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Abstract
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1. Introduction

Vector equilibrium problem, as a generalization of the equilibrium problem [7] and the vector variational
inequality [16], plays a very important role in many fields such as mathematical physics, economics theory,
operations research, management science, engineering design and others. The existence theory concerned
with solutions for the vector variational inequalities and the vector equilibrium problems has been extensively
studied by many authors under quite different conditions (see, for example, [4, 5, 8, 12, 14, 15, 17, 18, 26,
28, 30, 32, 35] and the references therein).

On the other hand, the stability analysis in connection with the solution mappings to vector equilibrium
problems is an important topic in vector optimization theory. Recently, the lower semicontinuity and the up-
per semicontinuity of the solution mappings to parametric vector equilibrium problems have been intensively
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studied in the literature, for instance, we refer the reader to [1–3, 9–11, 13, 19, 20, 22, 23, 27, 29, 31, 33, 34].
We note that, in order to get the semicontinuity of the solution mappings for the parametric vector equi-
librium problems, the authors of [3, 9–11, 19, 20, 29, 31, 34] employed the monotonicity of mappings or the
information about the solution mappings. It is worth mentioning that the monotonicity of mappings may
yield that the set of solutions is a singleton and the assumptions involving information of solution mappings
are not reasonable from the view of real problems. Therefore, it is important and interesting to discuss the
semicontinuity of the solution mappings for a parametric generalized vector equilibrium problem (for short,
PGVEP) under some new conditions.

The rest of the paper is organized as follows. Section 2 presents some necessary notations and lemmas. In
Section 3, we obtain a new scalarization result and a new density result for a generalized vector equilibrium
problem. Then we establish the lower semicontinuity of strong efficient solution mapping, weakly efficient
solution mapping and efficient solution mapping to (PGVEP) by using the scalarization methods and the
density result. In Section 4, we discuss the upper semicontinuity of strong efficient solution mapping and
weakly efficient solution mapping to (PGVEP). Moreover, we establish the Hausdorff upper semicontinuity
of efficient solution mapping to (PGVEP), which is a generalization of Theorem 5.4 of [24] from the finite
dimensional space to the infinite dimensional space.

2. Preliminaries

Throughout this paper, unless otherwise specified, let Λ, W , ∆, X and Y be five normed vector spaces.
Assume that C ⊆ Y is a closed, convex, pointed cone with nonempty interior, P ⊆ ∆ is a convex, pointed
cone, and R+ = {x ∈ R : x ≥ 0}. Let Y ∗ be the topological dual space of Y and C∗ be defined by

C∗ = {f ∈ Y ∗ : f (c) ≥ 0, ∀c ∈ C} .

Denote the quasi-interior of C∗ by C#, i.e.,

C# = {f ∈ Y ∗ : f (c) > 0, ∀c ∈ C\ {0}} .

Let D be a nonempty subset of Y . The cone hull of D is defined as

cone (D) = {td : t ≥ 0, d ∈ D} .

Denote the closure of D by cl (D) and the interior of D by intD. A nonempty convex subset B of the
convex cone C is called a base of C if C = cone (B) and 0 /∈ cl (B). It is easy to see that C# 6= ∅ if and only
if C has a base. Let e be a fixed point in intC,

B∗ = {f ∈ C∗ : f (e) = 1} ,

and
B# =

{
f ∈ C# : f (e) = 1

}
.

Then it is easy to see that B∗ is a weak* compact base of C∗, B# is a base of C# and B∗ = cl
(
B#
)

with respect to the weak* topology.
Let K be a nonempty subset of X and S : X ⇒ ∆ and F : X×∆×X ⇒ Y be two set-valued mappings.

We consider the following generalized vector equilibrium problem consisting of finding x0 ∈ K such that

(GVEP) F (x0, u, y) ∩ (−Ω) = ∅, ∀u ∈ S (x0), ∀y ∈ K,

where Ω ∪ {0} is a cone in Y .
Let W (F, S,K) denote the set of all weakly efficient solutions of (GVEP), i.e.,

W (F, S,K) = {x ∈ K : F (x, u, y) ∩ (−intC) = ∅, ∀u ∈ S (x) , ∀y ∈ K} .
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and E (F, S,K) denote the set of all efficient solutions of (GVEP), i.e.,

E (F, S,K) = {x ∈ K : F (x, u, y) ∩ (−C\ {0}) = ∅, ∀u ∈ S (x) , ∀y ∈ K} .

For any f ∈ C∗, let Q (f) denote the set of all f -solutions of (GVEP), i.e.,

Q (f) = {x ∈ K : f (F (x, u, y)) ⊆ R+,∀u ∈ S (x) , ∀y ∈ K} .

Let K be a nonempty subset of X and S : X ⇒ ∆ and F : X×∆×X ⇒ Y be two set-valued mappings.
Let F : X ×∆ ×X ×W ⇒ Y and K : Λ ⇒ X be two set-valued mappings. For any (α, λ) ∈ W × Λ, we
consider the following parametric generalized vector equilibrium problem consisting of finding x0 ∈ K (λ)
such that

(PGVEP) F (x0, u, y, α) ∩ (−Ω) = ∅, ∀u ∈ S (x0), ∀y ∈ K (λ),

where Ω ∪ {0} is a cone in Y .
For any (α, λ) ∈W × Λ, let M (α, λ) denote the set of all strong efficient solutions of (PGVEP), i.e.,

M (α, λ) = {x ∈ K (λ) : F (x, u, y, α) ⊆ C,∀u ∈ S (x) ,∀y ∈ K (λ)} ,

and W (α, λ) denote the set of all weakly efficient solutions of (PGVEP), i.e.,

W (α, λ) = {x ∈ K (λ) : F (x, u, y, α) ∩ (−intC) = ∅, ∀u ∈ S (x) , ∀y ∈ K (λ)} .

For any f ∈ C∗ and (α, λ) ∈W × Λ, let Sf (α, λ) denote the set of all f -solutions of (PGVEP), i.e.,

Sf (α, λ) = {x ∈ K (λ) : f (F (x, u, y, α)) ⊆ R+, ∀u ∈ S (x) ,∀y ∈ K (λ)} .

Definition 2.1. A set-valued mapping Φ : ∆ ⇒ Y is said to be P -C-increasing, if for any u1, u2 ∈ ∆ with
u1 − u2 ∈ P , one has

Φ (u1) ⊆ Φ (u2) + C.

Remark 2.2. The special case is as follows: a function f : R→ R is said to be R+-R+-increasing, if for any
u1, u2 ∈ R with u1 ≥ u2, one has f (u1) ≥ f (u2).

Definition 2.3. Let D be a nonempty convex subset of X. A set-valued mapping Φ : D ⇒ Y is said to be

(i) C-concave, if for any x1, x2 ∈ D and t ∈ [0, 1], one has

Φ (tx1 + (1− t)x2) ⊆ tΦ (x1) + (1− t) Φ (x2) + C;

(ii) strictly C-concave, if for any x1, x2 ∈ D with x1 6= x2 and, for any t ∈ ]0, 1[, one has

Φ (tx1 + (1− t)x2) ⊆ tΦ (x1) + (1− t) Φ (x2) + intC;

(iii) C-convexlike, if for any x1, x2 ∈ D and, for any t ∈ [0, 1], there exists x3 ∈ D such that

tΦ (x1) + (1− t) Φ (x2) ⊆ Φ (x3) + C.

Now, we give the following example to illustrate that strictly C-concavity is easy to be verified.

Example 2.4. Let Y = R2, C = R2
+ =

{
(x1, x2) ∈ R2 : x1 ≥ 0, x2 ≥ 0

}
, X = R and D = [−1, 1]. We

denote by BY the closed unit ball in Y . Let a set-valued mapping Φ : D ⇒ Y be defined as follows

Φ (x) =
(
−x2, 2 cosx

)
+BY .

Then it is easy to check that Φ is strictly C-concave.



J. Lu, Y. Han, N.-J. Huang, J. Nonlinear Sci. Appl. 9 (2016), 5449–5462 5452

Definition 2.5. A set-valued mapping G : T ⇒ T1 is said to be

(i) Hausdorff upper semicontinuous (H-u.s.c.) at u0 ∈ T , if for any neighborhood V of 0 ∈ T1, there exists
a neighborhood U (u0) of u0 such that for every u ∈ U (u0), G (u) ⊆ G (u0) + V ;

(ii) upper semicontinuous (u.s.c.) at u0 ∈ T , if for any neighborhood V of G (u0), there exists a neighbor-
hood U (u0) of u0 such that for every u ∈ U (u0), G (u) ⊆ V ;

(iii) lower semicontinuous (l.s.c.) at u0 ∈ T , if for any x ∈ G (u0) and any neighborhood V of x, there
exists a neighborhood U (u0) of u0 such that for every u ∈ U (u0), G (u) ∩ V 6= ∅.

We say that G is H-u.s.c., u.s.c. and l.s.c. on T if it is H-u.s.c., u.s.c. and l.s.c. at each point u ∈ T ,
respectively. We say that G is continuous on T if it is both u.s.c. and l.s.c. on T .

Lemma 2.6 ([6]). A set-valued mapping Φ : T ⇒ T1 is l.s.c. at u0 ∈ T if and only if for any sequence
{un} ⊆ T with un → u0 and for any x0 ∈ Φ (u0), there exists xn ∈ Φ (un) such that xn → x0.

Lemma 2.7 ([21]). Let Φ : T ⇒ T1 be a set-valued mapping. For any given u0 ∈ T , if Φ (u0) is compact,
then Φ is u.s.c. at u0 ∈ T if and only if for any sequence {un} ⊆ T with un → u0 and for any xn ∈ Φ (un),
there exist x0 ∈ Φ (u0) and a subsequence {xnk

} of {xn} such that xnk
→ x0.

Lemma 2.8 ([25]). A set-valued mapping G : T ⇒ T1 is l.s.c. on T if and only if, for any A ⊆ T , one has

⋃
u∈cl(A)

G (u) ⊆ cl

(⋃
u∈A

G (u)

)
.

3. Lower semicontinuity

In this section, we establish the lower semicontinuity of strong efficient solution mapping, weakly efficient
solution mapping and efficient solution mapping to (PGVEP).

Lemma 3.1. Let K be a nonempty compact convex subset of X. Assume that

(i) S (·) is l.s.c. and P -concave on K with nonempty compact values;

(ii) for any (x, y) ∈ K ×K, F (x, ·, y) is P -C-increasing;

(iii) for any y ∈ K, F (·, ·, y) is strictly C-concave on K ×∆;

(iv) F (·, ·, ·) is continuous on K ×∆×K with nonempty compact values.

Then Q (·) is l.s.c. on C∗\ {0Y ∗}, where the topology on C∗\ {0Y ∗} is the weak* topology.

Proof. Suppose to the contrary that Q (·) is not l.s.c. at f0 ∈ C∗\ {0Y ∗}. Then there exist x0 ∈ Q (f0), a
neighborhood W0 of 0 ∈ X and a sequence {fn} with

fn
w∗
−→ f0,

such that
(x0 +W0) ∩Q (fn) = ∅, ∀n ∈ N. (3.1)

There are two cases to be considered.
Case 1. Q (f0) is singleton. Let

xn ∈ Q (fn) , ∀n ∈ N. (3.2)
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It clear that xn ∈ K. Since K is compact, without loss of generality, we can assume that xn → x̄ ∈ K.
We claim that x̄ ∈ Q (f0). In fact, if not, then there exist u0 ∈ S (x0) and y0 ∈ K such that

f0 (F (x̄, u0, y0)) 6⊂ R+.

Then there exists z0 ∈ F (x̄, u0, y0) such that

f0 (z0) < 0. (3.3)

Since S (·) is l.s.c. at x0, it follows from Lemma 2.6 that there exists un ∈ S (xn) such that un → u0.
Noting that F (·, ·, y0) is l.s.c. at (x0, u0), by Lemma 2.6, there exists zn ∈ F (xn, un, y0) such that zn → z0.
It follows from

fn
w∗
−→ f0,

that fn (zn)→ f0 (z0). By this together with (3.3), we have fn (zn) < 0 for n large enough, which contradicts
(3.2). Therefore, x̄ ∈ Q (f0). It follows from Q (f0) is singleton that x̄ = x0 and so xn → x0. By this together
with (3.2), we have

xn ∈ (x0 +W0) ∩Q (fn) ,

for n large enough, which contradicts (3.1).

Case 2. Q (f0) is not singleton. Then there exists x′ ∈ Q (f0) such that x′ 6= x0. Since x′, x0 ∈ Q (f0), we
have

f0
(
F
(
x′, u, y

))
⊆ R+, ∀u ∈ S

(
x′
)
, ∀y ∈ K, (3.4)

and
f0 (F (x0, u, y)) ⊆ R+, ∀u ∈ S (x0) , ∀y ∈ K. (3.5)

Since S (·) is P -concave on K, for any t ∈ ]0, 1[, we have

S
(
tx′ + (1− t)x0

)
⊆ tS

(
x′
)

+ (1− t)S (x0) + P.

For any ut ∈ S (tx′ + (1− t)x0), there exist u′ ∈ S (x′), u0 ∈ S (x0) and p0 ∈ P such that

ut = tu′ + (1− t)u0 + p0.

By noting that F (tx′ + (1− t)x0, ·, y) is P -C-increasing, we have

F
(
tx′ + (1− t)x0, ut, y

)
⊆ F

(
tx′ + (1− t)x0, tu′ + (1− t)u0, y

)
+ C. (3.6)

Since F (·, ·, y) is strictly C-concave on K ×∆, we have

F
(
tx′ + (1− t)x0, tu′ + (1− t)u0, y

)
⊆ tF

(
x′, u′, y

)
+ (1− t)F (x0, u0, y) + intC. (3.7)

Let x (t) := tx′ + (1− t)x0. Then it is clear that x (t) ∈ K. It is easy to see that there exists t0 ∈ ]0, 1[
such that x (t0) ∈ x0 + W0. It follows from (3.1) that x (t0) /∈ Q (fn). Then there exist un ∈ S (x (t0)) and
yn ∈ K such that

fn (F (x (t0) , un, yn)) 6⊂ R+.

Thus, there exists zn ∈ F (x (t0) , un, yn) such that

fn (zn) < 0. (3.8)

Since S (x (t0)) and K are compact, without loss of generality, we can assume that un → ū ∈ S (x (t0))
and yn → y0 ∈ K. By Lemma 2.7, there exist z0 ∈ F (x (t0) , ū, y0) and a subsequence {znk

} of {zn} such
that znk

→ z0. Without loss of generality, we can assume that zn → z0. It follows that fn (zn) → f0 (z0).
By (3.8), we have

f0 (z0) ≤ 0. (3.9)

On the other hand, from (3.4), (3.5), (3.6) and (3.7), we know that f0 (z0) > 0, which contradicts (3.9).
This completes the proof.
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Lemma 3.2. Assume that, for each x ∈ K, F (x, ·, ·) is C-convexlike on S (x)×K. Then

W (F, S,K) =
⋃

f∈B∗

Q (f).

Proof. For any x ∈
⋃

f∈B∗ Q (f), there exists f0 ∈ B∗ such that x ∈ Q (f0). Thus,

f0 (F (x, u, y)) ⊆ R+, ∀u ∈ S (x) , ∀y ∈ K. (3.10)

Suppose that x /∈W (F, S,K). Then there exist u0 ∈ S (x) and y0 ∈ K such that

F (x, u0, y0) ∩ (−intC) 6= ∅,

and so there exists z0 ∈ F (x, u0, y0) such that f0 (z0) < 0, which contradicts (3.10). Therefore, we know
that x ∈W (F, S,K). Next, we show that

W (F, S,K) ⊆
⋃

f∈B∗

Q (f).

Let x ∈W (F, S,K). Then

F (x, u, y) ∩ (−intC) = ∅, ∀u ∈ S (x) , ∀y ∈ K.

It is easy to see that
(F (x, S (x) ,K) + C) ∩ (−intC) = ∅.

For each x ∈ K, since F (x, ·, ·) is C-convexlike on S (x) ×K, we can see that F (x, S (x) ,K) + C is a
convex set. By the separation theorem of convex sets, there exists g ∈ Y ∗\ {0} such that

inf {g (z + c) : u ∈ S (x) , y ∈ K, z ∈ F (x, u, y) , c ∈ C} ≥ sup
{
g
(
c′
)

: c′ ∈ −C
}
.

It follows that g ∈ C∗ and

g (F (x, u, y)) ⊆ R+, ∀u ∈ S (x) , ∀y ∈ K.

Since e ∈ intC and g ∈ C∗\ {0}, it follows that g (e) > 0. Let ψ = g
g(e) . We can see that ψ ∈ B∗ and

ψ (F (x, u, y)) ⊆ R+, ∀u ∈ S (x) , ∀y ∈ K.

Thus, x ∈ Q (ψ) and so x ∈
⋃

f∈B∗ Q (f). This completes the proof.

Lemma 3.3. Let K be a nonempty compact convex subset of X. Assume that

(i) S (·) is l.s.c. and P -concave on K with nonempty compact values;

(ii) for any (x, y) ∈ K ×K, F (x, ·, y) is P -C-increasing;

(iii) for any y ∈ K, F (·, ·, y) is strictly C-concave on K ×∆;

(iv) F (·, ·, ·) is continuous on K ×∆×K with nonempty compact values;

(v) for each x ∈ K, F (x, ·, ·) is C-convexlike on S (x)×K.

Then ⋃
f∈B#

Q (f) ⊆ E (F, S,K) ⊆W (F, S,K) =
⋃

f∈B∗

Q (f) ⊆ cl

 ⋃
f∈B#

Q (f)

 .
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Proof. It follows from Lemma 3.2 and the definitions that⋃
f∈B#

Q (f) ⊆ E (F, S,K) ⊆W (F, S,K) =
⋃

f∈B∗

Q (f).

By Lemma 3.1, we know that Q (·) is l.s.c. on B∗ = cl
(
B#
)
, by Lemma 2.8, one has

⋃
f∈B∗

Q (f) ⊆ cl

 ⋃
f∈B#

Q (f)

 ,

and so ⋃
f∈B#

Q (f) ⊆ E (Ω,Γ) ⊆W (Ω,Γ) =
⋃

f∈B∗

Q (f) ⊆ cl

 ⋃
f∈B#

Q (f)

 .

This completes the proof.

Theorem 3.4. Let (α0, λ0) ∈W × Λ. Assume that

(i) K (λ0) is nonempty convex compact and K (·) is continuous at λ0;

(ii) S (·) is continuous and P -concave on K (λ0) with nonempty compact values;

(iii) for any (x, y) ∈ K (λ0)×K (λ0), F (x, ·, y, α0) is P -C-increasing;

(iv) for any y ∈ K (λ0), F (·, ·, y, α0) is strictly C-concave on K (λ0)×∆;

(v) F (·, ·, ·, ·) is continuous on K (λ0)×∆×K (λ0)× {α0} with nonempty compact values.

Then M (·, ·) is l.s.c. at (α0, λ0).

Proof. Suppose to the contrary that M (·, ·) is not l.s.c. at (α0, λ0). Then there exist x0 ∈M (α0, λ0) and a
neighborhood W0 of 0 ∈ X such that, for any neighborhood U ′×V ′ of (α0, λ0), there exists (α′, λ′) ∈ U ′×V ′
satisfying

(x0 +W0) ∩M
(
α′, λ′

)
= ∅.

Hence, there exists a sequence {(αn, λn)} with (αn, λn)→ (α0, λ0) such that

(x0 +W0) ∩M (αn, λn) = ∅, ∀n ∈ N. (3.11)

There are two cases to be considered.
Case 1. M (α0, λ0) is singleton. Let

xn ∈M (αn, λn) , ∀n ∈ N. (3.12)

It is clear that xn ∈ K (λn) for all n ∈ N. By Lemma 2.7, there exist x̄ ∈ K (λ0) and a subsequence
{xnk

} of {xn} such that xnk
→ x̄. Without loss of generality, we can assume that xn → x̄. We claim that

x̄ ∈ M (α0, λ0). In fact, suppose to the contrary that x̄ /∈ M (α0, λ0). Then there exist u0 ∈ S (x̄) and
y0 ∈ K (λ0) such that

F (x̄, u0, y0, α0) 6⊂ C.

It follows that there exists z0 ∈ F (x̄, u0, y0, α0) such that

z0 /∈ C. (3.13)

Since S (·) is l.s.c. at x̄ and K (·) is l.s.c. at λ0, it follows from Lemma 2.6 that there exists un ∈ S (xn)
such that un → u0 and there exists yn ∈ K (λn) such that yn → y0. By noting that F (·, ·, ·, ·) is l.s.c.
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at (x̄, u0, y0, α0), by Lemma 2.6, there exists zn ∈ F (xn, un, yn, αn) such that zn → z0. It follows from
(3.13) that zn /∈ C for n large enough, which contradicts (3.12). Therefore, x̄ ∈M (α0, λ0). It follows from
M (α0, λ0) is singleton that x̄ = x0 and so xn → x0. By this together with (3.12), we have

xn ∈ (x0 +W0) ∩M (αn, λn) ,

for n large enough, which contradicts (3.11).

Case 2. M (α0, λ0) is not singleton. Then there exists x′ ∈ M (α0, λ0) such that x′ 6= x0. Since x′, x0 ∈
M (α0, λ0), one has

F
(
x′, u, y, α0

)
⊆ C, ∀u ∈ S

(
x′
)
, ∀y ∈ K (λ0) , (3.14)

and
F (x0, u, y, α0) ⊆ C, ∀u ∈ S (x0) , ∀y ∈ K (λ0) . (3.15)

Since S (·) is P -concave on K (λ0), for any t ∈ ]0, 1[, we have

S
(
tx′ + (1− t)x0

)
⊆ tS

(
x′
)

+ (1− t)S (x0) + P.

For any ut ∈ S (tx′ + (1− t)x0), there exist u′ ∈ S (x′), u0 ∈ S (x0) and p0 ∈ P such that

ut = tu′ + (1− t)u0 + p0.

By noting that F (tx′ + (1− t)x0, ·, y, α0) is P -C-increasing, we have

F
(
tx′ + (1− t)x0, ut, y, α0

)
⊆ F

(
tx′ + (1− t)x0, tu′ + (1− t)u0, y, α0

)
+ C. (3.16)

Since F (·, ·, y, α0) is strictly C-concave on K (λ0)×∆, we have

F
(
tx′ + (1− t)x0, tu′ + (1− t)u0, y, α0

)
⊆ tF

(
x′, u′, y, α0

)
+ (1− t)F (x0, u0, y, α0) + intC. (3.17)

Let x (t) := tx′ + (1− t)x0. Then it is clear that x (t) ∈ K (λ0). For the above W0, there exists a
neighborhood W1 of 0 ∈ X such that

W1 +W1 ⊆W0.

Obviously, there exists t0 ∈ ]0, 1[ such that x (t0) ∈ x0 +W1. Thus,

x (t0) +W1 ⊆ x0 +W1 +W1 ⊆ x0 +W0. (3.18)

Since x (t0) ∈ K (λ0), by Lemma 2.6, there exists x′n ∈ K (λn) such that x′n → x (t0) and so x′n ∈
x (t0) + W1 for n large enough. By noting (3.11) and (3.18), we have x′n /∈ M (un, λn) and so there exist
y′n ∈ K (λn) and u′n ∈ S (x′n) such that

F
(
x′n, u

′
n, y
′
n, αn

)
6⊂ C.

Thus, there exists z′n ∈ F (x′n, u
′
n, y
′
n, αn) satisfying

z′n /∈ C. (3.19)

Since y′n ∈ K (λn), it follows from Lemma 2.7 that there exist y′ ∈ K (λ0) and a subsequence
{
y′nk

}
of {y′n} such that y′nk

→ y′. Without loss of generality, we can assume that y′n → y′. Since u′n ∈ S (x′n),
it follows from Lemma 2.7 that there exist u′ ∈ S (x (t0)) and a subsequence

{
u′nk

}
of {u′n} such that

u′nk
→ u′. Without loss of generality, we can assume that u′n → u′. By noting the fact that F (·, ·, ·, ·) is

u.s.c. at (x (t0) , u
′, y′, α0), there exist z′ ∈ F (x (t0) , u

′, y′, α0) and a subsequence
{
z′nk

}
of {z′n} such that

z′nk
→ z′. Without loss of generality, we can assume that z′n → z′. It follows from (3.19) that

z′ /∈ intC. (3.20)

On the other hand, from (3.14), (3.15), (3.16) and (3.17), we know that z′ ∈ intC, which contradicts
(3.20). This completes the proof.
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Similar to the proof of Theorem 3.4, we can get the following lemma.

Lemma 3.5. Let f ∈ C∗\ {0} and (α0, λ0) ∈W × Λ. Assume that

(i) K (λ0) is nonempty convex compact and K (·) is continuous at λ0;

(ii) S (·) is continuous and P -concave on K (λ0) with nonempty compact values;

(iii) for any (x, y) ∈ K (λ0)×K (λ0), F (x, ·, y, α0) is P -C-increasing;

(iv) for any y ∈ K (λ0), F (·, ·, y, α0) is strictly C-concave on K (λ0)×∆;

(v) F (·, ·, ·, ·) is continuous on K (λ0)×∆×K (λ0)× {α0} with nonempty compact values.

Then Sf (·, ·) is l.s.c. at (α0, λ0).

Theorem 3.6. Let (α0, λ0) ∈W × Λ. Assume that

(i) K (λ0) is nonempty convex compact and K (·) is continuous at λ0;

(ii) S (·) is continuous and P -concave on K (λ0) with nonempty compact values;

(iii) for any (x, y) ∈ K (λ0)×K (λ0), F (x, ·, y, α0) is P -C-increasing;

(iv) for any y ∈ K (λ0), F (·, ·, y, α0) is strictly C-concave on K (λ0)×∆;

(v) F (·, ·, ·, ·) is continuous on K (λ0)×∆×K (λ0)× {α0} with nonempty compact values;

(vi) for any x ∈ K (λ0), F (x, ·, ·, α0) is C-convexlike on S (x)×K (λ0).

Then W (·, ·) is l.s.c. at (α0, λ0). Moreover, E (·, ·) is l.s.c. at (α0, λ0).

Proof. It follows from Lemma 3.2 that

W (α0, λ0) =
⋃

f∈B∗

Sf (α0, λ0).

For any x0 ∈W (α0, λ0) and any neighborhood U of x0, there exists f0 ∈ C∗ such that x0 ∈ Sf0 (α0, λ0).
It follows from Lemma 3.5 that Sf0 (·, ·) is l.s.c. at (α0, λ0) and so there exists a neighborhood U (α0)×U (λ0)
of (α0, λ0) such that

U ∩ Sf0 (α, λ) 6= ∅, ∀ (α, λ) ∈ U (α0)× U (λ0) .

It is easy to see that
Sf0 (α, λ) ⊆W (α, λ) ,

and so
U ∩W (α, λ) 6= ∅, ∀ (α, λ) ∈ U (α0)× U (λ0) .

Therefore, W (·, ·) is l.s.c. at (α0, λ0). It follows from Lemma 3.3 that

⋃
f∈B#

Sf (α0, λ0) ⊆ E (α0, λ0) ⊆W (α0, λ0) =
⋃

f∈B∗

Sf (α0, λ0) ⊆ cl

 ⋃
f∈B#

Sf (α0, λ0)

 .

For any x ∈ E (α0, λ0) and any open neighborhood V of x, since

x ∈ E (α0, λ0) ⊆ cl

 ⋃
f∈B#

Sf (α0, λ0)

 ,
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we have

V ∩

 ⋃
f∈B#

Sf (α0, λ0)

 6= ∅.
Then there exists f ∈ B# such that

V ∩ Sf (α0, λ0) 6= ∅.

By Lemma 3.5, Sf (·, ·) is l.s.c. at (α0, λ0). Thus, there exists a neighborhood U (α0)×U (λ0) of (α0, λ0)
such that

V ∩ Sf (α, λ) 6= ∅, ∀ (α, λ) ∈ U (α0)× U (λ0) .

Since f ∈ B#, it is clear that
Sf (α, λ) ⊆ E (α, λ) .

Then,
V ∩ E (α, λ) 6= ∅, ∀ (α, λ) ∈ U (α0)× U (λ0) .

Therefore, E (·, ·) is l.s.c. at (α0, λ0). This completes the proof.

4. Upper semicontinuity

In this section, we establish the upper semicontinuity of strong efficient solution mapping and weakly
efficient solution mapping to (PGVEP) and the Hausdorff upper semicontinuity of efficient solution mapping
to (PGVEP).

Theorem 4.1. Let (α0, λ0) ∈W ×Λ. Assume that K (λ0) is nonempty compact, K (·) is continuous at λ0,
S (·) is l.s.c. on K (λ0) and F (·, ·, ·, ·) is l.s.c. on K (λ0) ×∆ ×K (λ0) × {α0}. Then M (·, ·) is u.s.c. at
(α0, λ0). Moreover, W (·, ·) is u.s.c. at (α0, λ0).

Proof. Suppose to the contrary that M (·, ·) is u.s.c. at (α0, λ0). Then there exist a neighborhood W0 of
M (α0, λ0) and a sequence {(αn, λn)} with (αn, λn)→ (α0, λ0) such that

M (αn, λn) 6⊂W0.

Then there exists
xn ∈M (αn, λn) , (4.1)

such that
xn /∈W0, ∀n ∈ N. (4.2)

Since xn ∈ K (λn), by Lemma 2.7, there exist x0 ∈ K (λ0) and a subsequence {xnk
} of {xn} such that

xnk
→ x0. Without loss of generality, we can assume that xn → x0.
We claim that x0 ∈M (α0, λ0). In fact, suppose to the contrary that x0 /∈M (α0, λ0). Then there exist

u0 ∈ S (x0) and y0 ∈ K (λ0) such that
F (x0, u0, y0, α0) 6⊂ C.

Then, there exists z0 ∈ F (x0, u0, y0, α0) such that

z0 /∈ C. (4.3)

Since S (·) is l.s.c. at x0 and K (·) is l.s.c. at λ0, it follows from Lemma 2.6 that there exists un ∈ S (xn)
such that un → u0 and there exists yn ∈ K (λn) such that yn → y0. By noting that F (·, ·, ·, ·) is l.s.c. at
(x0, u0, y0, α0), by Lemma 2.6, there exists zn ∈ F (xn, un, yn, αn) such that zn → z0. It follows from (4.3)
that zn /∈ C for n large enough, which contradicts (4.1). Therefore, x0 ∈ M (α0, λ0). We can see that
xn → x0 ∈W0, which contradicts (4.2).

By the similar arguments, we can prove that W (·, ·) is u.s.c. at (α0, λ0). This completes the proof.
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Lemma 4.2. Assume that K is a nonempty closed subset of X, S (·) is l.s.c. on K and for any y ∈ K,
F (·, ·, y) is l.s.c. on K ×∆. Then Q (f) is closed.

Proof. Let {xn} ⊆ Q (f) with xn → x0. Then

f (F (xn, u, y)) ⊆ R+, ∀u ∈ S (xn) , ∀ ∈ K. (4.4)

It follows from the closedness of K that x0 ∈ K. For any ū ∈ S (x0), since S (·) is l.s.c. at x0, by Lemma
2.6, there exists un ∈ S (xn) such that un → ū. For any z ∈ F (x0, ū, y), by noting that F (·, ·, y) is l.s.c. at
(x0, ū), by Lemma 2.6, there exists zn ∈ F (xn, un, y) such that zn → z. By (4.4), we have f (zn) ≥ 0. It
follows from f (zn)→ f (z) that f (z) ≥ 0. Then

f (F (x0, ū, y)) ⊆ R+, ∀ū ∈ S (x0) , ∀y ∈ K,

which means that x0 ∈ Q (f). Therefore, Q (f) is closed. This completes the proof.

Lemma 4.3. Let (f0, α0, λ0) ∈ B∗×W ×Λ . Assume that K (λ0) is nonempty compact, K (·) is continuous
at λ0, S (·) is l.s.c. on K (λ0) and F (·, ·, ·, ·) is l.s.c. on K (λ0)×∆×K (λ0)× {α0}. Then S· (·, ·) is u.s.c.
at (f0, α0, λ0), where the topology on B∗ is the weak* topology.

Proof. Suppose to the contrary that S· (·, ·) is u.s.c. at (f0, α0, λ0). Then there exist a neighborhood W0 of
Sf0 (α0, λ0) and a sequence {(fn, αn, λn)} with (fn, αn, λn)→ (f0, α0, λ0) such that

Sfn (αn, λn) 6⊂W0.

Then there exists
xn ∈ Sfn (αn, λn) , (4.5)

such that
xn /∈W0, ∀n ∈ N. (4.6)

Since xn ∈ K (λn), by Lemma 2.7, there exist x0 ∈ K (λ0) and a subsequence {xnk
} of {xn} such that

xnk
→ x0. Without loss of generality, we can assume that xn → x0.
We claim that x0 ∈ Sf0 (α0, λ0). In fact, suppose to the contrary that x0 /∈ Sf0 (α0, λ0). Then there exist

u0 ∈ S (x0) and y0 ∈ K (λ0) such that

f0 (F (x0, u0, y0, α0)) 6⊂ R+.

Then, there exists z0 ∈ F (x0, u0, y0, α0) such that

f0 (z0) < 0. (4.7)

Since S (·) is l.s.c. at x0 and K (·) is l.s.c. at λ0, it follows from Lemma 2.6 that there exists un ∈ S (xn)
such that un → u0 and there exists yn ∈ K (λn) such that yn → y0. By noting that F (·, ·, ·, ·) is l.s.c. at
(x0, u0, y0, α0), by Lemma 2.6, there exists zn ∈ F (xn, un, yn, αn) such that zn → z0. By noting the fact
that

fn
w∗
−→ f0,

it is easy to see that fn (zn)→ f0 (z0). By this together with (4.7), we have fn (zn) < 0 for n large enough,
which contradicts (4.5). Therefore, x0 ∈ Sf0 (α0, λ0). We can see that xn → x0 ∈ W0, which contradicts
(4.6). This completes the proof.

Theorem 4.4. Let (α0, λ0) ∈W × Λ. Assume that

(i) K (λ0) is nonempty convex compact and K (·) is continuous at λ0;

(ii) S (·) is l.s.c. and P -concave on K (λ0) with nonempty compact values;
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(iii) for any (x, y) ∈ K (λ0)×K (λ0), F (x, ·, y, α0) is P -C-increasing;

(iv) for any y ∈ K (λ0), F (·, ·, y, α0) is strictly C-concave on K (λ0)×∆;

(v) F (·, ·, ·, ·) is continuous on K (λ0)×∆×K (λ0)× {α0} with nonempty compact values;

(vi) for any (α, λ) ∈W × Λ and for any x ∈ K (λ), F (x, ·, ·, α) is C-convexlike on S (x)×K (λ).

Then, E (·, ·) is H-u.s.c. at (α0, λ0).

Proof. Suppose to the contrary that E (·, ·) is not H-u.s.c. at (α0, λ0). Then there exist a neighborhood W0

of 0 ∈ X and a sequence {(αn, λn)} with (αn, λn)→ (α0, λ0) such that

E (αn, λn) 6⊂ E (α0, λ0) +W0, ∀n ∈ N.

Thus, there exists
xn ∈ E (αn, λn) , (4.8)

satisfying
xn /∈ E (α0, λ0) +W0, ∀n ∈ N. (4.9)

From Lemma 3.2, one has

W (αn, λn) =
⋃

f∈B∗

Sf (αn, λn).

It is clear that
E (αn, λn) ⊆W (αn, λn) , ∀n ∈ N.

This together with (4.8) implies that

xn ∈
⋃

f∈B∗

Sf (αn, λn), ∀n ∈ N,

and so there exists fn ∈ B∗ such that
xn ∈ Sfn (αn, λn) . (4.10)

Since B∗ is weak* compact, without loss of generality, we can assume that

fn
w∗
−→ f0 ∈ B∗.

It follows from Lemma 4.2 that Sf0 (α0, λ0) is closed. Since Sf0 (α0, λ0) ⊆ K (λ0) and K (λ0) is compact,
we can see that Sf0 (α0, λ0) is compact. By Lemma 4.3, we can see that S· (·, ·) is u.s.c. at (f0, α0, λ0).
By noting (4.10) and Lemma 2.7, there exist a subsequence {xnk

} of {xn} and x0 ∈ Sf0 (α0, λ0) such that
xnk
→ x0. It follows from Lemma 3.3 that

⋃
f∈B#

Sf (α0, λ0) ⊆ E (α0, λ0) ⊆W (α0, λ0) =
⋃

f∈B∗

Sf (α0, λ0) ⊆ cl

 ⋃
f∈B#

Sf (α0, λ0)

 .

Thus, one has

x0 ∈
⋃

f∈B∗

Sf (α0, λ0) ⊆ cl

 ⋃
f∈B#

Sf (α0, λ0)

 = cl (E (α0, λ0)) ⊆ E (α0, λ0) +W0.

This together with xnk
→ x0 shows that

xnk
∈ E (α0, λ0) +W0,

for k large enough, which contradicts (4.9). This completes the proof.

Remark 4.5. Theorem 4.4 is a generalization of Theorem 5.4 of [24] from the finite dimensional space to the
infinite dimensional space.
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