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Abstract In this paper certain �ltrations of topological Hochschild ho-
mology and topological cyclic homology are examined. As an example we
show how the �ltration with respect to a nilpotent ideal gives rise to an ana-
log of a theorem of Goodwillie saying that rationally relative K -theory and
relative cyclic homology agree. Our variation says that the p-torsion parts
agree in a range of degrees. We use it to compute Ki(Z=pn) for i � p− 3.
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1 Introduction

The aim of this paper is to examine a certain �ltration of topological Hochschild
homology of a functor with smash product equipped with a �ltration. The
former �ltration preserves the cyclic structure and it induces a �ltration of
topological cyclic homology. By a theorem of McCarthy [19] topological cyclic
homology is closely related to algebraic K -theory, and in some interesting cases
topological cyclic homology determines the K -groups. The methods developed
in this paper stem from a paper of Hesselholt and Madsen, where the K -groups
for �nite algebras over Witt vectors of perfect �elds of positive characteristic
are computed [13]. One di�erence is that here general �ltrations are considered,
while the �ltrations considered in [13] are split. In the paper [7] the �ltration
of Z=pn by the powers of the ideal pZ=pn was used to compute topological
Hochschild homology of the ring Z=pn . This is the example that motivated the
generality of the present paper.

Given a ring R with an ideal I , we shall let K(R; I) denote the homotopy
�bre of the map K(R) ! K(R=I), and we shall let HC(R; I) denote the
homotopy �bre of the map HC(R) ! HC(R=I). As an example of how the
�ltrations constructed can be useful, we prove the following analog of a theorem
of Goodwillie [11].
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Theorem 6.1 Let R be a simplicial ring with an ideal I satisfying Im =
0. Suppose that R and R=I are flat as modules over Z. Then there is an
isomorphism of homotopy groups of p-adic completions

�iK(R; I)^p �= �i−1HC(R; I)^p

when 0 � i < p=(m− 1)− 2 and a surjection

�iK(R; I)^p ! �i−1HC(R; I)^p

when i < p=(m− 1)− 1.

In the case where R and R=I are not flat as modules over Z, we can replace
them with weakly equivalent simplicial rings that are degreewise free abelian
groups. Since K(R; I) is homotopy invariant we obtain that Ki(R; I)^p is iso-
morphic to the p-adic completion of derived relative cyclic homology in the
same range of degrees. In section 7 we recall the de�nition of derived cyclic
homology, and we compute enough derived cyclic homology groups for Z=pn to
deduce the following result.

Corollary 7.4 For 1 � i � p− 3, the K -groups of Z=pn are:

�iK(Z=pn) �=
(

0 if i is even

Z=pj(n−1)(pj − 1) if i = 2j − 1

The starting point of the above result is Quillen’s computation of ��K(Z=p) in
[23]. The result agrees with the computation of Ki(Z=pn) for 0 � i � 4 of Ais-
bett, Puebla and Snaith [1] starting from Evens and Friedlander’s computation
of Ki(Z=p2) for 0 � i � 4 and for p � 5 [10]. It also shows that the homotopy
groups of BGL(Z=pn)+ and of the homotopy �bre of  p

n − pn−1
: BU ! BU

are di�erent so these spaces can not be homotopy equivalent, as was also proven
by Priddy in [21] in the case n = 2.

In view of Quillen’s computation of ��K(Z=p) only the p-torsion part of corol-
lary 7.4 is hard to prove. Let us show that if l is relatively prime to p then
the natural map K(Z=pn) ! K(Z=p) induces an isomorphism on homotopy
groups with coe�cients in Z=l . Since BGL(Z=pn)+ and BGL(Z=p)+ are
simple spaces it su�ces by the Whitehead theorem to show that the map
BGL(Z=pn)+ ! BGL(Z=pn−1)+ induces an isomorphism on homology with
coe�cients in Z=l . For this we note that the kernel of the map GLm(Z=pn)!
GLm(Z=pn−1) consists of matrices of the form I + pn−1M . Multiplication is
given by (I + pn−1M)(I + pn−1N) = I + pn−1(M + N) so the kernel J of the
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map GL(Z=pn) ! GL(Z=pn−1) is a vectorspace over Z=p. The Serre spectral
sequence

H�(BGL(Z=pn−1);H�(BJ;Z=l))) H�(BGL(Z=pn);Z=l)

associated to the �bration BJ ! BGL(Z=pn)! BGL(Z=pn−1) collapses to an
isomorphism H�(BGL(Z=pn−1;Z=l) �= H�(BGL(Z=pn);Z=l).

Only elementary properties of the �ltrations of topological Hochschild homol-
ogy and topological cyclic homology are studied in this note. The focus is on
a �ltered version of the norm co�bration sequence for the �xed points of topo-
logical Hochschild homology. Traditionally, for example in [4] and in [13], the
role of the norm co�bration sequence is that it allows one to determine the
�xed point spectra inductively. Here we use it to keep track of the connectivity
properties of our �ltration of topological cyclic homology.

The paper is organized as follows: In section 2 generalities on �ltrations of
monoids in a symmetric monoidal category are given. It is noted that a �ltered
monoid is a monoid in the symmetric monoidal category of �ltered objects, and
therefore it �ts into the Hochschild construction. In section 3 a �ltered functor
with smash product is de�ned to be a �ltered monoid in the category of Gamma
spaces, and fundamental properties of the topological Hochschild homology of
a �ltered functor with smash product are established. In section 4 we introduce
the concept of a cyclotomic �ltered Gamma space. This is a �ltered Gamma
space with an action of the circle group having enough extra properties to make
it possible to construct a �ltered version of topological cyclic homology out of
it. It is shown that topological Hochschild homology of a �ltered functor with
smash product is such a a cyclotomic �ltered Gamma space. In section 6 a
proof of theorem 6.1 is given. In section 7 we compute enough derived cyclic
homology of the ring Z=pn to prove corollary 7.4.

It might be appropriate add a remark on terminology. Following Bous�eld and
Friedlander [5] we do not assume Gamma spaces to be special, and we do not
assume spectra to to be omega-spectra.
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2 The Filtered Hochschild Construction

In this section we shall study �ltered objects in a category C .

2.1 Filtered Objects

A �ltered object in a category C is a functor from the category Z, with exactly
one morphism n! m if n � m, to C . That is, a �ltered object is a sequence

� � � ! X(−1)! X(0)! X(1)! � � � ! X(n)! X(n + 1)! : : :

of composable morphisms in C . A morphism of �ltered objects is simply a
natural transformation. For some choices of C there is a functor H from the
category CZ of �ltered objects in C to the category of exact couples of (graded)
abelian groups in the sense of Massey [18].

Example 2.1 Functors from �ltered objects to exact couples:

(1) The category of chain complexes and injective chain homomorphisms to-
gether with the functor H given by homology.

(2) We can take C to be the category of topological spaces and co�brations
and let H be given by (generalized) homology.

Given objects Xi in C we shall denote their coproduct by
W
iXi , and given

a diagram Z  X ! Y we shall denote the colimit, that is, the pushout by
Z [X Y .

Lemma 2.2 Given a functor F : Z�Z! C and k 2 Z the following diagram
is a pushout diagram:W

i+j=k F (i− 1; j) [F (i−1;j−1) F (i; j − 1) ! colim
i+j�k−1

F (i; j)

# #W
i+j=k F (i; j) ! colim

i+j�k
F (i; j):

2.2 Filtered objects in monoidal categories

From now on C = (C;⊗; I) shall denote a cocomplete symmetric monoidal
category. Given �ltered objects X and Y in C we can de�ne a �ltered object
X ⊗ Y in C by letting (X ⊗ Y )(k) = colim

i+j�k
X(i) ⊗ Y (j). The pairing ⊗ :
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CZ � CZ ! CZ de�nes a symmetrical monoidal structure on CZ with unit I
given by the �ltered object with I(k) equal to the initial object in C for k < 0
and with I(k) equal to the unit for the monoidal structure of C when k � 0.
We have consciously chosen the same symbols for the pairing and unit in CZ as
in C because we can consider C as a full symmetric monoidal subcategory of
CZ .

A �ltered monoid in C is a monoid in the category CZ . Explicitly, a �ltered
monoid in C is a sequence

� � � !M(−1)!M(0)!M(1)! � � � !M(n)!M(n+ 1)! � � �

of composable morphisms in C together with morphisms

�i;j : M(i) ⊗M(j)!M(i+ j)
� : I !M(0);

satisfying the following relations for associativity and unitality:

�i+j;k � (�i;j ⊗ idM(k)) = �i;j+k � (idM(i)⊗�j;k);
�0;i � (� ⊗ idM(i)) = �M(i);

�i;0 � (idM(i)⊗�) = �M(i):

Here �M(i) : I ⊗M(i) �= M(i) and �M(i) : M(i) ⊗ I �= M(i) are part of the
symmetric monoidal structure of C . We shall call a �ltered monoid in the
category of abelian groups a �ltered ring.

If � is a terminal object of C and X ! Y is a map in C , we shall denote any
choice of pushout of the diagram �  X ! Y by Y=X . We shall say that
the product ⊗ of C commutes with quotients if there is a natural isomorphism
(X1=X2)⊗ Y �= (X1 ⊗ Y )=(X2 ⊗ Y ).

Lemma 2.3 If C is a cocomplete symmetric monoidal category with a terminal
object, then given �ltered objects X and Y of C there is an isomorphism:

(X ⊗ Y )(k)
(X ⊗ Y )(k − 1)

�=
_

i+j=k

X(i) ⊗ Y (j)
X(i − 1)⊗ Y (j) [X(i−1)⊗Y (j−1) X(i) ⊗ Y (j − 1)

:

If in addition ⊗ commutes with quotients, then there is an isomorphism:

(X ⊗ Y )(k)
(X ⊗ Y )(k − 1)

�=
_

i+j=k

X(i)
X(i− 1)

⊗ Y (j)
Y (j − 1)

:
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Proof For the �rst part, it su�ces to note that by lemma 2.2 the following
diagram in C is a pushout:W

i+j=kX(i − 1)⊗ Y (j) [X(i−1)⊗Y (i−1) X(i) ⊗ Y (j − 1) ! (X ⊗ Y )(k − 1)
# #W

i+j=kX(i) ⊗ Y (j) ! (X ⊗ Y )(k):

For the second part, we note that:

(X1=X0)⊗ (Y1=Y0) �=
(X1=X0)⊗ Y1

(X1=X0)⊗ Y0

�=
(X1 ⊗ Y1)=(X0 ⊗ Y1)
(X1 ⊗ Y0)=(X0 ⊗ Y0)

for X0 ! X1 and Y0 ! Y1 maps in C , and that given a map B [D C ! A in
C we have:

A=B

C=D
�=

A

B [D C
:

2.3 The Hochschild construction

Let C denote a symmetric monoidal category. The Hochschild construction is
a functor Z from the category of monoids in C to Connes’ category of cyclic
objects in C . A good reference for the category of cyclic objects is the book of
Loday [15, chapter 6]. Given a monoid M in C , Z(M) is de�ned as follows: It
has n-simplices

Zn(M) = M ⊗ � � � ⊗M (n+ 1) factors.

The cyclic operator is given by the automorphism tn of M ⊗ � � �⊗M cyclically
shifting the (n+1) factors to the right. The face maps are given by the formula:

di = tin−1 � (�⊗ id) � t−in ; 0 � i � n;
where � : M ⊗M !M is the multiplication in M . The degeneracies are given
by the formula:

si = t
(i+1)
n+1 � (� ⊗ id) � t−(i+1)

n ; 0 � i � n;
where � : I !M is the unit in M .

Since CZ is equipped with a symmetric monoidal structure, we can also consider
the Hochschild construction on monoids in CZ , that is on �ltered monoids in
C .

Proposition 2.4 Let M be a �ltered monoid in a cocomplete symmetric
monoidal category C , where ⊗ commutes with quotients. Then for each n � 0
there is an isomorphism of cyclic objects

Zn(M)(k)
Zn(M)(k − 1)

�=
_

i0+���+in=k

M(i0)
M(i0 − 1)

⊗ � � � ⊗ M(in)
M(in − 1)

:
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Proof This is a direct consequence of lemma 2.3.

The above proposition can be reformulated in terms of the associated graded
monoid grM for M . Here grM is the �ltered monoid in C with

gr(M)(k) =
_
i�k

M(i)=M(i − 1);

and with multiplication induced by the maps

M(i)
M(i− 1)

⊗ M(j)
M(j − 1)

�= M(i)⊗M(j)
M(i)⊗M(j − 1) [M(i−1)⊗M(j−1) M(i− 1)⊗M(j)

! M(i+ j)
M(i+ j − 1)

:

The proposition says that the �ltration quotients for Z(M) and Z(grM) are
isomorphic.

3 Filtered Topological Hochschild Homology

3.1 Topological Hochschild homology

We briefly recall the de�nition of topological Hochschild homology: Let I de-
note the category with one object n for each integer n � 0 and with I(m;n)
given by the set of injective maps from f1; : : : mg to f1; : : : ; ng. Let L denote a
functor with smash product in the sense of Bökstedt [2] or in the more restric-
tive sense described below. THH(L) is the cyclic pointed simplicial set with
k -simplices equal to the homotopy colimit

hocolim
(i0;:::;ik)2Ik+1

F (Si0 ^ � � � ^ Sik ; L(Si0) ^ � � � ^ L(Sik))

and with structure maps of the same type as for the Hochschild construction.
Details on this construction can be found in [3]. The symbol F denotes derived
function space, that is, if X and Y are pointed simplicial sets, then F (X;Y ) =
S�(X; sin jY j), where sin jY j denotes the singular complex on the geometric
realization of Y , and S� denotes the internal function object in the category
S� of pointed simplicial sets. Occasionally we shall write ΩnY = F (Sn; Y ) for
the n’th loop space of Y .

For the purpose of this note, a functor with smash product is a monoid in the
category ΓS� of Gamma spaces considered for example by Bous�eld and Fried-
lander [5, de�nition 3.1]. Let us recall that a Gamma space is a pointed functor
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from the category Γ of pointed �nite sets to the category S� of pointed simpli-
cial sets. To be precise Γ is the category with one object n+ = f0; 1; : : : ; ng for
each n � 0, and with Γ(m+; n+) the set functions from m+ to n+ �xing 0. A
pointed category is a category with an object which is both initial and terminal,
and a functor between pointed categories is pointed if it takes an object which
is both initial and �nal to an object of the same kind. Let us stress that our
notion of a Gamma space is di�erent from the notion in the paper by Segal [24].
Given two Gamma spaces X and Y , their smash product is the Gamma space
X ^ Y with

(X ^ Y )(n+) = colim
n+

1 ^n
+
2!n+

X(n+
1 ) ^ Y (n+

2 ):

The unit for the operation ^ is the functor S : Γ ! S� with S(n+) = n+ .
Lydakis noted in [16, Theorem 2.18] that the category of Gamma spaces is a
symmetric monoidal category with respect to the smash product pairing and
unit. By de�nition a functor with smash product L is a monoid in the category
ΓS� . Explicitly this means that L is a pointed functor L : Γ ! S� together
with natural transformations

� : L(m+) ^ L(n+)! L(m+ ^ n+);
� : n+ ! L(n+);

satisfying the following relations for associativity and unitality:

� � (� ^ id) = � � (id^�); � � (� ^ id) = �; � � (id^�) = �;

where � : m+ ^ L(n+)! L(m+ ^ n+) is adjoint to the map

m+ ! Γ(n+;m+ ^ n+) L! S�(L(n+); L(m+ ^ n+))

and � : L(m+) ^ n+ ! L(m+ ^ n+) is adjoint to the map

n+ ! Γ(m+;m+ ^ n+) L! S�(L(m+); L(m+ ^ n+)):

Example 3.1 For this note the most relevant example of an FSP is the func-
tor eZ : Γ ! S� with eZ(n+) = Zfn+g=Zf0g the reduced free abelian group
on the pointed set n+ = f0; 1; : : : ; ng. The multiplication � is given by the
composition

� : eZ(m+) ^ eZ(n+)! eZ(m+)⊗Z eZ(n+) �= eZ(m+ ^ n+);

and the unit is given by the inclusion of the basis n+ in the free abelian group
Zfn+g composed with the quotient map. Given any ring R we obtain an FSPeR with eR(n+) = R⊗eZ(n+). The multiplication and the unit in eR are explained
in example 3.6 below.
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Given a Gamma space X , we can extend it to a functor X1 de�ned on the
category of pointed sets by letting

X1(K) = colim
n+!K

X(n+);

for K a pointed set, and we can de�ne an endofunctor X2 on S� by letting
(X2(U))k = (X1(Uk))k for U a pointed simplicial set. From now on we shall not
distinguish notationally between a Gamma space and the induced endofunctor
on S� .
Given a Gamma space X and pointed simplicial sets U and V , there is a map
X(U)^V ! X(U ^V ) obtained by applying the above map � degreewise. The
following lemma is given in [16, prop. 5.21]:

Lemma 3.2 If U is m-connected and V is n-connected, then the map X(U)^
V ! X(U ^ V ) is 2m+ n+ 3-connected.

Together with the approximation lemma of Bökstedt (see either [2] or [7, lemma
2.5.1]), it can be used to prove the following.

Lemma 3.3 Given a Gamma space X and (j0; : : : ; jk) 2 Ik+1 , then the map

F (Sj0 ^ � � � ^ Sjk ;X(Sj0) ^ � � � ^X(Sjk))!
hocolim

(i0;:::;ik)2Ik+1
F (Si0 ^ � � � ^ Sik ;X(Si0) ^ � � � ^X(Sik))

is j−1-connected. Here j denotes the minimum of the cardinalities of j0; : : : ; jk .

Given an FSP L and a �nite pointed set n+ , we shall let THH(L;n+) denote
the cyclic pointed simplicial set with k -simplices equal to the homotopy colimit

hocolim
(i0;:::;ik)2Ik+1

F (Si0 ^ � � � ^ Sik ; L(Si0) ^ � � � ^ L(Sik) ^ n+);

where n+ acts as a dummy variable for the cyclic structure. There is an endo-
functor THH(L;−) on S� associated to the Gamma space n+ 7! THH(L;n+).
We shall freely use the identi�cation THH(L) �= THH(L; 1+) �= THH(L;S0).

Lemma 3.4 The map THH(L) ! Ωn THH(L;Sn), adjoint to THH(S;S0) ^
Sn ! THH(L;Sn), is a weak equivalence.

Proof By the work of Segal [24, prop. 1.4] it su�ces to show that the Gamma
space n+ 7! THH(L;n+) is very special, that is, the map

(pr1�;pr2�) : THH(L;m+ _ n+)! THH(L;m+)� THH(L;n+)
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induced by the projections pr1 : m+_n+ ! m+_0+ = m+ and pr2 : m+_n+ !
0+ _ n+ = n+ , is a weak equivalence, and that the monoid �0 THH(L; 1+)
is a group. By lemma 3.5 below it su�ces to show that the Gamma spaces
n+ 7! THHk(L;n+) are very special. To see that the map

THHk(L;m+ _ n+)! THHk(L;m+)� THHk(L;n+)

is a weak equivalence, it su�ces by the approximation lemma 3.3 to note that
by the Whitehead theorem the map

L(Si0) ^ � � � ^ L(Sik) ^ (m+ _ n+)
�= (L(Si0) ^ � � � ^ L(Sik) ^m+) _ (L(Si0) ^ � � � ^ L(Sik) ^ n+)

! (L(Si0) ^ � � � ^ L(Sik) ^m+)� (L(Si0) ^ � � � ^ L(Sik) ^ n+)

is 2(i0 + � � �+ ik)− 1-connected.

To see that �0 THHk(L; 1+) is a group, it su�ces to note that �0F (Si0 ^ � � � ^
Sik ; L(Si0) ^ � � � ^ L(Sik)) is a group.

We owe the following lemma to S. Schwede.

Lemma 3.5 Let X be a simplicial Gamma space, and assume that for each
k , Xk is a very special Gamma space. Then the Gamma topological space jXj
sending n+ to the realization of [k] 7! Xk(n+) is very special.

Proof It follows from the realization lemma and the fact that realization com-
mutes with products that the resulting Gamma space is special, that is, the
map jX(m+ _ n+)j ! jX(m+)j � jX(n+)j induced by the projections pr1 and
pr2 is a homotopy equivalence. A special Gamma space Y is very special when
the monoid �0jY (1+)j with multiplication induced by the composite

jY (1+)j � jY (1+)j f! jY (2+)j Y (�)! jY (1+)j

is a group. Here � : 2+ ! 1+ is the fold map with �(i) = 1 for i = 1; 2 and f is
a homotopy inverse to the homotopy equivalence jY (2+)j ! jY (1+)j� jY (1+)j.
This is equivalent to the map (Y (�); Y (pr2)) : jY (2+)j ! jY (1+)j � jY (1+)j
being a homotopy equivalence. (Clearly if this map is a homotopy equivalence,
then �0Y (1+) is a group. Conversely, if �0Y (1+) is a group, then this map
induces an isomorphism on �n for all n � 0, and by the Whitehead theorem we
can conclude that it is a homotopy equivalence.) It follows from the realization
lemma that jXj is very special.
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3.2 Filtered Topological Hochschild Homology

To make a �ltered version of topological Hochschild homology we replace the
category S� of pointed simplicial sets by the category S�Z of �ltered pointed
simplicial sets. By a Gamma �ltered space we shall mean a pointed functor
from Γ to S�Z . The smash product of two Gamma �ltered spaces X and Y ,
given by the formula

(X ^ Y )(n+) = colim
n+

1 ^n
+
2!n+

X(n+
1 ) ^ Y (n+

2 );

makes the category ΓS�Z of Gamma �ltered spaces into a symmetric monoidal
category. A �ltered FSP is a monoid in the category ΓS�Z . Explicitly a �ltered
FSP can be described as a functor L : Γ � Z ! S� together with natural
transformations

� : L(m+; s) ^ L(n+; t)! L(m+ ^ n+; s + t)
� : n+ ! L(n+; 0)

satisfying the following relations:

� � (� ^ id) = � � (id^�); � � (� ^ id) = �; � � (id^�) = �;

where � : m+ ^ L(n+; s)! L(m+ ^ n+; s) is adjoint to the map

m+ ! Γ(n+;m+ ^ n+)
L(−;s)! S�(L(n+; s); L(m+ ^ n+; s))

and � : L(m+; s) ^ n+ ! L(m+ ^ n+; s) is adjoint to the map

n+ ! Γ(m+;m+ ^ n+)
L(−;s)! S�(L(m+; s); L(m+ ^ n+; s)):

Note that the category of Gamma �ltered spaces is isomorphic to the category
of �ltered Gamma spaces, and hence a �ltered FSP also can be described as
being a �ltered monoid in the category of Gamma spaces.

Example 3.6 Given a �ltered ring R (that is, a �ltered monoid in the category
of abelian groups) there is a �ltered FSP eR with eR(n+; s) = eZ(n+) ⊗Z R(s).
The multiplication is given by the composition

� : eR(m+; s) ^ eR(n+; t)! eR(m+; s)⊗Z eR(n+; t)
�= eZ(m+ ^ n+)⊗Z R(s)⊗Z R(t)

! eZ(m+ ^ n+)⊗Z R(s+ t)

= eR(m+ ^ n+; s + t);
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induced by the multiplication in R and the unit is given by the composition

� : n+ ! eZ(n+)! eZ(n+)⊗Z R(0) = eR(n+; 0)

where the last map is induced from the unit of R.

The topological Hochschild homology of a �ltered FSP L is the �ltered pointed
simplicial set THH(L) with k -simplices of THH(L)(s) given by the homotopy
colimit

hocolim
(i0;:::;ik)2Ik+1

F (Si0 ^ � � � ^ Sik ; (L(Si0) ^ � � � ^ L(Sik))(s));

where the smash product of the L(Si�)’s is a smash product of �ltered pointed
simplicial sets, and with cyclic structure of Hochschild type. We de�ne cyclic
spaces THH(L; s) for s 2 Z with k -simplices given by the homotopy colimit

hocolim
(i0;:::;ik)2Ik+1

F (Si0 ^ � � � ^ Sik ; (L(Si0) ^ � � � ^ L(Sik))(s)
(L(Si0) ^ � � � ^ L(Sik))(s − 1)

);

and with cyclic structure as for the Hochschild construction.

Of course there is also a �ltered version of the Gamma space n+ 7! THH(L;n+)
with k -simplices of THH(L;n+)(s) given by the homotopy colimit:

hocolim
(i0;:::;ik)2Ik+1

F (Si0 ^ � � � ^ Sik ; (L(Si0) ^ � � � ^ L(Sik))(s) ^ n+);

and there is a Gamma space n+ 7! THH(L; s;n+) where the k -simplices of
THH(L; s;n+) are given by the homotopy colimit

hocolim
(i0;:::;ik)2Ik+1

F (Si0 ^ � � � ^ Sik ; (L(Si0) ^ � � � ^ L(Sik))(s)
(L(Si0) ^ � � � ^ L(Sik))(s − 1)

^ n+):

Lemma 3.7 Let X be a Gamma space satisfying that X(n+) is l-connected
for every n � 0. If U is m-connected and V is n-connected, then the map
X(U) ^ V ! X(U ^ V ) is 2m+ n+ l + 3-connected provided that l;m and n
are > 1.

Proof We consider the co�bre X(U ^V )=X(U)^V as a bisimplicial set i; j 7!
Zij = X(Ui^Vi)j=X(Ui)j ^Vi . Since the co�bre of a co�bration of l-connected
spaces is l-connected Zi� is l-connected for every i, and by lemma 3.3 Z�j is
2m + n + 3-connected for every j . Using the spectral sequence of Bous�eld-
Friedlander [5, thm. B.5] we obtain the assertion of the lemma.

Together with the approximation lemma of Bökstedt ([2] or [7, lemma 2.5.1])
the above lemma proves the following.
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Lemma 3.8 Given a pointed functor X : Γk+1 ! S� and (j0; : : : ; jk) 2 Ik+1

the map

F (Sj0 ^ � � � ^ Sjk ;X(Sj0 ; : : : ; Sjk))!
hocolim

(i0;:::;ik)2Ik+1
F (Si0 ^ � � � ^ Sik ;X(Si0 ; : : : ; Sik))

is j − 1-connected, where j denotes the minimum of j0; : : : ; jk .

Lemma 3.9 The spectra n 7! THH(L;Sn)(s) and n 7! THH(L; s;Sn) are
Ω-spectra.

Proof Let us note that lemma 3.7 gives that (L(Si0) ^ � � � ^ L(Sik))(s) is i0 +
� � �+ ik − 1-connected. Replacing lemma 3.3 by lemma 3.8 the proof of lemma
3.4 also proves this lemma.

We shall say that a �ltered FSP L is �ltered by co�brations if for every X and
s the map L(X)(s − 1)! L(X)(s) is a co�bration.

Lemma 3.10 Let L be a �ltered FSP, �ltered by co�brations. Then the map
from THH(L)(s − 1) to the homotopy �bre of the map q : THH(L)(s) !
THH(L; s) is a weak equivalence.

Proof Let us start by showing that the map from the mapping cone of the
map THHk(L;Sn)(s − 1) ! THHk(L;Sn)(s) to THHk(L;Sn; s) is 2(n − 1)-
connected. If X ! Y is a co�bration of i + n-connected pointed simplicial
sets then by applying the Blakers{Massey theorem [25, p. 366] several times
we see that the map from the mapping cone of the map F (Si;X) ! F (Si; Y )
to F (Si; Y=X) is 2(n − 1)-connected. Since the mapping cone construction
commutes with geometric realization it follows that the map from the mapping
cone of the map THHk(L;Sn)(s − 1)! THHk(L;Sn)(s) to THHk(L;Sn; s) is
2(n− 1)-connected.

Now let q(Sn) denote the map THH(L;Sn)(s) ! THH(L; s;Sn), and let
hFq(Sn) denote its homotopy �bre. It then follows from the Blakers{Massey
theorem that the map THH(L;Sn)(s − 1) ! hFq(Sn) is 2n − 4-connected.
From the weak equivalence F (Sn; hFq(Sn)) ’ hFq it follows that the map
THH(L)(s− 1)! hFq is n− 4-connected. Since n is arbitrary, it follows that
this map is a weak equivalence.
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Remark 3.11 Given a �ltered FSP L there is an FSP L(0)=L(−1) taking X
to L(X)(0)=L(X)(−1). If L(s) = L(0) when s � 0 then by proposition 2.3
THH(L; 0) �= THH(L(0)=L(−1)) and THH(L)(0) = THH(L(0)). In this case
the above lemma says that THH(L)(−1) is weakly equivalent to the homotopy
�bre of the map THH(L(0))! THH(L(0)=L(−1)).

4 Cyclotomic structure

In this section we shall describe how the �ltration on topological Hochschild ho-
mology of an FSP �ltered by co�brations is compatible with topological cyclic
homology. We have based our presentation on the elementary version of topo-
logical cyclic homology given in [3]. Alternatively we could use the cyclotomic
spectra in the sense of Madsen [4]. Since we do not need them for the main
result of this paper we have chosen the technically simpler version of TC .

4.1 Gamma epicyclic spaces

Let us recall Goodwillie’s notion of an epicyclic space from [12].

De�nition 4.1 An epicyclic space is a cyclic space Y equipped with maps
rq : Y Cq

qj−1 ! Yj−1 for all q � 1 and j � 1, satisfying:

(1) rq : (sdq Y )Cq ! Y is cyclic.

(2) ra � rq = raq : (sdaq Y )Caq ! Y .

(3) r1 is the identity.

Here sdq Y denotes the q -fold edgewise subdivision of Y with j -simplices
(sdq Y )j = Yqj−1 . For a treatment of edgewise subdivision we refer to [3].
The most important properties of edgewise subdivision are that there is a sim-
plicial action of Cq on sdq Y , that there is an action of S1 on j sdq Y j extending
the simplicial action of Cq , that there is an S1 -isomorphism j sdq Y j �= jY j, and
that sdaq = sda sdq . Note that rq induces a Ca -equivariant map (sdaq Y )Cq =
sda(sdq Y )Cq ! sda Y for any a.

Write Y Ca for the topological space j(sda Y )Ca j �= jY jCa . There is a map fq :
Y Caq �= jY jCaq ! jY jCa �= Y Ca induced by inclusion of �xed points. We shall
call this map the Frobenius map. The map (sdaq Y )Cq = sda(sdq Y )Cq ! sda Y
induces a map rq : Y Caq = j((sdaq Y )Cq)Ca j ! j(sda Y )Ca j = Y Ca , and we will
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call rq the q ’th restriction map. (Following Hesselholt and Madsen [13], in
conflict with Goodwillie’s terminology) The maps rq0 and fq commute, that is
fqrq0 = rq0fq .

Let us �x a prime p. The restriction and Frobenius maps induce maps r; f :Q
n�0 Y

Cpn !
Q
n�0 Y

Cpn . We let tr(Y; p) denote the homotopy equalizer of
r and the identity. Since rf = fr , the map f induces an endomorphism on
tr(Y; p). We de�ne tc(Y; p) to be the homotopy equalizer of f and the identity
on tr(Y; p). Note that since homotopy limits commute we could equally well
have interchanged the roles of r and f in the de�nition of tc(Y; p).

De�nition 4.2 A Gamma epicyclic space is a Gamma object in the category
of epicyclic spaces.

The main example of a Gamma epicyclic space is topological Hochschild ho-
mology. The restriction map rq : sdq THH(L; n+)Cq ! THH(L; n+) is de�ned
degreewise by the following chain of maps:

(sdq THH(L; n+))Cqk �=
hocolim

(n0;:::;nk)2Ik+1
F ((Sn0 ^ � � � ^ Snk)^q; (L(Sn0) ^ � � � ^ L(Snk))^q ^ n+)Cq !

hocolim
(n0;:::;nk)2Ik+1

F (((Sn0 ^ � � � ^ Snk)^q)Cq ; (L(Sn0) ^ � � � ^ L(Snk))^q ^ n+)Cq) �=

hocolim
(n0;:::;nk)2Ik+1

F (Sn0 ^ � � � ^ Snk ; L(Sn0) ^ � � � ^ L(Snk) ^ n+) =

THH(L; n+)k:

The �rst isomorphism is due to the isomorphism (hocolim
Iq(k+1)

Z)Cq �= hocolim
Ik+1

ZCq .

The second map is given by restriction to �xed points and the last isomorphism
is induced by the point set isomorphism (X^q)Cq �= X .

Given a Gamma epicyclic space X , we obtain simplicial epicyclic spaces X(Sn).
We can view these as epicyclic spaces and consider the spaces tc(X(Sn); p). In
order to see that these spaces assemble to a spectrum, let us �rst note that
n 7! (X(Sn))Ca �= jX(Sn)jCa is a spectrum because the category of spectra
is closed under limits, and limits are constructed degreewise. Since the same
remark applies to homotopy limits we have a spectrum n 7! tc(X(Sn); p).

De�nition 4.3 Let X be a Gamma epicyclic space. Topological cyclic homol-
ogy at the prime p of X is the spectrum TC(X; p) with n’th space TC(X; p)n =
tc(X(Sn); p).

Algebraic & Geometric Topology, Volume 1 (2001)



216 Morten Brun

We shall write TC(L; p) instead of TC(THH(L); p). Our de�nition of topo-
logical cyclic homology at the prime p agrees with the de�nition of Bökstedt,
Hsiang and Madsen [3, def. 5.12.] At this point it is clear that our version of
TC has the same underlying space as the one in [3]. To see that the deloopings
agree we �rst note that our spectrum TC(L; p) is stably equivalent to the ones
in Goodwillies note [11] and in [13, de�niton 4.1]. Next we appeal to [13, prop.
2.6.2.].

By a Gamma cyclic space we shall mean a Gamma object in the category of
cyclic pointed spaces. Given a Gamma cyclic space X and a closed subgroup
H of S1 we shall let XH denote the spectrum n 7! jX(Sn)jH . If X is a
Gamma epicyclic space the restriction and Frobenius maps rr; fq : X(Sn)Caq !
X(Sn)Ca induce maps Rq; Fq : XCaq ! XCa of spectra. Given a cyclic pointed
space Z we shall de�ne a spectrum Z^LX by the formula

(Z^LX)n = colim
W�U

Map�(jSW−R
n j; jZj ^ jX(SW )j):

Here U denotes a complete S1 -universe (e.g. U =
L

n2Z;�2NC(n)� ) and the
colimit runs over �nite dimensional sub inner spaces W of U containing Rn .
The symbol W −Rn denotes the orthogonal complement of Rn in W and SW

denotes the singular complex of the one point compacti�cation of W . There
are several possible actions of S1 on jX(SW )j. Using the functoriality of X the
action of S1 on SW induces an action of S1 on X(SW ). On the other hand
forgetting the action of S1 on SW we still have a cyclic structure on X(SW )
given rise to an action of S1 on jX(SW )j. The two actions just described
commute and therefore we end up with an action of S1 � S1 on jX(SW )j. We
shall always let S1 act on jX(SW )j by pulling back the action of S1�S1 along
the diagonal S1 ! S1 � S1 . Letting S1 act on the pointed mapping space
Map�(jSW−R

n
; jZj ^ jX(SW )j) by conjugation we obtain an action of S1 on

(Z^LX)n and we obtain a spectrum (Z^LX)H with (Z^LX)Hn = ((Z^LX)n)H

for every closed subgroup H of S1 . Since the map U ^ X(V ) ! X(U ^ V )
is a co�bration for every U and V the above construction is homotopically
meaningful. (See the discussion in [13, Appendix A].)

In particular we can consider the spectrum (S0^LX)H . There is a map XH !
(S0^LX)H induced by the map jX(Sn)j ! Map�(jSW j; jX(Sn ^ SW )j). Ac-
cording to [13, prop. 2.4] this map is an equivalence when X = THH(L) and
H is �nite.

Using the standard cyclic model of S1 we can consider ES1 as a cyclic space,
and we can consider the spectrum (ES1

+^LX)C . According to [14, thm. 7.1.
p. 97] it represents the C -homotopy orbit spectrum XhC of X in the homo-
topy category when C is �nite and (ES1

+^LX)S
1

represents the suspension
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S1 ^ XhS1 of the S1 -homotopy orbits of X . From now on we shall always
use these representatives for homotopy orbits. The inclusions of �xed points
(ES1

+^LX)Caq ! (ES1
+^LX)Ca and (ES1

+^LX)S
1 ! (ES1

+^LX)Ca represent
the transfer maps trfq : XhCqa ! XhCa and trf1 : S1 ^XhS1 ! XhCa respec-
tively. We shall always use these representatives for the the transfer maps.

De�nition 4.4 A p-cyclotomic Gamma space is a Gamma epicyclic space X
satisfying the following two conditions.

(1) The map XC ! (S0^LX)C is an equivalence for every �nite p-subgroup
C of S1 .

(2) The norm map N : XhCpn ! XCpn de�ned as the composite

XhCpn = (ES1
+^LX)Cpn ! (S0^LX)Cpn ’ XCpn

�ts into a co�bration sequence XhCpn
N! XCpn

Rp! XCpn−1 for every
n � 1.

Note that the norm map is only de�ned in the homotopy category and that the
diagram

XhCpn
N−−−! XCpn

trfp

??y ??yFp
XhCpn−1

N−−−! XCpn−1

commutes. It is proven in [13, lemma 2.5] and [13, prop. 2.4] that THH(L)
satis�es (1) and (2) above. In conclusion THH(L) is a p-cyclotomic Gamma
space.

Below we shall use the following lemma due to Goodwillie. It can be found in
[17] as lemma 4.4.9.

Lemma 4.5 For any epicyclic Gamma space X the S1 -transfer induces a map

S1 ^XhS1 ! holim
trfp

XhCpn :

This map becomes an equivalence after p-completion.

Let us sketch an alternative proof of this lemma. Since (ES1
+)k = (S1

+)^k+1

it su�ces to show that the map ((S1
+)^k+1^LX)S

1 ! holim
Fp

((S1
+)^k+1^LX)Cpn

is an equivalence for every k � 0. There is an isomorphism (S1
+)^k+1^LX �=
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S1
+^L((S1

+)^k ^X), where (S1
+)^k ^X denotes the Gamma cyclic space n+ 7!

(S1
+)^k ^X(n+). Therefore the proof of lemma 4.5 reduces to showing that the

map (S1
+^LX)S

1 ! holim
Fp

(S1
+^LX)Cpn becomes an equivalence after comple-

tion at p. This is the statement of [13, lemma 8.2].

4.2 Cyclotomically �ltered Gamma spaces

In this section we shall present a �ltered version of p-cyclotomic Gamma spaces.
Let us begin with a �ltered version of the notion of an epicyclic space.

De�nition 4.6 An epicyclic �ltered space is a �ltered cyclic space Y equipped
with maps rq : Yqj−1(s)Cq ! Yj−1([s=q]) for all q; j � 1 and s 2 Z, satisfying:

(1) rq : (sdq Y )(s)Cq ! Y ([s=q]) is cyclic.

(2) ra � rq = raq : (sdaq Y )(s)Caq ! Y ([s=(aq)]).

(3) r1 is the identity.

Here [s=q] denotes the greatest integer � s=q . Write Y Ca(s) for the topological
space j(sda Y (s))Ca j �= jY (s)jCa . There is a Frobenius map fq : Y Caq(s) �=
jY (s)jCaq ! jY (s)jCa �= Y Ca(s) induced by inclusion of �xed points.

A Gamma epicyclic �ltered space is a Gamma object in the category of epicyclic
�ltered spaces.

Topological Hochschild homology of an FSP �ltered by co�brations is the main
example of a Gamma epicyclic �ltered space. The restriction map

rq : sdq THH(L; n+)(s)Cq ! THH(L; n+)([s=q])

is de�ned degreewise by the following chain of maps:

(sdq THH(L; n+)(s))Cqk �=
hocolim

(n0;:::;nk)2Ik+1
F ((Sn0 ^ � � � ^ Snk)^q; (L(Sn0) ^ � � � ^ L(Snk))^q(s) ^ n+)Cq !

hocolim
(n0;:::;nk)2Ik+1

F (((Sn0 ^ � � � ^ Snk)^q)Cq ; (L(Sn0) ^ � � � ^ L(Snk))^q(s) ^ n+)Cq)

�= hocolim
(n0;:::;nk)2Ik+1

F (Sn0 ^ � � � ^ Snk ; (L(Sn0) ^ � � � ^ L(Snk))([s=q]) ^ n+) =

THH(L; n+)([s=q])k:

The �rst isomorphism is due to the isomorphism (hocolim
Iq(k+1)

Z)Cq �= hocolim
Ik+1

ZCq :

The second map is given by restriction to �xed points and the last isomorphism
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is induced by the point set isomorphism (X^q)(s)Cq �= X([s=q]) for X a space
�ltered by co�brations. This last isomorphism is not obvious though, so we
state it as a lemma.

Lemma 4.7 Let Y be a �ltered space, �ltered by co�brations. There is an
isomorphism (Y ^q(s))Cq �= Y ([s=q])

Proof The diagonal induces a map

Y ([s=q])
�=!
(
(Y ^q)(s)

�Cq :
We will show that this is an isomorphism of simplicial sets. We may assume
that Y is a discrete set �ltered by injections. We note that by the pushout
diagram in the proof of lemma 2.3 the map (Y ^q)(i) ! (Y ^q)(i + 1) is an
injection for all i 2 Z, and therefore we have an injection

Y ^q(s) ,! Y ^q(1) �= (Y (1))^q;

with the convention that Y ^q(1) = colim
i

Y ^q(i) and Y (1) = colim
i

Y (i).

There is a commutative diagram

Y ([s=q]) ! (Y ^q(s))Cq
# #

Y (1) ! (Y (1)^q)Cq

where the vertical arrows are injections. It follows from the diagram that the
map Y ([s=q]) ! (Y ^q(s))Cq is injective. To see that it is onto, let us pick a
representative ((a1; : : : ; aq); (y1; : : : ; yq)) for a point y in

(Y ^q(s)) = colim
a1+���+aq�s

Y (a1) ^ � � � ^ Y (aq);

�xed under the Cq -action. From the condition a1 + � � � + aq � s, it follows
that there exists an i such that ai � s=q . Since the image of y in Y (1)^q

is a �xed point, we must have that (a1; y1); : : : ; (aq; yq) represent the same
element in Y (1). Since the map Y ^q(s) ! Y ^q(1) is injective, it follows
that ((ai; : : : ; ai); (yi; : : : ; yi)) represents y , and we can conclude that the map
Y ([s=q])! (Y ^q(s))Cq is onto.

De�nition 4.8 A p-cyclotomic �ltered Gamma space is a Gamma epicyclic
�ltered space X satisfying the following two conditions.

(1) The map XC(s) ! (S0^LX(s))C is an equivalence for every �nite p-
subgroup C of S1 and s 2 Z.
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(2) The norm map N : X(s)hCpn ! XCpn (s) de�ned as the composite

X(s)hCpn = (ES1
+^LX(s))Cpn ! (S0^LX(s))Cpn ’ XCpn (s)

�ts into a co�bration sequence X(s)hCpn
N! XCpn (s)

Rp! XCpn−1 ([s=p])
for every n � 1.

The proof of [13, prop 2.4] shows that for any �ltered FSP L the Gamma cyclic
space THH(L)(s) satis�es (1) above. If L is �ltered by co�brations we have
by lemma 4.7 that

((L(Si0) ^ � � � ^ L(Sik))^r(s))Cq �= (L(Si0) ^ � � � ^ L(Sik))^r=q([s=q]):

It follows from lemma 3.7 that its connectivity is at least (i0 + � � �+ ik)r=q− 1.
The proof of [13, prop 2.5] together with the above observation shows that
THH(L) satis�es (2) in the above de�nition. Hence THH(L) is a p-cyclotomic
�ltered Gamma space.

5 Filtered topological cyclic homology

Given a Gamma epicyclic �ltered space X , the Gamma spaces X(−1), X(0)
and X(1) = colim

s
X(s) come equipped with an epicyclic structure. In this

section we shall de�ne a �ltered Gamma space TC = TC(X; p), the topological
cyclic homology of X . This will be a generalization of non-�ltered topological
cyclic homology in the sense that TC(s) is the (non-�ltered) topological cyclic
homology TC(X(s); p) of the Gamma epicyclic space X(s) for s = −1; 0;1.
Here we use the notation TC(1) = colim

s
TC(s). The sign of s plays an

important role in the de�nition of TC(s). In fact TC(s) is de�ned using only
the X(r) where r has the same sign as s.

We start by de�ning tc(Y )(s) for a �ltered epicyclic space Y . Let us start by
de�ning tc(Y )(s) when s � 0. In this case s � [s=p]. (Recall that [s=p] is
the greatest integer less that or equal to s=p.) Therefore there is an inclusion
Y (s) i! Y ([s=p]). Using this inclusion and the restriction map Y (s)Cpn

rp!
Y ([s=p])Cpn−1 we obtain maps

Y
n�0

Y (s)Cpn
r(s)!!
i(s)

Y
n�0

Y ([s=p])Cpn :
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Let us de�ne tr(Y )(s) to be the homotopy equalizer of r(s) and i(s). The

Frobenius maps Y (s)Cpn
f(s)! Y (s)Cpn−1 commute with r(s) and i(s), and there-

fore they induce an endomorphism f(s) of tr(Y )(s). We de�ne tc(Y )(s) to be
the homotopy equalizer of f(s) and the identity. When s = −1; 0 this de�nition
of tc(Y )(s) agrees with the de�nition of tc(Y (s)) given in section 4.1. There is
an alternative de�nition of tc(Y )(s) where we interchange the roles of r and f
going as follows: We let tf(Y )(s) denote the homotopy equalizer of the maps

Y
n�0

Y (s)Cpn
f(s)!!
id

Y
n�0

Y (s)Cpn :

tc(Y )(s) is equivalent to the homotopy equalizer of the maps r(s) and i(s)
from tf(Y )(s) to tf(Y )([s=p]).

Now let us de�ne tc(Y )(s) when s � 0. The restriction map induces an endo-
morphism r(s) on the product

Q
n�0 Y (spn)Cpn . We de�ne tr(Y )(s) to be the

homotopy equalizer of r(s) and the identity. The Frobenius map induces a map
f(s) : tr(Y )(s)! tr(Y )(sp). Since s � sp, there is an inclusion Y (s)! Y (sp)
inducing a map i(s) : tr(Y )(s) ! tr(Y )(sp). We de�ne tc(Y )(s) to be the
homotopy equalizer of f(s) and i(s). When s = 0 this de�nition of tc(Y )(s)
agrees with the de�nition given above.

Given a Gamma epicyclic �ltered space X we have spaces tc(X(Sn))(s). Fil-
tered topological cyclic homology at the prime p of X is the spectrum TC =
TC(X; p) with TC(X; p)(s)n = tc(X(Sn); p)(s). Similarly let TR = TR(X; p)
be the �ltered spectrum with TR(X; p)(s)n = tr(X(Sn); p)(s): Let us note
that TC(X(s); p) �= TC(X; p)(s) for s = −1; 0;1. This fact together with the
two following lemmas is our justi�cation for the de�nition of TC(X; p). For
s = −1; 0;1 the spectrum TR(X(s); p) can be rewritten as the sequential ho-
motopy limit of X(s)Cp with respect to the restriction maps. There is no such
rewriting possible for s 6= −1; 0;1.

Lemma 5.1 Let X be a p-cyclotomic �ltered Gamma space �ltered by co�-
brations. Suppose that the connectivity of the map X(s) ! X(1) tends
to in�nity as s grows. Then X(1) is a p-cyclotomic Gamma space and
TC(X; p)(1) is stably equivalent to TC(X(1); p).

Recall that X(1) is the Gamma epicyclic space space with underlying Gamma
space colim

s
X(s), and that TC(1) = colim

s
TC(s).
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Proof Suppose that the map X(s) ! X(1) is k -connected for s � N � 0.
Using the co�bration sequence

X(spn)hCpn ! X(spn)Cpn ! X(spn−1)Cpn−1

we can by induction show that the map X(spn)Cpn ! X(1)Cpn is k -connected
when s � N , for all n. It follows that the mapY

n�0

X(spn)Cpn !
Y
n�0

X(1)Cpn

is k -connected when s � N . Therefore the map TR(s) ! TR(X(1); p) is at
least k − 1-connected, and the map TC(s) ! TC(X(1); p) is at least k − 2-
connected when s � N .

The next lemma says that if X is a p-cyclotomic �ltered Gamma space and
the connectivity of X(s) tends to in�nity as s decreases then holim

s
TC(s) is

contractible.

Lemma 5.2 Let X be a p-cyclotomic �ltered Gamma space. If s � 0 then
TR(s) and �TC(s) are at least as highly connected as X(s).

Proof Let TRm(s) denote the homotopy equalizer of the diagram

Y
0�n�m

X(s)Cpn
R(s)!!
I(s)

Y
0�n�m−1

X([s=p])Cpn ;

where I(s) forgets the m’th coordinate, and otherwise I(s) and R(s) are trun-
cations of the maps de�ning TR(s). There is an obvious map TRm(s) !
TRm−1(s) induced by projection away from the last factors of the products.
Using the norm co�bration sequence the �bre of this map may be identi�ed
with X(s)hCpm . Since homotopy limits commute we have that TR(s) is the
homotopy limit of the sequence

� � � ! TRm(s)! TRm−1(s)! � � � ! TR0(s):

Since homotopy orbits preserve connectivity and TR0(s) = X(s), TR(s) is a
sequential homotopy limit of spaces as least as connected as X(s) and with
homotopy �bres as least as connected as X(s). It follows that TR(s) is at
least as highly connected as X(s). Since homotopy equalizers at most lower
connectivity by one we have that �TC(s) is at least as highly connected as
TR(s).
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Given a map A! B of spectra we shall denote the homotopy co�bre by B=A.

Lemma 5.3 Let X be a p-cyclotomic �ltered Gamma space, let s < 0, and
assume that ps � t < s. After p-completion TC(s)=TC(t) is equivalent to
S1 ^ (X(s)=X(t))hS1 .

Proof Since s � [t=p], the inclusion X(s) ! X([s=p]) induces the trivial
map from X(s)=X(t) to X([s=p])=X([t=p]). Therefore the homotopy equalizer
of the maps induced by I(s) and R(s) on the quotients of the products in
the de�nition of TR agrees with the homotopy �bre of the map induced by
R(s). Using the norm co�bration sequence we can identify this �bre withQ
n�0(X(s)=X(t))hCpn . Since FpN = N trfp , where N : X(s)hCpn ! X(s)Cpn

denotes the norm map, and where trfp denotes the transfer map, we have that
TC(s)=TC(t) ’ holim

trfp
(X(s)=X(t))hCpn . The lemma now follows from lemma

4.5.

Note that the above lemma applies to the �ltration quotients TC(s)=TC(s−1).
For our main theorem the case s = −1 and t = −p is of particular interest. In
that case we get by lemma 5.2 that if X(−p) is k -connected, then after p-adic
completion the map

TC(−1)! TC(−1)
TC(−p) ’ S

1 ^
�
X(−1)
X(−p)

�
hS1

is k -connected.

It follows from remark 3.11 that for an FSP L �ltered by co�brations and
with L(s) = L(0) for s � 0 we have that TC(0)=TC(−1) is isomorphic to
TC(L(0)=L(−1); p).

6 Relative K -theory of nilpotent ideals

In this section we shall prove the following theorem relating relative K -theory
and relative cyclic Homology. One good reference for cyclic homology is the
book of Loday [15].

Theorem 6.1 Let R be a simplicial ring with an ideal I satisfying Im =
0. Suppose that R and R=I are flat as modules over Z. Then there is an
isomorphism of homotopy groups of p-adic completions

�iK(R; I)^p �= �i−1HC(R; I)^p
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when 0 � i < p=(m− 1)− 2 and a surjection

�iK(R; I)^p ! �i−1HC(R; I)^p

when i < p=(m− 1)− 1.

Recall that K(R; I) is the homotopy �bre of the map K(R) ! K(R=I) and
that HC(R; I) is the homotopy �bre of the map HC(R)! HC(R=I).

The proof uses the results of the previous section plus a number of results about
TC proven elsewhere. We shall collect the statements of these results for the
convenience of the reader. The following result is due to McCarthy [19].

Theorem 6.2 Suppose f : R! S is a homomorphism of simplicial rings and
that �0(f) is surjective and has nilpotent kernel. Then the diagram

K(R) ! TC( eR; p)
# #

K(S) ! TC(eS; p)
is homotopy Cartesian after p-adic completion.

Suppose that f in the above theorem is degreewise surjective and let I � R
denote its kernel. Let TC( eR; eI; p) denote the homotopy �bre of the map
TC( eR; p) ! TC(eS; p). Then the theorem says that the map K(R; I) !
TC( eR; eI; p) is an equivalence after p-adic completion. The theorem in par-
ticular applies in the situation where I is a nilpotent ideal in R.

Lemma 6.3 Let R be a ring which is flat as a module over Z. Then the map
�i THH( eR)^p ! �i HH(R)^p is an isomorphism when i � 2p− 2.

Proof In [20, thm 4.1] Pirashvili and Waldhausen have established a spec-
tral sequence with E2 -term E2

s;t = HHs(R;�t THH(eZ; eR)) converging towards
�s+t THH( eR). The lemma follows from the fact that �0 THH(eZ; eR) = R and
that �i THH(eZ; eR)^p = 0 when 1 � i � 2p− 2.

The following result is dual to a result of Cohen and Jones [9, lemma 1.3]. We
give an alternative proof inspired by a more elementary proof due to Bökstedt.

Proposition 6.4 Let A be a a cyclic object in the category of abelian groups,
and let eA denote the Gamma cyclic space with eA(n+) = A ⊗Z eZ(n+). Then
there is a natural isomorphism HC�(A) �= ��( eAhS1).
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Recall that eAhS1 is the S1 homotopy orbit spectrum associated to the spectrum
n 7! j eA(Sn)j.

Proof We refer to [15, section 6.2] for the notation used in this proof. It is well
known (see e.g. [15, theorem 6.2.8], or use the argument below) that there is an
isomorphism HC�(A) �= Tor�op

� (Z; A). To see that ��( eAhS1) also is isomorphic
to this Tor group, it su�ces to check the usual properties determining Tor
groups up to isomorphism (see e.g. [8, theorem V.6.1]). Firstly we note that
there are isomorphisms �0( eAhS1) �= �0(jAj) �= Z ⊗�op A. Secondly the repre-
sentable functors Z�n with Z�n([m]) = Z[�([m]; [n])] form a set of projective
generators for the category of cyclic objects in the category of abelian groups,
that is, every projective object in this category is a quotient of a sum of objects
of the form Z�n . Since jZ�nj �= jZ[S1��n]j we can use lemma 3.2 to see thatgZ�nhS1 ’ eZ, and hence �i(gZ�nhS1) = 0 for i > 0. Thirdly, given a short exact
sequence A0 ! A! A00 of cyclic objects in the category of abelian groups, we
obtain a co�bration sequence eA0 ! eA ! eA00 of spectra with an action of S1 .
Since homotopy orbits take co�bration sequences to co�bration sequences we
obtain a long exact sequence of homotopy groups of homotopy orbits.

The proposition in particular says that there is an isomorphism �iH̃H(R)hS1
�=

HCi(R). To prove theorem 6.1 we also need the following lemma.

Lemma 6.5 Let L be an FSP �ltered by co�brations. Suppose that L(s) =
L(0) for s � 0, and that there exists m � 0 such that L(−m) = �. Then
�k THH(L)(s) = 0 when k < −s=(m− 1)− 1.

Proof Recall that (L(Sn0) ^ � � � ^L(Snk))(s) is the colimit running over i0 +
� � �+ ik � s of

L(Sn0)(i0) ^ � � � ^ L(Snk)(ik):

If i0 + � � �+ ik � s then there exists an � such that i� � s=(k + 1). Therefore
the smash product is zero if s=(k + 1) < −m + 1, or equivalently if k <
−s=(m− 1)− 1, and hence THH(L)(s)k = 0 if k < −s=(m− 1)− 1.

Using the above lemma and lemma 5.3, or rather the remark after it, we obtain
the following.

Proposition 6.6 Let L be an FSP �ltered by co�brations, and suppose that
L(s) = L(0) for s � 0, and that there exists m � 0 such that L(X)(−m) = �
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for all X . Let TC = TC(L; p), and THH = THH(L). After completion at p
there are maps

TC(−1)! TC(−1)
TC(−p) ’ S

1 ^
�

THH(−1)
THH(−p)

�
hS1

 S1 ^ THH(−1)hS1 :

Here THH(−p) is p=(m − 1) − 2-connected and TC(−p) is p=(m − 1) − 3-
connected, and therefore the map pointing to the right is p=(m−1)−2-connected
and the map pointing to the left is p=(m− 1)− 3-connected.

Now let R denote a ring with an ideal I satisfying that Im = 0. Considering
the I -adic �ltration 0 = Im � � � � � I � R of R we obtain a �ltered ring R with
R(s) = I−s for s < 0 and with R(s) = R for s � 0. By the construction in 3.6
we obtain a �ltered FSP eR with eR(n+; s) = eZ(n+)⊗ZR(s). As remarked after
3.10 THH(R)(−1) is equivalent to the homotopy �bre of the map THH(R)!
THH(R=I). Since homotopy limits commute we have that

TC(R; I; p) = TC(R; p)(−1):

Applying McCarthy’s theorem 6.2 and the above proposition we obtain an
isomorphism

�iK(R; I)^p �= �i−1(THH(R)(−1)hS1)^p
when i < p=(m− 1)− 2 and we have a surjection

�iK(R; I)^p ! �i−1(THH(R)(−1)hS1)^p
when i < p=(m− 1)− 1. Using lemma 6.4 and lemma 6.3 we can complete the
proof of theorem 6.1.

Proof of theorem 6.1 Let us write THH(R; I) instead of THH(R)(−1). We
have an isomorphism �iK(R; I)^p �= �i−1(THH(R; I)hS1)^p when i < p=(m−1)−
2 and a surjection �iK(R; I)^p ! �i−1(THH(R; I)hS1)^p when i < p=(m−1)−1.
By lemma 6.3 there is for i � 2p − 1 an isomorphism �i−1(THH(R; I)hS1)^p �=
�i−1(HH(R; I)hS1)^p . Splicing these maps with the isomorphism of lemma 6.4
we obtain the asserted isomorphism �iK(R; I)^p �= �i−1HC(R; I)^p when i <
p=(m − 1) − 2 and the surjection �iK(R; I)^p ! �i−1HC(R; I)^p when i <
p=(m− 1)− 2.

7 Computations in cyclic homology

In this section we shall compute some derived cyclic homology groups of the
ring Z=pn . The de�nition of derived cyclic homology depends on the following
lemma. A proof can for example be found in [7].
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Lemma 7.1 Let A be a simplicial ring. There exists a weak equivalence
R
’! A of simplicial rings, where R is degreewise free as an abelian group. If

R0 is another ring with underlying degreewise free abelian group, and with a
weak equivalence R0

’! A, then there is a chain of weak equivalences between R
and R0 through simplicial rings with underlying degreewise free abelian groups.

Let A be a simplicial ring, and choose a weak equivalence R ’! A as in the above
lemma. That is, with R degreewise free as an abelian group. By functoriality
of the Hochschild construction there is a map HH(R)! HH(A). By de�nition
HH(R) is the derived Hochschild homology of A. (Some authors call it Shukla
homology.) By the above lemma it is unique up to weak equivalence. We shall
call HC(R) the derived cyclic homology of A. We shall use the notation gHC(A)
for HC(R).

Given a discrete ring A, we can consider it as a constant simplicial ring. This
way we obtain derived cyclic homology of discrete rings.

Proposition 7.2 For 0 � i < 2p the derived cyclic homology of Z=pn is given
as follows:

gHCi(Z=pn) =

(
Z=pnj if i = 2(j − 1) < 2p
0 if i < 2p is odd

and the relative cyclic homology groups are:

gHCi(Z=pn; pn−1Z=pn) =

(
Z=pj if i = 2(j − 1) < 2p
0 if i < 2p is odd.

Proof Let us consider �1 = �(−; [1]) as a pointed simplicial monoid as fol-
lows. Given �; � : [k] ! [1], we let (� � �)(j) = �(j) � �(j). The constant
map with value 0 2 [1] is the base point. There is a pointed submonoid S0

of �1 consisting of the constant maps. We shall let R denote the subringeZ(S0) �
pnZ̃(S0)

pneZ(�1) of the pointed monoid ring eZ(�1). From the short
exact sequence

pneZ(�1)! R! Z=pn

it follows that we have a weak equivalence R
’! Z=pn . The normalized chain

complex of R has a generator 1 in degree zero and a generator t in degree
1. The di�erential takes t to pn � 1. The normalized chain complex C�(R)
of HH(R) has a generator of the form 1 ⊗ t⊗k in degree 2k and a generator
of the form t⊗k in degree 2k − 1. The Hochschild boundary b takes t⊗k to
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pn(1 ⊗ t⊗k−1). It follows that �2k HH(R) = Z=pn and that the odd homotopy
groups of HH(R) are zero. In order to compute cyclic homology of R, we need
to evaluate the Connes boundary operator B on the chains of the normalized
chain complex of HH(R). The result is that B(t⊗k) = k(1 ⊗ t⊗k), and that
B(1⊗t⊗k) = 0. It is not easy to compute the higher homology of the bicomplex
(B(R); b; B) with B(R)s;t = Ct−s and with vertical and horizontal di�erential
induced by b and B respectively. In degrees up to 2p−1 the horizontal nonzero
di�erentials become isomorphisms after tensoring with Z=p. Therefore we have
that the homology of the total complex of B(R) ⊗ Z=p is a copy of Z=p in
degree k when 0 � k � 2p − 1. We can conclude that if 0 � i � p − 1 then
HC2i(R) is a cyclic p-group and HC2i+1(R) = 0. To �nd the order of HC2i(R)
we can consider the spectral sequence associated to the bicomplex (B(R); b; B)
with E1 -term E1

s;t = HHt−s(R). This spectral sequence is concentrated in even
total degrees, and therefore there are no nonzero di�erentials. We know that in
degrees up to 2p − 2 all extensions are maximally nontrivial, and we can read
o� the stated value of HCi(R).

To see that the map gHCi(Z=pn)!gHCi(Z=pn−1) is onto when 0 � i � 2p− 1
it su�ces to check that generators for the group Z=p(n−1)i �= gHC2i(Z=pn−1)
are in the image. This is easy to see from the induced map of E1 -terms of the
spectral sequence considered above.

Lemma 7.3 The map �iTC(Z=pn; p)! �iTC(Z=pn−1; p) is onto for 1 � i �
p− 3 and n � 2. Furthermore �2jTC(Z=pn; p) = 0 for 2 � 2j � p− 3.

Proof The proof goes by induction on n. Suppose that �2jTC(Z=pn−1; p) = 0
for 2 � 2j � p− 3. (By the computation of ��TC(Z=p; p) in [13, thm. B] this
is true for n = 1.) We have a co�bration sequence

TC(Z=pn; pn−1Z=pn; p)! TC(Z=pn; p)! TC(Z=pn−1; p):

Applying proposition 7.2, theorem 6.1 with I = pn−1Z=pn and m = 2 and
theorem 6.2 we �nd that

�iTC(Z=pn; pn−1Z=pn; p) �=
(
Z=pj when i = 2j − 1 � p− 3
0 when i � p− 3 is even.

The statement of the lemma can be read o� from the long exact sequence
associated to the co�bration sequence.

Corollary 7.4 For 1 � i � p− 3, the K -groups of Z=pn are:

�iK(Z=pn) �=
(

0 if i is even

Z=pj(n−1)(pj − 1) if i = 2j − 1
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Proof It follows from the above lemma that the map

lim
n
�iTC(Z=pn; p)! �iTC(Z=pn; p)

is onto and that lim1
n �iTC(Z=pn; p) = 0 (see [6] chap IX and XI). We have

that holim
n

TC(Z=pn; p) ’ TC(Z^p ; p) (see for example [13, thm. 6.1]), and it

follows that the map �iTC(Z^p ; p)! TC(Z=pn; p) is onto. In [4] Bökstedt and
Madsen have computed ��TC(Z^p ; p). In the low degrees we are interested in
it is Z^p in odd degrees and 0 in even strictly positive degrees. It follows that
the group �iTC(Z=pn; p) is cyclic. Using the co�bration displayed in the proof
of the above lemma and the computation of ��TC(Z=p; p) given in [13] we can
by induction prove that

�iTC(Z=pn; p) �=
(

0 if 0 < i � p− 3 even
Z=pj(n−1) if i = 2j − 1 � p− 3.

The statement of corollary 7.4 now follows from McCarthy’s theorem 6.2 and
from Quillen’s computation of K(Z=p) in [23].
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