Generalized Bateman's G-function and its bounds

Mansour Mahmoud¹ and Hanan Almuashi²

King Abdulaziz University, Faculty of Science, Mathematics Department,

P. O. Box 80203, Jeddah 21589, Saudi Arabia.

 1 mansour@mans.edu.eg

 2 beautyrose_12_2006@hotmail.com

Abstract

In this paper, we presented some functional equations of the generalized Bateman's G-function $G_h(x)$ and its relation with the hypergeometric series ${}_{3}F_2$. We deduced an asymptotic expansion of the function $G_h(x)$ and studied the completely monotonic property of some functions involving it. Also, we presented some new bounds of the function $G_h(x)$. Our results generalize some recent results about the Bateman's G-function G(x).

2010 Mathematics Subject Classification: 33B15, 26D15, 41A60, 65Q20.

Key Words: Psi function, Bateman's G-function, functional equation, asymptotic formula, Laplace transform, inequality, monotonicity.

1 Introduction.

The ordinary gamma function $\Gamma(x)$ is defined by [3]

$$\Gamma(x) = \int_0^\infty t^{x-1} e^{-t} dt, \qquad x > 0$$

and the Psi or digamma function $\psi(x)$ is given by

$$\psi(x) = \frac{d}{dx} \log \Gamma(x).$$

The gamma function and its logarithmic derivatives $\psi^{(n)}(x)$ are of the most widely used special functions encountered in advanced mathematics. For more details about the properties of these functions and their bounds, please refer to the papers [2], [3], [8], [9], [12]-[14], [16]-[20], [25]-[29] and plenty of references therein.

¹Permanent address: Mansour Mahmoud, Department of Mathematics, Faculty of Science, Mansoura University, Mansoura 35516, Egypt.

The Bateman's G-function is defied by [7]

$$G(x) = \psi\left(\frac{x+1}{2}\right) - \psi\left(\frac{x}{2}\right), \qquad x \neq 0, -1, -2, \dots$$
 (1)

The function G(x) is very useful in estimating and summing certain numerical and algebraic series. For more details about the properties, bounds and applications of the G(x), please refer to [7], [12], [14], [15], [17], [21], [30] and the references therein.

The function G(x) satisfies the following relations [7]

$$G(x) = 2\sum_{k=0}^{\infty} \frac{(-1)^k}{k+x},$$
(2)

$$G(x+1) + G(x) = 2x^{-1},$$
(3)

$$G(nx) = 2n^{-1} \sum_{k=0}^{n-1} (-1)^{k+1} \psi\left(x + \frac{k}{n}\right), \qquad n = 2, 4, 6, \dots$$
(4)

$$G(nx) = n^{-1} \sum_{k=0}^{n-1} (-1)^k G\left(x + \frac{k}{n}\right), \qquad n = 1, 3, 5, \dots$$
(5)

$$G(x) = 2 \int_0^\infty \frac{e^{-xt}}{1 + e^{-t}} dt, \qquad x > 0$$
(6)

$$G(x) = 2x^{-1} {}_{2}F_{1}(1, x; x+1; -1),$$
(7)

where

$${}_{r}F_{s}(\alpha_{1},...,\alpha_{r};\beta_{1},...,\beta_{s};x) = \sum_{k=0}^{\infty} \frac{(\alpha_{1})_{k}...(\alpha_{r})_{k}}{(\beta_{1})_{k}...(\beta_{s})_{k}} \frac{x^{k}}{k!}$$

is the generalized hypergeometric series [3] defined for $r, s \in \mathbb{N}$, $\alpha_j, \beta_j \in \mathbb{C}$, $\beta_j \neq 0, -1, -2, ...$ and the Pochhammer or shifted symbol $(\alpha)_n$ is given by

$$(\alpha)_0 = 1$$
 and $(\alpha)_m = \frac{\Gamma(\alpha + m)}{\Gamma(\alpha)}, \quad m \ge 1.$

Qiu and Vuorinen [30] presented the double inequality

$$\frac{4(3/2 - \ln 4)}{x^2} < G(x) - x^{-1} < \frac{1}{2x^2}, \qquad x > 0.5.$$
(8)

Mahmoud and Agarwal [12] deduced the following asymptotic formula for Bateman's G-function

$$G(x) \sim x^{-1} + \sum_{k=1}^{\infty} \frac{(2^{2k} - 1)B_{2k}}{k} x^{-2k}, \qquad x \to \infty$$
(9)

and they improved the lower bound of the inequality (8) by

$$\frac{1}{2x^2 + 1.5} < G(x) - x^{-1} < \frac{1}{2x^2}, \qquad x > 0.$$
(10)

Also, Mahmoud and Almuashi [14] proved the following double inequality of the Bateman's G-function

$$\sum_{n=1}^{2m} \frac{(2^n - 1)B_{2n}}{n} x^{-2n} < G(x) - x^{-1} < \sum_{n=1}^{2m-1} \frac{(2^n - 1)B_{2n}}{n} x^{-2n}, \qquad m \in \mathbb{N}$$
(11)

with the best possible bounds, where $B_m's$ are the Bernoulli numbers [11]. Mortici [17] presented the double inequality

$$0 < \psi(x+\lambda) - \psi(x) \le \psi(\lambda) + \gamma - \lambda + \lambda^{-1}, \qquad x \ge 1; \ 0 < \lambda < 1$$
(12)

where γ is the Euler constant, which also improves the double inequality (8). Also, Alzer deduced the inequality [2]

$$x^{-1} - T_r(\lambda; x) - \omega_r(\lambda; x) < \psi(x + \lambda) - \psi(x) < x^{-1} - T_r(\lambda; x),$$

where $x > 0, r = 0, 1, 2, ..., 0 < \lambda < 1$,

$$T_r(\lambda; x) = (1 - \lambda) \left[\frac{1}{\lambda + r + 1} + \sum_{i=0}^{r-1} \frac{1}{(x + i + 1)(x + i + \lambda)} \right]$$

and

$$\omega_r(\lambda; x) = \frac{1}{x+r+\lambda} \log \frac{(x+r)^{(x+r)(1-\lambda)}(x+r+1)^{(x+r+1)\lambda}}{(x+r+\lambda)^{x+r+\lambda}}.$$

Mahmoud, Talat and Moustafa [15] presented the following family of approximations of the function G(x)

$$M(\mu, x) = \ln\left(1 + \frac{1}{x + \mu}\right) + \frac{2}{x(x + 1)}, \qquad x > 0; \ 1 \le \mu \le 2$$

which is of an order of convergence of $O\left(\ln \frac{(x+2)[(e^2-4)x+4]}{(x+1)[(e^2-4)x+e^2]}\right)$ for x > 2 and $\mu \in \left(1, \frac{4}{e^2-4}\right)$ and is asymptotically equivalent to G(x) as $x \to \infty$. Also, they presented the new double inequality

$$\ln\left(1+\frac{1}{x+\frac{4}{e^2-4}}\right) + \frac{2}{x(x+1)} < G(x) < \ln\left(1+\frac{1}{x+1}\right) + \frac{2}{x(x+1)},$$

where the constants 1 and $\frac{4}{e^2-4}$ are the best possible.

In this paper, we presented some functional equations of the generalized Bateman's G-function

$$G_h(x) = \psi\left(\frac{x+h}{2}\right) - \psi\left(\frac{x}{2}\right), \qquad 0 < h < 2; \ x \neq -2m, -2m - h \text{ for } m = 0, 1, 2, \dots$$
(13)

and its relation with the hypergeometric function ${}_{3}F_{2}$. We deduced an asymptotic expansion of the function $G_{h}(x)$ and studied the completely monotonic property of the function $G_{h}(x) - \frac{s}{x^{r}}$ for different values of the parameter s. Also, some bounds of the generalized Bateman's G-function are given.

2 Some relations of the function $G_h(x)$.

Lemma 2.1. The function $G_h(x)$ satisfies the functional equation

$$G_h(x+1) + G_h(x) = 2\left(\psi(x+h) - \psi(x)\right), \qquad x > 0.$$
(14)

Proof. Using the integral representation [3]

$$\psi(z) = -\gamma + \int_0^\infty \frac{e^{-t} - e^{-tz}}{1 - e^{-t}} dt, \qquad R(z) > 0$$

we get

$$G_h(x) = 2 \int_0^\infty \frac{1 - e^{-ht}}{1 - e^{-2t}} e^{-xt} dt, \qquad x > 0.$$
(15)

Also,

$$\begin{split} \psi(x+h) - \psi(x) &= \int_0^\infty \frac{1 - e^{-ht}}{1 - e^{-t}} e^{-xt} dt \\ &= \int_0^\infty \frac{1 - e^{-ht}}{1 - e^{-2t}} e^{-(x+1)t} dt + \int_0^\infty \frac{1 - e^{-ht}}{1 - e^{-2t}} e^{-xt} dt \\ &= \frac{1}{2} \left[G_h(x+1) + G_h(x) \right]. \end{split}$$

In case of h = 1 and using the functional equation $\psi(x+1) = \frac{1}{x} + \psi(x)$, we get the relation (3).

Lemma 2.2. The function $G_h(x)$ satisfies the functional equation

$$G_{h}(mx) = \frac{1}{m} \sum_{r=0}^{m-1} G_{\frac{h}{m}}\left(x + \frac{2r}{m}\right), \qquad x > 0; \ m \in \mathbb{N}.$$
 (16)

Proof.

$$\sum_{r=0}^{m-1} G_{\frac{h}{m}} \left(x + \frac{2r}{m} \right) = \int_0^\infty \left(\sum_{r=0}^{m-1} e^{\frac{-2rt}{m}} \right) \frac{1 - e^{\frac{-ht}{m}}}{1 - e^{-2t}} e^{-xt} dt$$
$$= \int_0^\infty \left(\frac{1 - e^{-2t}}{1 - e^{\frac{-2t}{m}}} \right) \frac{1 - e^{\frac{-ht}{m}}}{1 - e^{-2t}} e^{-xt} dt$$
$$= \int_0^\infty \frac{1 - e^{\frac{-ht}{m}}}{1 - e^{\frac{-2t}{m}}} e^{-xt} dt$$
$$= m G_h(mx).$$

As a special case, when h = 1, we get the following new functional equation of the ordinary function G(x) in terms of the generalized function $G_h(x)$.

Corollary 2.3. The function G(x) satisfies the functional equation

$$G(mx) = \frac{1}{m} \sum_{r=0}^{m-1} G_{\frac{1}{m}} \left(x + \frac{2r}{m} \right), \qquad x > 0; \ m \in \mathbb{N}.$$
 (17)

The following result relates the function $G_h(x)$ and the hypergeometric function ${}_3F_2$. Lemma 2.4. The function $G_h(x)$ satisfies

$$G_h(x) = \frac{h}{x+h} {}_3F_2\left(1, 1, \frac{h+2}{2}; 2, \frac{x+h+2}{2}; 1\right), \qquad x > 0.$$
(18)

Proof. Using the integral representation [3]

$$\psi(z) = -\gamma + \int_0^1 \frac{1 - t^{z-1}}{1 - t} dt, \qquad R(z) > 0$$

we get

$$G_h(x) = \int_0^1 \frac{t^{\frac{x-2}{2}} - t^{\frac{x+h-2}{2}}}{1-t} dt = \int_0^1 \left(t^{\frac{x-2}{2}} - t^{\frac{x+h-2}{2}} \right) \left(\sum_{n=0}^\infty t^n \right) dt, \qquad x > 0$$

and then

$$G_h(x) = \sum_{n=0}^{\infty} \frac{2h}{(x+2n)(x+h+2n)}, \qquad x > 0.$$
 (19)

Using the relation

$$x+n = \frac{x(x+1)_n}{(x)_n},$$

we obtain

$$G_{h}(x) = \frac{2h}{x(x+h)} \sum_{n=0}^{\infty} \frac{\left(\frac{x+h}{2}\right)_{n} \left(\frac{x}{2}\right)_{n}}{\left(\frac{x+h+2}{2}\right)_{n} \left(\frac{x+2}{2}\right)_{n}}$$

= $\frac{2h}{x(x+h)} {}_{3}F_{2}\left(1, \frac{x}{2}, \frac{x+h}{2}; \frac{x+2}{2}, \frac{x+h+2}{2}; 1\right), \quad x > 0.$

Now using the two-term Thomae transformation formula [32], [23]

$${}_{3}F_{2}(\alpha,\beta,\sigma;\delta,\eta;1) = \frac{\Gamma(\delta)\Gamma(\theta-\sigma)}{\Gamma(\theta)\Gamma(\delta-\sigma)} {}_{3}F_{2}(\eta-\alpha,\eta-\beta,\sigma;\theta,\eta;1), \quad \theta = \delta + \eta - \alpha - \beta$$

with

$$\alpha = \frac{x}{2}, \ \beta = \frac{x+h}{2}, \ \sigma = 1, \ \eta = \frac{x+h+2}{2}, \ \delta = \frac{x+2}{2}$$

we have

$$_{3}F_{2}\left(1,\frac{x}{2},\frac{x+h}{2};\frac{x+2}{2},\frac{x+h+2}{2};1\right) = \frac{x}{2} \ _{3}F_{2}\left(1,1,\frac{h+2}{2};2,\frac{x+h+2}{2};1\right),$$

which complete the proof.

Remark 1. From the formulas (7) and (18) for h = 1, we can conclude that

$$_{3}F_{2}\left(1,1,3/2;2,\frac{x+3}{2};1\right) = \frac{2(x+1)}{x} _{2}F_{1}\left(1,x;x+1;-1\right), \qquad x > 0.$$
 (20)

3 An asymptotic expansion of the function $G_h(x)$.

It is well known that the Psi function has the asymptotic expansion [6]

$$\psi(z) \sim \ln z - \sum_{k=1}^{\infty} \frac{(-1)^k B_k}{k} \frac{1}{z^k}$$

and its generalization is given by

$$\psi(z+l) \sim \ln z - \sum_{k=1}^{\infty} \frac{(-1)^k B_k(l)}{k} \frac{1}{z^k},$$

where $B_k(l)$ are the Bernoulli polynomials defied by the generating function [11]

$$\frac{ze^{zt}}{e^z - 1} = \sum_{k=0}^{\infty} \frac{B_k(l)}{k!} z^k$$

and the Bernoulli constants $B_k = B_k(0)$. Using the operations of the asymptotic expansions [5]; [22], we obtain

$$\psi(z+l) - \psi(z) \sim \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k} \left[B_k(l) - B_k \right] \frac{1}{z^k}.$$

For more details about the general theory of the asymptotic expansion of the function f(z + t)by the asymptotic expansion of the function f(z) using Appell polynomials, we refer to [4]. Now, using the identity [11]

$$B_k(l) = \sum_{r=0}^k \binom{k}{r} B_r l^{k-r},$$

we get

$$\psi(z+l) - \psi(z) \sim \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k} \left[\sum_{r=0}^{k-1} {k \choose r} B_r l^{k-r} \right] \frac{1}{z^k}$$

Then we obtain the following result.

Lemma 3.1. The following asymptotic series holds:

$$G_h(x) \sim \sum_{n=1}^{\infty} \frac{(-1)^{n+1} 2^n}{n} \left[B_r\left(\frac{h}{2}\right) - B_r \right] \frac{1}{x^n}, \qquad x \to \infty.$$
(21)

or

$$G_h(x) \sim \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} \left[\sum_{r=0}^{n-1} {n \choose r} 2^r B_r h^{n-r} \right] \frac{1}{x^n}, \qquad x \to \infty.$$
(22)

Remark 2. As a special case at h = 1, we obtain

$$G(x) \sim \frac{1}{x} + \sum_{n=2}^{\infty} \frac{(-1)^{n+1} 2^n}{n} \left[B_r\left(\frac{1}{2}\right) - B_r \right] \frac{1}{x^n}, \qquad x \to \infty$$

and using the identities [1]

$$B_n\left(\frac{1}{2}\right) = \left(2^{1-n} - 1\right)B_n, \qquad n = 0, 1, 2, \dots$$

and

$$B_{2n+1} = 0, \qquad n = 1, 2, \dots$$

then we get the asymptotic series (9).

In [12], Mahmoud and Agarwal studied the completely monotonic property of the function $G(x) - \frac{s}{x^r}$ for different values of the parameter s by the motivation of Mortici results [17] about Psi function. In the following result, we will generalize this result to the function $G_h(x)$.

Lemma 3.2. The functions

$$\chi_{s,1}(x,h) = G_h(x) - \frac{s}{x} \qquad s \le h; \ x > 0; \ 0 < h < 2,$$
(23)

and

$$\chi_{s,r}(x,h) = G_h(x) - \frac{s}{x^r} \qquad s < 0; \ x > 0; \ 0 < h < 2; \ r = 2, 3, 4, \dots$$
(24)

are strictly completely monotonic.

Proof. Using the relation (15) and the known formula

$$(r-1)! x^{-m} = \int_0^\infty v^{m-1} e^{-xv} dv, \qquad m \in \mathbb{N}$$
 (25)

we get

$$(-1)^{n}\chi_{s,r}^{(n)}(x,h) = \int_{0}^{\infty} \phi_{h,s}(r,t) \frac{t^{n}e^{-xt}}{e^{2t}-1} dt, \qquad n = 0, 1, 2, 3, \dots$$
(26)

where

$$\phi_{h,s}(r,t) = 2\left(e^{2t} - e^{(2-h)t}\right) - \frac{s t^{r-1}}{(r-1)!}\left(e^{2t} - 1\right).$$

Then

$$\phi_{h,s}(r,t) = \sum_{k=1}^{\infty} \frac{2^{k+1} t^k}{k!} P_{h,s}(r,t),$$

where

$$P_{h,s,k}(r,t) = 1 - \left(1 - \frac{h}{2}\right)^k - \frac{s}{2(r-1)!}t^{r-1}.$$

Firstly, if r = 1, we obtain

$$P_{h,s,k}(1,t) = 1 - \left(1 - \frac{h}{2}\right)^k - \frac{s}{2} > 0 \quad \text{iff} \quad \frac{s}{2} \le 1 - \left(1 - \frac{h}{2}\right)^k \qquad k = 1, 2, 3, \dots$$

But

$$\frac{h}{2} \le 1 - \left(1 - \frac{h}{2}\right)^k \qquad 0 < h < 2; \ k = 1, 2, 3, \dots$$

and thus, $\phi_{h,s}(1,t) > 0$ for all $t \ge 0$ iff $s \le h$. Secondly, when r = 2, 3, 4, ..., then $P_{h,s,k}(r,t)$ is increasing as a function of t if s < 0 with $P_{h,s,k}(r,0) = 1 - \left(1 - \frac{h}{2}\right)^k > 0$ for 0 < h < 2 and k = 1, 2, 3, Thus $\phi_{h,s}(r,t) > 0$ for all $t \ge 0, r = 2, 3, ...$ iff s < 0.

As a result of the strictly completely monotonicity of the function $\chi_{s,1}(x,h)$ and the relation (22), we obtain

$$\chi_{s,1}(x,h) > \lim_{x \to \infty} \left(\chi_{s,1}(x,h) \right) = 0, \qquad s \le h.$$

Hence, we have the following result:

Corollary 3.3. The following inequality holds

$$G_h(x) > \frac{h}{x}, \qquad x > 0; \ 0 < h < 2.$$
 (27)

4 Some Bounds of the function $G_h(x)$.

Lemma 4.1.

$$G_h(x) < \frac{2}{x} + \frac{h(2-h)}{2x^2}, \qquad x > 0; \ 0 < h < 2.$$
 (28)

Proof. By using the formulas (15) and (25), we get for x > 0 that

$$\begin{aligned} G_h(x) - \frac{2}{x} - \frac{h(2-h)}{2x^2} &= \int_0^\infty \left(2\left(e^{2t} - e^{(2-h)t}\right) - 2\left(e^{2t} - 1\right) - \frac{h(2-h)}{2}\left(e^{2t} - 1\right)t \right) \frac{e^{-xt}}{e^{2t} - 1}dt \\ &= \int_0^\infty \left(2\left(1 - e^{(2-h)t}\right) - \frac{h(2-h)}{2}\left(e^{2t} - 1\right)t \right) \frac{e^{-xt}}{e^{2t} - 1}dt \\ &< 0 \quad \text{for } 0 < h < 2. \end{aligned}$$

Theorem 1.

$$G_h(x) < \frac{h}{x} + \frac{h(2-h)}{2x^2}, \qquad x > 0; \ 1 \le h < 2.$$
 (29)

Proof. Using the two formulas (15) and (25), we have

$$G_h(x) - \frac{h}{x} - \frac{h(2-h)}{2x^2} = \int_0^\infty \rho_h(t) \frac{e^{-xt}}{e^{2t} - 1} dt,$$

where

$$\rho_h(t) = 2\left(e^{2t} - e^{(2-h)t}\right) - h\left(e^{2t} - 1\right) - \frac{h(2-h)}{2}\left(e^{2t} - 1\right)t \qquad t > 0$$

Then

$$\rho_h''(t) = 2(h-2)e^{(2-h)t}Q_h(t)$$

with

$$Q_h(t) = 2 - h + e^{ht}(h - 2 + ht).$$

The function $Q_h(t)$ is convex function with minimum value at $t_0 = \frac{1-h}{h}$, which is non positive for $1 \le h < 2$ and $Q_h(0) = 0$. Hence $Q_h(t) > 0$ for $1 \le h < 2$. Hence $\rho_h(t)$ is concave for $1 \le h < 2$ and its has maximum value at t = 0. Then

$$\rho_h(t) < 0, \qquad 1 \le h < 2; \ t > 0.$$

Then the function $G_h(x) - \frac{h}{x} - \frac{h(2-h)}{2x^2}$ is strictly increasing function for $1 \le h < 2$ and x > 0 and using the asymptotic expansion (22), we get

$$\lim_{x \to \infty} \left(G_h(x) - \frac{h}{x} - \frac{h(2-h)}{2x^2} \right) = 0,$$

which complete the proof.

Remark 3. In case of h = 1, the inequality (29) will prove the right-hand side of the inequality (10).

To obtain our next result, we will apply the following monotone form of L'Hôpital's rule [10] (see also [24] and [31]).

Theorem 2. Let $-\infty < \alpha < \beta < \infty$ and $L, U : [\alpha, \beta] \to \mathbb{R}$ be continuous on $[\alpha, \beta]$ and differentiable on (α, β) . Let $U'(x) \neq 0$ on (α, β) . If L'(x)/U'(x) is increasing (decreasing) on (α, β) , then so are

$$\frac{L(x) - L(\alpha)}{U(x) - U(\alpha)} \quad and \quad \frac{L(x) - L(\beta)}{U(x) - U(\beta)}.$$
(30)

If L'(x)/U'(x) is strictly monotone, then the monotonicity in the conclusion is also strict.

Theorem 3.

$$G_h(x) > \frac{h}{x} + \frac{h(2-h)}{2(x^2+3h^2)}, \qquad x > 0; \ 0 < h < 2.$$
(31)

Proof. Using the two formulas (15) and (25) and the Laplace transformation of the sine function, we get

$$G_h(x) - \frac{h}{x} - \frac{h(2-h)}{2(x^2+3h^2)} = \int_0^\infty \xi_h(t) \frac{e^{-xt}}{6(e^{2t}-1)} dt,$$

where

$$\xi_h(t) = 6\left(-2e^{2t} - e^{(2+h)t}(-2+h) + he^{ht}\right) + \sqrt{3}e^{ht}\left(-1 + e^{2t}\right)\left(-2+h\right)\sin\left(\sqrt{3}ht\right)$$

Now consider the function

$$\tau_h(t) = \frac{2\sqrt{3}e^{-ht} \left(-2e^{2t} - e^{(2+h)t}(-2+h) + he^{ht}\right)}{(-1+e^{2t}) (2-h)} \qquad t > 0; \ 0 < h < 2.$$

The function

$$\frac{2\sqrt{3}\frac{d}{dt}\left(e^{-ht}\left(-2e^{2t}-e^{(2+h)t}(-2+h)+he^{ht}\right)\right)}{\frac{d}{dt}\left(\left(-1+e^{2t}\right)(2-h)\right)} = 2\sqrt{3}e^{-ht}(-1+e^{ht})$$

is increasing function for t > 0. Using the monotone form of L'Hôpital's rule, we get that the function $\tau_h(t)$ is increasing. Similarly, the function

$$H_h(t) = \frac{\tau_h(t)}{\sqrt{3}ht}, \qquad t > 0; \ 0 < h < 2$$

is increasing function and

$$\lim_{t \to \infty} H_h(t) = 1.$$

Then

$$2\sqrt{3}e^{-ht}\left(-2e^{2t} - e^{(2+h)t}(-2+h) + he^{ht}\right) > ht\left(-1 + e^{2t}\right)(2-h), \qquad t > 0; \ 0 < h < 2$$

and using Jordan's inequality

$$\frac{2z}{\pi} \le \sin z \le z, \qquad x \in [0, \pi/2]$$

we have

$$2\sqrt{3}e^{-ht}\left(-2e^{2t} - e^{(2+h)t}(-2+h) + he^{ht}\right) > ht\left(-1 + e^{2t}\right)(2-h)\sin\left(\sqrt{3}ht\right), \qquad t > 0; \ 0 < h < 2$$

Hence

 $\xi_h(t) > 0, \qquad t > 0; \ 0 < h < 2.$

Then the function $G_h(x) - \frac{h}{x} - \frac{h(2-h)}{2(x^2+3h^2)}$ is strictly decreasing function for $0 \le h < 2$ and x > 0. Also, using the asymptotic expansion (22), we get

$$\lim_{x \to \infty} \left(G_h(x) - \frac{h}{x} - \frac{h(2-h)}{2(x^2 + 3h^2)} \right) = 0,$$

which complete the proof.

Remark 4. In case of h = 1, the inequality (31) will prove the left-hand side of the inequality (10).

Remark 5. Using the inequalities (28), (29) and (31) with the relation (19), we get the following estimations

$$\frac{1}{2x} + \frac{2-h}{4(x^2+3h^2)} < \sum_{n=0}^{\infty} \frac{1}{(x+2n)(x+h+2n)} < \frac{1}{2x} + \frac{2-h}{4x^2}, \qquad x > 0; \ 1 \le h < 2$$

and

$$\frac{1}{2x} + \frac{2-h}{4(x^2+3h^2)} < \sum_{n=0}^{\infty} \frac{1}{(x+2n)(x+h+2n)} < \frac{1}{hx} + \frac{2-h}{4x^2}, \qquad x > 0; \ 0 \le h < 2.$$

References

- [1] M. Abramowitz, I. A. Stegun (Eds.), Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables, Dover, New York, 1965.
- [2] H. Alzer, On some inequalities for the gamma and psi function, Math. Comput., 66, 217, 373-389, 1997.
- [3] G. E. Andrews, R.Askey and R.Roy, Special Functions, Cambridge Univ. Press, 1999.

- [4] T. Burić, N. Elezović and L. Vukšić, Appell polynomials and asymptotic expansions, Mediterranean J. Math., to appear 2015, DOI 10.1007/s00009-015-0529-z.
- [5] E. T. Copson, Asymptotic expansions, Cambridge University Press, 1965.
- [6] N. Elezović, Asymptotic expansions of gamma and related functions, binomial coefficients, inequalities and means, Journal of Mathematical Inequalities, Vol. 9, N. 4, 1001-1054, 2015.
- [7] A. Erdélyi et al., Higher Transcendental Functions Vol. I-III, California Institute of Technology Bateman Manuscript Project, 1953-1955 McGraw-Hill Inc., reprinted by Krieger Inc. 1981.
- [8] B.-N. Guo and F. Qi, A class of completely monotonic functions involving divided differences of the psi and tri-gamma functions and some applications, J. Korean Math. Soc. 48, 655-667, 2011.
- [9] B.-N. Guo and F. Qi, Sharp inequalities for the psi function and harmonic numbers, Analysis–International mathematical journal of analysis and its applications 34, no. 2, 201-208, 2014.
- [10] G. H. Hardy, J. E. Littlewood and G. Pólya, Inequalities, Cambridge Univ. Press, 1959.
- [11] V. Kac and Pokman Cheung, Quantum Calculus, Springer-Verlag, 2002.
- [12] M. Mahmoud and R. P. Agarwal, Bounds for Bateman's G-function and its applications, Georgian Mathematical Journal, To appear 2016.
- [13] M. Mahmoud, Some properties of a function related to a sequence originating from computation of the probability of intersecting between a plane couple and a convex body, Submitted for publication.
- [14] M. Mahmoud and H. Almuashi, On some inequalities of the Bateman's G-function, Submitted for publication.
- [15] M. Mahmoud, A. Talat and H. Moustafa, Some approximations of the Bateman's G-function, Submitted for publication.
- [16] M. Mansour, On quicker convergence towards Euler's constant, J. Comput. Anal. Appl. 17, No. 4, 632-638, 2014.
- [17] C. Mortici, A sharp inequality involving the psi function, Acta Universitatis Apulensis, 41-45, 2010.
- [18] C. Mortici, Estimating gamma function in terms of digamma function, Math. Comput. Model., 52, no. 5-6, 942-946, 2010.
- [19] C. Mortici, New approximation formulas for evaluating the ratio of gamma functions. Math. Comp. Modell. 52(1-2), 425-433, 2010.
- [20] C. Mortici, Accurate estimates of the gamma function involving the psi function, Numer. Funct. Anal. Optim., 32, no. 4, 469-476, 2011.

- [21] K. Oldham, J. Myland and J. Spanier, An Atlas of Functions, 2nd edition. Springer, 2008.
- [22] F. W. J. Olver (ed.), D. W. Lozier (ed.), R. F. Boisvert (ed.) and C. W. Clark (ed.), NIST Handbook of Mathematical Functions, Cambridge University Press, Cambridge, 2010.
- [23] A. P. Prudnikov, Yu. A. Brychkov and O. I. Marichev, Integrals and Series: More Special Functions, Vol. 3, Gordon and Breach Science Publishers, New York, 1990.
- [24] I. Pinelis, L'Hospital rules for monotonicity and the Wilker-Anglesio inequality, Amer. Math. Monthly 111(10), 905-909, 2004.
- [25] F. Qi, R.-Q. Cui, C.-P. Chen and B.-N. Guo, Some completely monotonic functions involving polygamma functions and an application, Journal of Mathematical Analysis and Applications 310, no. 1, 303-308, 2005.
- [26] F. Qi and B.-N. Guo, Completely monotonic functions involving divided differences of the diand tri-gamma functions and some applications, Commun. Pure Appl. Anal. 8, 1975-1989, 2009.
- [27] F. Qi and B.-N. Guo, Necessary and sufficient conditions for functions involving the tri- and tetra-gamma functions to be completely monotonic, Adv. in Appl. Math. 44, 71-83, 2010.
- [28] F. Qi and Q.-M. Luo, Bounds for the ratio of two gamma functions: from Wendel's asymptotic relation to Elezović-Giordano-Pečarić's theorem, Journal of Inequalities and Applications 2013, 2013:542, 20 pages.
- [29] F. Qi, Bounds for the ratio of two gamma functions, J. Inequal. Appl. 2010 (2010), Article ID 493058, 84 pages.
- [30] S.-L. Qiu and M. Vuorinen, Some properties of the gamma and psi functions with applications, Math. Comp., 74, no. 250, 723-742, 2004.
- [31] J. Sándor, Sharp Cusa-Huygens and related inequalities, Notes on Number Theory and Discrete Mathematics Vol. 19, No. 1, 50-54, 2013.
- [32] M. A. Shpota and H. M. Srivastava, The Clausenian hypergeometric function $_3F_2$ with unit argument and negative integral parameter differences, Applied Mathematics and Computation Vol. 259, 819-827, 2015.