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Abstract

In this paper, we presented some functional equations of the generalized Bateman’s
G−function Gh(x) and its relation with the hypergeometric series 3F2. We deduced an
asymptotic expansion of the function Gh(x) and studied the completely monotonic prop-
erty of some functions involving it. Also, we presented some new bounds of the function
Gh(x). Our results generalize some recent results about the Bateman’s G−function G(x).
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1 Introduction.

The ordinary gamma function Γ(x) is defined by [3]

Γ(x) =

∫ ∞

0

tx−1e−tdt, x > 0

and the Psi or digamma function ψ(x) is given by

ψ(x) =
d

dx
log Γ(x).

The gamma function and its logarithmic derivatives ψ(n)(x) are of the most widely used special
functions encountered in advanced mathematics . For more details about the properties of these
functions and their bounds, please refer to the papers [2], [3], [8], [9], [12]-[14], [16]-[20], [25]-[29]
and plenty of references therein.

1Permanent address: Mansour Mahmoud, Department of Mathematics, Faculty of Science, Mansoura Uni-
versity, Mansoura 35516, Egypt.
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The Bateman’s G−function is defied by [7]

G(x) = ψ

(
x+ 1

2

)
− ψ

(x
2

)
, x ̸= 0,−1,−2, ... . (1)

The function G(x) is very useful in estimating and summing certain numerical and algebraic
series. For more details about the properties, bounds and applications of the G(x), please refer
to [7], [12], [14], [15], [17], [21], [30] and the references therein.

The function G(x) satisfies the following relations [7]

G(x) = 2
∞∑
k=0

(−1)k

k + x
, (2)

G(x+ 1) +G(x) = 2x−1, (3)

G(nx) = 2n−1

n−1∑
k=0

(−1)k+1ψ

(
x+

k

n

)
, n = 2, 4, 6, ... (4)

G(nx) = n−1

n−1∑
k=0

(−1)kG

(
x+

k

n

)
, n = 1, 3, 5, ... (5)

G(x) = 2

∫ ∞

0

e−xt

1 + e−t
dt, x > 0 (6)

G(x) = 2x−1
2F1(1, x;x+ 1;−1), (7)

where

rFs(α1, ..., αr; β1, ..., βs;x) =
∞∑
k=0

(α1)k...(αr)k
(β1)k...(βs)k

xk

k!

is the generalized hypergeometric series [3] defined for r, s ∈ N, αj, βj ∈ C, βj ̸= 0,−1,−2, ...
and the Pochhammer or shifted symbol (α)n is given by

(α)0 = 1 and (α)m =
Γ(α +m)

Γ(α)
, m ≥ 1.

Qiu and Vuorinen [30] presented the double inequality

4(3/2− ln 4)

x2
< G(x)− x−1 <

1

2x2
, x > 0.5 . (8)

Mahmoud and Agarwal [12] deduced the following asymptotic formula for Bateman’s G-function

G(x) ∼ x−1 +
∞∑
k=1

(22k − 1)B2k

k
x−2k, x→ ∞ (9)

and they improved the lower bound of the inequality (8) by

1

2x2 + 1.5
< G(x)− x−1 <

1

2x2
, x > 0. (10)
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Also, Mahmoud and Almuashi [14] proved the following double inequality of the Bateman’s
G−function

2m∑
n=1

(2n − 1)B2n

n
x−2n < G(x)− x−1 <

2m−1∑
n=1

(2n − 1)B2n

n
x−2n, m ∈ N (11)

with the best possible bounds, where Bm
′s are the Bernoulli numbers [11]. Mortici [17] presented

the double inequality

0 < ψ(x+ λ)− ψ(x) ≤ ψ(λ) + γ − λ+ λ−1, x ≥ 1; 0 < λ < 1 (12)

where γ is the Euler constant, which also improves the double inequality (8). Also, Alzer deduced
the inequality [2]

x−1 − Tr(λ;x)− ωr(λ; x) < ψ(x+ λ)− ψ(x) < x−1 − Tr(λ; x),

where x > 0, r = 0, 1, 2, ... , 0 < λ < 1,

Tr(λ;x) = (1− λ)

[
1

λ+ r + 1
+

r−1∑
i=0

1

(x+ i+ 1)(x+ i+ λ)

]
and

ωr(λ;x) =
1

x+ r + λ
log

(x+ r)(x+r)(1−λ)(x+ r + 1)(x+r+1)λ

(x+ r + λ)x+r+λ
.

Mahmoud, Talat and Moustafa [15] presented the following family of approximations of the
function G(x)

M(µ, x) = ln

(
1 +

1

x+ µ

)
+

2

x(x+ 1)
, x > 0; 1 ≤ µ ≤ 2

which is of an order of convergence of O
(
ln (x+2)[(e2−4)x+4]

(x+1)[(e2−4)x+e2]

)
for x > 2 and µ ∈

(
1, 4

e2−4

)
and is

asymptotically equivalent to G(x) as x→ ∞. Also, they presented the new double inequality

ln

(
1 +

1

x+ 4
e2−4

)
+

2

x(x+ 1)
< G(x) < ln

(
1 +

1

x+ 1

)
+

2

x(x+ 1)
,

where the constants 1 and 4
e2−4

are the best possible.

In this paper, we presented some functional equations of the generalized Bateman’sG−function

Gh(x) = ψ

(
x+ h

2

)
− ψ

(x
2

)
, 0 < h < 2; x ̸= −2m,−2m− h for m = 0, 1, 2, ... (13)

and its relation with the hypergeometric function 3F2. We deduced an asymptotic expansion of
the function Gh(x) and studied the completely monotonic property of the function Gh(x)− s

xr for
different values of the parameter s. Also, some bounds of the generalized Bateman’s G−function
are given.
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2 Some relations of the function Gh(x).

Lemma 2.1. The function Gh(x) satisfies the functional equation

Gh(x+ 1) +Gh(x) = 2 (ψ(x+ h)− ψ(x)) , x > 0. (14)

Proof. Using the integral representation [3]

ψ(z) = −γ +

∫ ∞

0

e−t − e−tz

1− e−t
dt, R(z) > 0

we get

Gh(x) = 2

∫ ∞

0

1− e−ht

1− e−2t
e−xtdt, x > 0. (15)

Also,

ψ(x+ h)− ψ(x) =

∫ ∞

0

1− e−ht

1− e−t
e−xtdt

=

∫ ∞

0

1− e−ht

1− e−2t
e−(x+1)tdt+

∫ ∞

0

1− e−ht

1− e−2t
e−xtdt

=
1

2
[Gh(x+ 1) +Gh(x)] .

In case of h = 1 and using the functional equation ψ(x + 1) = 1
x
+ ψ(x), we get the relation

(3).

Lemma 2.2. The function Gh(x) satisfies the functional equation

Gh(mx) =
1

m

m−1∑
r=0

G h
m

(
x+

2r

m

)
, x > 0; m ∈ N. (16)

Proof.

m−1∑
r=0

G h
m

(
x+

2r

m

)
=

∫ ∞

0

(
m−1∑
r=0

e
−2rt
m

)
1− e

−ht
m

1− e−2t
e−xtdt

=

∫ ∞

0

(
1− e−2t

1− e
−2t
m

)
1− e

−ht
m

1− e−2t
e−xtdt

=

∫ ∞

0

1− e
−ht
m

1− e
−2t
m

e−xtdt

= m Gh(mx).

As a special case, when h = 1, we get the following new functional equation of the ordinary
function G(x) in terms of the generalized function Gh(x).
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Corollary 2.3. The function G(x) satisfies the functional equation

G(mx) =
1

m

m−1∑
r=0

G 1
m

(
x+

2r

m

)
, x > 0; m ∈ N. (17)

The following result relates the function Gh(x) and the hypergeometric function 3F2.

Lemma 2.4. The function Gh(x) satisfies

Gh(x) =
h

x+ h
3F2

(
1, 1,

h+ 2

2
; 2,

x+ h+ 2

2
; 1

)
, x > 0. (18)

Proof. Using the integral representation [3]

ψ(z) = −γ +

∫ 1

0

1− tz−1

1− t
dt, R(z) > 0

we get

Gh(x) =

∫ 1

0

t
x−2
2 − t

x+h−2
2

1− t
dt =

∫ 1

0

(
t
x−2
2 − t

x+h−2
2

)( ∞∑
n=0

tn

)
dt, x > 0

and then

Gh(x) =
∞∑
n=0

2h

(x+ 2n)(x+ h+ 2n)
, x > 0. (19)

Using the relation

x+ n =
x(x+ 1)n

(x)n
,

we obtain

Gh(x) =
2h

x(x+ h)

∞∑
n=0

(
x+h
2

)
n

(
x
2

)
n(

x+h+2
2

)
n

(
x+2
2

)
n

=
2h

x(x+ h)
3F2

(
1,
x

2
,
x+ h

2
;
x+ 2

2
,
x+ h+ 2

2
; 1

)
, x > 0.

Now using the two-term Thomae transformation formula [32], [23]

3F2 (α, β, σ; δ, η; 1) =
Γ(δ)Γ(θ − σ)

Γ(θ)Γ(δ − σ)
3F2 (η − α, η − β, σ; θ, η; 1) , θ = δ + η − α− β

with

α =
x

2
, β =

x+ h

2
, σ = 1, η =

x+ h+ 2

2
, δ =

x+ 2

2
we have

3F2

(
1,
x

2
,
x+ h

2
;
x+ 2

2
,
x+ h+ 2

2
; 1

)
=
x

2
3F2

(
1, 1,

h+ 2

2
; 2,

x+ h+ 2

2
; 1

)
,

which complete the proof.

Remark 1. From the formulas (7) and (18) for h = 1, we can conclude that

3F2

(
1, 1, 3/2; 2,

x+ 3

2
; 1

)
=

2(x+ 1)

x
2F1 (1, x;x+ 1;−1) , x > 0. (20)
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3 An asymptotic expansion of the function Gh(x).

Ii is well known that the Psi function has the asymptotic expansion [6]

ψ(z) ∼ ln z −
∞∑
k=1

(−1)kBk

k

1

zk

and its generalization is given by

ψ(z + l) ∼ ln z −
∞∑
k=1

(−1)kBk(l)

k

1

zk
,

where Bk(l) are the Bernoulli polynomials defied by the generating function [11]

zezt

ez − 1
=

∞∑
k=0

Bk(l)

k!
zk

and the Bernoulli constants Bk = Bk(0). Using the operations of the asymptotic expansions [5];
[22], we obtain

ψ(z + l)− ψ(z) ∼
∞∑
k=1

(−1)k+1

k
[Bk(l)−Bk]

1

zk
.

For more details about the general theory of the asymptotic expansion of the function f(z + t)
by the asymptotic expansion of the function f(z) using Appell polynomials, we refer to [4]. Now,
using the identity [11]

Bk(l) =
k∑

r=0

(
k
r

)
Brl

k−r,

we get

ψ(z + l)− ψ(z) ∼
∞∑
k=1

(−1)k+1

k

[
k−1∑
r=0

(
k
r

)
Brl

k−r

]
1

zk
.

Then we obtain the following result.

Lemma 3.1. The following asymptotic series holds:

Gh(x) ∼
∞∑
n=1

(−1)n+12n

n

[
Br

(
h

2

)
−Br

]
1

xn
, x→ ∞. (21)

or

Gh(x) ∼
∞∑
n=1

(−1)n+1

n

[
n−1∑
r=0

(nr ) 2
rBrh

n−r

]
1

xn
, x→ ∞. (22)

Remark 2. As a special case at h = 1, we obtain

G(x) ∼ 1

x
+

∞∑
n=2

(−1)n+12n

n

[
Br

(
1

2

)
−Br

]
1

xn
, x→ ∞
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and using the identities [1]

Bn

(
1

2

)
=
(
21−n − 1

)
Bn, n = 0, 1, 2, ...

and
B2n+1 = 0, n = 1, 2, ...

then we get the asymptotic series (9).

In [12], Mahmoud and Agarwal studied the completely monotonic property of the function
G(x)− s

xr for different values of the parameter s by the motivation of Mortici results [17] about
Psi function. In the following result, we will generalize this result to the function Gh(x).

Lemma 3.2. The functions

χs,1(x, h) = Gh(x)−
s

x
s ≤ h; x > 0; 0 < h < 2, (23)

and
χs,r(x, h) = Gh(x)−

s

xr
s < 0; x > 0; 0 < h < 2; r = 2, 3, 4, ... (24)

are strictly completely monotonic.

Proof. Using the relation (15) and the known formula

(r − 1)! x−m =

∫ ∞

0

vm−1e−xvdv, m ∈ N (25)

we get

(−1)nχ(n)
s,r (x, h) =

∫ ∞

0

ϕh,s(r, t)
tne−xt

e2t − 1
dt, n = 0, 1, 2, 3, ... (26)

where

ϕh,s(r, t) = 2
(
e2t − e(2−h)t

)
− s tr−1

(r − 1)!

(
e2t − 1

)
.

Then

ϕh,s(r, t) =
∞∑
k=1

2k+1tk

k!
Ph,s(r, t),

where

Ph,s,k(r, t) = 1−
(
1− h

2

)k

− s

2(r − 1)!
tr−1.

Firstly, if r = 1, we obtain

Ph,s,k(1, t) = 1−
(
1− h

2

)k

− s

2
> 0 iff

s

2
≤ 1−

(
1− h

2

)k

k = 1, 2, 3, ... .

But
h

2
≤ 1−

(
1− h

2

)k

0 < h < 2; k = 1, 2, 3, ...

and thus, ϕh,s(1, t) > 0 for all t ≥ 0 iff s ≤ h. Secondly, when r = 2, 3, 4, ..., then Ph,s,k(r, t)

is increasing as a function of t if s < 0 with Ph,s,k(r, 0) = 1 −
(
1− h

2

)k
> 0 for 0 < h < 2 and

k = 1, 2, 3, ... . Thus ϕh,s(r, t) > 0 for all t ≥ 0, r = 2, 3, ... iff s < 0.
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As a result of the strictly completely monotonicity of the function χs,1(x, h) and the relation
(22), we obtain

χs,1(x, h) > lim
x→∞

(χs,1(x, h)) = 0, s ≤ h.

Hence, we have the following result:

Corollary 3.3. The following inequality holds

Gh(x) >
h

x
, x > 0; 0 < h < 2. (27)

4 Some Bounds of the function Gh(x).

Lemma 4.1.

Gh(x) <
2

x
+
h(2− h)

2x2
, x > 0; 0 < h < 2. (28)

Proof. By using the formulas (15) and (25), we get for x > 0 that

Gh(x)−
2

x
− h(2− h)

2x2
=

∫ ∞

0

(
2
(
e2t − e(2−h)t

)
− 2

(
e2t − 1

)
− h(2− h)

2

(
e2t − 1

)
t

)
e−xt

e2t − 1
dt

=

∫ ∞

0

(
2
(
1− e(2−h)t

)
− h(2− h)

2

(
e2t − 1

)
t

)
e−xt

e2t − 1
dt

< 0 for 0 < h < 2.

Theorem 1.

Gh(x) <
h

x
+
h(2− h)

2x2
, x > 0; 1 ≤ h < 2. (29)

Proof. Using the two formulas (15) and (25), we have

Gh(x)−
h

x
− h(2− h)

2x2
=

∫ ∞

0

ρh(t)
e−xt

e2t − 1
dt,

where

ρh(t) = 2
(
e2t − e(2−h)t

)
− h

(
e2t − 1

)
− h(2− h)

2

(
e2t − 1

)
t t > 0.

Then
ρ′′h(t) = 2(h− 2)e(2−h)tQh(t)

with
Qh(t) = 2− h+ eht(h− 2 + ht).

The function Qh(t) is convex function with minimum value at t0 =
1−h
h
, which is non positive for

1 ≤ h < 2 and Qh(0) = 0. Hence Qh(t) > 0 for 1 ≤ h < 2. Hence ρh(t) is concave for 1 ≤ h < 2
and its has maximum value at t = 0. Then

ρh(t) < 0, 1 ≤ h < 2; t > 0.
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Then the function Gh(x)− h
x
− h(2−h)

2x2 is strictly increasing function for 1 ≤ h < 2 and x > 0 and
using the asymptotic expansion (22), we get

lim
x→∞

(
Gh(x)−

h

x
− h(2− h)

2x2

)
= 0,

which complete the proof.

Remark 3. In case of h = 1, the inequality (29) will prove the right-hand side of the inequality
(10).

To obtain our next result, we will apply the following monotone form of L’Hôpital’s rule [10]
(see also [24] and [31] ).

Theorem 2. Let −∞ < α < β < ∞ and L,U : [α, β] → R be continuous on [α, β] and
differentiable on (α, β). Let U ′(x) ̸= 0 on (α, β). If L′(x)/U ′(x) is increasing (decreasing) on
(α, β), then so are

L(x)− L(α)

U(x)− U(α)
and

L(x)− L(β)

U(x)− U(β)
. (30)

If L′(x)/U ′(x) is strictly monotone, then the monotonicity in the conclusion is also strict.

Theorem 3.

Gh(x) >
h

x
+

h(2− h)

2 (x2 + 3h2)
, x > 0; 0 < h < 2. (31)

Proof. Using the two formulas (15) and (25) and the Laplace transformation of the sine function,
we get

Gh(x)−
h

x
− h(2− h)

2 (x2 + 3h2)
=

∫ ∞

0

ξh(t)
e−xt

6 (e2t − 1)
dt,

where

ξh(t) = 6
(
−2e2t − e(2+h)t(−2 + h) + heht

)
+
√
3eht

(
−1 + e2t

)
(−2 + h) sin

(√
3ht
)
.

Now consider the function

τh(t) =
2
√
3e−ht

(
−2e2t − e(2+h)t(−2 + h) + heht

)
(−1 + e2t) (2− h)

t > 0; 0 < h < 2.

The function

2
√
3 d
dt

(
e−ht

(
−2e2t − e(2+h)t(−2 + h) + heht

))
d
dt
((−1 + e2t) (2− h))

= 2
√
3e−ht(−1 + eht)

is increasing function for t > 0. Using the monotone form of L’Hôpital’s rule, we get that the
function τh(t) is increasing. Similarly, the function

Hh(t) =
τh(t)√
3ht

, t > 0; 0 < h < 2.
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is increasing function and
lim
t→∞

Hh(t) = 1.

Then

2
√
3e−ht

(
−2e2t − e(2+h)t(−2 + h) + heht

)
> ht

(
−1 + e2t

)
(2− h), t > 0; 0 < h < 2

and using Jordan’s inequality

2z

π
≤ sin z ≤ z, x ∈ [0, π/2]

we have

2
√
3e−ht

(
−2e2t − e(2+h)t(−2 + h) + heht

)
> ht

(
−1 + e2t

)
(2−h) sin

(√
3ht
)
, t > 0; 0 < h < 2.

Hence
ξh(t) > 0, t > 0; 0 < h < 2.

Then the function Gh(x)− h
x
− h(2−h)

2(x2+3h2)
is strictly decreasing function for 0 ≤ h < 2 and x > 0.

Also, using the asymptotic expansion (22), we get

lim
x→∞

(
Gh(x)−

h

x
− h(2− h)

2 (x2 + 3h2)

)
= 0,

which complete the proof.

Remark 4. In case of h = 1, the inequality (31) will prove the left-hand side of the inequality
(10).

Remark 5. Using the inequalities (28), (29) and (31) with the relation (19), we get the following
estimations

1

2x
+

2− h

4 (x2 + 3h2)
<

∞∑
n=0

1

(x+ 2n)(x+ h+ 2n)
<

1

2x
+

2− h

4x2
, x > 0; 1 ≤ h < 2

and

1

2x
+

2− h

4 (x2 + 3h2)
<

∞∑
n=0

1

(x+ 2n)(x+ h+ 2n)
<

1

hx
+

2− h

4x2
, x > 0; 0 ≤ h < 2.
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[4] T. Burić , N. Elezović and L. Vukšić, Appell polynomials and asymptotic expansions,
Mediterranean J. Math., to appear 2015, DOI 10.1007/s00009-015-0529-z.

[5] E. T. Copson, Asymptotic expansions, Cambridge University Press, 1965.
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