFx∗‖2 + ‖σf2(yk)− µFy∗‖2)

≤ 1− αkτ
1− 2αkβ

sk −
1− αkτ

1− 2αkβ
{γk[2‖Axk −Byk‖2 − γk(‖A∗(Axk −Byk)‖2

+ ‖B∗(Axk −Byk)‖2)] + (‖U(uk)− uk‖2 + ‖T (vk)− vk‖2)}

+
αk

2β(1− 2αkβ)
(‖σf1(xk)− µFx∗‖2 + ‖σf2(yk)− µFy∗‖2)

≤sk +
αk

2β(1− 2αkβ)
(‖σf1(xk)− µFx∗‖2 + ‖σf2(yk)− µFy∗‖2)

− 1− αkτ
1− 2αkβ

{γk[2‖Axk −Byk‖2 − γk(‖A∗(Axk −Byk)‖2 + ‖B∗(Axk −Byk)‖2)]

+ (‖U(uk)− uk‖2 + ‖T (vk)− vk‖2)}.

(3.9)

Now, by setting

µk =
αk

2β(1− 2αkβ)
(‖σf1(xk)− µFx∗‖2 + ‖σf2(yk)− µFy∗‖2),

ηk =
1− αkτ

1− 2αkβ
{γk[2‖Axk −Byk‖2 − γk(‖A∗(Axk −Byk)‖2 + ‖B∗(Axk −Byk)‖2)]

+ (‖U(uk)− uk‖2 + ‖T (vk)− vk‖2)},

Eq. (3.9) can be rewritten as the following form:

sk+1 ≤ sk − ηk + µk, k ≥ 0.

By the assumption on αk, we get
∑∞

k=0 λk = ∞ and limk→∞ µk = 0 which thanks to the boundedness
of {xk} and {yk}.

To use Lemma 2.9, we need to prove that, for any subsequence {kl} ⊂ {k}, liml→∞ ηkl = 0 implies

lim sup
l→∞

δkl ≤ 0. (3.10)

It follows from limk→∞ ηkl = 0 that

lim
l→∞

γkl [2‖Axkl −Bykl‖
2 − γkl(‖A

∗(Axkl −Bykl)‖
2 + ‖B∗(Axkl −Bykl)‖

2)] = 0,

and
lim
l→∞
‖ukl − U(ukl)‖ = lim

l→∞
‖vkl − T (vkl)‖ = 0. (3.11)

From the assumption on γk, we can obtain

lim
l→∞
‖Axkl −Bykl‖ = 0.

So, we have
lim
l→∞
‖ukl − xkl‖ = lim

l→∞
γkl‖A

∗(Axkl −Bykl)‖ = 0, (3.12)

and
lim
l→∞
‖vkl − ykl‖ = lim

l→∞
γkl‖B

∗(Axkl −Bykl)‖ = 0. (3.13)
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By taking (x̃, ỹ) ∈ ωw(xkl , ykl), from (3.12) and (3.13) we have (x̃, ỹ) ∈ ωw(ukl , vkl). Combined with the
demiclosednesses of U − I and T − I at 0, (3.11) yields Ux̃ = x̃ and T ỹ = ỹ. So x̃ ∈ F (U) and ỹ ∈ F (T ).
On the other hand, Ax̃−Bỹ ∈ ωw(Axkl −Bykl) and weakly lower semicontinuity of the norm imply

‖Ax̃−Bỹ‖ ≤ lim inf
l→∞

‖Axkl −Bykl‖ = 0,

hence (x̃, ỹ) ∈ Γ. So ωw(xkl , ykl) ⊂ Γ. Since

lim
k→∞
{αk(‖σf1(xk)− µFx∗‖2 + ‖σf2(yk)− µFy∗‖2)

+ 2µαkκ(‖uk − x∗‖‖σf1(xk)− µFx∗‖+ ‖vk − y∗‖‖σf2(yk)− µFy∗‖)} = 0,

to get (3.10), we only need to verify

lim sup
l→∞

(〈σf1(x∗)− µFx∗, U(ukl)− x
∗〉+ 〈σf2(y∗)− µFy∗, T (vkl)− y

∗〉) ≤ 0.

Indeed, from (3.11), (3.12) and (3.13) we have

lim sup
l→∞

(
〈σf1(x∗)− µFx∗, U(ukl)− x

∗〉+ 〈σf2(y∗)− µFy∗, T (vkl)− y
∗〉
)

= lim sup
l→∞

(
〈σf1(x∗)− µFx∗, ukl − x

∗〉+ 〈σf2(y∗)− µFy∗, vkl − y
∗〉
)

= lim sup
l→∞

(
〈σf1(x∗)− µFx∗, xkl − x

∗〉+ 〈f2(σy∗)− µFy∗, ykl − y
∗〉
)

= − lim inf
l→∞

(
〈(µF − σf1)x∗, xkl − x

∗〉+ 〈(µF − σf2)y∗, ykl − y
∗〉
)
.

(3.14)

We can take subsequence {(xklj , yklj )} of {(xkl , ykl)} such that (xklj , yklj ) ⇀ (x̃, ỹ) as j →∞ and

− lim inf
l→∞

(
〈(µF − σf1)x∗, xkl − x

∗〉+ 〈(µF − λf2)y∗, ykl − y
∗〉
)

= − lim
j→∞

(
〈(µF − σf1)x∗, xklj − x

∗〉+ 〈(µF − σf2)y∗, yklj − y
∗〉
)

= −
(
〈(µF − σf1)x∗, x̃− x∗〉+ 〈(µF − σf2)y∗, ỹ − y∗〉

)
.

(3.15)

Since ωw(xkl , ykl) ⊂ Γ and (x∗, y∗) is the solution of the variational inequality problem (3.2), from (3.14)
and (3.15) we obtain

lim sup
l→∞

(〈σf1(x∗)− µFx∗, U(ukl)− x
∗〉+ 〈σf2(y∗)− µFy∗, T (vkl)− y

∗〉) ≤ 0.

From Lemma 2.9, it follows
lim
k→∞

(‖xk − x∗‖2 + ‖yk − y∗‖2) = 0,

which implies that xk → x∗ and yk → y∗.

Remark 3.4. Our main result generalized the main results of Moudafi [18, 19] from weak convergence to
strong convergence which is more desirable. Our algorithm does not require the operator norms.

By taking U = PC and T = PQ, we have the following viscosity iterative algorithm without prior
knowledge of operators norms for finding common solution of variational inequality for Lipschitzian and
strongly monotone operators and the SEP (1.4).

Algorithmm 3.5. Let x0 ∈ H1, y0 ∈ H2 be arbitrary. Assume that the k-th iterate xk ∈ H1, yk ∈ H2 has
been constructed, then we calculate the (k + 1)-th iterate (xk+1, yk+1) via the formula:

uk = xk − γkA∗(Axk −Byk),
xk+1 = σαkf1(xk) + (I − µαkF )PC(uk),

vk = yk + γkB
∗(Axk −Byk),

yk+1 = σαkf2(xk) + (I − µαkF )PQ(vk),

where γk is chosen by (3.1).
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At last, noting that for a maximal monotone operator M : H1 → 2H1 , its associated resolvent mapping,
JMµ (x) := (I + µM)−1(x), is firmly quasi-nonexpansive and 0 ∈ M(x) if and only if x = JMµ (x). In other

words, zeroes of M are exactly fixed-points of its resolvent mapping. Let S : H2 → 2H2 be another maximal
monotone operator, the problem under consideration is nothing but

find x∗ ∈M−1(0), y∗ ∈ S−1(0), such that Ax∗ = By∗. (3.16)

For finding common solution of variational inequality for Lipschitzian and strongly monotone operators
and the problem (3.16), by taking U = JMµ , T = JSν , Algorithm 3.1 takes the following equivalent form

uk = xk − γkA∗(Axk −Byk),
xk+1 = σαkf1(xk) + (I − µαkF )JMµ (uk),

vk = yk + γkB
∗(Axk −Byk),

yk+1 = σαkf2(xk) + (I − µαkF )JSν (vk),

where γk is chosen by (3.1).
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