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Abstract We discuss the Adams Spectral Sequence for R-modules based
on commutative localized regular quotient ring spectra over a commutative
S -algebra R in the sense of Elmendorf, Kriz, Mandell, May and Strickland.
The formulation of this spectral sequence is similar to the classical case and
the calculation of its E2 -term involves the cohomology of certain ‘brave
new Hopf algebroids’ ER∗ E . In working out the details we resurrect Adams’
original approach to Universal Coefficient Spectral Sequences for modules
over an R ring spectrum.

We show that the Adams Spectral Sequence for SR based on a commutative
localized regular quotient R ring spectrum E = R/I[X−1] converges to the
homotopy of the E -nilpotent completion

π∗L̂
R

ESR = R∗[X−1]Î∗ .

We also show that when the generating regular sequence of I∗ is finite,
L̂
R

ESR is equivalent to LRE SR , the Bousfield localization of SR with respect
to E -theory. The spectral sequence here collapses at its E2 -term but it does
not have a vanishing line because of the presence of polynomial generators
of positive cohomological degree. Thus only one of Bousfield’s two standard
convergence criteria applies here even though we have this equivalence. The
details involve the construction of an I -adic tower

R/I ←− R/I2 ←− · · · ←− R/Is ←− R/Is+1 ←− · · ·

whose homotopy limit is L̂
R

ESR . We describe some examples for the moti-
vating case R = MU .
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Erratum

While this paper was in e-press, the authors discovered that the original versions
of Theorems 6.3 and 6.4 were incorrect since they did not assume that the
regular sequence uj was finite. With the agreement of the Editors, we have
revised this version to include the appropriate finiteness assumptions. We have
also modified the Abstract and Introduction to reflect this and in Section 7
have replaced Bousfield localizations LRE X by E -nilpotent completions L̂

R

EX .
As far as we are aware, there are no further problems arising from this mistake.

Andrew Baker and Andrey Lazarev 9 May 2001

Introduction

We consider the Adams Spectral Sequence for R-modules based on localized
regular quotient ring spectra over a commutative S -algebra R in the sense
of [11, 16], making systematic use of ideas and notation from those two sources.
This work grew out of a preprint [4] and the work of [6]; it is also related to
ongoing collaboration with Alain Jeanneret on Bockstein operations in cohom-
ology theories defined on R-modules [7].

One slightly surprising phenomenon we uncover concerns the convergence of the
Adams Spectral Sequence based on E = R/I[X−1], a commutative localized
regular quotient of a commutative S -algebra R. We show that the spectral
sequence for π∗SR collapses at E2 , however for r > 2, Er has no vanishing
line because of the presence of polynomial generators of positive cohomological
degree which are infinite cycles. Thus only one of Bousfield’s two convergence
criteria [10] (see Theorems 2.3 and 2.4 below) apply here. Despite this, when
the generating regular sequence of I∗ is finite, the spectral sequence converges
to π∗ LRE SR , where LRE is the Bousfield localization functor with respect to
E -theory on the category of R-modules and

π∗ LRE SR = R∗[X−1]Î∗ ,

the I∗ -adic completion of R∗[X−1]; we also show that in this case LRE SR '
L̂
R

ESR , the E -nilpotent completion of SR . In the final section we describe some
examples for the important case of R = MU , leaving more delicate calculations
for future work.

To date there seems to have been very little attention paid to the detailed ho-
motopy theory associated with the category of R-modules, apart from general
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results on Bousfield localizations and Wolbert’s work on K -theoretic localiza-
tions in [11, 19]. We hope this paper leads to further work in this area.
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Background assumptions, terminology and technol-

ogy

We work in a setting based on a good category of spectra S such as the category
of L-spectra of [11]. Associated to this is the subcategory of S -modules MS

and its derived homotopy category DS .

Throughout, R will denote a commutative S -algebra in the sense of [11]. There
is an associated subcategory MR of MS consisting of the R-modules, and its
derived homotopy category DR and our homotopy theoretic work is located in
the latter. Because we are working in DR , we frequently make constructions
using cell R-modules in place of non-cell modules (such as R itself).

For R-modules M and N , we set

MR
∗ N = π∗M∧

R
N, N∗RM = DR(M,N)∗,

where DR(M,N)n = DR(M,ΣnN).

We will use the following terminology of Strickland [16]. If the homotopy ring
R∗ = π∗R is concentrated in even degrees, a localized quotient of R will be an
R ring spectrum of the form R/I[X−1]. A localized quotient is commutative if
it is a commutative R ring spectrum. A localized quotient R/I[X−1] is regular
if the ideal I∗ /R∗ is generated by a regular sequence u1, u2, . . . say. The ideal
I∗ / R∗ extends to an ideal of R∗[X−1] which we will again denote by I∗ ; then
as R-modules, R/I[X−1] ' R[X−1]/I .

We will make use of the language and ideas of algebraic derived categories of
modules over a commutative ring, mildly extended to deal with evenly graded
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rings and their modules. In particular, this means that chain complexes are
often bigraded (or even multigraded) objects with their first grading being ho-
mological and the second and higher ones being internal.

1 Brave new Hopf algebroids and their cohomology

If E is a commutative R-ring spectrum, the smash product E∧
R
E is also a

commutative R-ring spectrum. More precisely, it is naturally an E -algebra
spectrum in two ways induced from the left and right units

E
∼=−−→ E∧

R
R −→ E∧

R
E ←− E∧

R
R

∼=←−− E.

Theorem 1.1 Let ER∗ E be flat as a left or equivalently right E∗ -module.
Then the following are true. i) (E∗, ER∗ E) is a Hopf algebroid over R∗ . ii)
for any R-module M , ER∗ M is a left ER∗ E -comodule.

Proof This is proved using essentially the same argument as in [1, 15]. The
natural map

E∧
R
M

∼=−−→ E∧
R
R∧
R
M −→ E∧

R
E∧
R
M

induces the coaction

ψ : ER∗ M −→ π∗E∧
R
E∧
R
M

∼=−−→ ER∗ E⊗
E∗
ER∗ M,

which uses an isomorphism

π∗E∧
R
E∧
R
M ∼= ER∗ E⊗

E∗
ER∗ M.

that follows from the flatness condition.

For later use we record a general result on the Hopf algebroids associated with
commutative regular quotients. A number of examples for the case R = MU
are discussed in Section 7.

Proposition 1.2 Let E = R/I be a commutative regular quotient where I∗
is generated by the regular sequence u1, u2, . . . . Then as an E∗ -algebra,

ER∗ E = ΛE∗(τi : i > 1),
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On the Adams Spectral Sequence for R-modules 177

where deg τi = deg ui + 1. Moreover, the generators τi are primitive with
respect to the coaction, and ER∗ E is a primitively generated Hopf algebra over
E∗ .

Dually, as an E∗ -algebra,

E∗RE = Λ̂E∗(Q
i : i > 1),

where Qi is the Bockstein operation dual to τi with degQi = deg ui + 1
and Λ̂E∗( ) indicates the completed exterior algebra generated by the anti-
commuting Qi elements.

The proof requires the Künneth Spectral Sequence for R-modules of [11],

E2
p,q = TorR∗p,q(E∗, E∗) =⇒ ERp+qE.

This spectral sequence is multiplicative, however there seems to be no published
proof in the literature. At the suggestion of the referee, we indicate a proof of
this due to M. Mandell and which originally appeared in a preprint version
of [12].

Lemma 1.3 If A and B are R ring spectra then the Künneth Spectral Se-
quence

TorR∗(A∗, B∗) =⇒ AR∗ B = π∗A∧
R
B

is a spectral sequence of differential graded R∗ -algebras.

Sketch proof To deal with the multiplicative structure we need to modify the
original construction given in Part IV section 5 of [11]. We remind the reader
that we are working in the derived homotopy category DR .

Let

· · · −→ Fp,∗
fp−→ Fp−1,∗ −→ · · ·

f1−→ F0,∗
f0−→ A∗ → 0

be an free R∗ -resolution of A∗ . Using freeness, we can choose a map of com-
plexes

µ : F∗,∗⊗
R∗
F∗,∗ −→ F∗,∗

which lifts the multiplication on A∗ .

For each p > 0 let Fp be a wedge of sphere R-modules satisfying π∗Fp = Fp,∗ .
Set A′0 = F0 and choose a map ϕ0 : A′0 −→ A inducing f0 in homotopy. If Q0

is the homotopy fibre of ϕ0 then

π∗Q0 = ker f0
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and we can choose a map F1 −→ Q0 for which the composition ϕ′1 : F1 −→
Q0 −→ F0 induces f1 in homotopy. Next take A′1 to be the cofibre of ϕ′1 .
The map ϕ0 has a canonical extension to a map ϕ1 : A′1 −→ A. If Q1 is the
homotopy fibre of ϕ1 then

π∗Σ−1Q1 = ker f1,

and we can find a map F2 −→ ΣQ1 for which the composite map ϕ′2 : F2 −→
Q1 −→ F1 induces f2 in homotopy. We take A′2 to be the cofibre of ϕ′2 and
find that there is a canonical extension of ϕ1 to a map ϕ2 : A′2 −→ A.

Continuing in this way we construct a directed system

A′0 −→ A′1 −→ · · · −→ A′p −→ · · · (1.1)

whose telescope A′ is equivalent to A. Since we can assume that all consecutive
maps are inclusions of cell subcomplexes, there is an associated filtration on A′ .
Smashing this with B we get a filtration on A′∧

R
B and an associated spectral

sequence converging to AR∗ B . The identification of the E2 -term is routine.

Recall that A and therefore A′ are R ring spectra. Smashing the directed
system of (1.1) with itself we obtain a filtration on A′∧

R
A′ ,

A′0∧
R
A′0 −→ · · · −→

⋃
i+j=k

A′i∧
R
A′j −→

⋃
i+j=k+1

A′i∧
R
A′j −→ · · · , (1.2)

where the filtrations terms are unions of the subspectra A′i∧
R
A′j . Proceeding

by induction, we can realize the multiplication map A′∧
R
A′ −→ A′ as a map

of filtered R-modules so that on the cofibres of the filtration terms of (1.2) it
agrees with the pairing µ.

We have constructed a collection of maps A′i∧
R
A′j −→ A′i+j . Using these maps

and the multiplication on B we can now construct maps

A′i∧
R
B∧
R
A′j∧

R
B −→ Ai+j∧

R
B

which induce the required pairing of spectral sequences.

Proof of Proposition 1.2 As in the discussion preceding Proposition 5.1,
making use of a Koszul resolution we obtain

E2
∗,∗ = ΛE∗(ei : i > 1).

The generators have bidegree bideg ei = (1, |ui|), so the differentials

dr : Erp,q −→ Erp−r,q+r−1
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are trivial on the generators ei for dimensional reasons. Together with multi-
plicativity, this shows that spectral sequence collapses, giving

ER∗ E = ΛE∗(τi : i > 1),

where the generator τi has degree deg τi = deg ui + 1 and is represented by ei .

For each i,

(R/ui)R∗ (R/ui) = ΛR∗/(ui)(τ
′
i)

with deg τ ′i = |ui|+ 1. Under the coproduct, τ ′i is primitive for degree reasons.
By comparing the two Künneth Spectral Sequences we find that τi ∈ ER∗ E
can be chosen to be the image of τ ′i under the evident ring homomorphism
(R/ui)R∗ (R/ui) −→ ER∗ E , which is actually a morphism of Hopf algebroids
over R∗ . Hence τi is coaction primitive in ER∗ E .

For E∗RE , we construct the Bockstein operation Qi using the composition

R/ui −→ Σ|ui|+1R −→ Σ|ui|+1R/ui

to induce a map E −→ Σ|ui|+1E , then use the Koszul resolution to determine
the Universal Coefficient Spectral sequence

Ep,q2 = Extp,qR∗(E∗, E∗) =⇒ Ep+qR E

which collapses at its E2 -term. Further details on the construction of these
operations appear in [16, 7].

Corollary 1.4 i) The natural map E∗ = ER∗ R −→ ER∗ E induced by the unit
R −→ R/I is a split monomorphism of E∗ -modules. ii) ER∗ E is a free
E∗ -module.

Proof An explicit splitting as in (i) is obtained using the multiplication map
E∧
R
E −→ E which induces a homomorphism of E∗ -modules ER∗ E −→ E∗ .

We will use Coext to denote the cohomology of such Hopf algebroids rather than
Ext since we will also make heavy use of Ext groups for modules over rings;
more details of the definition and calculations can be found in [1, 15]. Recall that
for ER∗ E -comodules L∗ and M∗ where L∗ is E∗ -projective, Coexts,t

ER∗ E
(L∗,M∗)

can be calculated as follows. Consider a resolution

0→M∗ −→ J0,∗ −→ J1,∗ −→ · · · −→ Js,∗ −→ · · ·
in which each Js,∗ is a summand of an extended comodule

ER∗ E �
E∗
Ns,∗,
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for some E∗ -module Ns,∗ . Then the complex

0→ Hom∗ER∗ E(L∗, J0,∗) −→ Hom∗ER∗ E(L∗, J1,∗)

−→ · · · −→ Hom∗ER∗ E(L∗, Js,∗) −→ · · ·
has cohomology

Hs(Hom∗ER∗ E(L∗, J∗,∗)) = Coexts,∗
ER∗ E

(L∗,M∗).

The functors Coexts,∗
ER∗ E

(L∗, ) are the right derived functors of the left exact
functor

M∗  Hom∗ER∗ E(L∗,M∗)

on the category of left ER∗ E -comodules. By analogy with [15], when L∗ = E∗
we have

Coexts,∗
ER∗ E

(E∗,M∗) = Cotors,∗
ER∗ E

(E∗,M∗).

2 The Adams Spectral Sequence for R-modules

We will describe the E -theory Adams Spectral Sequence in the homotopy cat-
egory of R-module spectra. As in the classical case of sphere spectrum R = S ,
it turns out that the E2 -term is can be described in terms of the functor
CoextER∗ E .

Let L,M be R-modules and E a commutative R-ring spectrum with ER∗ E
flat as a left (or right) E∗ -module.

Theorem 2.1 If ER∗ L is projective as an E∗ -module, there is an Adams Spec-
tral Sequence with

Es,t2 (L,M) = Coexts,t
ER∗ E

(ER∗ L,E
R
∗ M).

Proof Working throughout in the derived category DR , the proof follows that
of Adams [1], with SR ' R replacing the sphere spectrum S . The canonical
Adams resolution of M is built up in the usual way by splicing together the
cofibre triangles in the following diagram.

M

  
@@

@@
@@

@
E∧
R
Moo

$$
II

II
II

E∧
R
E∧
R
Moo

  
BB

BB
BB

BB

oo

E∧
R
M

<<yyyyyy

E∧
R
E∧
R
M

99rrrrrr

The algebraic identification of the E2 -term proceeds as in [1].
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In the rest of this paper we will have L = SR ' R, and set

Es,t2 (M) = Coexts,t
ER∗ E

(E∗, ER∗ M).

We will refer to this spectral sequence as the Adams Spectral Sequence based
on E for the R-module M .

To understand convergence of such a spectral sequence we use a criterion of
Bousfield [10, 14]. For an R-module M , let DsM (s > 0) be the R-modules
defined by D0M = M and taking DsM to be the fibre of the natural map

Ds−1M ∼= R∧
R
Ds−1M −→ E∧

R
Ds−1M.

Also for each s > 0 let KsM be the cofibre of the natural map DsM −→ M .
Then the E -nilpotent completion of M is the homotopy limit

L̂
R

EM = holim
s

KsM.

Remark 2.2 It is easy to see that if M −→ N is a map of R-modules which
is an E -equivalence, then for each s, there is an equivalence KsM −→ KsN ,
hence

L̂REM ' L̂REN.

Theorem 2.3 If for each pair (s, t) there is an r0 for which Es,tr (M) = Es,t∞ (M)
whenever r > r0 , then the Adams Spectral Sequence for M based on E con-
verges to π∗L̂REM .

Although there is a natural map LREM −→ L̂REM , it is not in general a weak
equivalence; this equivalence is guaranteed by another result of Bousfield [10].

Theorem 2.4 Suppose that there is an r1 such that for every R-module N
there is an s1 for which Es,tr (N) = 0 whenever r > r1 and s > s1 . Then for
every R-module M the Adams Spectral Sequence for M based on E converges
to π∗LREM and

LREM ' L̂REM.

3 The Universal Coefficient Spectral Sequence for
regular quotients

Let R be a commutative S -algebra and E = R/I a commutative regular quo-
tient of R, where u1, u2, . . . is a regular sequence generating I∗ / R∗ .
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We will discuss the existence of the Universal Coefficient Spectral Sequence

E2
r,s = Extr,sE∗(E

R
∗ M,N∗) =⇒ N∗RM, (3.1)

where M and N are R-modules and N is also an E -module spectrum in MR .
The classical prototype of this was described by Adams [1] (who generalized a
construction of Atiyah [2] for the Künneth Theorem in K -theory) and used in
setting up the E -theory Adams Spectral Sequence. It is routine to verify that
Adams’ approach can be followed in DR . We remark that if E were a commu-
tative R-algebra then the Universal Coefficient Spectral Sequence of [11] would
be applicable but that condition does not hold in the generality we require.

The existence of such a spectral sequence depends on the following conditions
being satisfied.

Conditions 3.1 E is a homotopy colimit of finite cell R-modules Eα whose
R-Spanier Whitehead duals DREα = FR(Eα, R) satisfy the two conditions (A)
ER∗ DREα is E∗ -projective; (B) the natural map

N∗RM −→ HomE∗(E
R
∗ M,N∗)

is an isomorphism.

Theorem 3.2 For a commutative regular quotient E = R/I of R, E can be
expressed as a homotopy colimit of finite cell R-modules satisfying the condi-
tions of Condition 3.1. In fact we can take ER∗ DREα to be E∗ -free.

The proof will use the following Lemma.

Lemma 3.3 Let u ∈ R2d be non-zero divisor in R∗ . Suppose that P is an
R-module for which ER∗ P is E∗ -projective and for an E -module R-spectrum
N ,

N∗RP
∼= HomE∗(E

R
∗ P,N∗).

Then ER∗ P∧
R
R/u is E∗ -projective and

N∗RP∧
R
R/u ∼= HomE∗(E

R
∗ P∧

R
R/u,N∗).

Proof Smashing E∧
R
P with the cofibre sequence (3.2) and taking homotopy,

we obtain an exact triangle

ER∗ P
u

// ER∗ P

zztt
tt
tt
tt
t

ER∗ P∧
R
R/u

ddJJJJJJJJJ
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As multiplication by u induces the trivial map in ER -homology, this is actually
a short exact sequence of E∗ -modules,

0→ ER∗ P −→ ER∗ P∧
R
R/u −→ ER∗ P → 0

which clearly splits, so ER∗ P∧
R
R/u is E∗ -projective.

In the evident diagram of exact triangles

N∗RP //

��

N∗RP

sshhh
hhh

hhh
hhh

hhh

��

N∗RP∧RR/u

kkVVVVVVVVVVVVVVV

��

HomE∗(ER∗ P,N∗) // HomE∗(ER∗ P,N∗)

tthhh
hhh

hhh

HomE∗(ER∗ P∧
R
R/u,N∗)

jjVVVVVVVVV

the map N∗RP −→ HomE∗(ER∗ P,N∗) is an isomorphism, so

N∗RP∧
R
R/u −→ HomE∗(E

R
∗ P∧

R
R/u,N∗)

is also an isomorphism by the Five Lemma.

Proof of Theorem 3.2 Let u1, u2, . . . be a regular sequence generating I∗ /
R∗ . Using the notation R/u = R/(u), we recall from [16] that

E = hocolim
k

R/u1∧
R
R/u2∧

R
· · · ∧

R
R/uk.

For u ∈ R2d a non-zero divisor, the R∗ -free resolution

0→ R∗ −→ R∗
u−→ R∗/(u)→ 0

corresponds to an R-cell structure on R/u with one cell in each of the dimen-
sions 0 and 2d+ 1. There is an associated cofibre sequence

· · · −→ Σ2dR
u−→ R −→ R/u −→ Σ2d+1R −→ · · · , (3.2)

for which the induced long exact sequence in ER -homology shows that ER∗ R/u
is E∗ -free. The dual DRR/u is equivalent to Σ−(2d+1)R/u, hence R/u is es-
sentially self dual.
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For an E -module spectrum N in DR , there are two exact triangles and mor-
phisms between them,

N∗RR //

��

N∗RR

tthhh
hhh

hhh
hhh

hh

��

N∗RR/u

jjVVVVVVVVVVVVVV

��

HomE∗(E∗,N∗) // HomE∗(E∗,N∗)

tthhh
hhh

hhh

HomE∗(ER∗ R/u,N∗)

jjVVVVVVVVV

The identifications

N∗ ∼= N∗RR ∼= HomE∗(E∗,N∗),

and the Five Lemma imply that

N∗RR/u
∼= HomE∗(E

R
∗ R/u,N∗).

Lemma 3.3 now implies that each of the spectra R/u1∧
R
R/u2∧

R
· · · ∧

R
R/uk satis-

fies conditions (A) and (B).

4 The Adams Spectral Sequence based on a regular
quotient

For an R-module M , let M (s) denote the s-fold R-smash power of M ,

M (s) = M∧
R
M∧

R
· · · ∧

R
M.

If M is an R[X−1]-module, then

M (s) = M ∧
R[X−1]

M ∧
R[X−1]

· · · ∧
R[X−1]

M.

Let E = R/I[X−1] be a localized regular quotient and u1, u2, . . . a regular
sequence generating I∗ . We will discuss the Adams Spectral Sequence based
on E . By Remark 2.2, we can work in the category of R[X−1]-modules and
replace the Adams Spectral Sequence of SR by that of SR[X−1] . To simplify
notation, from now on we will replace R by R[X−1] and therefore assume that
E = R/I is a regular quotient of R.

First we identify the canonical Adams resolution giving rise to the Adams Spec-
tral Sequence based on the regular quotient E = R/I . We will relate this to a
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tower described by the second author [12], but the reader should beware that
his notation for I(s) is Is which we will use for a different spectrum.

There is a fibre sequence I −→ R −→ R/I and a tower of maps of R-modules

R←− I ←− I(2) ←− · · · ←− I(s) ←− I(s+1) ←− · · ·
in which I(s+1) −→ I(s) is the evident composite

I(s+1) −→ R∧
R
I(s) = I(s).

Setting R/I(s) = cofibre(I(s) −→ R), we obtain a tower

R/I ←− R/I(2) ←− · · · ←− R/I(s) ←− R/I(s+1) ←− · · ·
which we will refer to as the external I -adic tower. The next result is immediate
from the definitions.

Proposition 4.1 We have

D0SR = R, DsSR = I(s), (s > 1),

and

KsSR = R/I(s+1) (s > 0).

It is not immediately clear how to determine the limit

L̂RESR = holim
s

R/I(s).

Instead of doing this directly, we will adopt an approach suggested by Bous-
field [10], making use of another E -nilpotent resolution, associated with the
internal I -adic tower to be described below.

In order to carry this out, we first need to understand convergence. We will
see that the condition of Theorem 2.3 is satisfied for a commutative regular
quotient E = R/I .

Proposition 4.2 The E2 -term of the E -theory Adams Spectral Sequence for
π∗SR is

Es,t2 (SR) = Coexts,t
ER∗ E

(E∗, E∗) = E∗[Ui : i > 1],

where bidegUi = (1, |ui| + 1). Hence this spectral sequence collapses at its
E2 -term

E∗,∗2 (SR) = E∗,∗∞ (SR)

and converges to π∗L̂RESR .
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Proof By Proposition 1.2,

ER∗ E = ΛR∗(τi : i > 1),

with generators τi which are primitive with respect to the coproduct of this
Hopf algebroid. The determination of

Coext∗,∗
ER∗ E

(E∗, E∗)

is now standard and the differentials are trivial for degree reasons.

Induction on the number of cells now gives

Corollary 4.3 For a finite cell R-module M , the E -theory Adams Spectral

Sequence for π∗M converges to π∗L̂
R

EM .

5 The internal I -adic tower

Suppose that I∗ / R∗ is generated by a regular sequence u1, u2, . . . . We will
often indicate a monomial in the ui by writing u(i1,... ,ik) = ui1 · · · uik . We will
write E = R/I and make use of algebraic results from [5] which we now recall
in detail.

For s > 0, we define the R-module Is/Is+1 to be the wedge of copies of E
indexed on the distinct monomials of degree s in the generators ui . For an
explanation of this, see Corollary 5.4.

We will show that there is an (internal) I -adic tower of R-modules

R/I ←− R/I2 ←− · · · ←− R/Is ←− R/Is+1 ←− · · ·

so that for each s > 0 the fibre sequence

R/Is ←− R/Is+1 ←− Is/Is+1

corresponds to a certain element of

Ext1
R∗(R∗/I

s
∗ , I

s
∗/I

s+1
∗ )

in E2 -term of the Universal Coefficient Spectral Sequence of [11] converging to
DR(R/Is, Is/Is+1)∗ . On setting Is = fibre(R −→ R/Is) we obtain another
tower

R←− I ←− I2 ←− · · · ←− Is ←− Is+1 ←− · · ·
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which is analogous to the external version of [12]. A related construction ap-
peared in [3, 8] for the case of R = Ê(n) (which was shown to admit a not
necessarily commutative S -algebra structure) and I = In .

Underlying our work is the classical Koszul resolution

K∗,∗ −→ R∗/I∗ → 0,

where

K∗,∗ = ΛR∗(ei : i > 1),

which has grading given by deg ei = |ui|+ 1 and differential

d ei = ui,

d(xy) = (dx)y + (−1)rxd y (x ∈ Kr,∗, y ∈ Ks,∗).

Hence (K∗,∗,d) is an R∗ -free resolution of R∗/I∗ which is a differential graded
R∗ -algebra. Tensoring with R∗/I∗ and taking homology leads to a well known
result.

Proposition 5.1 As an R∗/I∗ -algebra,

TorR∗∗,∗(R∗/I∗, R∗/I∗) = ΛR∗/I∗(ei : i > 1).

Corollary 5.2 TorR∗∗,∗(R∗/I∗, R∗/I∗) is a free R∗/I∗ -module.

This is of course closely related to the topological result Proposition 1.2.

Now returning to our algebraic discussion, we recall the following standard
result.

Lemma 5.3 ([13], Theorem 16.2) For s > 0, Is∗/I
s+1
∗ is a free R∗/I∗ -module

with a basis consisting of residue classes of the distinct monomials u(i1,... ,is) of
degree s.

Corollary 5.4 For s > 0, there is an isomorphism of R∗ -modules

π∗I
s/Is+1 = Is∗/I

s+1
∗ .

Hence π∗Is/Is+1 is a free R∗/I∗ -module with a basis indexed on the distinct
monomials u(i1,... ,is) of degree s.
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Let U(s)
∗ be the free R∗ -module on a basis indexed on the distinct monomials

of degree s in the ui . For s > 0, set

Q(s)
∗,∗ = K∗,∗⊗

R∗
U(s)
∗ , d(s)

Q = d⊗1,

and also for x ∈ K∗,∗ write

xũ(i1,... ,is) = x⊗ u(i1,... ,is).

There is an obvious augmentation

Q(s)
0,∗ −→ Is∗/I

s+1
∗ .

Lemma 5.5 For s > 1,

Q(s)
∗,∗

ε(s)−−→ Is∗/I
s+1
∗ → 0

is a resolution by free R∗ -modules.

Given a complex (C∗,∗,dC), the k -shifted complex (C[k]∗,∗,dC[k]) is defined
by

C[k]n,∗ = Cn+k,∗, dC[k] = (−1)k dC .

There is a morphism of chain complexes

∂(s+1) : Q(s)
∗,∗ −→ Q(s+1)[−1]∗,∗;

∂(s+1)ei1 · · · eir ũ(j1,... ,js) =
r∑

k=1

(−1)kei1 · · · êik · · · eir ũ(j1,... ,js).

Using the identification Q(s+1)[−1]n,∗ = Q(s+1)
n−1,∗ , we will often view ∂(s+1) as a

homomorphism

∂(s+1) : Q(s)
∗,∗ −→ Q(s+1)

∗,∗

of bigraded R∗ -modules of degree −1.

There are also external pairings

Q(r)
∗,∗⊗

R∗
Q(s)
∗,∗ −→ Q(r+s)

∗,∗ ;

xũ(i1,... ,is) ⊗ yũ(j1,... ,js) 7−→ xyũ(i1,... ,is,j1,... ,js) (x, y ∈ K∗,∗).

In particular, each Q(r)
∗,∗ is a differential module over the differential graded

R∗ -algebra K(0)
∗,∗ and ∂(s+1) is a K(0)

∗,∗ -derivation.
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Theorem 5.6 For s > 1, there is a resolution

K(s−1)
∗,∗

ε(s−1)

−−−→ R∗/I
s
∗ → 0,

by free R∗ -modules, where

K(s−1)
∗,∗ = Q(0)

∗,∗ ⊕Q(1)
∗,∗ ⊕ · · · ⊕Q(s−1)

∗,∗ ,

and the differential is

d(s−1) = (d(0)
Q , ∂(1) + d(1)

Q , ∂(2) + d(2)
Q , . . . , ∂(s−1) + d(s−1)

Q ).

In fact (K(s−1)
∗,∗ ,d(s−1)) is a differential graded R∗ -algebra which provides a

multiplicative resolution of R∗/Is , with the augmentation given by

ε(s−1)(x0, x1ũi1, . . . , xs−1ũis−1) = x0 + x1ui1 + · · ·+ xs−1uis−1.

The algebraic extension of R∗ -modules

0← R∗/I
s
∗ ←− R∗/Is+1

∗ ←− Is∗/Is+1
∗ ← 0

is classified by an element of

Ext1
R∗(R∗/I

s
∗ , I

s
∗/I

s+1
∗ ) = HomDR∗ (R∗/I

s
∗ , I

s
∗/I

s+1
∗ [−1]),

where HomDR∗ denotes morphisms in the derived category DR∗ of the ring
R∗ [18]. This element is represented by the composite

∂̃
(s)
∗ : K(s−1)

∗,∗
proj−−→ Q(s−1)

∗,∗
∂(s)

−−→ Q(s)[−1]∗,∗. (5.1)

The analogue of the next result for ungraded rings was proved in [5]; the proof
is easily adapted to the graded case.

Proposition 5.7 For each s > 2, the following complex is exact:

TorR∗∗,∗(R∗/I∗, R∗/I∗)
∂

(1)
∗−−→ TorR∗∗,∗(R∗/I∗, I∗/I

2
∗ )

∂
(2)
∗−−→ · · · ∂

(s−1)
∗−−−−→ TorR∗∗,∗(R∗/I∗, I

s−1
∗ /Is∗).

Theorem 5.8 For s > 2,

TorR∗∗,∗(R∗/I∗, R∗/I
s
∗) = R∗/I∗ ⊕ coker ∂(s−1)

∗ .

This is a free R∗/I∗ -module and with its natural R∗/I∗ -algebra structure,
TorR∗∗,∗(R∗/I∗, R∗/Is∗) has trivial products.

Given this algebraic background, we can now construct the I -adic tower.

Algebraic & Geometric Topology, Volume 1 (2001)



190 Andrew Baker and Andrey Lazarev

Theorem 5.9 There is a tower of R-modules

R/I ←− R/I2 ←− · · · ←− R/Is ←− R/Is+1 ←− · · ·

whose maps define fibre sequences

R/Is ←− R/Is+1 ←− Is/Is+1

which in homotopy realise the exact sequences of R∗ -modules

0← R∗/I
s
∗ ←− R∗/Is+1

∗ ←− Is∗/Is+1
∗ ← 0.

Furthermore, the following conditions are satisfied for each s > 1. (i) ER∗ R/Is

is a free E∗ -module and the unit induces a splitting

ER∗ R/I
s = E∗ ⊕ (ker : ER∗ R/I

s −→ E∗);

(ii) the projection map R/Is+1 −→ R/Is induces the zero map

(ker : ER∗ R/I
s+1 −→ E∗) −→ (ker : ER∗ R/I

s −→ E∗);

(iii) the inclusion map js : Is/Is+1 −→ R/Is+1 induces an exact sequence

ER∗ I
s−1/Is

∂
(s)
∗−−→ ER∗ I

s/Is+1 js∗−−→ (ker : ER∗ R/I
s+1 −→ E∗)→ 0.

Proof The proof is by induction on s. Assuming that R/Is exists with the
asserted properties, we will define a suitable map δs : R/Is −→ ΣIs/Is+1 which
induces a fibre sequence of the form

R/Is ←− X(s+1) ←− Is/Is+1, (5.2)

for which π∗X(s+1) = R∗/Is+1
∗ as an R∗ -module.

If M is an R-module which is an E module spectrum, Theorem 3.2 provides
a Universal Coefficient Spectral Sequence

E∗,∗2 = Extp,qE∗(E
R
∗ R/I

s,M∗) =⇒ DR(R/Is,M)p+q.

Since ER∗ R/Is is E∗ -free, this spectral sequence collapses to give

DR(R/Is,M)∗ = Hom∗E∗(E
R
∗ R/I

s,M∗).

In particular, for M = Is/Is+1 ,

DR(R/Is, Is/Is+1)n = Homn
E∗(E

R
∗ R/I

s, Is∗/I
s+1
∗ ).

By (5.1) and Theorem 5.6, there is an element

∂̃
(s)
∗ ∈ Hom0

E∗(E
R
∗ R/I

s, Is∗/I
s+1
∗ [−1]) = Hom1

E∗(E
R
∗ R/I

s, Is∗/I
s+1
∗ ),
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corresponding to an element δs : R/Is −→ ΣIs/Is+1 inducing a fibre sequence
as in (5.2). It still remains to verify that π∗X(s+1) = R∗/Is+1

∗ as an R∗ -module.

For this, we will use the resolutions K(s−1)
∗,∗ −→ R∗/Is∗ → 0 and K∗,∗ −→

R∗/I∗ → 0. These free resolutions give rise to cell R-module structures on
R/Is and E . By [11], the R-module E∧

R
R/Is admits a cell structure with cells

in one-one correspondence with the elements of the obvious tensor product basis
of K∗,∗⊗

R∗
K(s−1)
∗,∗ . Hence there is a resolution by free R∗ -modules

K∗,∗⊗
R∗

K(s−1)
∗,∗ −→ ER∗ R/I

s → 0.

There are morphisms of chain complexes

K(s−1)
∗,∗

ρs−→ K∗,∗⊗
R∗

K(s−1)
∗,∗

δ̃s−→ Q(s)
∗,∗[−1],

where ρs is the obvious inclusion and δ̃s is a chain map lifting ∂̃
(s)
∗ which can

be chosen so that

δ̃s(ei ⊗ x) = 0.

The effect of the composite δ̃sρs on the generator eiũ(j1,... ,js−1) ∈ K(s−1)
1,∗ turns

out to be

∂̃
(s)
∗ eiũ(j1,... ,js−1) = ũ(i,j1,... ,js−1),

while the elements of form ei ⊗ ũ(j1,... ,jk−1) with k < s are annihilated. The
composite homomorphism

K(s−1)
1,∗

δ̃sρs−−→ Q(s)
0,∗[−1] ε1−→ Is∗/I

s+1
∗ [−1]

is a cocycle. There is a morphism of exact sequences

0 ←−−− R∗/Is∗ ←−−− K(s−1)
0,∗ ←−−− K(s−1)

1,∗ ←−−− K(s−1)
2,∗∥∥∥ α0

y α1

y y
0 ←−−− R∗/Is∗ ←−−− R∗/Is+1

∗ ←−−− Is∗/I
s+1
∗ ←−−− 0

where the cohomology class

[α1] ∈ Ext1,∗
R∗

(R∗/Is∗ , I
s
∗/I

s+1
∗ )

represents the extension of R∗ -modules on the bottom row. It is easy to see that
[α1] = [ε1δ̃sρs], hence this class also represents the extension of R∗ -modules

0← R∗/I
s
∗ ←− π∗Xs+1 ←− Is∗/Is+1

∗ ← 0.
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There is a diagram of cofibre triangles

R/Is+1

��

I/Is+1

��

oo oo · · · Is−1/Is+1oo

��

Is/Is+1oo

=

��

R/I

::ttttttttt

I/I2

>>|||||||||

;;xxxxxxxxxx
Is−1/Is

88rrrrrrrrrr

Is/Is+1

and applying ER∗ ( ) we obtain a spectral sequence converging to ER∗ R/I
s+1

whose E2 -term is the homology of the complex

0→ ER∗ R/I
∂

(1)
∗−−→ ER∗ I/I

2 ∂
(2)
∗−−→ ER∗ I

2/I3 −→ · · · ∂
(s)
∗−−→ ER∗ I

s/Is+1 → 0,

where the ∂(k)
∗ are essentially the maps used to compute TorR∗∗ (R∗/I∗, R∗/Is+1

∗ )
in [5]. By Proposition 5.7 and Theorem 5.8, this complex is exact except at the
ends, where we have ker ∂(1)

∗ = E∗ . As a result, this spectral sequence collapses
at E3 giving the desired form for ER∗ R/I

s+1 .

Corollary 5.10 For any E -module spectrum N and s > 1,

N∗RR/I
s ∼= HomE∗(E

R
∗ R/I

s,N∗).

Proof This follows from Theorem 5.9(i).

We will also use the following result.

Corollary 5.11 For s > 1, the natural map

ER∗ R/I
s+1 −→ ER∗ R/I

s,

has image equal to E∗ = ER∗ R.

Proof This follows from Theorem 5.9(ii).

Corollary 5.12 For any E -module spectrum N and s > 1,

colim
s

N∗RR/I
s ∼= N∗RR

∼= N∗.

Proof This is immediate from Corollaries 5.10 and 5.11 since

colim
s

HomE∗(E
R
∗ R/I

s,N∗) ∼= HomE∗(E∗,N∗).
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6 The I -adic tower and Adams Spectral Sequence

Continuing with the notation of Section 5, the first substantial result of this
section is

Theorem 6.1 The I -adic tower

R/I ←− R/I2 ←− · · · ←− R/Is ←− R/Is+1 ←− · · ·

has homotopy limit

holim
s

R/Is ' L̂RESR.

Our approach follows ideas of Bousfield [10] where it is shown that the following
Lemma implies Theorem 6.1.

Lemma 6.2 Let E = R/I . Then the following are true. i) Each R/Is is
E -nilpotent. ii) For each E -nilpotent R-module M ,

colim
s
DR(R/Is,M)∗ = M−∗.

Proof (i) is proved by an easy induction on s > 1. (ii) is a consequence of
Corollary 5.12.

Since the maps R∗/Is+1
∗ −→ R∗/Is∗ are surjective, from the standard exact

sequence for π∗( ) of a homotopy limit we have

π∗L̂RESR = lim
s
R∗/I

s
∗ . (6.1)

We can generalize this to the case where E is a commutative localized regular
quotient.

Theorem 6.3 Let E = R/I[X−1] be a commutative localized regular quotient
of R. Then

π∗L̂RESR = R∗[X−1]Î∗ = lim
s
R∗[X−1]/Is∗ .

If the regular sequence generating I∗ is finite, then the natural map SR −→
L̂RESR is an E -equivalence, hence

LRESR ' L̂RESR,

π∗LRESR = R∗[X−1]Î∗ .
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Proof The first statement is easy to verify.

By Remark 2.2, to simplify notation we may as well replace R by R[X−1] and
so assume that E = R/I is a commutative regular quotient of R.

Using the Koszul complex (ΛR∗(ej : j),d), we see that TorR∗∗,∗(E∗, (R∗)Î∗) is the
homology of the complex

ΛR∗(ej : j)⊗
R∗

(R∗)Î∗ = Λ(R∗ )̂I∗
(ej : j)

with differential d′ = d⊗1. Since the sequence uj remains regular in (R∗)Î∗ ,
this complex provides a free resolution of E∗ = R∗/I∗ as an (R∗)Î∗ -module
(this is false if the sequence uj is not finite). Hence we have

TorR∗∗,∗(E∗, (R∗)Î∗) = Tor
(R∗ )̂I∗∗,∗ (E∗, (R∗)Î∗) = E∗.

To calculate ER∗ L̂RESR we may use the Künneth Spectral Sequence of [11],

Es,t2 = TorR∗s,t (E∗, L̂
R
ESR) =⇒ ERs+tL̂

R
ESR.

By the first part, the E2 -term is

TorR∗∗,∗(E∗, (R∗)Î∗) = E∗ = ER∗ R.

Hence the natural homomorphism

ER∗ SR −→ ER∗ L̂RESR
is an isomorphism.

If the sequence uj is infinite, the calculation of this proof shows that

ER∗ L̂RESR = (R∗)Î∗/I∗ 6= R∗/I∗ = E∗SR

and the Adams Spectral Sequence does not converge to the homotopy of the
E -localization.

An induction on the number of cells of M proves a generalization of Theo-
rem 6.3.

Theorem 6.4 Let E be a commutative localized regular quotient of R and
M a finite cell R-module. Then

π∗L̂REM = M∗[X−1]Î∗ = R∗[X−1]Î∗⊗
R∗
M∗.

If the regular sequence generating I∗ is finite, then the natural map M −→
L̂REM is an E -equivalence, hence

LREM ' L̂REM,

π∗ LREM = M∗[X−1]Î∗ = R∗[X−1]Î∗⊗
R∗
M∗.
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The reader may wonder if the following conjecture is true, the algebraic issue
being that it does not appear to be true that for a commutative ring A, the
extension A −→ AĴ is always flat for an ideal J / A, a Noetherian condition
normally being required to establish such a result.

Conjecture 6.5 The conclusion of Theorem 6.4 holds when E is any commu-
tative localized quotient of R.

7 Some examples associated with MU

An obvious source of commutative localized regular quotients is the commu-
tative S -algebra R = MU and we will describe some important examples. It
would appear to be algebraically simpler to work with BP at a prime p in
place of MU , but at the time of writing, it seems not to be known whether BP
admits a commutative S -algebra structure.

Example A: MU −→ HFp .

Let p be a prime. By considering the Eilenberg-Mac Lane spectrum HFp as
a commutative MU -algebra [11], we can form HFp ∧

MU
HFp . The Künneth

Spectral Sequence gives

E2
s,t = TorMU∗

s,t (Fp,Fp) =⇒ HFp MU
s+tHFp.

Using a Koszul complex over MU∗ , it is straightforward to see that

E2
∗,∗ = ΛFp(τj : j > 0),

the exterior algebra over Fp with generators τj ∈ E2
1,2j .

Taking R = MU and E = HFp , we obtain a spectral sequence

Es,t2 (MU ) = Coexts,tΛFp (τj :j>0)(Fp,Fp) =⇒ πs+tL̂
MU

HFpSMU ,

where I∞ / MU∗ is generated by p together with all positive degree elements,
so MU∗/I∞ = Fp . Also,

π∗L̂
MU

HFpSMU = (MU∗)Î∞ .

More generally, for a finite cell MU -module M , the Adams Spectral Sequence
has the form

Es,t2 (M) = Coexts,tΛFp (τj :j>0)(Fp,HFp
MU
∗ M) =⇒ πs+tL̂

MU

HFpM,

where

π∗L̂
MU

HFpM = (M∗)Î∞ .
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Example B: MU −→ E(n).

By [11, 16], the Johnson-Wilson spectrum E(n) at an odd prime p is a commu-
tative MU -ring spectrum. According to proposition 2.10 of [16], at the prime 2
a certain modification of the usual construction also yields a commutative MU -
ring spectrum which we will still denote by E(n) rather than Strickland’s E(n)′ .
In all cases we can form the commutative MU -ring spectrum E(n) ∧

MU
E(n) and

there is a Künneth Spectral Sequence

E2
s,t = TorMU∗

s,t (E(n)∗, E(n)∗) =⇒ E(n)MU
s+t E(n).

By using a Koszul complex for MU 〈n〉∗ over MU∗ and localizing at vn , we
find that

E2
∗,∗ = ΛE(n)∗(τj : j > 1 and j 6= pk − 1 with 1 6 k 6 n),

where Λ denotes an exterior algebra and τj ∈ E2
1,2j . So

E(n)MU
∗ E(n) = ΛE(n)∗(τj : j > 1 and j 6= pk − 1 with 1 6 k 6 n)

as an E(n)∗ -algebra.

When R = MU and E = E(n), we obtain a spectral sequence

Es,t2 (MU) = Coexts,tΛE(n)∗(τj :j>n+1)(E(n)∗, E(n)∗) =⇒ πs+tL̂
MU

E(n)MU,

where

π∗L̂
MU

E(n)MU = (MU∗)(p)[v
−1
n ]Ĵn+1

and

Jn+1 = (ker : (MU∗)(p)[v
−1
n ] −→ E(n)∗) / MU∗[v−1

n ].

In the E2 -term we have

Es,t2 (MU ) = E(n)∗[Uj : 0 6 j 6= pk − 1 for 0 6 k 6 n],

with generator Uj ∈ E1,2j+1
2 (MU ) corresponding to an exterior generator in

E(n)MU
∗ E(n) associated with a polynomial generator of MU∗ in degree 2j

lying in kerMU∗ −→ E(n)∗ .

More generally, for a finite cell MU -module M ,

Es,t2 (M) = Coexts,t
ΛE(n)∗(τj :j>n+1)

(E(n)∗, E(n)MU
∗ M),=⇒ πs+tL̂

MU

E(n)M,

where

π∗L̂
MU

E(n)M = MĴn+1
= (MU ∗)(p)[v

−1
n ]Ĵn+1

⊗
MU

M.
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Example C: MU −→ K(n).

We know from [11, 16] that for an odd prime p, the spectrum K(n) representing
the n th Morava K -theory K(n)∗( ) is a commutative MU ring spectrum.
There is a Künneth Spectral Sequence

E2
s,t = TorMU∗

s,t (K(n)∗,K(n)∗) =⇒ K(n)MU
s+tK(n),

and we have

E2
∗,∗ = ΛK(n)∗(τj : 0 6 j 6= pn − 1).

Taking R = MU and E = K(n), we obtain a spectral sequence

Es,t2 (MU ) = Coexts,tΛK(n)∗ (τj :0 6 j 6= n)(K(n)∗,K(n)∗) =⇒ πs+tL̂
MU

K(n)MU,

where

π∗L̂
MU

K(n)MU = (MU∗)În,∞
with In,∞ = kerMU ∗ −→ K(n)∗ . In the E2 -term we have

Es,t2 (MU ) = E(n)∗[Uj : 0 6 j 6= pn − 1],

with generator Uj ∈ E1,2j+1
2 (MU ) corresponding to an exterior generator in

E(n)MU
∗ E(n) associated with a polynomial generator of MU∗ in degree 2k

lying in kerMU∗ −→ E(n)∗ (or when j = 0, associated with p).

More generally, for a finite cell MU -module M ,

Es,t2 (M) = Coexts,tΛK(n)∗ (τj :0 6 j 6= n)(K(n)∗,K(n)MU
∗ M) =⇒ πs+tL̂

MU

K(n)M,

where

π∗L̂
MU

K(n)M = (M∗)În,∞ = (MU ∗)În,∞ ⊗
MU∗

M∗.

Concluding remarks

There are several outstanding issues raised by our work.

Apart from the question of whether it is possible to weaken the assumptions
from (commutative) regular quotients to a more general class, it seems reason-
able to ask whether the internal I -adic tower is one of R ring spectra. Since
LRE R = holim

s
R/Is (at least when I∗ is finitely generated), the localization

theory of [11, 19] shows that this can be realized as a commutative R-algebra.
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However, showing that each R/Is is an R ring spectrum or even an R-algebra
seem to involve far more intricate calculations. We expect that this will turn
out to be true and even that the tower is one of R-algebras. This should involve
techniques similar to those of [12, 6]. It is also worth noting that our proofs
make no distinction between the cases where I∗ /R∗ is infinitely or finitely gen-
erated. There are a number of algebraic simplifications possible in the latter
case, however we have avoided using them since the most interesting examples
we know are associated with infinitely generated regular ideals in MU∗ . The
spectra En of Hopkins, Miller et al. have Noetherian homotopy rings and there
are towers based on powers of their maximal ideals similar to those in the first
author’s previous work [3, 8].

We also hope that our preliminary exploration of Adams Spectral Sequences for
R-modules will lead to further work on this topic, particularly in the case R =
MU and related examples. A more ambitious project would be to investigate
the commutative S -algebra MSp from this point of view, perhaps reworking
the results of Vershinin, Gorbounov and Botvinnik in the context of MSp-
modules [9, 17].
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