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Coarse homology theories
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Abstract In this paper we develop an axiomatic approach to coarse ho-
mology theories. We prove a uniqueness result concerning coarse homology
theories on the category of \coarse CW -complexes". This uniqueness re-
sult is used to prove a version of the coarse Baum-Connes conjecture for
such spaces.
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1 Introduction

Coarse geometry is the study of large scale structures on geometric objects. A
large-scale analogue of cohomology, called coarse cohomology, was introduced
by J. Roe in [10] in order to perform index theory on non-compact manifolds.
The dual theory, coarse homology, has proved useful in formulating a coarse
version of the Baum-Connes conjecture; see [8] and [14].1 This coarse Baum-
Connes conjecture has similar consequences to the original Baum-Connes con-
jecture formulated in [2]. In particular, the coarse Baum-Connes conjecture
implies the Novikov conjecture concerning the oriented homotopy-invariance of
higher signatures on a manifold. The book [11] contains an overview of coarse
geometric techniques applied to such problems.

In this paper we present an axiomatic approach to coarse (generalised) homol-
ogy theories; the axioms used are coarse analogues of the classical Eilenberg-
Steenrod axioms (see [4]).

A coarse (n − 1)-sphere is de�ned to be Euclidean space Rn equipped with
a suitable coarse structure compatible with the topology. This terminology
comes from thinking of a coarse (n − 1)-sphere as an ordinary (n − 1)-sphere

1Strictly speaking, coarse K -homology rather than the coarse version of ordinary
homology is used here.
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272 Paul D. Mitchener

‘at in�nity’. There is a similar notion of a coarse n-cell. Using these basic
building blocks we can formulate the notion of a coarse CW -complex.

The main result of this article is the fact that a coarse homology theory is
uniquely determined on the category of �nite coarse CW -complexes by its val-
ues on the one-point coarse space and on coarse 0-cells. The proof of this result
is analogous to the corresponding uniqueness result for generalised homology
theories in classical algebraic topology.

As an application, we use this result together with the main results from [7]
to study the coarse Baum-Connes conjecture. In particular, using coarse struc-
tures arising from ‘continuous control at in�nity’ (see [1]) we obtain a result on
the Novikov conjecture that appears to be new.

The remainder of the paper comprises: Section 2: The coarse category; section
3: Coarse homology theories; section 4: Relative coarse homology; section 5:
Coarse CW -complexes; section 6: The coarse assembly map.
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2 The coarse category

The basic concepts of coarse geometry can be de�ned axiomatically; the follow-
ing de�nition is a special case of the de�nition of a bornology on a topological
space, X , given in [7].

De�nition 2.1 A set X is called a coarse space if there is a distinguished
collection, E , of subsets of the product X �X called entourages such that:

� Any �nite union of entourages is contained in an entourage.

� The union of all entourages is the entire space X �X .
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� The inverse of an entourage M :

M−1 = f(y; x) 2 X �X j (x; y) 2Mg

is contained in an entourage.

� The composition of entourages M1 and M2 :

M1M2 = f(x; z) 2 X �X j (x; y) 2M1 (y; z) 2M2 for some y 2 Xg

is contained in an entourage.

The coarse space X is called unital if the diagonal, D = f(x; x) j x 2 Xg, is
contained in an entourage.

Two coarse structures fM� � X �X j � 2 Ag and fN� � X �X j � 2 Bg on
a set X are said to be equivalent if every entourage M� is contained in some
entourage N� , and every entourage N�0 is contained in some entourage M�0 .
We do not distinguish between equivalent coarse structures.

De�nition 2.2 Let X be a coarse space, and consider maps f : S ! X and
g : S ! X for some set S . Then the maps f and g are called close or coarsely
equivalent if the set:

f(f(s); g(s)) j s 2 Sg
is contained in an entourage.

There is a notion of a subset of a coarse space being of �nite size.

De�nition 2.3 Let X be a coarse space, and consider a subset A � X and
an entourage M � X �X . Then we de�ne:

M [A] = fx 2 X j (x; a) 2M for some point a 2 Ag

As a special case, for a single point x 2 X we write M(x) = M [fxg]. We call
a subset B � X bounded if it is contained in a set of the form M(x).

Observe that a subset of a bounded set is bounded, and a �nite union of bounded
sets is bounded. If B � X is a bounded set, and M is an entourage, then the
set M [B] is bounded.

In this article we explore invariants that depend only on the coarse structure
of a given space. However, it can be useful to know when coarse structures are
compatible with other structures that may be present. The following de�nition
also comes from [7].
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De�nition 2.4 Let X be a coarse space. Then X is called a coarse topological
space if it is equipped with a Hausdor� topology such that every entourage is
open, and the closure of every bounded set is compact.

In fact it is easy to demonstrate that any coarse topological space is locally
compact, and the bounded sets are precisely those which are precompact. If X
is a coarse space equipped with some topology, we say that the topology and
coarse structure are compatible when X is a coarse topological space.

The main examples of coarse structures we will use are the bounded coarse
structure on a metric space, and the continuously controlled coarse structure
arising from a compacti�cation of a topological space.

De�nition 2.5 If X is a proper metric space, the bounded coarse structure is
the unital coarse structure formed by de�ning the entourages to be neighbour-
hoods of the diagonal:

DR = f(x; y) 2 X �X j d(x; y) < Rg

De�nition 2.6 Let X be a Hausdor� space equipped with a compacti�cation
X .2 Then the continuously controlled coarse structure is formed by de�ning the
entourages to be open subsets M � X �X such that the closure M � X �X
intersects the set @X � @X 3 only in the diagonal, and each set of the form
M(x) is precompact.

Both of the above examples are in fact coarse topological spaces. Making further
restrictions, other examples of coarse topological spaces include the ‘monoidal
control spaces’ considered in [3].

Bounded coarse structures are more general that they might at �rst appear
because of the following result, which is proved in [12].

Proposition 2.7 Let X be a coarse space. Suppose that X is countably gen-
erated in the sense that there is a sequence of entourages (Mn) such that every
entourage M is contained in a �nite composition of the form M1M2 � � �Mn .

Then the coarse structure on X is equivalent to the bounded coarse structure
arising from some metric.

2This statement means that the space X is included in the compact space X as a
dense subset.

3The boundary, @X , is the complement XnX .
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A coarse map is a structure-preserving map between coarse spaces.

De�nition 2.8 Let X and Y be coarse spaces. Then a map f : X ! Y is
said to be coarse if:

� The mapping f � f : X � X ! Y � Y takes entourages to subsets of
entourages

� For any bounded subset B � Y the inverse image f−1[B] is also bounded

The main de�nitions of coarse geometry are motivated by looking at coarse
maps between metric spaces equipped with the bounded coarse structure; see
[11].

We can form the category of all coarse spaces and coarse maps. We call this
category the coarse category. We call a coarse map f : X ! Y a coarse equiv-
alence if there is a coarse map g : Y ! X such that the composites g � f and
f � g are close to the identities 1X and 1Y respectively.

Let X and Y be coarse spaces, equipped with collections of entourages E(X)
and E(Y ) respectively. Then we de�ne the product of X and Y to be the
Cartesian product X�Y equipped with the coarse structure de�ned by forming
�nite compositions and unions of entourages in the set:

fM �N j M 2 E(X);N 2 E(Y )g

Unfortunately, the above product is not a product in the category-theoretic
sense since the projections �X : X � Y ! X and �Y : X � Y ! Y are not in
general coarse maps.4

De�nition 2.9 A generalised ray is the topological space [0;1) equipped with
some unital coarse structure compatible with the topology.

We reserve the notation R+ for the space [0;1) equipped with the bounded
coarse structure de�ned by the metric.

The following de�nition is a generalisation of the notion of a Lipschitz homotopy
given in [5] and used in coarse geometry in [14].

De�nition 2.10 Let X and Y be coarse spaces. Then a coarse homotopy is
a map F : X �R! Y for some generalised ray R such that:

4Because the inverse image of a bounded set need not be bounded.
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� The map X � R ! Y � R de�ned by writing (x; t) 7! (F (x; t); t) is a
coarse map.

� For every bounded set B � X there is a point T 2 R such that the
function (x; t) 7! F (x; t) is constant if t � T and x 2 B .

� The function F (−;1) de�ned by the formula:

x 7! lim
t!1

F (x; t)

is a coarse map.

The coarse maps F (−;1) and F (−; 0) are said to be linked by a coarse homo-
topy. Two coarse functions f : X ! Y and g : X ! Y are said to be coarsely
homotopic if they are linked by a chain of coarse homotopies. A coarse map
f : X ! Y is called a coarse homotopy-equivalence if there is a coarse map
g : Y ! X such that the composites g � f and f � g are coarsely homotopic to
the identities 1X and 1Y respectively.

Observe that any two coarsely equivalent maps are coarsely homotopic. The
following result gives us an example of spaces that are coarsely homotopic but
not coarsely equivalent.

Proposition 2.11 Let Rn denote Euclidean space equipped with the bounded
coarse structure. Then the inclusion i : R+ ,! Rn�R+ de�ned by the formula
i(s) = (0; s) is a coarse homotopy-equivalence.

Proof De�ne a coarse map p : Rn � R+ ! R+ by writing p(x; s) = kxk + s.
The composition p � i is equal to the identity 1R+ . We can de�ne a coarse
homotopy linking the functions 1Rn�R+ and i � p by the formula:

F (x; s; t) =

(
(x cos( t

kxk); s + kxk sin( t
kxk )) t � �kxk

2

(0; s + kxk) t � �kxk
2

Actually, the above construction of a homotopy equivalence can be generalised
to some situations involving continuous control. We will come back to this point
in section 5.

We have seen that there is no good notion of products in the coarse category.
Fortunately, the situation is rather better when we look at coproducts and some
more general colimits.
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De�nition 2.12 Let fX� j � 2 �g be a collection of coarse spaces. Let E�
denote the collection of entourages of the space X� , and let B� denote the
collection of bounded subsets. Then the disjoint union,

‘
�2�X� , is equipped

with a coarse structure de�ned by forming the set of entourages:[
�2�

E� [
[

�;�02�

fB �B0 j B 2 B�; B0 2 B�0g

It is straightforward to verify that the disjoint union of a collection of coarse
spaces de�nes a coproduct in the coarse category.

De�nition 2.13 Let X be a coarse space equipped with an equivalence rela-
tion � and quotient map � : X ! X= �. Then the quotient X= � is equipped
with a coarse structure formed by de�ning the set of entourages to be the col-
lection:

f�[M ] j M � X �X is an entourageg

In general the quotient map � : X ! X= � is not a coarse map, since the
inverse image of a bounded subset need not be bounded. However, the map �
is a coarse map when each equivalence class of the relation � is �nite.

3 Coarse homology theories

A coarse homology theory is a functor on the category of coarse spaces that
enables us to distinguish di�erent coarse structures. It is the analogue in the
world of coarse geometry of a generalised homology theory in the world of
topology.

De�nition 3.1 A coarse homology theory consists of a collection of functors,
fHXpgp2Z , from the category of coarse spaces to the category of Abelian groups
such that the following axioms hold:

� Coarse homotopy-invariance:
For any two coarsely homotopic maps f : X ! Y and g : X ! Y , the
induced maps f� : HXp(X) ! HXp(Y ) and g� : HXp(X) ! HXp(Y )
are equal.

� Excision axiom:
Consider a decomposition X = A[B of a coarse space X . Suppose that
for all entourages m � X�X we can �nd an entourage M � X�X such
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that m(A)\m(B) �M(A\B). Consider the inclusions i : A\B ,! A,
j : A \ B ,! B , k : A ,! X , and l : B ,! X . Then we have a natural
map d : HXp(X)! HXp−1(A \B) and a long exact sequence:

// HXp(A \B) �
// HXp(A)�HXp(B)

�
// HXp(X) d

// HXp−1(A \B) //

where � = (i�;−j�) and � = k� + l� .

The coarse homology theory fHXpg is said to satisfy the large scale axiom if
the groups HXp(+) are all trivial, where + denotes the one-point topological
space.

A decomposition, X = A[B , of a coarse space X is said to be coarsely excisive
if the coarse excision axiom applies, that is to say for all entourages m � X�X
we can �nd an entourage M � X �X such that m(A) \m(B) � M(A \ B).
The long exact sequence:

// HXp(A \B) // HXp(A)�HXp(B) // HXp(X) // HXp−1(A \B) //

is called the coarse Mayer-Vietoris sequence.

The process of coarsening, described in [8] and [11], is used to construct coarse
homology theories on the category of proper metric spaces equipped with their
bounded coarse structures. This process can be signi�cantly generalised.

De�nition 3.2 Let X be a coarse space. A good cover of X is a cover fBi j i 2
Ig such that each set Bi is bounded, and each point x 2 X lies in at most
�nitely many of the sets Bi .

Let U and V be good covers of the space X . Then we say that the cover V is
a coarsening of the cover U , and we write U � V , if there is a map � : U ! V
such that U � �[U ] for all sets U 2 U .5 The map � is called a coarsening map.

De�nition 3.3 A directed family of good covers of X , (Ui; �ij)i2I , is said to
be a coarsening family if there is a family of entourages (Mi) such that:

� For all sets U 2 Ui there is a point x 2 X such that U �Mi(x).

� Let x 2 X and suppose that i < j . Then there is a set U 2 Uj such that
Mi(x) � U .

� Let M � X �X be an entourage. Then M �Mi for some i 2 I .

5A coarsening is the opposite of a re�nement, as considered in �Cech cohomology
theory.
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It is proved in [10] that any proper metric space, with its bounded coarse
structure, admits a coarsening family. The following result is a generalisation
of this fact.

Proposition 3.4 Let X be a unital coarse topological space. Then X has a
coarsening family.

Proof Let fMi j i 2 Ig be a generating set for the collection of entourages
in the space X , in the sense that every entourage M is contained in some
�nite composite Mi1Mi2 � � �Mik .6 Without loss of generality, let us assume
that each generator Mi contains the diagonal X�X , is symmetric in the sense
that M−1

i = Mi , and every �nite composite Mi1Mi2 � � �Mik of generators is an
entourage.

De�ne J to be the set of �nite sequences of elements of the set I . The set J
can be ordered; we say j1 � j2 if j1 is a subsequence of j2 .

Let i 2 I . Let us say a subset S � X is Mi -sparse if (x; y) =2Mi for all points
x; y 2 S such that x 6= y . By Zorn’s lemma there is a maximal Mi -sparse set
Ai .

Consider a �nite sequence j = (i1; : : : ; ik) 2 J . Form the composite Mj =
Mi1 : : :Mik and union Aj = Ai1 [ � � � [ Aik , and look at the collection of
bounded sets:

Uj = fMj(x) j x 2 Ajg
Since each of the generators is symmetric and contains the diagonal, the com-
posite Mj contains each of the generators that form it. By maximality of the
Mi1 -sparse set Ai1 , the collection Uj is a cover of the space X . Choose a point
x0 2 X . Then the set

fx 2 Aj j x0 2Mj(x)g
is a discrete subset of a compact set, and is therefore �nite. Thus the cover Uj
is good in the sense of de�nition 3.2.

We now need to check that the family of covers (Uj) forms a coarsening family.
Consider the family of entourages (Mj). By construction, every set U 2 Uj
takes the form Mj(x) for some point x 2 X , and every entourage M is con-
tained in some entourage of the form Mj .

6In view of proposition 2.7 this generating set is probably uncountable. However,
note that we can always �nd such a generating set simply by considering the set of all
entourages.
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All that remains is to check that for every point x 2 X and every pair of
elements j; j0 2 J such that j < j0 there is a set U 2 Uj0 such that Mj(x) � U .

It su�ces to look at the special case where we have sequences j = (i1; : : : ; ik)
and j0 = (i1; : : : ; ik; ik+1) in the indexing set J . By maximality of the Mik+1

-
sparse set Aik+1

we can �nd a point y 2 Aik+1
such that x 2Mik+1

(y). Hence
Mj(x) �Mj0(y).

In particular, note that any generalised ray admits a coarsening family.

Recall that the nerve, jUij, of a cover Ui is a simplicial set with one vertex for
every set in the cover. Vertices represented by sets U1; : : : ; Un 2 Ui are spanned
by an n-simplex if and only if the intersection U1 \ � � � \ Un is non-empty. If
(Ui; �ij) is a coarsening family, then each map �ij : Ui ! Uj induces a map of
simplicial sets �ij� : jUij ! jUj j. The map �ij� is proper because the covers we
consider are locally �nite.7

De�nition 3.5 Let fH lf
p g be a generalised locally �nite homology theory on

the category of simplicial sets. Let (Ui; �ij) be a coarsening family on the coarse
space X . Then we write:

HXp(X) = lim!
i

H lf
p jUij

As the above terminology suggests, it will turn out that the assignment X 7!
HXp(X) forms a coarse homology theory.

Proposition 3.6 Let X and Y be coarse spaces equipped with coarsening
families (Ui)i2I and (Vj)j2J respectively. Let f : X ! Y be a coarse map.
Then there is a functorially induced homomorphism f� : HXp(X)! HXp(Y )

Proof Since the map f is a coarse map, it takes entourages to entourages.
The given conditions on coarsening families ensure that for each element i 2 I ,
f [Ui] � Vj for some element j 2 J .

Hence we have an induced map of simplicial sets f� : jUij ! jVjj. This map is
proper since the map f is coarse. By de�nition of the nerve of a cover, up to
proper homotopy the map f� is independent of any choice of coarsening family.
We therefore obtain a homomorphism:

f� : lim!
i

H lf
p jUij ! lim!

j

H lf
p jVjj

by taking locally �nite homology groups followed by the direct limit.
7That is to say each point of our space lies in only �nitely many sets of a particular

cover.
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Corollary 3.7 The group HXp(X) does not, up to isomorphism, depend on
the choice of coarsening family.

Lemma 3.8 Let f : X ! Y and g : X ! Y be coarsely homotopic maps
between coarse spaces that admit coarsening families. Then the induced maps
f� : HXp(X)! HXp(Y ) and g� : HXp(X)! HXp(Y ) are equal.

Proof Without loss of generality suppose we have a coarse homotopy F : X�
R ! Y such that f = F (−; 0) and g = F (−;1). Let (Ui)i2I , (Vj)j2J ,
and (Wk)k2K be coarsening families for the spaces X , R, and Y respectively.
Then for all elements i 2 I and j 2 J we can �nd an element k 2 K such that
F (Ui � Vj) � Wk . Hence we have an induced proper map of simplicial sets:

F� � 1: jUij � jVj j ! jWkj � jVjj

Now, let us write the cover Vj of the generalised ray R as a sequence of bounded
sets (Vn) where supVn+1 � supVn and Vn+1 \ Vn 6= ;. Then we can de�ne a
continuous map [0;1)! jVjj by sending a natural number n 2 N to the vertex
Vn and a point t 2 (n; n + 1) to the appropriate point on the edge joining the
vertices Vn and Vn+1 . Hence we have a proper continuous map

F� � 1: jUij � [0;1)! jWkj � [0;1)

such that for each point x 2 jUij the function t 7! F�(x; t) is eventually con-
stant.

The induced maps f� : jUij ! jWkj and g� : jUij ! jWkj are thus properly
homotopic; we obtain the appropriate proper homotopy by renormalising the
map F� : jUij � [0;1)! jWkj. The maps f� and g� therefore induce the same
map at the level of locally �nite homology. Taking direct limits, the maps
f� : HXp(X)! HXp(Y ) and g� : HXp(X)! HXp(Y ) must be equal.

Lemma 3.9 Let X be a coarse space that admits some coarsening family.
Suppose we have a coarsely excisive decomposition X = A [B and inclusions
i : A \B ,! A, j : A \B ,! B , k : A ,! X , and l : B ,! X . Then we have a
natural map d : HXp(X)! HXp−1(A \B) and a long exact sequence:

// HXp(A \B) �
// HXp(A)�HXp(B)

�
// HXp(X) d

// HXp−1(A \B) //

where � = (i�;−j�) and � = k� + l� .
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Proof Let (Ui)i2I be a coarsening family for the space X . Then the spaces
A and B have coarsening families (UijA) and (UijB) de�ned by writing:

UijA = fU \A j U 2 Ui; U \A 6= ;g UijB = fU \B j U 2 Ui; U \B 6= ;g
respectively.

Write Ai = jUijAj, Bi = jUijB j, and Xi = jUij. The decomposition X = A [B
is coarsely excisive, so if we look at interiors then:

A0
i [B0

i = Xi

By the existence of Mayer-Vietoris sequences in ordinary homology (see for
example [13]) we have natural maps d : H lf

p (Xi) ! H lf
p−1(Ai \ Bi) and exact

sequences:

// H lf
p (Ai \Bi) // H lf

p (Ai)�H lf
p (Bi) // H lf

p (Xi)
d

// H lf
p−1(Ai \Bi) //

Taking direct limits, we have an exact sequence:

// HXp(A \B) �
// HXp(A)�HXp(B)

�
// HXp(X) d

// HXp−1(A \B) //

as required.

Lemma 3.8 and lemma 3.9 together imply the following result.

Theorem 3.10 Let fH lf
p g be a locally �nite homology theory. Then the col-

lection of functors fHXpg de�nes a coarse homology theory on the category of
coarse topological spaces.

The coarse homology theories considered above do not satisfy the large scale
axiom.

Now, let X be a coarse paracompact topological space equipped with an open
coarsening family (Ui). Let f’U j U 2 Uig be a partition of unity subordinate
the the open cover Ui . Given a point x 2 X there are only �nitely many sets
U 2 Ui such that x 2 U . The sum

P
U2Ui ’U (x)U represents a point in the

simplex spanning the vertices represented by these sets. We can therefore de�ne
a proper continuous map � : X ! jUij by the formula:

�i(x) =
X
U2Ui

’U (x)U

Considering locally �nite homology and taking direct limits we obtain a coars-
ening map:

c : H lf
n (X)! HXn(X)
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Proposition 3.11 The coarsening map c does not depend upon the choice of
partition of unity.

Proof Let f’U j U 2 Uig and f’0U j U 2 Uig be partitions of unity subor-
dinate to the open cover Ui . Then the resulting maps �i and �0i are properly
homotopic, and so induce the same maps at the level of locally �nite homol-
ogy.

It is proved in [8] that the coarsening map, c, is an isomorphism whenever X
is a proper metric space8 with good local properties. In particular, it is easy to
see that the map c is an isomorphism if the space X is a single point.

4 Relative coarse homology

Homology theories are usually de�ned by looking at pairs of topological spaces.
There is a corresponding notion in the coarse setting.

De�nition 4.1 A pair, (X;A), of coarse spaces consists of a coarse space
X and a subspace A � X . A coarse map of pairs f : (X;A) ! (X;B) is
a coarse map f : X ! Y such that f [A] � B . A relative coarse homotopy
F : (X;A) � R ! (Y;B) is a coarse homotopy F : X � R ! Y such that
F (a; t) 2 B for all points a 2 A and t 2 R. Two coarse maps of pairs
f; g : (X;A) ! (Y;B) are relatively coarsely homotopic if they are linked by a
chain of relative coarse homotopies.

We now present the coarse version of the Eilenberg-Steenrod axioms.

De�nition 4.2 A relative coarse homology theory consists of a collection of
functors, fHXpgp2Z , from the category of pairs of coarse spaces to the category
of Abelian groups, together with natural transformations @ : HXp(X;A) !
HXp(A; ;) such that the following axioms hold:

� Coarse homotopy-invariance:
Let f : (X;A) ! (Y;B) and g : (X;A) ! (Y;B) be relatively coarsely
homotopic coarse maps. Then the induced maps f� : HXp(X;A) !
HXp(Y;B) and g� : HXp(X;A)! HXp(Y;B) are equal.

8Equipped with the bounded coarse structure.
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� Long exact sequence axiom:
The inclusions i : (A; ;) ,! (X; ;) and j : (X; ;) ,! (X;A) induce a long
exact sequence:

−! HXp(A; ;)
i�−! HXp(X; ;)

j�−! HXp(X;A) @−! HXp−1(A; ;) −!

� Excision axiom:
Suppose we have a coarsely excisive decomposition X = A[B . Then the
inclusion (A;A\B) ,! (X;B) induces an isomorphism HXp(A;A\B)!
HXp(X;B).

� Large scale axiom:
Let + denote the one-point coarse space. Then the groups HXp(+; ;)
are all trivial.

Let fHXpg be a relative coarse homology theory. Then we write HXp(X) =
HXp(X; ;). The assignment X 7! HXp(X) is a coarse homology theory in the
sense of de�nition 3.1 because of the following result.

Proposition 4.3 Let X be a coarse space, equipped with a coarsely excisive
decomposition X = A [ B and inclusions i : A \ B ,! A, j : A \ B ,! B ,
k : A ,! X , and l : B ,! X . Then we have a natural map d : HXp(X) !
HXp−1(A \B) and a long exact sequence:

// HXp(A \B) �
// HXp(A)�HXp(B)

�
// HXp(X) d

// HXp−1(A \B) //

where � = (i�;−j�) and � = k� + l� .

Proof We have a commutative diagram of exact sequences:

HXp(A \B) i�
//

j�
��

HXp(A) //

k�
��

HXp(A;A \B) @
//

c

��

HXp−1(A \B)

j�
��

HXp(B) l�
// HXp(X) b

// HXp(X;B) @
// HXp−1(B)

The excision map c : HXp(A;A \B)! HXp(X;B) is an isomorphism. Write
d = @c−1b. Then a diagram chase tells us that we have a long exact sequence:

// HXp(A \B) �
// HXp(A)�HXp(B)

�
// HXp(X) d

// HXp−1(A \B) //

as desired.
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Now let X be a subspace of the sphere Sn−1 . The open cone on X , OX , is
the subset of Euclidean space Rn consisting of points:

ftx j t 2 (0;1); x 2 Xg

The coarse geometry of the cone OX is closely related to the topology of the
space X| see for example [8], [9], and [11] for instances of this phenomenon.

De�nition 4.4 Let X be a subspace of the sphere Sn−1 . Let r : (0;1) !
(0;1) be any map such that r(t)!1 as t!1 and the inequality:

jr(s)− r(t)j � js− tj

holds for all points s; t 2 R�0 . Then the radial contraction associated to r is
the map � : OX ! OX de�ned by the formula:

�(tx) = r(t)x

The following result is proved in [8].

Lemma 4.5 Let X be a subspace of the sphere Sn−1 and let Y be any met-
ric space, equipped with the bounded coarse structure arising from the met-
ric. Then for any continuous map f : OX ! Y there is a radial contraction
� : OX ! OX such that the composite f � � : OX ! Y maps entourages to
entourages (with respect to the bounded coarse structures).

It is easy to see that any radial contraction is a coarse map, and is coarsely
homotopic to the identity map.

Theorem 4.6 Let HXp be a relative coarse homology theory. Then we can
de�ne a generalised homology theory on the category of pairs of subspaces of
spheres by writing:

Hp(X;A) = HXp(OX;OA)

whenever (X;A) is a pair of subspaces of some sphere Sn .

Proof If f : (X;A)! (Y;B) is a continuous map of pairs there is an induced
continuous map Of : (OX;OA) ! (OY;OB). By lemma 4.5 we can de�ne a
coarse map Of �� : (OX;OA)! (OY;OB) for some radial contraction �. The
coarse homotopy type of the composition f � � does not depend on the choice
of contraction � so we obtain a functorially induced map f� : Hp(X;A) !
Hp(Y;B).
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Let F : (X;A)�[0; 1] ! (Y;B) be a relative homotopy. Choose a radial contrac-
tion � : OX ! OX such that each map OF (−; t) � � : (OX;OA)! (OY;OB)
is a coarse map. Then we can de�ne a coarse homotopy G : (OX;OA)�R+ !
(OY;OB) by the formula:

G(tx; s) =
�
F (�(tx); st−1) 0 � s < t
F (�(tx); 1) s � t

for all points x 2 X , s 2 R+ , and t 2 (0;1). Hence the maps ��OF (−; 0) and
� � OF (−; 1) are relatively coarsely homotopic, so the induced maps F (−; 0)�
and F (−; 1)� are equal.

If (X;A) is a pair of subspaces of the sphere Sn−1 then (OX;OA) is a pair of
coarse spaces so we have natural maps @ : Hp(X;A) ! Hp−1(A; ;) and a long
exact sequence

//Hp(A; ;)
i�

//Hp(X; ;)
j�

//Hp(X;A) @
//Hp−1(A; ;) //

where the maps i� and j� are induced by the inclusions i : (A; ;) ,! (X; ;) and
j : (X; ;) ,! (X;A) respectively.

Finally, suppose we have a pair (X;A) and a subset K � A such that K � A0 .
Since the space K is compact we can �nd a real number " > 0 such that the
neighbourhood N"(K) is a subset of the space A. Hence for all R > 0 there
exists S > 0 such that:

NR(A) \NR(XnK) � NS(A \ (XnK))

Looking at cones, we see that the decomposition OX = OA [ O(XnK) is
coarsely excisive, and the excision axiom follows. This completes the proof.

5 Coarse CW -complexes

The cone of the sphere Sn−1 is the Euclidean space Rn and the cone of the ball
Dn is the half-space Rn �R�0 . By proposition 2.11 the coarse space Rn �R+

is coarsely homotopy-equivalent to the ray R+ .

This prompts the following de�nition.

De�nition 5.1 A coarse 0-cell is a generalised ray. A coarse n-cell is the
half-space Rn � [0;1) equipped with some unital coarse structure compatible
with the topology such that the inclusion i : [0;1) ,! Rn � [0;1) de�ned by
the formula i(s) = (0; s) is a coarse homotopy-equivalence.
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If DXn is the space Rn � [0;1) equipped with some coarse structure that
makes it a coarse n-cell, then we refer to the space SXn−1 = f(x; 0) j x 2 Rng
as the boundary of the coarse cell DXn .

De�nition 5.2 A coarse (n− 1)-sphere is a boundary of some coarse n-cell.

We have already seen that the space Rn � R+ , equipped with the bounded
coarse structure, is a coarse n-cell. However, other coarse n-cells are possible
if we look at continuous control.

Proposition 5.3 Let R be a generalised ray, with the coarse structure de-
�ned by looking at continuous control at in�nity with respect to the one point
compacti�cation of the space [0;1). Then the coarse space (R

‘
R)n�R is a

coarse n-cell.

Proof The topological space Rn � [0;1) can be compacti�ed by adding a
‘hemisphere at in�nity’. The coarse space (R

‘
R)n �R can be viewed as the

space Rn�[0;1) with coarse structure de�ned by looking at continuous control
with respect to this compacti�cation.

As in proposition 2.11 we can de�ne a coarse map p : Rn�R+ ! R+ by writing
p(x; s) = kxk + s. The composition p � i is equal to the identity 1R+ , and we
can de�ne a coarse homotopy linking the functions 1Rn�R+ and i � p by the
formula:

F (x; s; t) =

(
(x cos( t

kxk); s + kxk sin( t
kxk )) t � �kxk

2

(0; s + kxk) t � �kxk
2

De�nition 5.4 Let (X;A) be a pair of coarse spaces, and let f : A ! Y be
a continuous map. Then we de�ne the space X [f Y to be the quotient:

X [f Y =
X
‘
Y

a � f(a)

Proposition 5.5 Let �X : X ! X[f Y and �Y : Y ! X[f Y be the canoni-
cal maps associated to the quotient X[f Y . Then the images �X [X] and �Y [Y ]
are coarsely equivalent to the original spaces X and Y respectively. Further,
we have a coarsely excisive decomposition X [f Y = �X [X] [ �Y [Y ].
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Proof The maps �X and �Y are injective, and the coarse structures of the
images �X [X] and �Y [Y ] are de�ned to be those inherited from the spaces X
and Y , respectively, under these maps. This establishes the �rst part of the
proposition.

Certainly the space X [f Y is equal to the union �X [X][�Y [Y ]. Let m be an
entourage for the space X [f Y . We want to �nd an entourage M such that:

m(�X [X]) \m(�Y [Y ]) �M(�X [X] \ �Y [Y ])

By de�nition of the coarse structure on the space X [f Y we can write:

m = �[mX [mY [BX �B0Y [BY �B0X ]

where mX and mY are entourages for the spaces X and Y respectively,
BX ; B

0
X � X and BY ; B

0
Y � Y are bounded subsets, and � : X

‘
Y ! X [f Y

is the canonical quotient map. Observe that:

m(�X [X]) \m(�Y [Y ]) � (�X [X] \ �Y [Y ]) [ �X [BX ] [ �Y [BY ]

Let DX and DY be the diagonals in the spaces X and Y respectively. Consider
any point p 2 A and let M be an entourage containing the image:

�[DX [DY [ (BX � p) [ (BY � p)]

Then:
m(�X [X]) \m(�Y [Y ]) �M(�X [X] \ �Y [Y ])

and we are done.

Let DXn be a coarse n-cell, with boundary SXn−1 . Consider a coarse map
f : SXn−1 ! Y . Then the coarse space DXn [f Y is called the coarse space
obtained from Y by attaching a coarse n-cell through the map f .

De�nition 5.6 A �nite coarse CW -complex is a coarse space X together with
a sequence

X0 � X1 � � � � � Xn = X

of subspaces such that:

� The space X0 is a �nite disjoint union of generalised rays.

� The space Xk is coarsely equivalent to a space obtained by attaching a
�nite number of coarse k -cells to the space Xk−1 .
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Assuming that XnnXn−1 6= ;, the number n is called the dimension of the
�nite coarse CW -complex X .

The main purpose of this section is to prove that the axioms determine a coarse
homology theory completely on the category of spaces coarsely homotopy-
equivalent to �nite coarse CW -complexes once we know what the coarse ho-
mology of a generalised ray and a one-point set is.

Lemma 5.7 Let DXn be a coarse n-cell with boundary SXn−1 . Suppose
that the cell DXn is coarsely homotopy-equivalent to a generalised ray R.
Form the space X = DXn [f Y for some coarse map f : SXn ! Y . Then we
have a Mayer-Vietoris sequence

// HXp(SXn−1) // HXp(Y )�HXp(R) // HXp(X) // HXp−1(SXn−1) //

Proof Let R0 denote the space [1;1) equipped with the coarse structure
inherited from the generalised ray R and let C be the space f(x; t) 2 DXn j t �
1g. Then the space C is coarsely equivalent to the space DXn , and therefore
coarsely homotopy-equivalent to the generalised ray R.

Let B = (SXn−1 � [0; 2]) [f Y . Then the space B is coarsely equivalent to
the space Y . The space X can be written as the union X = B [ C , and the
intersection B \ C is coarsely equivalent to the coarse sphere SXn−1 . Hence
by proposition 5.5 we have a Mayer-Vietoris sequence

// HXp(SXn−1) // HXp(Y )�HXp(R) // HXp(X) // HXp−1(SXn−1) //

as required.

The proof of our main result is now virtually identical to the proof of the
corresponding result in classical algebraic topology.9

De�nition 5.8 A natural transformation between coarse homology theories
fHXpg and fHX 0pg is a sequence of natural transformations � : HXp ! HX 0p
that takes Mayer-Vietoris sequences appearing in the coarse homology theory
fHXpg to Mayer-Vietoris sequences appearing in the coarse homology theory
fHX 0pg.

9See, for example, section 8, chapter 4, of [13] for a proof of the corresponding
classical result.
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Lemma 5.9 Let � : HXp ! HX 0p be a natural transformation of coarse ho-
mology theories such that the map � : HXp(X)! HX 0p(X) is an isomorphism
whenever the space X is a single point or a generalised ray. Then the map
� : HXp(X) ! HX 0p(X) is an isomorphism whenever the space X is a coarse
sphere.

Proof Let us write a given coarse 0-sphere, SX0 , as a coarsely excisive union,
SX0 = R1[R2 , of two generalised rays. The intersection, R1\R2 , is bounded
and is therefore coarsely equivalent to a single point, +. Considering Mayer-
Vietoris sequences we have a commutative diagram:

// HXp(+) //

��

HXp(R1)�HXp(R2) //

��

HXp(SX0) //

��

HXp−1(+) //

��

// HX 0p(+) // HX 0p(R1)�HX 0p(R2) // HX 0p(SX0) // HX 0p−1(+) //

The rows in the above diagram are exact. With the possible exception of
the map � : HXp(SX0) ! HXp(SX0), the vertical arrows are isomorphisms.
Hence the map � : HXp(SX0) ! HX 0p(SX0) is also an isomorphism by the
�ve lemma.

Now suppose that the map � is an isomorphism for every coarse (n−1)-sphere.
Let S be a coarse n-sphere. Then we can write S as a coarsely excisive union,
D1 [ D2 , of two n-cells, with intersection coarsely equivalent to some coarse
(n − 1)-sphere, S0 . The result now follows by induction if we look at Mayer-
Vietoris sequences and apply the �ve lemma as above.

Theorem 5.10 Let � : fHXpg ! fHX 0pg be a natural transformation of
coarse homology theories such that the map � : HXp(X) ! HX 0p(X) is an
isomorphism whenever the space X is a single point or a generalised ray. Then
the map � : HXp(X) ! HX 0p(X) is an isomorphism whenever the space X is
coarsely homotopy-equivalent to a �nite coarse CW -complex.

Proof The map � : HXp(X) ! HX 0p(X) is certainly an isomorphism if the
space X is a coarse CW -complex with just one cell. Suppose that the map
is an isomorphism whenever the space X is a coarse CW -complex with fewer
than m cells.

Let X be a coarse CW -complex of dimension n that has m cells. Let C be
a cell of dimension n and let B be a coarse CW -complex such that the CW -
complex X is obtained from B by attaching the cell C . By lemma 5.7 we have
a commutative diagram:
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// HXp(S) //

��

HXp(B)�HXp(R) //

��

HXp(X) //

��

HXp−1(S) //

��

// HX 0p(S) // HX 0p(B)�HX 0p(R) // HX 0p(X) // HX 0p−1(S) //

where S is a coarse (n− 1)-sphere, R is a generalised ray coarsely homotopy-
equivalent to the cell C , and the rows are Mayer-Vietoris sequences. All of
the vertical arrows except for possibly the map � : HXp(X) ! HX 0p(X) are
isomorphisms by inductive hypothesis and lemma 5.9. Hence by the �ve lemma
the map � : HXp(X)! HX 0p(X) is also an isomorphism.

Thus the result holds for any �nite coarse CW -complex by induction. By
coarse homotopy-invariance the result follows for any space coarsely homotopy-
equivalent to a �nite CW -complex.

Now, let fHXpg and fHX 0pg be relative coarse homology theories. Then a
natural transformation between these theories is a sequence of natural trans-
formations � : HXp ! HX 0p that takes the long exact sequences appearing in
the homology theory fHXpg to the long exact sequences appearing in the ho-
mology theory fHX 0pg. A natural transformation of relative coarse homology
theories induces a natural transformation of the corresponding coarse homology
theories.

Corollary 5.11 Let � : fHXpg ! fHX 0pg be a natural transformation of
relative coarse homology theories such that the map � : HXp(R)! HX 0p(R) is
an isomorphism for every generalised ray, R. Then the map � : HXp(X;A)!
HX 0p(X;A) is an isomorphism for every pair of coarse spaces, (X;A), that are
coarsely homotopy-equivalent to �nite coarse CW -complexes.

Proof By theorem 5.10 the map � : HXp(X; ;) ! HX 0p(X; ;) is an isomor-
phism whenever the space X is a �nite coarse CW -complex. The result now
follows by looking at long exact sequences and applying the �ve lemma.

6 The coarse assembly map

The ideas present in this article can be applied to the study of the assembly
map present in the coarse Baum-Connes conjecture. The coarse assembly map
is described for proper metric spaces in [8] and generalised in [7]. In this section
we re�ne slightly the de�nition given in [7] and prove that the re�ned coarse
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assembly map is an isomorphism for all �nite coarse CW -complexes. This
result is an easy consequence of the machinery developed in the previous section
together with some results presented in [7].

We begin by recalling some relevant de�nitions.

De�nition 6.1 Let X be a locally compact Hausdor� topological space, and
let A be a C� -algebra. Then an (X;A)-module is a Hilbert A-module E
equipped with a morphism ’ : C0(X)! L(E) of C� -algebras. The module E
is called adequate if ’[C0(X)]E = E , and the operator ’(f) is compact only
when the function f is the zero function.

Here L(E) denotes the C� -algebra of all operators that admit adjoints on the
Hilbert A-module E . We usually omit explicit mention of the morphism ’
when talking about (X;A)-modules. Note that when we talk about an operator
between Hilbert A-modules being compact, we mean compact in the sense of
operators between Hilbert modules, rather than compact as a bounded linear
operator between Banach spaces.

De�nition 6.2 Let E be an (X;A)-module, and consider an operator T 2
L(E). Then we de�ne the support of T , supp(T ), to be the set of all pairs
(x; y) 2 X � X such that given functions f 2 C0(X) and g 2 C0(X), the
equality fTg = 0 implies that either f(x) = 0 or g(y) = 0.

De�nition 6.3 Let X be a coarse topological space, and let E be an (X;A)-
modules. Consider an operator T 2 L(E).

� The operator T is said to be locally compact if the operators Tf and fT
are both compact for all functions f 2 C0(X).

� The operator T is said to be pseudolocal if the commutator fT − Tf is
compact for all functions f 2 C0(X).

� The operator T is said to be controlled if the support, supp(T ), is an
entourage.

De�nition 6.4 Let X be a coarse topological space, and let E be an adequate
(X;A)-module. Then we de�ne the C� -algebra C�A(X) to be the C� -algebra
generated by all controlled and locally compact operators on the module E . We
de�ne the C� -algebra D�A(X) to be the C� -algebra generated by all controlled
and pseudolocal operators on the module E .
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As our terminology suggests, the (X;A)-module E which we are using in the
above de�nition does not really matter to us. The K -theory groups KnC

�
A(X)

and KnD
�
A(X) do not depend on the precise choice of adequate (X;A)-module;

see [7] for a proof of this fact.

By proposition 5.5 of [7] the assignments X 7! KnC
�
A(X) are coarsely-invariant

functors on the category of coarse topological spaces. The C� -algebra C�A(X)
is an ideal in the C� -algebra D�A(X). We can thus form the quotient algebra
D�A(X)=C�A(X) and so we have an exact sequence:

Kn+1(D�AX) //Kn+1(D�AX=C
�
AX) �

//Kn(C�AX) //Kn(D�AX)

By proposition 7.3 of [7] the K -theory group Kn+1(D�AX=C
�
AX) is naturally

isomorphic to the KK -theory group KK−n(C0(X); A). The functor X 7!
KK−n(C0(X); A) is a locally �nite homology theory; it can be considered to
be locally �nite K -homology with coe�cients in the C� -algebra A.

Proposition 6.5 Let X be a coarse paracompact topological space. Let
KXn(X;A) denote the coarse homology theory de�ned by coarsening the func-
tor X 7! KK−n(C0(X); A).10 Then there is a map �1 : KXn(X;A) !
KnC

�
A(X) such that we have a commutative diagram:

KK−n(C0(X); A)
�

((
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q

c

��

KXn(X;A)
�1

// KnC
�
A(X)

Proof Let (Ui) be an open coarsening family on the space X . Recall from the
comments at the end of section 3 that we can de�ne a proper continuous map
� : X ! jUij by the formula:

�i(x) =
X
U2Ui

’U (x)U

The coarsening map c is de�ned to be the direct limit of the induced maps
�i� : KK−n(C0(X); A)! KK−n(C0(jUij); A). The map �1 can be de�ned to
be the direct limit of the maps:11

� : KK−n(C0(jUij); A)! KnC
�
A(X)

10See section 3.
11The space X is coarsely equivalent to each nerve jUij, so the groups KnC

�
A(X)

and KnC
�
A(jUij) are isomorphic
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The map �1 : KXn(X;A) ! KnC
�
A(X) is called the coarse assembly map.

The coarse Baum-Connes conjecture asserts that this map is an isomorphism
for all metric spaces of bounded geometry.12

The machinery we have developed in this article together with some results
from [7] tells us that the coarse assembly map is an isomorphism for all �nite
coarse CW -complexes.

To see this fact, �rst note that by an argument similar to that given to prove
theorem 11.2 of [7] the functors KnC

�
A are coarsely homotopy-invariant, and

by corollary 9.5 of [7] these functors satisfy the coarse excision axiom. Hence
the sequence of functors fKnC

�
Ag is a coarse homology theory.

We now need some computations.

Lemma 6.6 Let + denote the one-point space. Then the K -theory groups
KnD

�
A(+) are all trivial.

Proof The C� -algebra D�A(+) consists of all operators on some in�nite-dim-
ensional Hilbert A-module. An Eilenberg swindle argument tells us that the
K -theory groups of such a C� -algebra are all trivial.

The map � : KK−n(C0(+); A)! KnC
�
A(+) �ts into an exact sequence:

Kn+1D
�
A(+) //KK−n(C0(+); A) �

//KnC
�
A(+) //KnD

�
A(+)

Further, the coarsening map c : KK−n(C0(+); A) ! KXn(+;A) is clearly an
isomorphism. The above lemma therefore tells us that the coarse assembly map
�1 : KXn(+;A)! KnC

�
A(+) is an isomorphism.

Lemma 6.7 Let R be a generalised ray. Then the groups KnC
�
A(R) are all

trivial.

Proof The generalised ray R is flasque in the sense described in section 10 of
[7]. Hence, by proposition 10.1 of [7], the K -theory groups KnC

�
A(R) are all

trivial.
12A metric space is said to have bounded geometry if it is coarsely equivalent to a

discrete metric space Y such that the supremum supy2Y jB(y; r)j is �nite for all real
numbers r > 0. The coarse Baum-Connes conjecture is actually now known to be false
in general; see [6].
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Lemma 6.8 Let R be a generalised ray. Then the groups KXn(R;A) are all
trivial.

Proof We can �nd a coarsening family (Ui) for the space R such that each
nerve jUij is properly homotopic to the ray [0;1). An Eilenberg swindle argu-
ment tells us that the groups KK−n(C0[0;1); A) are all trivial. Taking direct
limits, the groups KXn(R;A) must also be trivial.

The above three lemmas tell us that the map � : KK−n(C(X);A)! KnC
�
A(X)

is an isomorphism whenever the space X is a single point or a generalised ray.
In particular, the coarse assembly map �1 is an isomorphism for such spaces.

Theorem 6.9 The coarse assembly map �1 : KXn(X;A)! KnC
�
A(X) is an

isomorphism whenever the space X is coarsely homotopy-equivalent to a �nite
coarse CW -complex.

Proof The result is immediate from the previous three lemmas and theorem
5.10.

A well-known descent argument (see [11]) enables us to deduce some results
about the Novikov conjecture.

Corollary 6.10 Let Γ be a �nitely presented group such that the correspond-
ing metric space jΓj13, equipped with the bounded coarse structure, is coarsely
homotopy-equivalent to a �nite coarse CW -complex. Then the group Γ satis-
�es the Novikov conjecture.

The above result is not new. For example, any metric space coarsely homotopy-
equivalent to a �nite coarse CW -complex is certainly uniformly embeddable
into a Hilbert space, so the above corollary is included in the main result of
[15].

However, another result is possible if we look at continuously controlled coarse
structures rather than bounded coarse structures. See for example [7] and the
�nal chapter of [11] for the descent arguments that are necessary in this case.

13The metric space jΓj is formed by equipping the group Γ with the word-length
metric.
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De�nition 6.11 Let X be a locally compact proper metric space, equipped
with a compacti�cation X . Let Xb denote the space X equipped with the
bounded coarse structure, and let Xcc denote the space X equipped with the
continuously controlled coarse structure arising from the compacti�cation X .
Then we call the compacti�cation X a coarse compacti�cation if the identity
map 1: Xb ! Xcc is a coarse map.

Corollary 6.12 Let Γ be a discrete group such that:

� The classifying space BΓ can be represented as a �nite complex.

� The corresponding universal space EΓ admits a coarse compacti�cation,
EΓ, such that the space EΓcc is coarsely homotopy-equivalent to a �nite
coarse CW -complex, and the given Γ-action on the space EΓ extends
continuously to the compacti�cation EΓ.

Then the group Γ satis�es the Novikov conjecture.

Actually, the descent argument is su�ciently general to prove that the Novikov
conjecture holds for any subgroup of a group of the kind described above.
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