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Abstract

The theory of the Legendrian singularity is applied for lightcones that are canonically embedded in the
higher-dimensional lightcone and de Sitter space in the Minkowski space-time. The singularities of two
classes of hypersurfaces that are dual to space-like hypersurface in the lightcone under Legendrian dualities
are analyzed in detail. c©2016 All rights reserved.
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1. Introduction

It is well-known that the Minkowski space-time is the mathematical model of Einsteins Theory of rel-
ativity. Several geometric objects in the Minkowski space-time have been investigated from various per-
spectives and using differential geometry and physics [2–4, 8, 10]. In particular, submanifolds in the three
types of pseudo-spheres (i.e., the hyperbolic space, the de Sitter space and the lightcone) in the Minkowski
space-time have received recent attention. Izumiya introduced the mandala of Legendrian dualities between
pseudo-spheres in the Minkowski space-time [4]. This framework of the theory of Legendrian duality is
fundamentally useful to study space-like submanifolds in lightcones. The third author and Pei et al. have
also performed significant research regarding submanifolds in the Minkowski space-time from the viewpoint
of singularity theory [12–16]. In this paper, inspired by the study of Izumiya and the collaborative research
of the second author and Izumiya et al. [5–7], we study the geometric properties of space-like hypersurfaces
in lightcones. The second author et al. studied the curves in the unit 2-sphere and 3-sphere, considering
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Legendrian duality [5, 7], and investigated hypersurfaces in the unit n-sphere in the framework of the theory
of Legendrian dualities between pseudo-spheres in the Minkowski (n+2)-space [6]. In fact, the core practices
in their study are that they embed the unit sphere into the lightcone and de Sitter space and investigate
the hypersurfaces in the unit sphere by using the singularity theory and the theory of Legendrian duality
comprehensively. A natural question thus arises: what if this hypersurface exists in a lower-dimensional
lightcone embedded in the de Sitter space or in the light-cone space? In fact, for the de Sitter space and
the lightcone, naturally embedded lower-dimensional lightcones exist. If a space-like hypersurface resides in
the lower-dimensional lightcone, then it certainly resides in both the higher-dimensional lightcone and the
higher-dimensional de Sitter space through the embeddings. Moreover, we note that because the embeddings
are the isometries, these two hypersurfaces have the same geometric structures via the isometries based on
the spherical geometry. Based on the embeddings of the lightcone in the de Sitter space or the lightcone,
we use the theory of Legendrian duality to obtain two dual hypersurfaces of space-like hypersurfaces in the
lightcone. On the lightcone, there is a projection onto the canonically embedded hyperbolic space. We
investigate the singular points of the dual hypersurfaces and the projection images of the singular value sets
onto the hyperbolic space in the lightcone. An interesting consequence is that the critical value sets of these
dual hypersurfaces have the same projections onto the hyperbolic space and are both equal to the hyper-
bolic focal set (or the hyperbolic evolute). In general, to study the singularity of the dual hypersurfaces of
space-like hypersurfaces, we should first provide the properties of differential geometry on the hypersurface.
However, the situation of the hypersurface in the lightcone is quite different from that of the hypersurface in
other spaces because the metric on the lightcone is degenerate. For the space-like hypersurfaces M = x(U)
in the lightcone, we define a map G : U → Ln0 by G(u) = xL(u), which is called the lightcone quasi-Gauss
map of M = x(U). Thereby, we can define the lightcone quasi-Gauss-Kronecker curvature of M at some
point. We call G the lightcone quasi-Gauss map because G(u) = xL(u) is light-like and belongs to the
normal space of x(u), although x(u) and xL(u) are not orthogonal. Applying the properties of differential
geometry on the space-like hypersurface, the following study on space-like hypersurfaces in the lightcone
can be smoothly conducted.

Our paper is organized as follows: Section 2 reviews basic definitions and characterizations of the
Minkowski (n+ 2)-space and establishes the differential geometry of a space-like hypersurfaces in the light-
cone. Several duality relationships are presented in Proposition 2.2; we define the light-cone dual hypersur-
face and sphere-cone dual hypersurface along a space-like hypersurface in the lightcone, and the hyperbolic
evolutes are obtained from the critical value sets of the light-cone dual hypersurfaces of M = x(U). A
singularity study is presented in Sections 3 and 4. First, in Section 3, we define the light-cone focal surface
and the sphere-cone focal surface along the space-like hypersurface in the lightcone. Theorem 3.3 interprets
the important relationships between the hyperbolic evolutes of a space-like hypersurface in the lightcone,
the light-cone focal surface and the sphere-cone focal surface. We also define a family of light-cone height
functions and a family of sphere-cone height functions along space-like hypersurfaces in the lightcone. The
equivalent conditions on the singular sets of the sphere-cone height functions and the light-cone height
function are given in Propositions 3.1 and 3.2, respectively. Then, in Section 4, we interpret the geometric
meaning of the light-cone dual hypersurfaces of the submanifolds in Ln0 and the sphere-cone dual hyper-
surfaces of the submanifolds in Ln+ in the theory of Legendrian singularities; that is, the two classes of
dual hypersurfaces can be the wave fronts of the Legendrian immersion. In Section 5, using the theory of
contact from Montaldi [11], we consider the contact between hypersurfaces in the lightcone with parabolic
(n − 1)-hyperquadrics and parabolic n-hyperquadrics. Some equivalent relationships at singularities are
shown clearly. In Section 6, we consider the surfaces in the 3-lightcone as a special case of the previous
sections.

2. Preliminaries

Let Rn+2 be an (n + 2)-dimensional vector space. For any two vectors x = (x1, x2, . . . , xn+2),y =
(y1, y2, . . . , yn+2) in Rn+2, their pseudo scalar product is defined by 〈x,y〉 = −x1y1 + x2y2 + · · ·+ xn+2yn+2.
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Here, (Rn+2, 〈, 〉) is called Minkowski (n + 2)-space, which is denoted by Rn+2
1 . For any n + 1 vectors

x1,x2, . . . ,xn+1 ∈ Rn+2
1 , their pseudo vector product is defined by

x1 ∧ x2 ∧ . . . ∧ xn+1 =

∣∣∣∣∣∣∣∣∣∣∣

−e1 e2 · · · en+2

x1
1 x2

1 · · · xn+2
1

x1
2 x2

2 · · · xn+2
2

...
... · · ·

...

x1
n+1 x2

n+1 · · · xn+2
n+1

∣∣∣∣∣∣∣∣∣∣∣
,

where {e1, e2, . . . , en+2} is the canonical basis of Rn+2
1 and xi = (x1

i , x
2
i , . . . , x

n+2
i ). A non-zero vector

x ∈ Rn+2
1 is called spacelike, lightlike, or timelike if 〈x,x〉 > 0, 〈x,x〉 = 0, or 〈x,x〉 < 0, respectively. The

norm of x ∈ Rn+2
1 is defined by ‖ x ‖=

√
|〈x,x〉|.

We define the de Sitter (n+ 1)-space by

Sn+1
1 = {x = (x1, x2, . . . , xn+2) ∈ Rn+2

1 | 〈x,x〉 = 1}.

We define the (n+ 1)-dimensional open light-cone at the origin by

LCn+1
∗ = {x = (x1, x2, . . . , xn+2) ∈ Rn+2

1 \{0} | 〈x,x〉 = 0}.

We consider a submanifold in the de Sitter (n+ 1)-space defined by

Ln+ = {x = (x1, x2, . . . , xn+2) ∈ Sn+1
1 | x2 = 1},

and a submanifold in the lightcone defined by

Hn
+ = {x = (x1, x2, . . . , xn+2) ∈ LCn+1

∗ | x2 = 1},

we call Ln+ the spherical light-cone and call Hn
+ the lightlike hyperbolic sphere. We also consider the n-

dimensional open lightcone Ln0 in LCn+1
∗ defined by

Ln0 = {x = (x1, x2, . . . , xn+2) ∈ LCn+1
∗ | x2 = 0},

and the n-dimensional hyperbolic space Hn
0 defined by

Hn
0 = {x = (x1, x2, . . . , xn+2) ∈ Rn+2

1 | x2 = 0,−x2
1 + x2

3 + · · ·+ x2
5 = −1}.

We have a canonical light-cone projection π : LCn+1
∗ → Hn

+ defined by

π(x) = x̃ =

(
x1

x2
, 1,

x3

x2
, . . . ,

xn+2

x2

)
,

where x = (x1, x2, . . . , xn+2).
Let x : U −→ Ln0 be an embedding from an open set U ⊂ Rn−1. We identify M = x(U) with U through

the embedding x. Obviously, the tangent space TpM is all spacelike (i.e., consists only spacelike vectors),
so M is a spacelike hypersurface in Ln0 ⊂ Rn+2

1 . In addition, the isometric mapping Φ : Ln0 → Ln+ is defined
by Φ(v) = v + e2, v ∈ Ln0 , and the isometric mapping Θ : Hn

+ → Hn
0 is given by Θ(v) = v − e2, v ∈ Hn

+.
Hence, via the isometry Φ, we have a hypersurface x : U → Ln+ defined by x(u) = Φ(x(u)) = x(u) + e2,
and we identify M = x(U) with U through the embedding x, so that x and x have the same geometric
properties as spherical hypersurfaces. For any p = x(u), we can obtain a unique lightlike vector xL(u) as

xL(u) =
−2

〈V,x(u)〉

(
V − 〈V, V 〉

2〈V,x(u)〉
x(u)

)
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with V being an arbitrary vector field that satisfies the conditions 〈V,x(u)〉 6= 0 and 〈V,xui(u)〉 = 〈V, e2〉 =
0.

We have 〈x(u),x(u)〉 = 〈xL(u),xL(u)〉 = 0, 〈x(u),xL(u)〉 = −2, 〈e2, e2〉 = 1, and 〈e2,x(u)〉 =
〈e2,xL(u)〉 = 〈x(u),xui〉 = 〈xL(u),xui〉 = 0. The system {e2,x(u),xL(u),xu1(u), . . . ,xun−1(u)} is a
basis of TpRn+2

1 . We define a map G : U −→ Ln0 by G(u) = xL(u). We call it the lightcone quasi-Gauss
map of the hypersurface M = x(U). We have a linear mapping provided by the derivation of the lightcone
quasi-Gauss map at p ∈M , dG(u) : TpM −→ TpM. We call the linear transformation Sp = dG(u) the shape
operator of M at p = x(u). The eigenvalues of Sp denoted by {κi(p)}n−1

i=1 are called the principal curvatures
of M at p. The lightcone quasi-Gauss-Kronecker curvature of M at p is defined to be K(p) = detSp. A point
p is called an umbilic point if all the principal curvatures coincide at p and thus we have Sp = κ(p)idTpM
for some κ(p) ∈ R. We say that M is totally umbilic if all the points on M are umbilic. Since x is
a spacelike embedding, we have a Riemannian metric (or the first fundamental form) on M given by
ds2 =

∑n−1
i,j=1 gijduiduj , where gij(u) = 〈xui(u),xuj (u)〉 for any u ∈ U . The second fundamental form

on M is given by hij(u) = 〈xLui(u),xuj (u)〉 at any u ∈ U , where xLui(u) = ∂xL
∂ui

(u). Under the above
notations, we have the following Weingarten formula

Gui =
n−1∑
j=1

hjixuj (i = 1, . . . , n− 1),

where (hji ) = (hik)(g
kj) and (gkj) = (gkj)

−1. This formula induces an explicit expression of the lightcone
Gauss-Kronecker curvature in terms of the Riemannian metric and the second fundamental invariant given
by K = det(hij)/ det(gαβ). A point p is a parabolic point if K(p) = 0. A point p is a flat point if it is an
umbilic point and K(p) = 0.

Each hyperbolic evolute of M = x(U) is defined to be

ε±M =
n−1⋃
i=1

{
±

(√
−κi(p)

2
x(u) +

1

2
√
−κi(p)

xL(u)

) ∣∣∣ p = x(u) ∈M = x(U)

}
.

We now show the basic theorem in this paper which is the fundamental tool for the study of space-
like submanifolds in lightcone in Minkowski space. We define one-forms 〈dv,w〉 = −w0dv0 +

∑n
i=1widvi,

〈v, dw〉 = −v0dw0 +
∑n

i=1 vidwi on Rn+2
1 × Rn+2

1 and consider the following four double fibrations with
one-forms:

(i) (a) Hn+1(−1)× Sn+1
1 ⊃ ∆1 = {(v,w) | 〈v,w〉 = 0};

(b) π11 : ∆1 −→ Hn+1(−1), π12 : ∆1 −→ Sn+1
1 ;

(c) θ11 = 〈dv,w〉|∆1, θ12 = 〈v, dw〉|∆1;

(ii) (a) Hn+1(−1)× LCn+1
∗ ⊃ ∆2 = {(v,w) | 〈v,w〉 = −1};

(b) π21 : ∆2 −→ Hn+1(−1), π22 : ∆2 −→ LCn+1
∗ ;

(c) θ21 = 〈dv,w〉|∆2, θ22 = 〈v, dw〉|∆2;

(iii) (a) LCn+1
∗ × Sn+1

1 ⊃ ∆3 = {(v,w) | 〈v,w〉 = 1};
(b) π31 : ∆3 −→ LCn+1

∗ , π32 : ∆3 −→ Sn+1
1 ;

(c) θ31 = 〈dv,w〉|∆3, θ32 = 〈v, dw〉|∆3;

(iv) (a) LCn+1
∗ × LCn+1

∗ ⊃ ∆4 = {(v,w) | 〈v,w〉 = −2};
(b) π41 : ∆4 −→ LCn+1

∗ , π42 : ∆4 −→ LCn+1
∗ ;

(c) θ41 = 〈dv,w〉|∆4, θ42 = 〈v, dw〉|∆4.

Here, πi1(v, w) = v, πi2(v, w) = w are the canonical projections. Moreover, θi1 = 〈dv, w〉 |4i
and θi2 =

〈v, dw〉 |4i
are the restrictions of the one-forms 〈dv, w〉 and 〈v, dw〉 on 4i. We remark that θ−1

i1 (0) and
θ−1
i2 (0) define the same tangent hyperplane field over 4i which is denoted by Ki. The basic theorem in this

paper is the following theorem:
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Theorem 2.1. Under the same notations as the previous paragraph, each (4i;Ki) (i = 1, 2, 3, 4) is a contact
manifold and both of πij (j = 1, 2) are Legendrian fibrations. Moreover, those contact manifolds are contact
diffeomorphic to each other.

The proof of this theorem can be found in [4]. In this paper, we will only consider (∆3,K3) and (∆4,K4).
If we have an isotropic mapping i : L→ ∆i (i.e., i∗θi1 = 0), we say that πi1(i(L)) and πi2(i(L)) are ∆i-dual
to each other (i = 3, 4). For detailed properties of Legendrian fibrations, see [1].

Now we define hypersurfaces in LCn+1
∗ associated with the hypersurfaces in Ln0 or Ln+. Let x : U −→ Ln0

be a hypersurface. We define LDM : U × R −→ LCn+1
∗ by

LDM (u, η) =
η2

4
x(u) + xL(u) + ηe2,

and we call LDM the light-cone dual hypersurface along M . We also define LDM : U × R −→ LCn+1
∗ by

LDM (u, η) =
η2

2(η − 1)
x(u) +

η − 1

2
xL(u) + ηe2,

and we call LDM the sphere-cone dual hypersurface along M . Then we have the following proposition.

Proposition 2.2. Under the above notations, we have the following:

(i) x and LDM are ∆4-dual to each other.

(ii) x and LDM are ∆3-dual to each other.

Proof.

(i) Consider the mapping L4 : U × R −→ ∆4 defined by L4(u, η) = (LDM (u, η),x(u)). Then we have

〈LDM (u, η),x(u)〉 = 〈xL(u),x(u)〉 = −2.

Moreover, we have

L∗4θ42 = 〈LDM (u, η), dx(u)〉 =
n−1∑
i=1

〈LDM (u, µ),xui〉dui = 0.

Hence the assertion (i) holds.

(ii) Consider the mapping L3 : U × R −→ ∆3 defined by L3(u, η) = (LDM (u, η),x(u)). Then we have

〈LDM (u, η),x(u)〉 = 〈η − 1

2
xL(u) + ηe2,x(u) + e2〉 = 1.

Moreover, we have

L∗3θ32 = 〈LDM (u, µ), dx(u)〉 =

n−1∑
i=1

〈LDM (u, µ),xui〉dui = 0.

The assertion (ii) is complete.

3. The light-cone height functions and sphere-cone height functions of hypersurfaces

Let x : U → Ln0 be a hypersurface in the Ln0 . Then we define two families of functions as follows:

H : U × LCn+1
∗ → R, H(u,v) = 〈x(u),v〉+ 2,

H : U × LCn+1
∗ −→ R, H(u,v) = 〈x(u),v〉 − 1.

We call H a light-cone height function of M. For any fixed v0 ∈ LCn+1
∗ , we denote hv0(u) = H(u,v0). We

also call H a sphere-cone height function of M . For any fixed v0 ∈ LCn+1
∗ , we denote hv0(u) = H(u,v0).
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Proposition 3.1. Let M be a hypersurface in Ln0 and H be the light-cone height function on M . For
p = x(u) 6= v, we have the following:

(i) hv(u) = ∂hv/∂ui(u) = 0, (i = 1, . . . , n− 1) if and only if v = LDM (u, η) for some η ∈ R\{0}.
(ii) hv(u) = ∂hv/∂ui(u) = 0, (i = 1, . . . , n − 1) and detHess(hv)(u) = 0 if and only if v = LDM (u, η),

and −η2

4 is one of the non-zero principle curvatures κi(p) of M.

Proof.

(i) Since v ∈ LCn+1
∗ , there exist λ, µ, ξi, (i = 1, . . . , n − 1), η ∈ R such that v = λx(u) + µxL(u) +∑n−1

i=1 ξixui(u) + ηe2 with −4λµ+
∑n−1

i,j=1 ξiξjgij(u) + η2 = 0. The condition

hv(u) = 〈x(u),v〉+ 2 = 〈x(u), λx(u) + µxL(u) +
n−1∑
i=1

ξixui(u) + ηe2〉+ 2 = −2µ+ 2 = 0

means that µ = 1, so that v = λx(u) +xL(u) +
∑n−1

i=1 ξixui(u) + ηe2 and −4λ+
∑n−1

i,j=1 ξiξjgij(u) + η2 = 0.
Therefore, hv(u) = ∂hv/∂ui(u) = 0 if and only if

∂hv/∂ui(u) = 〈xui(u),v〉 = 〈xui(u), λx(u) + xL(u) +
n−1∑
i=1

ξixui(u) + ηe2〉 =
n−1∑
j=1

gijξj = 0.

Since gij is positive definite, we have ξj = 0 (j = 1, . . . , n− 1). Then we have −4λ+ η2 = 0, so that λ = η2

4 .

Thus, we have v = η2

4 x(u) + xL(u) + ηe2. The converse direction also holds.

(ii) Suppose that hv(u) = ∂hv/∂ui(u) = 0. Then we have

Hess (hv)(u) =
(
〈xuiuj (u),v〉

)
=
(
〈xuiuj (u),

η2

4
x(u) + xL(u) + ηe2〉

)
=
η2

4

(
〈xuiuj (u),x(u)〉

)
+
(
〈xuiuj (u),xL(u)〉

)
= −η

2

4

(
gij(u)

)
−
(
hij(u)

)
.

Therefore, det(Hess(hv)(u)) = 0 if and only if −det Hess (hv)(u)
(
gij(u)

)−1
= det

(
(hji )(u) − (−η2

4 I)
)

= 0,

so that det Hess (hv)(u)=0 if and only if −η2

4 is one of the non-zero principle curvatures of M at p.

Proposition 3.2. Let M be a hypersurface in Ln+ and H the sphere-cone height function on M . For
p = x(u) and p = x(u) 6= v, we have the following:

(i) hv(u) = ∂hv/∂ui(u) = 0, (i = 1, . . . , n− 1) if and only if

v = LDM (u, η) for some η ∈ R\{0}.

(ii) hv(u) = ∂hv/∂ui(u) = 0, (i = 1, . . . , n − 1) and det(Hess(hv)(u)) = 0 if and only if v = LDM (u, η),
−( η

η−1)2 is one the non-zero principle curvatures κi(p) of M.

Proof.

(i) Since v ∈ LCn+1
∗ , there exist λ, µ, ξi, (i = 1, . . . , n − 1), η ∈ R such that v = λx(u) + µxL(u) +∑n−1

i=1 ξixui(u) + ηe2 with −4λµ+
∑n−1

i,j=1 ξiξjgij(u) + η2 = 0. The condition

hv(u) = 〈x(u),v〉 − 1 = 〈x(u) + e2, λx(u) + µxL(u) +
n−1∑
i=1

ξixui(u) + ηe2〉 − 1 = −2µ+ η − 1 = 0
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implies µ = η−1
2 , so that v = λx(u)+ η−1

2 xL(u)+
∑n−1

i=1 ξixui(u)+ηe2 and −2λ(η−1)+
∑n−1

i,j=1 ξiξjgij(u)+

η2 = 0. Therefore, hv(u) = ∂hv/∂ui(u) = 0 if and only if

∂hv/∂ui(u) = 〈xui(u),v〉 = 〈xui(u), λx(u) +
η − 1

2
xL(u) +

n−1∑
i=1

ξixui(u) + ηe2〉 =

n−1∑
j=1

gijξj = 0.

Since gij is positive definite, we have ξj = 0 (j = 1, . . . , n− 1). Then we have −2λ(η − 1) + η2 = 0, so that

λ = η2

2(η−1 . Thus, we have v = η2

2(η−1)x(u) + η−1
2 xL(u) + ηe2. The converse direction also holds.

(ii) Suppose that hv(u) = ∂hv/∂ui(u) = 0. Then we have

Hess(hv)(u) = (〈xuiuj (u),v〉)

= (〈xuiuj (u),
η2

2(η − 1)
x(u) +

η − 1

2
xL(u) + ηe2〉)

=
η2

2(η − 1)
(〈xuiuj (u),x(u)〉) +

η − 1

2
(〈xuiuj (u),xL(u)〉)

= − η2

2(η − 1)
(gij(u))− η − 1

2
(hij(u)).

It follows that det(Hess(hv)(u)) = 0 if and only if det(Hess(hv)(u)
(
gij(u)

)−1
/(−η−1

2 )) = det
(
(hji (u))−

(−( η
η−1)2I)

)
= 0. Thus, det(Hess(hv)(u)) = 0 if and only if −( η

η−1)2 is one of the non-zero principle
curvatures of M at p.

Let (u, η) be a singular point of LDM (u, η). By Proposition 3.1, we have −η2

4 = κi(p)(1 ≤ i ≤ n − 1),
where κi(p) is one of the non-zero principle curvatures of M at p = x(u). It follows that we have η =
±2
√
−κi(p). Then the critical value sets of LDM are given by

C(LDM )±(u) =

n−1⋃
i=1

{
− κi(p)x(u) + xL(u)± 2

√
−κi(p)e2 | u ∈ U

}
.

Let (u, η) be a singular point of each one of LDM . By Proposition 3.2, we have −( η
η−1)2 = κi(p)(1 ≤

i ≤ n − 1), where κi(p) is one of the non-zero principle curvatures of M at p = x(u). It follows that

η =
±
√
−κi(p)

±
√
−κi(p)−1

. Therefore the critical value sets of LDM are given by

C(LDM )±(u) =
n−1⋃
i=1

{
−κi(p)

2(±
√
−κi(p)− 1)

(
x(u)− 1

κi(p)
xL(u)± 2√

−κi(p)
e2

)∣∣∣ u ∈ U } .
We respectively denote that

LF±M =

n−1⋃
i=1

{
− κi(p)x(u) + xL(u)± 2

√
−κi(p)e2 | u ∈ U

}
,

LF±
M

=

n−1⋃
i=1

{
−κi(p)

2(±
√
−κi(p)− 1)

(
x(u)− 1

κi(p)
xL(u)± 2√

−κi(p)
e2

)∣∣∣ u ∈ U } .
We respectively call each one of LF±M the ligt-cone focal surface of M , and each one of LF±

M
the sphere-cone

focal surface of M . Then the projections of these surfaces to H+ are given as follows:

π
(
C(LDM )±

)
=

n−1⋃
i=1

{
±
(√−κi(p)

2
x(u) +

1

2
√
−κi(p)

xL(u)
)

+ e2 | u ∈ U

}
,
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π
(
C(LDM )±

)
=

n−1⋃
i=1

{
±
(√−κi(p)

2
x(u) +

1

2
√
−κi(p)

xL(u)
)

+ e2 | u ∈ U

}
.

By definition, we have ε±M = Θ◦π
(
C(LDM )±

)
, where ε±M is the hyperbolic evolute of M = x(U). This means

that the hyperbolic evolutes are obtained from the critical value sets of the light-cone dual hypersurfaces of
M = x(U). We define π∗ = Θ ◦ π : LCn+1

∗ −→ Hn
0 . Then we have the following theorem.

Theorem 3.3. Both of the projections of the critical value sets C(LDM )± and C(LDM )± in the n-dimension
hyperbolic space Hn

0 are the images of the hyperbolic evolutes of M , that is,

π∗
(
C(LDM )±

)
= π∗

(
C(LDM )±

)
= ε±M .

4. The two classes of dual hypersurfaces as wave fronts

We now naturally interpret the light-cone dual hypersurfaces of the submanifolds in Ln0 and the sphere-
cone dual hypersurfaces of the submanifolds in Ln+ as wave front sets in the theory of Legendrian sin-
gularities. Let π : PT ∗(LCn+1

∗ ) −→ LCn+1
∗ be the projective cotangent bundles with canonical con-

tact structures. Consider the tangent bundle τ : TPT ∗(LCn+1
∗ ) −→ PT ∗(LCn+1

∗ ) and the differential
map dπ : TPT ∗(LCn+1

∗ ) −→ T (LCn+1
∗ ) of π. For any X ∈ TPT ∗(LCn+1

∗ ), there exists an element
α ∈ T ∗(LCn+1

∗ ) such that τ(X) = [α]. For an element V ∈ Tv(LCn+1
∗ ), the property α(V ) = 0 does

not depend on the choice of representative of the class [α]. Thus we have the canonical contact structure on
PT ∗(LCn+1

∗ ) by
K =

{
X ∈ TPT ∗(LCn+1

∗ ) | τ(X)(dπ(X))
}

= 0.

On the other hand, we consider a point v = (v1, v2, . . . , vn+2) ∈ LCn+1
∗ , then we have

v1 = ±
√
v2

2 + · · ·+ v2
n+2.

So we adopt the coordinate system (v2, . . . , vn+2) of LCn+1
∗ . For the local coordinate neighborhood

(
U,

(±
√
v2

2 + · · ·+ v2
n+2, v2, . . . , vn+2)

)
in LCn+1

∗ , we have a trivialization PT ∗(LCn+1
∗ ) ≡ LCn+1

∗ ×P (Rn)∗ and

we call
(
(±
√
v2

2 + . . .+ v2
n+2, v2, . . . , vn+2), [ξ2 : · · · : ξn+2]

)
homogeneous coordinates of PT ∗(LCn+1

∗ ), where

[ξ2 : · · · : ξn+2] are the homogeneous coordinates of the dual projective space P (Rn)∗. It is easy to show
that X ∈ K(v,[ξ]) if and only if

∑n+2
i=2 µiξi = 0, where dπ(X) =

∑n+2
i=2 µi(∂/∂vi) ∈ TvLCn+1

∗ . An immersion
i : L −→ PT ∗(LCn+1

∗ ) is said to be a Legendrian immersion if dim(L) = n and diq(TqL) ⊂ Ki(q) for any
q ∈ L. The map π ◦ i is also called the Legendrian map and we call the set W (i)=imageπ ◦ i the wave front
of i. Moreover, i (or the image of i) is called the Legendrian lift of W (i). Let F : (Rk ×Rn,0) −→ (R, 0) be
a function germ. We say that F is a Morse family of hypersurfaces if the map germ ∆∗F : (Rk ×Rn,0) −→
(Rk+1,0) defined by ∆∗F = (F, ∂F/∂u1, . . . , ∂F/∂uk) is nonsingular. In this case, we have the following
smooth (n− 1)-dimensional smooth submanifold

Σ∗(F ) =

{
(u,v) ∈ (Rk × Rn,0) | F (u,v) =

∂F

∂u1
(u,v) = · · · = ∂F

∂uk
(u,v) = 0

}
= (∆∗F )−1(0).

The map germ LF : (Σ∗(F ),0) −→ PT ∗Rn defined by

LF (u,v) =

(
v,

[
∂F

∂v1
(u,v) : · · · : ∂F

∂vn
(u,v)

])
is a Legendrian immersion germ. Then we have the following fundamental theorem of Arnol’d and Zakalyukin
[1, 18].
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Proposition 4.1. All Legendrian submanifold germs in PT ∗Rn are constructed by the above method.

We call F a generating family of LF (Σ∗(F )). Therefore the wave front of LF is

W (LF ) =

{
v ∈ Rn | ∃ u ∈ Rk such that F (u,v) =

∂F

∂u1
(u,v) = · · · = ∂F

∂uk
(u,v) = 0

}
.

We claim here that we have a trivialization as follows:

Φ : PT ∗(LCn+1
∗ ) ≡ LCn+1

∗ × P (Rn)∗,Φ([

n+2∑
i=2

ξidvi]) = (v1, v2, . . . , vn+2), [ξ2 : · · · : ξn+2]).

By using the above coordinate system, we have the following proposition:

Proposition 4.2. The light-cone height function H : U × LCn+1
∗ −→ R is a Morse family of the hypersur-

faces around (u,v) ∈ Σ∗(H).

Proof. Without loss of generality, we consider the future component LCn+1
∗ . For any v = (v1, v2, . . . ,

vn+2) ∈ LCn+1
∗ , we have v2 =

√
v2

1 − v2
3 · · · − v2

n+2. For x(u) =
(
x1(u), 0, x3(u), . . . , xn+2(u)

)
∈ Ln0 , we get

H(u,v) = −x1(u)v1 + x3(u)v3 + · · ·+ xn+2(u)vn+2 + 2.

We need to prove that the mapping

4∗H =

(
H,

∂H

∂u1
, . . . ,

∂H

∂un−1

)
is non-singular at any point on (∆∗H)−1(0). If (u,v) ∈ (∆∗H)−1(0), then v = LDM (u, η) by Proposition
3.1. The Jacobian matrix of ∆∗H is given as follows:

A =


〈xu1 ,v〉 · · · 〈xun−1 ,v〉 −x1 x3 · · · xn+2

〈xu1u1 ,v〉 · · · 〈xu1un−1 ,v〉 −x1u1 x3u1 · · · xn+2u1
...

...
...

...
...

...
〈xun−1u1 ,v〉 · · · 〈xun−1un−1 ,v〉 x1un−1 x3un−1 · · · xn+2un−1

 .

Since {x,xu1 , . . . ,xun−1} are linearly independent, rank(A) = n. This completes the proof.

Proposition 4.3. The sphere-cone height function H : U × LCn+1
∗ −→ R is a Morse family of the hyper-

surfaces around (u,v) ∈ Σ∗(H).

Proof. Without loss of generality, we consider the future component LCn+1
∗ . For any v = (v1, v2, . . . ,

vn+2) ∈ LCn+1
∗ , we have v1 =

√
v2

2 + · · ·+ v2
n+2. For x(u) =

(
x1(u), 1, x3(u), . . . , xn+2(u)

)
∈ Ln+, we get

H(u,v) = −x1(u)
√
v2

2 + · · ·+ v2
n+2 + v2 + x3(u)v3 + · · ·+ xn+2(u)vn+2 − 1.

We need to prove the mapping

4∗H =

(
H,

∂H

∂u1
, . . . ,

∂H

∂un−1

)
is non-singular at any point on (∆∗H)−1(0). If (u,v) ∈ (∆∗H)−1(0), then v = LDM (u, η) by Proposition

3.2. The Jacobian matrix of ∆∗H is given as follows:

A =


〈xu1 ,v〉 · · · 〈xun−1 ,v〉 − v2

v1
x1 + 1 − v3

v1
x1 + x3 · · · − vn+2

v1
x1 + xn+2

〈xu1u1 ,v〉 · · · 〈xu1un−1 ,v〉 − v2
v1
x1u1 + 1 − v3

v1
x1u1 + x3u1 · · · − vn+2

v1
x1u1 + xn+2u1

...
...

...
...

...
...

〈xun−1u1 ,v〉 · · · 〈xun−1un−1 ,v〉 −
v2
v1
x1un−1 + 1 − v3

v1
x1un−1 + x3un−1 · · · − vn+2

v1
x1un−1 + xn+2un−1

 .
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We now prove that rank A = n. For (x1, 0, x3, . . . , xn+2) = x and (v1v2 , 0,
v3
v2
, . . . , vn+2

v2
) = v

v2
− e2 =

η
2(η−1)x+ η−1

2η xL, we have

(−v1

v2
+ x1, 0,

v3

v2
+ x3, . . . ,

vn+2

v2
+ xn+2) = x− (v/v2 − e2) =

η − 2

2(η − 1)
x− η − 1

2η
xL.

Since { η−2
2(η−1)x −

η−1
2η xL,xu1 , . . . ,xun−1} are linearly independent, rank(A) = n. This completes the proof.

Here, we consider the Legendrian immersion

L4 : (u, η) −→ ∆4, L4(u, η) = (LDM (u, η),x(u)).

We define the following:

Ψ : ∆4 −→ LCn+1
∗ × P (Rn)∗,Ψ(v,w) = (v, [v1w2 − v2w1 : · · · : v1wn+2 − vn+2w1]).

For the canonical contact form θ =
∑n+2

i=2 ξidvi on PT ∗(LCn+1
∗ ), we have

Ψ∗θ = (v1w2 − v2w1)dv2 + · · ·+ (v1wn+2 − vn+2w1)dvn+2|∆4

= v1(−w1dv1 + w2dv2 + · · ·+ wn+2dvn+2)− w1(−v1dv1 + v2dv2 + · · ·+ vn+2dvn+2)|∆4

= v1〈w, dv〉|∆4 = v1θ42|∆4 .

Thus Ψ is a contact morphism.

Theorem 4.4. For any hypersurface x : U −→ Ln0 , the light-cone height function H : U × LCn+1
∗ −→ R is

a generating family of the Legendrian immersion L4.

Proof. Since H is a Morse family of hypersurfaces, we have a Legendrian immersion LH : Σ∗(H) −→
PT ∗(LCn+1

∗ ) defined by LH(u,v) = (v, [∂H/∂v2(u,v) : · · · : ∂H/∂vn+2(u,v)]), where v = (v1, . . . , vn+2)
and Σ∗(H) = {(u,v) ∈ U × LCn+1

∗ | u ∈ U,v = LDM (u, η), η ∈ R}. We observe that H is a generating
family of the Legendrian submanifold LH(Σ∗(H)) whose wave front is the image of LDM . We have

∂H

∂vi
(u,v) = − li(u, η)

l1(u, η)
x1(u) + xi(u), (i = 2, . . . , n+ 2),

where x(u) =
(
x1(u), 0, . . . , xn+2(u)

)
and v = LDM (u, η) =

(
l1(u, η), . . . , ln+2(u, η)

)
. It follows that

LH
(
u, LDM (u, η)

)
=
(
LDM (u, η), [l1(u, η)x2(u)− l2(u, η)x1(u) : · · · : l1(u, η)xn+2(u)− ln+2(u, η)x1(u)]

)
.

Therefore we have Ψ ◦ L4(u, η) = LH(u, η). This completes the proof.

Similarly, we consider the Legendrian immersion L3 : (u, η) −→ ∆3 defined by

L3(u, η) = (LDM (u, η),x(u)).

Then we have the following theorem.

Theorem 4.5. For any hypersurface x : U −→ Ln+, the sphere-cone height function H : U × LCn+1
∗ −→ R

is a generating family of the Legendrian immersion L3.

5. Contact with parabolic (n− 1)-light-cone and parabolic n-hyperquadrics

Before we start to consider the contact between hypersurfaces in the light-cone with parabolic (n− 1)-
light-cone and parabolic n-hyperquadrics, we briefly review the theory of contact due to Montaldi [11]. Let
Xi, Yi (i = 1, 2) be submanifolds of Rn with dim(X1)=dim(X2) and dim(Y1)=dim(Y2). We say that the
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contact of X1 and Y1 at y1 is the same type as the contact of X2 and Y2 at y2 if there is a diffeomorphism
Φ : (Rn, y1) −→ (Rn, y2) such that Φ(X1) = X2 and Φ(Y1) = Y2. In this case, we write K(X1, Y1, y1) =
K(X2, Y2, y2). Of course, in the definition, Rn can be replaced by any manifold. Two function germs fi :
(Rn, ai) −→ R (i = 1, 2) are called K-equivalent if there are a diffeomorphism germ Φ : (Rn, a1) −→ (Rn, a2),
and a function germ λ : (Rn, a1) −→ R with λ(a1) 6= 0 such that f1 = λ · (f2 ◦ Φ).

Theorem 5.1 (Montaldi [11]). Let Xi, Yi (for i=1,2) be submanifolds of Rn with dimX1=dimX2 and
dimY1=dimY2. Let gi : (Xi, xi) −→ (Rn, yi) be immersion germs and fi : (Rn, yi) −→ (Rp,0) be submersion
germs with (Yi, yi) = (f−1

i (0), yi). Then K(X1, Y1, y1) = K(X2, Y2, y2) if and only if f1 ◦ g1 and f2 ◦ g2 are
K-equivalent.

Returning to the light-cone dual hypersurface LDM , we now consider the function h : Ln0 ×LCn+1
∗ −→ R

defined by h(u,v) = 〈u,v〉+ 2 and the function g : LCn+1
∗ × LCn+1

∗ −→ R defined by g(u,v) = 〈u,v〉+ 2.
For a given v0 ∈ LCn+1

∗ , we denote hv0(u) = h(u,v0) and gv0(u) = g(u,v0), then we have h−1
v0 (0) =

Ln0 ∩ HP (v0,−2) and g−1
v0 (0) = LCn+1

∗ ∩ HP (v0,−2). For any u0 ∈ U , η0 ∈ R, we take the point
v0 = LDM (u0, η0). Then we have

gv0 ◦ x(u0) = g ◦ (x× idLCn+1
∗

)(u0,v0) = hv0 ◦ x(u0) = h ◦ (x× idLCn+1
∗

)(u0,v0) = H(u0,v0) = 0.

We also have
∂(gv0 ◦ x)

∂ui
(u0) =

∂(hv0 ◦ x)

∂ui
(u0) =

∂H

∂ui
(u0,v0) = 0

for i = 1, . . . , n − 1. This means that the (n − 1)-hyperquadrics h−1
v0 (0) = Ln0 ∩ HP (v0,−2) is tangent to

M = x(U) at p0 = x(u0). In this case, we call it the light-cone tangent parabolic (n − 1)-hyperquadrics
of M at p0, which is denoted by TPLn−1

0 (x,u0). The n-hyperquadric g−1
v0 (0) = LCn+1

∗ ∩ HP (v0,−2) is
also tangent to M at p0. In this case, we call it the light-cone tangent parabolic n-hyperquadric of M at
p0, which is denoted by TPLCn∗ (x,u0). For the sphere-cone dual surfaces LDM , we consider a function
h : Ln+ × LCn+1

∗ −→ R defined by h(u,v) = 〈u,v〉 − 1 and a function g : Sn+1
1 × LCn+1

∗ −→ R defined by
g(u,v) = 〈u,v〉 − 1 . For a given v0 ∈ LCn+1

∗ , we denote that hv0(u) = h(u,v0) and gv0(u) = g(u,v0).

Then we have h
−1
v0 (0) = Ln+ ∩HP (v0, 1) and g−1

v0 (0) = Sn+1
1 ∩HP (v0, 1). For any u0 ∈ U and the points

v0 = LDM (u0, η0), we have

gv0
◦ x(u0) = g ◦ (x× idLCn+1

∗
)(u0,v0) = hv0 ◦ x(u0) = h ◦ (x× idLCn+1

∗
)(u0,v0) = H(u0,v0) = 0.

We also have
∂(gv0 ◦ x)

∂ui
(u0) =

∂(hv0
◦ x)

∂ui
(u0) =

∂H

∂ui
(u0,v0) = 0

for i = 1, · · · , n−1. It follows that each one of the (n−1)-hyperquadric h
−1
v0 (0) = Ln+∩HP (v0, 1) is tangent to

M at p0 = x(u0). In this case, we call each one the de-Sitter tangent parabolic (n−1)-hyperquadric ofM at p0,
which are denoted by TPLn−1

+ (x,u0). Also we have each of the n-hyperquadric g−1
v0

(0) = Sn+1
1 ∩HP (v0, 1)

is tangent to M at p0. In this case, we call each one the de-Sitter tangent parabolic n-hyperquadric of M at
p0, which are denoted by TPSn1 (x,u0).

Let xi : (U, ui) −→ (Ln0 , pi) (i = 1, 2) be hypersurface germs. For vi = LDMi(ui, ηi), we denote
hi,vi : (U,ui) −→ (R, 0) by hi,vi(ui) = H(ui,vi). Then we have hi,vi(u) = (hi,vi ◦ xi)(u) = (gi,vi ◦ xi)(u).
For vi = LDM i

(ui, ηi), we denote hi,vi : (U,ui) −→ (R, 0) by hi,vi(ui) = H(ui,vi). Then we have hi,vi(u) =

(hi,vi ◦ xi)(u) = (gi,vi ◦ xi)(u). By Theorem 5.1, we have the following proposition.

Proposition 5.2. Let xi : (U, ui) −→ (Ln0 , pi) (i = 1, 2) be hypersurface germs. For vi = LDMi(ui, ηi), the
following conditions are equivalent:

(i) K(x1(U), TPLn−1
0 (x1,u1),v1) = K(x2(U), TPLn−1

0 (x2,u2),v2).

(ii) K(x1(U), TPLCn∗ (x1,u1),v1) = K(x2(U), TPLCn∗ (x2,u2),v2).
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(iii) h1,v1 and h2,v2 are K-equivalent.

Moreover, for vi = LDM i
(ui, ηi), the following conditions are equivalent:

(iv) K(x1(U), TPLn−1
+ (x1,u1),v1) = K(x2(U), TPLn−1

+ (x2,u2),v2).

(v) K(x1(U), TPSn1 (x1,u1),v1) = K(x2(U), TPSn1 (x2,u2),v2).

(vi) h1,v1 and h2,v2 are K-equivalent.

On the other hand, we return to the review on the theory of Legendrian singularities. We introduce a
natural equivalence relation among Legendrian submanifold germs. Let F,G : (Rk × Rn,0) −→ (R, 0) be
Morse families of hypersurfaces. Then we say that LF (Σ∗(F )) and LG(Σ∗(G)) are Legendrian equivalent if
there exists a contact diffeomorphism germ H : (PT ∗Rn, z) −→ (PT ∗Rn, z′) such that H preserves fibers of π
and that H(LF (Σ∗(F ))) = LG(Σ∗(G)), where z = LF (0), z′ = LG(0). By using the Legendrian equivalence,
we can define the notion of Legendrian stability for Legendrian submanifold germs by the ordinary way (see,
[1, Part III]). We can interpret the Legendrian equivalence by using the notion of generating families. We
denote by En the local ring of function germs (Rn,0) −→ R with the unique maximal ideal Mn = {h ∈
En | h(0) = 0 }. Let F,G : (Rk×Rn,0) −→ (R,0) be function germs. We say that F and G are P -K-equivalent
if there exists a diffeomorphism germ Ψ : (Rk×Rn,0) −→ (Rk×Rn,0) of the form Ψ(q,x) = (ψ1(q,x), ψ2(x))
for (q,x) ∈ (Rk × Rn,0) such that Ψ∗(〈F 〉Ek+n

) = 〈G〉Ek+n
. Here, Ψ∗ : Ek+n −→ Ek+n is the pull back R-

algebra isomorphism defined by Ψ∗(h) = h ◦Ψ. We say that F is an infinitesimally K-versal deformation of
f = F |Rk×{0} if

Ek = Te(K)(f) +

〈
∂F

∂x1

∣∣
Rk×{0}, . . . ,

∂F

∂xn

∣∣
Rk×{0}

〉
R
,

where

Te(K)(f) =

〈
∂f

∂q1
, . . . ,

∂f

∂qk
, f

〉
Ek
.

The main result in the theory of Legendrian singularities ([1, §20.8] and [18, Theorem 2]) is the following:

Proposition 5.3 (Arnol’d, Zakalyukin). Let F,G : (Rk×Rn,0) −→ (R,0) be Morse families and we denote
the corresponding Legendrian immersion germs by LF ,LG. Then

(i) LF and LG are Legendrian equivalent if and only if F and G are P-K-equivalent.

(ii) LF is Legendrian stable if and only if F is K-versal deformation of f .

Since F and G are function germs on the common space germ (Rk × Rn,0), we do not need the notion
of stably P -K-equivalences under this situation [18, page 27]. For any map germ f : (Rn,0) −→ (Rp,0), we
define the local ring of f by Qr(f) = En/(f∗(Mp)En + Mr+1

n ). We have the following classification result of
Legendrian stable germs (cf. [7, Proposition A.4]) which is the key for the purpose in this section.

Proposition 5.4. Let F,G : (Rn×Rk,0) −→ (R,0) be Morse families. Suppose that Legendrian immersion
germs LF and LG are Legendrian stable, then the following conditions are equivalent.

(i) W (LF ) and W (LG) are diffeomorphic as set germs.

(ii) LF and LG are Legendrian equivalent.

(iii) Qn+1(f) and Qn+1(g) are isomorphic as R-algebras, where f = F |Rk×{0} and g = G|Rk×{0}.

Let Qn+1(x, u0) be the local ring of the function germ hv0 : (U, u0) −→ R defined by

Qn+1(x,u0) = C∞u0(U)/(〈hv0〉C∞u0 (U) + Mn+2
n−1),
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and Qn+1(x, u0) be the local ring of the function germ hv0 : (U, u0) −→ R defined by

Qn+1(x,u0) = C∞u0(U)/(〈hv0〉C∞u0 (U) + Mn+2
n−1),

where v0 = LDM (u0, η0), v0 = LDM (u0, η0), and C∞u0(U) is the local ring of function germ at u0 with the
unique maximal ideal Mn−1.

Theorem 5.5. Let xi : (U, ui) −→ (Ln0 , pi) (i = 1, 2) be hypersurface germs such that the corresponding
Legendrian immersion germs are Legendrian stable. Then the following conditions are equivalent.

(i) The lightcone hypersurface germs LDM1(U × R) and LDM2(U × R) are diffeomorphic.

(ii) Legendrian immersion germs L1
4 and L2

4 are Legendrian equivalent.

(iii) The lightcone height functions germs H1 and H2 are P-K-equivalent.

(iv) h1,v1 and h2,v2 are K-equivalent.

(v) K(x1(U), TPLn−1
0 (x1,u1),v1) = K(x2(U), TPLn−1

0 (x2,u2),v2).

(vi) K(x1(U), TPLCn∗ (x1,u1),v1) = K(x2(U), TPLCn∗ (x2,u2),v2).

(vii) Local rings Qn+1(x1,u1) and Qn+1(x2,u2) are isomorphic as R-algebras.

Proof. By Proposition 5.3 and Proposition 5.4, the conditions (i) ∼(iii) and (vii) are equivalent. By defini-
tion, the condition (iii) implies the condition (iv). By Proposition 5.3, Hi is a K-versal deformation of hi,vi .
We can apply the uniqueness result of K-versal deformations (cf., [9]), so that the condition (iv) implies the
condition (iii). By Theorem 5.1, the conditions (iv) ∼ (vi) are equivalent. This completes the proof.

Theorem 5.6. Let xi : (U,ui) −→ (L+, pi) (i = 1, 2) be hypersurface germs such that the corresponding
Legendrian immersion germs are Legendrian stable. Then the following conditions are equivalent.

(i) The lightcone hypersurface germs LDM1
(U × R) and LDM2

(U × R) are diffeomorphic.

(ii) Legendrian immersion germs L1
3 and L2

3 are Legendrian equivalent.

(iii) The lightcone height functions germs H1 and H2 are P-K-equivalent.

(iv) h1,v1 and h2,v2 are K-equivalent.

(v) K(x1(U), TPLn−1
+ (x1,u1),v1) = K(x2(U), TPLn−1

+ (x2,u2),v2).

(vi) K(x1(U), TPSn1 (x1,u1),v1) = K(x2(U), TPSn1 (x2,u2),v2).

(vii) Local rings Qn+1(x1,u1) and Qn+1(x2,u2) are isomorphic as R-algebras.

The proof is similar to the proof of the above theorem, so that we omit it.

Lemma 5.7. Let x : U −→ Ln0 be a hypersurface germ such that the corresponding Legendrian immersion
germs L4 and L3 are Legendrian stable. Then at the singular point v0 = LDM (u0,±2

√
−κi(p0))(1 ≤

i ≤ n − 1) of LDM and the singular points v0 = LDM (u0,
±
√
−κi(p0)

±
√
−κi(p0)−1

) of LDM , we have the following

equivalent assertions.

(i) The lightcone hypersurface germs LDM (U × R) and LDM (U × R) are diffeomorphic.

(ii) Legendrian immersion germs L4 and L3 are Legendrian equivalent.

(iii) The lightcone height functions germs H and H are P-K-equivalent.
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(iv) hv0 and hv0 are K-equivalent.

(v) K(x(U), TPLn−1
0 (x,u0),v0) = K(x(U), TPLn−1

+ (x,u0),v0).

(vi) K(x(U), TPLCn∗ (x,u0),v0) = K(x(U), TPSn1 (x,u0),v0).

(vii) Local rings Qn+1(x,u0) and Qn+1(x,u0) are isomorphic as R-algebras.

Proof. By definition, we have

hv0(u) = 〈x(u),−κi(p0)x(u0) + xL(u0)± 2
√
−κi(p0)e2〉+ 2,

so that

hv0(u)

±2
√
−κi(p0)

=
〈
x(u),±

(√−κi(p0)

2
x(u0) +

1

2
√
−κi(p0)

xL(u0)
)

+ e2

〉
± 1√

−κi(p0)
.

We also have

hv0(u) =
〈
x(u) + e2,

−κi(p0)

2(±
√
−κi(p0)− 1)

(
x(u0)− 1

κi(p0)
xL(u0)± 2√

−κi(p0)
e2

)〉
− 1,

and

(±
√
−κi(p0)− 1)hv0(u)

±
√
−κi(p0)

=
〈
x(u) + e2,±

(√−κi(p0)

2
x(u0) +

1

2
√
−κi(p0)

xL(u0)
)

+ e2

〉
∓

(±
√
−κi(p0)− 1)√
−κi(p0)

=
〈
x(u),±

(√−κi(p0)

2
x(u0) +

1

2
√
−κi(p0)

xL(u0)
)

+ e2

〉
± 1√

−κi(p0)
.

Therefore, we have
hv0 = 2(±

√
−κi(p0)− 1)hv0 .

This means that the assertion (iv) holds. By the uniqueness of the K-versal deformation, we have the
assertion (iii). By Proposition 5.3, we have the assertion (ii). By Proposition 5.4, we have the assertions (i)
and (vii). On the other hand, for gv0 ◦ x = hv0 ◦ x = hv0 and gv0 ◦ x = hv0 ◦ x = hv0 , by Theorem 5.1, we
have the assertions (v) and (vi). This completes the proof.

By Lemma 5.7, we have our main result as the following theorem.

Theorem 5.8. Let xi : (U,ui) −→ (Ln0 , pi) (i = 1, 2) be hypersurface germs such that the corresponding
Legendrian immersion germs are Legendrian stable. At the singular points vj = LDM (u0,±2

√
−κj(p)) (1 ≤

j ≤ n− 1) of LDM , and the singular points vj = LDM (u0,
±
√
−κj(p0)

±
√
−κj(p)−1

) of LDM , the conditions (i) ∼ (vii)

in Theorem 5.5 and the conditions (i) ∼ (vii) in Theorem 5.6 are all equivalent.

6. Surfaces in the 3-lightcone

In this section, we stick to the case n = 3. We consider the surfaces in the 3-lightcone as a special case of
the previous sections. First, we consider the generic properties of spacelike submanifolds in the open light-
cone L3

0. We consider the space of embeddings Emb(U,L3
0) with Whitney C∞-topology. We also consider

the function H : L3
0×LCn+1

∗ −→ R which is given by H(u,v) = 〈u,v〉+2. We claim that hv is a submersion
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for any v ∈ LCn+1
∗ , where hv(u) = H(u,v). For any x ∈ Emb(U,L3

0), we have H = H ◦ (x× idLCn+1
∗

). We
have the k-jet extension

jk1H : U × LCn+1
∗ −→ Jk(U,R),

defined by jk1H(u,v) = jkhv(u). We consider the trivialization Jk(U,R) = U × R × Jk(2, 1). For any
submanifold Q ⊂ Jk(2, 1), we denote Q̃ = U × 0×Q. Then we have the following proposition as a corollary
of [17, Lemma 6].

Proposition 6.1. Let Q be a submanifold of Jk(2, 1). Then the set

TQ = {x ∈ Emb(U,L3
0) | jk1H is transversal to Q̃},

is a residual subset of Emb(U,L3
0). If Q is a closed set, then TQ is open.

By the previous arguments and Appendix of [7], we have the following theorem.

Theorem 6.2. There exists an open dense subset O ⊂ Emb(U,L3
0) such that for any x ∈ O, the corre-

sponding Legendrian immersion germ L4 at any point is Legendrian stable.

If we consider H : L3
+ × LC4

∗ −→ R defined by H(u,v) = 〈u,v〉 − 1 instead of H : L3
0 × LC4

∗ −→ R,
we can show that the corresponding Legendrian immersion germ L3 at any point is Legendrian stable for a
generic hypersurface x : U −→ L3

+.
We now classify the singularities of the light-cone dual hypersurfaces. Here, we only consider the case

for M = x(U) in L3
0. By Theorem 5.5, a K-invariant for the height function hv is an invariant for the

diffeomorphism class of the singularities of the lightcone duals of a hypersurface in L3
0. Let x : U −→ L3

0 be
an embedding from an open set U ⊂ R2, we define the K-codimension (or Tyurina number) of the function
germ hv0 by

H-ord(x, u0) = dimC∞u0/〈hv0 , ∂hv0/∂ui〉C∞u0 .

We call it the order of contact of M with parabolic (n − 1)-hyperquadrics and parabolic n-hyperquadrics.
We also define the corank of the function germ hv0 by

H-corank(x, u0) = 2− rank(Hess(hv0)(u0)).

By Theorem 4.4, Theorem 6.2 and Proposition 5.3, the light-cone height function H is a K-versal
deformation of hv0 at each point (u0,v0) ∈ U × LC4

∗ . Therefore we can apply the classification of K-versal
deformations of function germs up to 4-parameters [1]. Suppose that the lightcone height function H is
a K-versal deformation of hv0 at each point (u0,v0) ∈ U × LC4

∗ . Then it is P -K-equivalent to one of the
following germs:

(Ak) F (u1, u2,λ) = uk+1
1 ± u2

2 + λ1 + λ2u1 + · · ·+ λku
k−1
1 , (1 ≤ k ≤ 4),

(D+
4 ) F (u1, u2,λ) = u3

1 + u3
2 + λ1 + λ2u1 + λ3u2 + λ4u1u2,

(D−4 ) F (u1, u2,λ) = u3
1 − u1u

2
2 + λ1 + λ2u1 + λ3u2 + λ4(u2

1 + u2
2).

For any F (u1, u2,λ), we have

W (LF ) =

{
λ ∈ R4 | ∃u ∈ R2 such that F (u,λ) =

∂F

∂u1
(u,λ) =

∂F

∂u2
(u,λ) = 0

}
.

Let fi : (Ni, xi) −→ (Pi, yi)(i = 1, 2) be C∞ map germs. We say that f1 and f2 are A-equivalent if there
exist diffeomorphism germs φ : (N1, x1) −→ (N2, x2) and ψ : (P1, y1) −→ (P2, y2) such that ψ ◦ f1 = f2 ◦ φ.
Then we have the following theorem.

Theorem 6.3. There exists an open dense subset O ⊂ Embsp(U,L
3
0) such that for any x ∈ O, we have the

following classifications:
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(a) If H-corank(x, u0) = 1, then there are two distinct principle curvatures κ1 and κ2. In this case
H-ord(x, u0) ≤ 4 and we have the following:

(A1) If H-ord(x, u0) = 1, then each one of LDM is A-equivalent to

f(u1, u2, u3) = (u1, u2, u3, 0).

(A2) If H-ord(x, u0) = 2, then each one of LDM is A-equivalent to

f(u1, u2, u3) = (3u2
1, 2u

3
1, u2, u3).

The image of f is diffeomorphic to C × R2.

(A3) If H-ord(x, u0) = 3, then each one of LDM is A-equivalent to

f(u1, u2, u3) = (4u3
1 + 2u1u2, 3u

4
1 + u2u

2
1, u2, u3).

The image of f is diffeomorphic to SW × R.

(A4) If H-ord(x, u0) = 4, then each one of LDM is A-equivalent to

f(u1, u2, u3) = (5u4
1 + 3u2u

2
1 + 2u1u3, 4u

5
1 + 2u2u

3
1 + u3u

2
1, u2, u3).

The image of f is diffeomorphic to BF .

(b) If H-corank(x, u0) = 2 and the principle curvature κ 6= 0, then u0 is a non-flat umbilic point. In this
case, we have H-ord(x, u0) = 4 and the following two cases:

(D+
4 ) Each one of LDM is A-equivalent to

f(u1, u2, u3) = (2(u3
1 + u3

2) + u1u2u3, 3u
2
1 + u2u3, 3u

2
2 + u1u3, u3).

(D−4 ) Each one of LDM is A-equivalent to

f(u1, u2, u3) = (2(u3
1 − u1u

2
2) + (u2

1 + u2
2)u3, u

2
2 − 3u2

1 − 2u1u3, u1u2 − u2u3, u3).

Here, C = {(x1, x2) | x1 = u2, x2 = u3} is the ordinary cusp, SW = {(x1, x2, x3) | x1 = 3u4 + u2v, x2 =
4u3 + 2uv, x3 = v} is called a swallowtail and BF = {(x1, x2, x3, x4) | x1 = 5u4 + 3vu2 + 2wu, x2 =
4u5 + 2vu3 + wu2, x3 = u, x4 = v} is called a butterfly.

Proof. By Theorem 6.2, there exists an open dense subset O ⊂ Embsp(U,L
3
0) such that for any x ∈ O, the

corresponding Legendrian immersion germs L4 at any point are Legendrian stable. Therefore, the height
function H is P -K-equivalent to one of the germs of (Ak) (k = 1, 2, 3, 4) and D±4 . If we consider the germ
F (u1, u2,λ) = u3

1 ± u2
2 + λ1 + λ2u1, then we have

W (LF ) = {(2u3
1,−3u2

1, λ3, λ4) | (u1, λ3, λ4) ∈ R3},

so that the corresponding Legendrian map germ is (A2) f(u1, u2, u3) = (3u2
1, 2u

3
1, u2, u3). Suppose that

H is P-K-equivalent to F of type (A2). By Propositions 5.3 and 5.4, LDM is A-equivalent to (A2). Of
course, the image of f is C × R2. Moreover, the K-codimension of f(u1, u2) = u3

1 ± u2
2 is 2, so that we have

H − ord(x, u0) = 2. The proof of the other assertions are similar to this case. Therefore, we omit it.

By Lemma 5.7, the sphere-cone dual surface LDM of x : U −→ L3
+ is locally diffeomorphic to the

light-cone dual surface LDM . Therefore, we obtain exactly the same assertions as the above theorem for
the sphere-cone dual surface LDM .
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