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Homotopy classes that are trivial mod F
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Abstract If F is a collection of topological spaces, then a homotopy class
� in [X;Y ] is called F -trivial if

�� = 0 : [A;X ]−! [A; Y ]

for all A 2 F . In this paper we study the collection ZF(X;Y ) of all F -
trivial homotopy classes in [X;Y ] when F = S , the collection of spheres,
F = M , the collection of Moore spaces, and F = �, the collection of
suspensions. Clearly

Z�(X;Y ) � ZM(X;Y ) � ZS(X;Y );

and we �nd examples of �nite complexes X and Y for which these inclu-
sions are strict. We are also interested in ZF(X) = ZF(X;X), which under
composition has the structure of a semigroup with zero. We show that if X
is a �nite dimensional complex and F = S , M or �, then the semigroup
ZF (X) is nilpotent. More precisely, the nilpotency of ZF(X) is bounded
above by the F -killing length of X , a new numerical invariant which equals
the number of steps it takes to make X contractible by successively attach-
ing cones on wedges of spaces in F , and this in turn is bounded above
by the F -cone length of X. We then calculate or estimate the nilpotency
of ZF (X) when F = S , M or � for the following classes of spaces: (1)
projective spaces (2) certain Lie groups such as SU(n) and Sp(n). The
paper concludes with several open problems.

AMS Classi�cation 55Q05; 55P65, 55P45, 55M30

Keywords Cone length, trivial homotopy

1 Introduction

A map f : X −!Y is said to be detected by a collection F of topological spaces
if there is a space A 2 F such that the induced map f� : [A;X]−! [A;Y ] of
homotopy sets is nontrivial. It is a standard technique in homotopy theory
to use certain simple collections F to detect essential homotopy classes. In
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studying the entire homotopy set [X;Y ] using this approach, one is led naturally
to consider the set of homotopy classes which are not detected by F , called the
F -trivial homotopy classes. For example, if S is the collection of spheres, then
f : X −!Y is detected by S precisely when some induced homomorphism of
homotopy groups �k(f) : �k(X)−!�k(Y ) is nonzero. The S -trivial homotopy
classes are those that induce zero on all homotopy groups. It is also important
to determine induced maps on homotopy sets. For this, one needs to understand
composition of F -trivial homotopy classes. With this in mind, we study two
basic questions in this paper for a �xed collection F : (1) What is the set of
all F -trivial homotopy classes in [X;Y ]? and (2) In the special case X =
Y , how do F -trivial homotopy classes behave under composition? We are
particularly interested in the collections S of spheres, M of Moore spaces and
� of suspensions.

Some of these ideas have appeared earlier. The paper [2] considers the special
case F = S . Furthermore, Christensen has studied similar questions in the
stable category [5].

We next briefly summarize the contents of this paper. We write ZF (X;Y )
for the F -trivial homotopy classes in [X;Y ] and set ZF (X) = ZF (X;X).
After some generalities on ZF (X;Y ), we observe in Section 2 that ZF (X)
is a semigroup under composition. Its nilpotency, denoted tF (X), is a new
numerical invariant of homotopy type. For the collection of suspensions, we
prove that t�(X) � dlog2(cat(X))e . In Section 3 we relate tF (X) to other
numerical invariants for arbitrary collections F . The F -killing length of X ,
denoted klF (X) (resp., the F -cone length of X , denoted clF (X)), is the least
number of steps needed to go from X to a contractible space (resp., from a
contractible space to X ) by successively attaching cones on wedges of spaces
in F . We prove that tF (X) � klF (X), and, if F is closed under suspension,
that klF (X) � clF (X). We also show that klF (X) behaves subadditively
with respect to co�brations. It is clear that for any X and Y , Z�(X;Y ) �
ZM(X;Y ) � ZS(X;Y ), and we ask in Section 4 if these containments can be
strict. It is easy to �nd in�nite complexes with strict containment. However, in
Section 4 we solve the more di�cult problem of �nding �nite complexes with
this property. From this, we deduce that containment can be strict for �nite
complexes when X = Y . The next two sections are devoted to determining
ZF (X) and tF (X) for certain classes of spaces. In Section 5 we calculate ZF (X)
and tF (X) for F = S;M and � when X is any real or complex projective
space, or is the quaternionic projective space HPn with n � 4. In Section 6
we consider t�(Y ) for certain Lie groups Y . We show that 2 � t�(Y ) when
Y = SU(n) or Sp(n) by proving that the groups [Y; Y ] are not abelian. In
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addition, we compute t�(SO(n)) for n = 3 and 4. The paper concludes in
Section 7 with a list of open problems.

For the remainder of this section, we give our notation and terminology. All
topological spaces are based and connected, and have the based homotopy type
of CW complexes. All maps and homotopies preserve base points. We do not
usually distinguish notationally between a map and its homotopy class. We let
� denote the base point of a space or a space consisting of a single point. In
addition to standard notation, we use � for same homotopy type, 0 2 [X;Y ]
for the constant homotopy class and id 2 [X;X] for the identity homotopy
class.

For an abelian group G and an integer n � 2, we let M(G;n) denote the
Moore space of type (G;n), that is, the space with a single non-vanishing
reduced homology group G in dimension n. If G is �nitely generated, we
also de�ne M(G; 1) as a wedge of circles S1 and spaces obtained by attaching
a 2-cell to S1 by a map of degree m. The nth homotopy group of X with
coe�cients in G is �n(X;G) = [M(G;n);X]. A map f : X −!Y induces
a homomorphism �n(f ;G) : �n(X;G)−!�n(Y ;G), and ��(f ;G) denotes the
set of all such homomorphisms. If G = Z, we write �n(X) and �n(f) for the
nth homotopy group and induced map, respectively.

We use unreduced Lusternik-Schnirelmann category of a space X , denoted
cat(X). Thus cat(X) � 2 if and only if X is a co-H-space. By an H-space,
we mean a space with a homotopy-associative multiplication and homotopy
inverse, i.e., a group-like space.

For a positive integer n, the cyclic group of order n is denoted Z=n. If X is a
space or an abelian group, we use the notation X(p) for the localization of X
at the prime p [13]. We let � : X −!X(p) denote the natural map from X to
its localization.

A semigroup is a set S with an associative binary operation, denoted by juxta-
position. We call S a pointed semigroup if there is an element 0 2 S such that
x0 = 0x = 0 for each x 2 S . A pointed semigroup is nilpotent if there is an
integer n such that the product x1 � � � xn is 0 whenever x1; : : : ; xn 2 S . The
least such integer n is the nilpotency of S . If S is not nilpotent, then we say
its nilpotency is 1. Finally, if x is a real number, then dxe denotes the least
integer n � x.

2 F -trivial homotopy classes

Let F be any collection of spaces.
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De�nition 2.1 A homotopy class f : X −!Y is F -trivial if the induced
map f� : [A;X]−! [A;Y ] is trivial for each A 2 F . We denote by ZF (X;Y )
the subset of [X;Y ] consisting of all F -trivial homotopy classes. We denote
ZF (X;X) by ZF (X).

We study ZF (X;Y ) and ZF (X) for certain collections F . The following are
some interesting examples.

Examples

(a) S = fSn j n � 1g, the collection of spheres. In this case f 2 ZS(X;Y )
if and only if ��(f) = 0.

(b) M = fM(Z=m;n) j m � 0; n � 1g, the collection of Moore spaces
M(Z=m;n). Here f 2 ZM(X;Y ) if and only if ��(f ;G) = 0 for any
�nitely generated abelian group G.

(c) � = f�Ag, the collection of all suspensions. In this case f 2 Z�(X;Y )
if and only if f� = 0 : [�A;X]−! [�A;Y ] for every space A.

(d) P is the collection of all �nite dimensional complexes. Then f 2 ZP(X;Y )
if and only if f : X −!Y is a phantom map [19].

In this paper our main interest is in the collections S , M and �. In Section 7
we will mention a few other collections. However, we begin with some simple,
general facts about arbitrary collections.

Lemma 2.2

(a) If F � F 0 , then ZF 0(X;Y ) � ZF (X;Y ) for any X and Y .

(b) If X� 2 F for each � in some index set, then ZF (
W
X�; Y ) = 0 for every

Y .

(c) For any X , ZF (X) is a pointed semigroup under the binary operation of
composition of homotopy classes, and with zero the constant homotopy
class.

Any map f : X −!Y gives rise to functions ef : X � Y −!X � Y and f :
X _ Y −!X _ Y de�ned by the diagrams

X � Y
ef

//

p1

��

X � Y

X
f

// Y

i2

OO
and X _ Y

f
//

q1
��

X _ Y

X
f

// Y:

j2

OO

Clearly, if f 2 ZF (X;Y ), then ef 2 ZF (X � Y ) and f 2 ZF (X _ Y ).

The following lemma, whose proof is obvious, will be used frequently.
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Lemma 2.3 The functions

� : ZF (X;Y )−!ZF (X � Y ) and � : ZF (X;Y )−!ZF (X _ Y );

de�ned by �(f) = ef and �(f) = f , are injective. Thus, ZF (X;Y ) 6= 0 implies
that ZF (X � Y ) 6= 0 and ZF (X _ Y ) 6= 0

We conclude this section with some basic results about Z�(X;Y ) and Z�(X).
Recall that a map f : X −!Y has essential category weight at least n, writ-
ten E(f) � n, if for every space A with cat(A) � n, we have f� = 0 :
[A;X]−! [A;Y ] [30, 25].

Lemma 2.4 For any two spaces X and Y ,

Z�(X;Y ) = ff j f 2 [X;Y ]; E(f) � 2g
= ff j f 2 [X;Y ]; Ωf = 0g:

Proof Let f 2 Z�(X;Y ). If cat(A) � 2 then the canonical map �: �ΩA−!A
has a section s. Thus the diagram

[A;X]

��

��

f� // [A;Y ]

��

��

[�ΩA;X]
f�� // [�ΩA;Y ]

commutes, and so f� = s�f���� = 0. Since the reverse implication is trivial,
this establishes the �rst equality.

Now assume that f� = 0 : [�B;X]−! [�B;Y ] for every space B . Taking
B = ΩX , we �nd that f � � = 0 : �ΩX−!Y . Since this map is adjoint
to Ωf , we conclude that Ωf = 0. Conversely, if Ωf = 0, then Ωf� = 0 :
[B;ΩX]−! [B;ΩY ], which means that f� = 0 : [�B;X]−! [�B;Y ]. This
completes the proof.

Remarks

(a) Since cat(A) � 2 if and only if A is a co-H-space, a map f : X −!Y has
E(f) � 2 if and only if f� = 0 : [A;X]−! [A;Y ] for every co-H-space A.

(b) By Lemma 2.4, we can regard the set Z�(X;Y ) as the kernel of the
looping function Ω : [X;Y ]−! [ΩX;ΩY ]. We see from (a) that ker Ω = 0
if X is a co-H-space. The function Ω has been extensively studied in
special cases, e.g., when Y is an Eilenberg-MacLane space, then Ω is just
the cohomology suspension [32, Chap. VII].
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Proposition 2.5 Let X be a space of �nite category, and let n� log2(cat(X)).
If f1; : : : ; fn 2 Z�(X), then f1 � � � � � fn = 0. Thus the nilpotency of the
semigroup Z�(X) is at most dlog2(cat(X))e , the least integer greater than or
equal to log2(cat(X)).

Proof Since fi 2 Z�(X), Lemma 2.4 shows that E(fi) � 2. By the prod-
uct formula for essential category weight [30, Thm. 9], E(f1 � � � � � fn) �
E(f1) � � �E(fn) � 2n � cat(X). From the de�nition of essential category
weight, f1 � � � � � fn = 0.

Remark We shall see later that the semigroup ZS(X) is nilpotent if X is a
�nite dimensional complex. It follows that this is true for ZM(X) and Z�(X)
(Remark (b) following Theorem 3.3).

De�nition 2.6 For any collection F of spaces and any space X , we de�ne
tF (X), the nilpotency of X mod F as follows: If X is contractible, set tF (X) =
0; Otherwise, tF (X) is the nilpotency of the semigroup ZF (X).

Thus tF (X) = 1 if and only if X is not contractible and ZF (X) = 0.

The set ZS(X) and the integer tS(X) were considered in [2], where they were
written Z1(X) and t1(X). Since S �M � �, we have

0 � t�(X) � tM(X) � tS(X) � 1
for any space X .

Since cat(�A1�� � ���Ar) � r+1 [16, Prop. 2.3], we have the following result.

Corollary 2.7 For any r spaces A1; : : : ; Ar ,

t�(�A1 � � � � � �Ar) � d log2(r + 1)e:

This paper is devoted to a study of the sets ZF (X;Y ), with emphasis on the
nilpotency of spaces mod F for F = S;M and �.

3 F -killing length and F -cone length

Proposition 2.5 shows that dlog2(cat(X))e is an upper bound for t�(X). In
this section, we obtain upper bounds on tF (X) for arbitrary collections F . We
begin with the main de�nitions of this section.
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De�nition 3.1 Let F be a collection of spaces and X a space. Suppose there
is a sequence of co�brations

Li−!Xi−!Xi+1

for 0 � i < m such that each Li is a wedge of spaces which belong to F . If
X0 � X and Xm � �, then this is called an F -killing length decomposition
of X with length m. If X0 � � and Xm � X , then this is an F -cone length
decomposition with length m. De�ne the F -killing length and the F -cone
length of X , denoted by klF (X) and clF (X), respectively, as follows. If X � �,
then klF (X) = 0; otherwise, klF (X) is the smallest integer m such that there
exists an F -killing length decomposition of X with length m. The F -cone
length of X is de�ned analogously.

The main result of this section is that klF (X) is an upper bound for tF (X).
We need a lemma.

Lemma 3.2 If X
f−!Y

g−!Z is a sequence of spaces and maps, then there
is a co�ber sequence of mapping cones Cf −!Cgf −!Cg , where the maps are
induced by f and g .

The proof is elementary, and hence omitted.

Theorem 3.3 If F is any collection of spaces and X is any space, then

tF (X) � klF (X):

If F is closed under suspensions, then klF (X) � clF (X).

Proof Assume that klF (X) = m > 0 with F -killing length decomposition

Li
fi−!Xi

pi−!Xi+1

for 0 � i < m. Let g0; : : : ; gm−1 2 ZF (X) and consider the following diagram,
with dashed arrows to be inductively de�ned below:

Algebraic & Geometric Topology, Volume 1 (2001)



388 Martin Arkowitz and Je�rey Strom

L0
f0 // X0 � X

p0

��

g0 // X
g1 // X

g2 // � � � gm−2
// X

gm−1
// X

L1
f1 // X1

p1

��

g00

;;
v

v

v

v

v

L2
f2 // X2

p2

��

g01

<<
z

z

z

z

z

z

z

z

z

z

z

...
pm−2

��

Lm−1
fm−1

// Xm−1

pm−1

��

g0m−2

>>
}

}

}

}

}

}

}

}

}

}

}

}

}

}

}

}

}

}

}

}

}

}

}

Xm:

g0m−1

>>
}

}

}

}

}

}

}

}

}

}

}

}

}

}

}

}

}

}

}

}

}

}

}

}

}

}

}

}

Since L0 is a wedge of spaces in F and g0 2 ZF (X), we have g0 � f0 = 0
by Lemma 2.2(b). Thus there is a map g00 : X1−!X extending g0 . The
same argument inductively de�nes g0i for each i, and shows gm−1 � � � g1g0 =
g0m−1 � (pm−1 � � � p1p0). Now gm−1 � � � g1g0 = 0 since Xm � �. This proves the
�rst assertion.

Next we let m = clF (X), and show that klF (X) � m. Let

Li
fi−!Xi

pi−!Xi+1

for 0 � i < m be an F -cone length decomposition of X . Set

hi = (pm−1pm−2 � � � pi+1) � pi : Xi
// Xm � X

for i < m and hm = id. Since hi = hi+1�pi , Lemma 3.2 yields co�ber sequences

Cpi −!Chi −!Chi+1
;

for 0 � i < m. This is a killing length decomposition of X . To see this, observe
that Cpi � �Li , which is a wedge of spaces in F because F is closed under
suspension. Furthermore, h0 : X0 � �−!X , so Ch0 � Xm � X . Finally,
Chm � 0 because hm = id : X −!X .

Remarks

(a) The notion of cone length has been extensively studied. The version in
De�nition 3.1 is similar to the one given by Cornea in [7] (see (c) below).
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It is precisely the same as the de�nition of F -Cat given by Sheerer and
Tanr�e [26]. The F -cone length clF (X) can be regarded as the minimum
number of steps needed to build the space X up from a contractible
space by attaching cones on wedges of spaces in F . The notion of F -
killing length is new and also appears in [2] for the case F = S . It
can be regarded as the minimum number of steps needed to destroy X
(i.e. go from X to a contractible space) by attaching cones on wedges of
spaces in F . We note that Theorem 3.3 appears in [2, Thm. 3.4] for the
case F = S . For the collection S , it was shown in [2, Ex. 6.8] that the
inequalities in Theorem 3.3 can be strict.

(b) A space need not have a �nite F -killing length or F -cone length decom-
position. For example, kl�(CP1) = 1 because all 2n -fold cup prod-
ucts vanish in a space X with kl�(X) � n. However, if X is a �nite
dimensional complex, then the process of attaching i-cells to the (i− 1)-
skeleton provides X with a S -cone length decomposition. Thus in this
case, klS(X) � clS(X) � dim(X). Since S � M � �, it follows that
kl�(X) � klM(X) � klS(X) and cl�(X) � clM(X) � clS(X), and so
dim(X) is an upper bound for all of these integers. If X is a 1-connected
�nite dimensional complex, then a better upper bound for clM(X) is
the number of nontrivial positive-dimensional integral homology groups
of X . This can be seen by taking a homology decomposition of X [12,
Chap. 8].

(c) It follows from work of Cornea [7] that the cone length of a space X ,
denoted cl(X), can be de�ned exactly like the �-cone length cl�(X)
above, except that one does not require L0 2 �. It follows immediately
that cl(X) � cl�(X).

(d) The inequality klF (X) � clF (X) also follows from work of Sheerer and
Tanr�e since the function klF satis�es the axioms for F -Cat [26, Thm. 2].

We conclude this section by giving a few properties of killing length.

Theorem 3.4 If F is any collection of spaces and X
j−!Y

q−!Z is a co�ber
sequence, then

klF (Y ) � klF (X) + klF (Z):

Proof Write klF (X) = m and klF (Z) = n. Let

Li
fi−!Xi−!Xi+1
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for 0 � i < m be a F -killing length decomposition of X . Set g0 = j : X0 �
X −!Y and de�ne Y1 by the co�bration L0

g0f0−!Y −!Y1 . By Lemma 3.2,
there is an auxilliary co�bration

Cf0
// Cg0f0

// Cg0

X1
g1 // Y1

// Z

which de�nes g1 . We proceed by induction: given gi : Xi−!Yi , let Yi+1 be the
co�ber of the map gifi : L0−!Yi and use Lemma 3.2 to construct an auxilliary
co�bration

Cfi // Cgifi // Cgi

Xi+1
gi+1

// Yi+1
// Z

which de�nes gi+1 . This de�nes co�ber sequences of the form Lj ! Yj ! Yj+1

with 0 � j < m. Since Xm � �, the (m+1)st co�ber sequence, Xm ! Ym ! Z ,
shows that Ym � Z . Now adjoin the n co�ber sequences of a minimal F -
killing length decomposition of Z to the �rst m co�ber sequences to obtain an
F -killing length decomposition for Y with length n+m.

Finally, we obtain an upper bound for kl�(X) and hence an upper bound for
t�(X). This provides a useful complement to Proposition 2.5 when cat(X) is
not known.

Proposition 3.5 Let X be an N -dimensional complex which is (n−1)-conn-
ected for some n � 1. Then

kl�(X) �
�
log2

�
N + 1
n

��
:

Proof We argue by induction on
l
log2

�
N+1
n

�m
. If

l
log2

�
N+1
n

�m
= 1, then

N � 2n − 1. It is well known that this implies that X is a suspension, which
means that kl�(X) = 1. Now suppose

l
log2

�
N+1
n

�m
= r and the result is

known for all smaller values. Let Xk denote the k -skeleton of X , and consider
the co�ber sequence

X2n−1−!X −!X=X2n−1:

By Theorem 3.4, kl�(X) � kl�(X2n−1) + kl�(X=X2n−1). The inductive hy-
pothesis applies to X2n−1 and to X=X2n−1 , so kl�(X) � 1 + (r − 1) = r .
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4 Distinguishing ZF for di�erent F

We have a chain of pointed sets

Z�(X;Y ) � ZM(X;Y ) � ZS(X;Y ):

Simple examples show that each of these containments can be strict. There are
nontrivial phantom maps �CP1−!S4 [19]. These all lie in ZM(�CP1; S4)
because M � P (see Examples in Section 2), but not in Z�(�CP1; S4),
by Lemma 2.2(b). For the other containment, the Bockstein applied to the
fundamental cohomology class of M(Z=p; n) [3] corresponds to a map f :
M(Z=p; n)−!K(Z=p; n+ 1). If p is an odd prime, then �n+1(M(Z=p; n)) = 0
[3, pp. 268{69] so f is in ZS(M(Z=p; n);K(Z=p; n + 1)). Since it is essential,
f cannot lie in ZM(M(Z=p; n);K(Z=p; n + 1)).

In these examples either the domain or the target is an in�nite CW complex.
Thus they leave open the possibility that if X and Y are �nite complexes, all
of the pointed sets above are the same. We will give examples which show that,
even for �nite complexes, these inclusions can be strict. These examples are
more di�cult to �nd and verify. They are inspired by an example (due to Fred
Cohen) from [10].

Recall that if p is an odd prime, then S2n+1
(p) is an H-space [1]. Moreover, if f

is in the abelian group [�2X;S2n+1] then the order of � � f 2 [�2X;S2n+1
(p) ] is

either in�nite or a power of p.

Lemma 4.1 Let X be a �nite complex and let h : X −!S2n+1 be a map such
that for some odd prime p, � ��2h is nonzero and has �nite order divisible p.
Then there is an s > 0 such that the composite

X
h−!S2n+1 i−!M(Z=ps; 2n + 1);

where i is the inclusion, is essential.

Proof Consider the diagram

S2n+1

ps

��

� // S2n+1
(p)

ps

��

X
h //

i�h
&&L

L
L
L
L
L
L
L
L
L
L
L
L S2n+1

i

��

� // S2n+1
(p)

j

��

M(Z=ps; 2n+ 1) = // M(Z=ps; 2n + 1)
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in which the vertical sequences are co�brations and ps denotes the map with
degree ps . If i � h = 0, then j � � � h = 0. It can be shown that �(� � h) lifts
through the map ps : S2n+2

(p) −!S2n+2
(p) . Suspending once more, we obtain a lift

given by the dashed line in the diagram

S2n+3
(p)

ps

��

�2X
�2h

//

55l
l

l
l

l
l

l
l

l
l

S2n+3
�

// S2n+3
(p) :

Since X is a �nite complex, the torsion in [�2X;S2n+3
(p) ] is p-torsion and has an

exponent e. Since S2n+3
(p) is an H-space, the map ps induces multiplication by ps

on [�2X;S2n+3
(p) ]. If s � e, then the image of ps : [�2X;S2n+3

(p) ]−! [�2X;S2n+3
(p) ]

cannot contain any nontrivial torsion. But � � �2h is nonzero and has �nite
order. Therefore the lift cannot exist, and so i � h 6= 0.

Theorem 4.2 Let X be a �nite complex, let p be an odd prime and let
g : X −!S2n+1 be an essential map.

(a) Assume that �2n+1(X) is a �nite group, and that � � �2g is nonzero
with �nite order divisible by pn+1 . Then there is an s > 0 such that the
composite

X g
//

l

))

S2n+1
pn

// S2n+1
i

// M(Z=ps; 2n+ 1)

is essential and ��(l) = 0.

(b) Assume that �k(X) = 0 for k = 2n and 2n + 1, and that � � �2g is
nonzero with �nite order divisible by p2n+1 . Then there is an s > 0 such
that the composite

X g
//

f

))

S2n+1
p2n

// S2n+1
i

// M(Z=ps; 2n+ 1)

is essential, and ��(f ;G) = 0 for any �nitely generated abelian group G.

Proof In part (a), the composition � ��2(pn � g) has �nite order divisible by
p. Therefore Lemma 4.1 shows that l = i�pn �g is essential if s is large enough.
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Similarly, if s is large enough, the map f in part (b) is essential. From now on,
we assume that s has been so chosen. We use the commutative diagram

X
g

//

��g !!C
C
C
C
C
C
C
C

S2n+1

�
��

pk
// S2n+1 i //

�
��

M(Z=ps; 2n+ 1)

=

��

S2n+1
(p)

pk
// S2n+1

(p)

j
// M(Z=ps; 2n + 1):

We take k = n in part (a) and k = 2n in part (b).

Proof of (a) Since M(Z=ps; 2n+ 1) is p-local, there is only p-torsion to con-
sider. By results of Cohen, Moore and Neisendorfer [6, Cor. 3.1] the p-torsion
in ��(S2n+1

(p) ) has exponent n. Since S2n+1
(p) is an H-space, pn : S2n+1

(p) −!S2n+1
(p)

annihilates all p-torsion in homotopy groups. Thus ��(l) can be nonzero only
in dimension 2n + 1. But �2n+1(g) is a homomorphism from a �nite group to
Z, so ��(l) = 0.

Proof of (b) It su�ces to show that �m(f ;G) = 0 for any cyclic group G;
by part (a) we need only consider G = Z=pr . For each r � 1 and each m � 0,
there is the exact coe�cient sequence [12, Chap. 5]

0−!Ext(Z=pr; �m+1(Y ))−!�m(Y ; Z=pr)−!Hom(Z=pr; �m(Y ))−! 0:

Let Y = S2n+1
(p) . Since the p-torsion in ��(S2n+1

(p) ) has exponent n [6], the
exact sequence shows that the p-torsion in �m(S2n+1

(p) ; Z=pr) has exponent at
most 2n if m 6= 2n. Thus the map p2n : S2n+1

(p) −!S2n+1
(p) induces 0 on the mth

homotopy groups with coe�cients in any �nite abelian group if m 6= 2n. Taking
Y = X in the coe�cient sequence, we have �2n(X; Z=pr) = 0. Therefore
��(f ;G) = 0 for any �nitely generated abelian group G.

We apply this theorem to construct examples of �nite complexes which distin-
guish the various ZF .

Our �rst example shows that ZM(X) can be di�erent from ZS(X) even when
X is a �nite complex. Using the coe�cient exact sequence for homotopy groups,
we �nd that

[M(Z=pr; 2n); S2n+1] = �2n(S2n+1; Z=pr) �= Z=pr

for each r ; this is a stable group. Therefore, if r > n, there are essential maps
g : M(Z=pr; 2n)−!S2n+1 with �nite order divisible by pn+1 . Applying part
(a) of Theorem 4.2, we have the following example.
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Example Let r > n > 1. For p an odd prime and s large enough, there are
essential maps

l : M(Z=pr; 2n)−!M(Z=ps; 2n + 1)

such that ��(l) = 0. Therefore by Lemma 2.3,

ZS(M(Z=pr; 2n) _M(Z=ps; 2n+ 1)) 6= 0

while, of course,

ZM(M(Z=pr; 2n) _M(Z=ps; 2n+ 1)) = 0

by Lemma 2.2 (b). It can be shown that any s � r will su�ce in this example.

Freyd’s generating hypothesis [11] is the conjecture that no stably nontrivial
map between �nite complexes can induce zero on stable homotopy groups. The
map l in this example is stably nontrivial, but our argument does not show
that large suspensions of l induce zero on homotopy groups; the di�culty is
that after two suspensions, l factors through pn : S2n+3

(p) −!S2n+3
(p) , which need

not annihilate all p-torsion.

Our second example is a map f : �2n−2
�
CPp

2n+1
=S2

�
−!M(Z=ps; 2n + 1)

which we use to show that ZM(X) can be di�erent from Z�(X) when X is
a �nite complex. We need some preliminary results to show that Theorem 4.2
applies to this situation.

Lemma 4.3 Let f : �n+1CPm−!Sn+3 . The degree of f j�n+1S2 is divisible
by lcm(1; : : : ;m), the least common multiple of 1; : : : ;m.

Proof We may assume that f is in the stable range. If f j�n+1S2 has degree
d, then

�n+1CPm f−!Sn+3 ,! �n+1CPm:

has degree d in Hn+3(�n+1CPm) and is trivial in all other dimensions. Ac-
cording to McGibbon [19, Thm. 3.4], d is divisible by lcm(1; : : : ;m).

Proposition 4.4 The image of the n-fold suspension map

�n : [CPp
t
=S2; S3]−! [�n(CPp

t
=S2); Sn+3]

contains elements of order pt for every n � 1 and t � 1.
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Proof Write m = pt and examine the commutative diagram

[�CPm; S3] //

�n

��

[�S2; S3] //

�n

��

[CPm=S2; S3]

�n

��

[�n+1CPm; Sn+3] //

��
��

[�n+1S2; Sn+3] //

��
��

[�n(CPm=S2); Sn+3]

��
��

[�n+1CPm; Sn+3
(p) ] // [�n+1S2; Sn+3

(p) ] // [�n(CPm=S2); Sn+3
(p) ]:

To show that the image of �� � �n : [CPm=S2; S3]−! [�n(CPm=S2); Sn+3
(p) ]

contains elements of order pt , we modify the above diagram as follows: the
image and cokernel of [�CPm; S3]−! [�S2; S3] �= Z are kZ and Z=k , respec-
tively, for some integer k ; similarly for [�n+1CPm; Sn+3]−! [�n+1S2; Sn+3]
and [�CPm; S3

(p)]−! [�S2; S3
(p)]. Thus we have a commutative diagram with

exact rows
kZ //

��

Z //

�=
��

Z=k

��

lZ //

�
��

Z //

�
��

Z=l

�
��

lpZ(p) // Z(p) // Z=lp

for some integers k , l and lp , where lp is the largest power of p which divides l .
Lemma 4.3 shows that lp is divisible by pt . The composite Z=k−!Z=l−!Z=lp
is surjective, and this completes the proof.

It follows from Proposition 4.4 that part (b) of Theorem 4.2 applies to the space
�2n−2(CPp

2n+1
=S2) for each n > 1, and so we obtain our second example.

Example For each odd prime p and each n � 1, there is an s > 0 such that
there are essential maps

f : �2n−2
�
CPp

2n+1
=S2

�
−!M(Z=ps; 2n + 1)

which induce zero on homotopy groups with coe�cients. Therefore,

ZM
�
�2n−2

�
CPp

2n+1
=S2

�
_M (Z=ps; 2n + 1)

�
6= 0

while, of course,

Z�

�
�2n−2

�
CPp

2n+1
=S2

�
_M (Z=ps; 2n + 1)

�
= 0:
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The map f can be chosen to be stably nontrivial. As in the previous example,
the suspensions of f might not be trivial on homotopy groups with coe�cients.

Finally, let A = �2n−2(CPp
2n+1

=S2), B = M(Z=pr; 2n) and C = M(Z=ps; 2n+
1) for s large. Then

Z�(A _B _ C) < ZM(A _B _ C) < ZS(A _B _ C);

so both of these inequalities can be strict for a single �nite complex.

5 Projective spaces

We show that for projective spaces FPn with F = R;C or H,

Z�(FPn) = ZM(FPn) = ZS(FPn);

and we completely determine these sets for F = R and C and all n. We also
determine tS(HPn), for n � 4.

5.1 General facts

We �rst prove some general results that will be applied later.

Proposition 5.1 If �ΩX � WSn� , then ZS(X;Y ) = ZM(X;Y ) = Z�(X;Y )
for any space Y .

Proof Let f 2 ZS(X;Y ). The map Ωf is adjoint to the composition �ΩX �−!
X

f−!Y . Since �ΩX � W
Sn� , f � � = 0, and so Ωf = 0. Thus f 2

Z�(X;Y ).

By Lemma 2.4, the condition ZS(X;Y ) = Z�(X;Y ) is equivalent to the con-
dition that if f : X −!Y induces zero on homotopy groups, then Ωf = 0.

Proposition 5.1 applies to X = Sn+1 because, by James [14], �ΩSn+1 �W1
k=1 S

nk+1 . Of course ZS(Sn+1; Y ) = 0. Since �(A�B) � �A_�B_�(A^B)
for any A and B [12, 11.10], James’s result allows us to apply Proposition 5.1
to any space whose loop space splits as a �nite type product of spheres and
loop spaces on spheres. Moreover, if X and X 0 both satisfy the hypotheses of
Proposition 5.1, then so does X �X 0 .
For F = R;C or H, let d = 1; 2 or 4, respectively. For each n � 1 there is a
homotopy equivalence ΩFPn � Sd−1�ΩS(n+1)d−1 . This is a direct consequence
of [8, Thm. 5.2], which applies even in the case d = 1.
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Corollary 5.2 For F = R;C or H and each n � 1, ZS(FPn) = ZM(FPn) =
Z�(FPn).

Another corollary of Proposition 5.1 applies to intermediate wedges of spheres.
For spaces X1;X2; : : : ;Xn , the elements (x1; : : : ; xk) 2 X1 � � � � �Xk with at
least j coordinates equal to the base point form a subspace Tj(X1; : : : ;Xk) �
X1 � � � � �Xk . Porter has shown [24, Thm. 2] that ΩTj(Sn1 ; : : : ; Snk) has the
homotopy type of a product of loop spaces of spheres for each 0 � j � k . Our
previous discussion establishes the following.

Corollary 5.3 For any n1; : : : ; nk � 1 and any 0 � j � k ,

ZS(Tj(Sn1 ; : : : ; Snk)) = ZM(Tj(Sn1 ; : : : ; Snk)) = Z�(Tj(Sn1 ; : : : ; Snk)):

Remarks

(a) Taking j = 0 in Corollary 5.3, we deduce from Corollary 2.7 that

tS(Sn1 � � � � � Snk) � d log2 (k + 1) e:

This reproves [2, Prop. 6.2] by a di�erent method.

(b) It is proved in [2, Prop. 6.5] that for any positive integer n, there is a
�nite product of spheres X with tS(X) = n. By Corollary 5.3, the same
is true for t�(X) and tM(X). Thus the integers tF (X) for F = S;M
or � and any X take on all positive integer values.

Finally, we observe that the splitting of ΩFPn gives a useful criterion for de-
ciding when a map f : FPn−!Y lies in ZS(FPn; Y ).

Proposition 5.4 Let i be the inclusion Sd = FP1 ,! FPn , and let p :
S(n+1)d−1−!FPn be the Hopf �ber map. Then the map

(i; p) : Sd _ S(n+1)d−1−!FPn

induces a surjection on homotopy groups. Therefore, a map f : FPn−!Y
satis�es ��(f) = 0 if and only if f � i = 0 and f � p = 0.

5.2 Complex projective spaces

Next we show that certain skeleta X of Eilenberg-MacLane spaces have the
property that ZS(X) = 0. We apply this to CPn and �nCP2 for each n.
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Let G be a �nitely generated abelian group. Give the Eilenberg-MacLane space
K(G;n) with n � 2 a homology decomposition [12, Chap. 8] and denote the
mth section by K(G;n)m . Thus K(G;n) is �ltered

� � K(G;n)n � � � � � K(G;n)m � � � � � K(G;n)

and there are co�ber sequences

M(Hm+1(K(G;n));m)−!K(G;n)m−!K(G;n)m+1:

Theorem 5.5 If the group Hm(K(G;n)) is torsion free and Hm+1(K(G;n)) =
0, then ZS(K(G;n)m) = 0.

Proof We write X = K(G;n)m . Then Hk(K(G;n);X) = 0 for k � m+1. By
Whitehead’s theorem [32, Thm. 7.13], the induced map �k(X)−!�k(K(G;n))
is an isomorphism for k � m. Since Hm(K(G;n)) is torsion free, X has
dimension at most m, and so X has a CW decomposition_

Sn = Xn � Xn+1 � � � � � Xm � X:
For f 2 ZS(X) we prove by induction on k that f factors through X=Xk

for each k � m. The �rst step is trivial since �n(f) = 0 implies f jXn = 0.
Inductively, assume that f factors through X=Xk with n � k < m. There is a
co�bration _

Sk+1 � Xk+1=Xk −!X=Xk −!X=Xk+1:

Since n < k + 1 � m, it follows that �k+1(X) �= �k+1(K(G;n)) = 0, so f
extends to X=Xk+1 . Taking k = m, we �nd f = 0.

Remark Clearly, �k(K(G;n)m) = 0 for n < k < m. The hypotheses in
Theorem 5.5 are needed to conclude further that �m(K(G;n)m) = 0.

As an application of Theorem 5.5, we have the following calculations.

Theorem 5.6

(a) ZF (CPn) = 0 for each n � 1 and each F = �;M or S .

(b) ZF (�nCP2) = 0 for each n � 1 and each F = �;M or S .

Proof By Proposition 5.1 it su�ces to consider the case F = S . Since CP1 =
K(Z; 2) and the CPn are the sections of a homology decomposition of CP1 ,
part (a) follows from Theorem 5.5. Recall from [9] that for n � 2

Hk(K(Z; n)) =
�

Z if k = n or n+ 2
0 if k = n+ 1 or n+ 3.
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Since Sq2 is nontrivial on Hn(K(Z; n); Z=2), we have K(Z; n)n+2 � �n−2CP2 .
Thus Theorem 5.5 applies to �n−2CP2 .

This theorem immediately shows that tF (CPn) = tF (�nCP2) = 1 for F =
�;M or S and each n � 1.

5.3 Real projective spaces

In this subsection we completely calculate ZS(RPn). By the Hopf-Whitney
theorem [32, Cor. 6.19] [RP2n; S2n] �= H2n(RP2n) �= Z=2. The unique non-
trivial map q : RP2n−!S2n is the quotient map obtained by factoring out
RP2n−1 . Let f2n denote the composite RP2n q−!S2n p−!RP2n where p is the
universal covering map.

Theorem 5.7 For F = �;M or S and each n � 1,

(a) ZF (RP2n−1) = 0
(b) ZF (RP2n) = f0; f2ng.

Proof Let f : RPm−!RPm with �1(f) = 0. Because �k(RPm) = 0 for
1 < k < m, an argument similar to the proof of Theorem 5.5 shows that f
must factor through q : RPm−!Sm . For m > 1, any map Sm−!RPm lifts
through p : Sm−!RPm . Thus there is a map g : Sm−!Sm of degree d
which makes the following diagram commute

Sm
p

//

q�p
##G

G
G
G
G
G
G
G
G

RPm
f

//

q

��

RPm

Sm
g

// Sm:

p

OO

First let m = 2n − 1. We may assume n > 1. The composite q � p :
S2n−1−!S2n−1 is known to have degree 2. Since �i(p) is an isomorphism
for i > 1, f � p represents 2d 2 Z �= �2n−1(RP2n−1). If f 2 ZS(RP2n−1), then
d must be 0, and so f = 0. This proves (a).

Now take m = 2n. The composite q � p : S2n−!S2n is trivial because it is
zero on homology. Therefore f � p = 0, and since �1(f) = 0, Proposition 5.4
shows that f 2 ZS(RP2n). Since RP2n is connected, there is a bijection

p� : [RP2n; S2n]
�= // ff j f 2 [RP2n;RP2n]; �1(f) = 0g = ZS(RP2n):

Since [RP2n; S2n] = f0; qg as noted above, ZS(RP2n) = f0; f2ng, where f2n =
p � q .
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Remark This argument actually shows that, if �k(Y ) = 0 for 1 < k <
2n + 1, there is a bijection between ZS(RP2n+1; Y ) and the set of elements
� 2 �2n+1(Y ) such that 2� = 0.

Corollary 5.8 For each n � 1,

(a) tF (RP2n−1) = 1 for F = �;M and S .

(b) tF (RP2n) = 2 for F = �;M and S .

Proof It su�ces to prove part (b) for F = S . Since ZS(RP2n) 6= 0, tS(RP2n)
� 2. The only possibly nonzero product in this semigroup is f2n � f2n . But
this is zero because ZS(RP2n) is nilpotent by Theorem 3.3.

5.4 Quaternionic projective spaces

The quaternionic projective spaces are not skeleta of Eilenberg-MacLane spaces,
and it is much more di�cult to compute their nilpotency.

Let f 2 [HPn+1;HPn+1], and assume that f is cellular. Then f jHPn :
HPn−!HPn and the homotopy class f jHPn is well de�ned.

Lemma 5.9 If f 2 ZS(HPn+1), then f jHPn 2 ZS(HPn).

Proof Let f 2 ZS(HPn+1) and let g = f jHPn . Consider the diagram

S4n+3 h //______

p

��

S4n+3

p

��

S4 i // HPn

j

��

g
// HPn

j

��

l

%%J
J
J
J
J
J
J
J
J
J

HPn+1

q

��

f
// HPn+1 m //

q

��

HP1

S4n+4 �h //______ S4n+4:

where i; j;m and l are inclusions. Since S4n+3 p−!HPn l−!HP1 can be re-
garded as a �bration and l � (g � p) = m � (f � (j � p)) = 0, it follows that g � p
lifts to the map h. Since f 2 ZS(HPn+1), f induces zero on H4(HPn+1), and
hence is zero in cohomology. Therefore �h is zero in cohomology and hence
is trivial. Thus h = 0, so g � p = 0. Also, g � i = 0, so g 2 ZS(HPn) by
Proposition 5.4.
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Next we indicate how we will apply Lemma 5.9. If ZS(HPn) = 0 and f 2
ZS(HPn+1), then f jHPn = 0, so f factors through q : HPn+1−!S4n+4 . By
Proposition 5.4, if i : S4 ,! HPn+1 , then �4n+4(i) is surjective, so f factors as
in the diagram

HPn+1
f

//

q

��

HPn+1 m // HP1

S4n+4
g

// S4:

i

OO

l

99
t
t
t
t
t
t
t
t
t
t

By cellular approximation, f is essential if and only if m � f is essential. The
map l � g : S4n+4−!HP1 is adjoint to a map g0 : S4n+3−!S3 , which in turn
is adjoint to l ��g0 . By cellular approximation again, i�g = i��g0 , so we may
assume that g is in the image of the suspension � : �4n+3(S3)−!�4n+4(S4).

The proof of our main result about quaternionic projective spaces requires some
detailed information about homotopy groups of spheres. Since we refer to
Toda’s book [31] for this information, we use his notation here. For exam-
ple, �k : Sk+1−!Sk and �k : Sk+3−!Sk are suspensions of the Hopf �ber
maps.

Theorem 5.10

(a) ZF (HPn) = 0 for F = S;M or � and n = 1; 2 and 3

(b) ZF (HP4) 6= 0 for F = S;M or �.

Proof First HP1 = S4 , so ZS(HP1) = 0. If f 2 ZS(HP2), then there is a
commutative diagram

HP2
f

//

q

��

HP2 m // HP1

S8
g

//

�5

��

S4

i

OO

l

;;
v
v
v
v
v
v
v
v
v

S5

�4

;;
w
w
w
w
w
w
w
w
w

in which the vertical sequence is a co�bration. If g = 0, then f = 0, so we
may assume that g 6= 0. We know that �8(HP1) �= �7(S3) �= Z=2, generated
by �3 � �4 [31, p. 43{44]. Thus we can take g = �4 � �5 . Since �5 � q = 0, we
conclude that g � q = 0, so f = 0. This shows that ZF (HP2) = 0.

The proof that ZS(HP3) = 0 is similar. Let f 2 ZS(HP3) and apply Lemma
5.9 to get a similar factorization. The resulting map g : S12−!S4 is either ��3
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or 0 [31, Thm. 7.1]. If g = ��3 , then results of [15, (2.20a)] and [31, Thm. 7.4]
show that f � p 6= 0. Thus g = 0 and so f = 0.

For part (b), we make use of the diagram preceding Theorem 5.10 and the fact
that g can be taken to be a suspension map. If f 2 ZS(HP4), then we have

S19
p

//

""F
F
F
F
F
F
F
F

HP4
f

//

q

��

HP4 m // HP1

S16
g

// S4:

i

OO

l

;;
v
v
v
v
v
v
v
v
v

According to Toda [31], �16(S4) = �(�15(S3)) �= Z=2 � Z=2. By [15, (2.20a)],
q � p is 4�16 2 �19(S16). Then g � (4�16) = 4g � �16 because �16 is a suspension.
Since 4g = 0, any map HP4−!HP4 which factors through q lies in ZS(HP4).
Marcum and Randall show in [18] that the map

((i � �� 0) � �7) � q : HP4 // HP4

is essential, where � 0 2 �6(S3) generates the 2-torsion and �7 2 �16(S7) gen-
erates a Z=2 summand [31, Thm. 7.2]. Thus ZS(HP4) 6= 0, and so tS(HP4) �
2.

As before, we obtain the nilpotency.

Corollary 5.11

(a) tF (HP1) = tF (HP2) = tF (HP3) = 1 for F = S;M or �

(b) tF (HP4) = 2 for F = S;M or �.

Proof It su�ces to prove that tS(HP4) � 2. Suppose f; g 2 ZS(HPn). The
proof of Theorem 5.10 shows that f factors through S16 . Now g�f = 0 because
g 2 ZS(HP4).

6 H-spaces

In this section we study the nilpotency of H-spaces Y mod �. We make calcula-
tions for speci�c Lie groups such as SU(n) and Sp(n) and show that Z� is non-
trivial in these cases. If Y is an H-space, the Samelson product of � 2 �m(Y )
and � 2 �n(Y ) is written h�; �i 2 �n+m(Y ) [32, Chap. X].

We �rst give a few general results which are needed later.
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Lemma 6.1 If Y is an H-space and h�; �i 6= 0 for some � 2 �m(Y ) and
� 2 �n(Y ), then [Sm � Sn; Y ] is not abelian.

Proof The quotient map q : Sm�Sn−!Sm^Sn � Sm+n induces a monomor-
phism q� : [Sm ^ Sn; Y ]−! [Sm � Sn; Y ] such that q�h�; �i = [�p1; �p2], the
commutator of �p1 and �p2 .

It is well known that if an H-space Y is a �nite complex, then it has the same
rational homotopy type as a product of spheres S2n1−1 � � � � � S2nr−1 with
n1 � � � � � nr . If p is an odd prime such that

Y(p) �
�
S2n1−1 � � � � � S2nr−1

�
(p)
� S2n1−1

(p) � � � � � S2nr−1
(p) ;

then p is called a regular prime for Y . If Y is a simply-connected compact Lie
group, then p is regular for Y if and only if p � nr [17, Sec. 9-2].

We need a second product decomposition for p-localized Lie groups. By [21,
Sec. 2] there are �brations S2k+1−!Bk(p)−!S2k+2p−1 for k = 1; 2; : : : . An
odd prime p is called quasi-regular for the H-space Y if

Y(p) �

0@Y
i

S2ni−1 �
Y
j

Bmj (p)

1A
(p)

:

6.1 The groups SU(n) and Sp(n)

We apply the notions of regular and quasi-regular primes to the Lie group
SU(n), which has the rational homotopy type of S3�S5�� � ��S2n−1 , and to the
Lie group Sp(n), which has the rational homotopy type of S3�S7�� � ��S4n−1 .
It is well known [21, Thm. 4.2] that if p is an odd prime then

(a) p is regular for SU(n) if and only if p � n; p is quasi-regular for SU(n)
if and only if p > n

2

(b) p is regular for Sp(n) if and only if p � 2n; p is quasi-regular for Sp(n)
if and only if p > n.

It is also known [4, Thm. 1] that if n � 3 and r+s+1 = n, there are generators
� 2 �2r+1(SU(n)) �= Z, � 2 �2s+1(SU(n)) �= Z and γ 2 �2n(SU(n)) �= Z=n!
such that h�; �i = r!s!γ . If p is an odd prime and �0 2 �2r+1(SU(n)(p)), �0 2
�2s+1(SU(n)(p)) and γ0 2 �2n(SU(n)(p)) are the images of �, � and γ under the
localization homomorphism �� : ��(SU(n))−!��(SU(n)(p)) �= ��(SU(n))(p) ,
then

h�0; �0i = r!s!γ0 2 �2n(SU(n))(p)
�= Z=n!⊗ Z(p):

Now we prove the main result of this section.
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Theorem 6.2 The groups

(a) [SU(n); SU(n)] for n � 5 and

(b) [Sp(n); Sp(n)] for n � 2

are not abelian.

Proof Consider SU(n) for n � 5 and let p be the largest prime such that
n
2 < p < n. If n � 12, then it follows from Bertrand’s postulate [28, p. 137]
that there are two primes p and q such that n

2 < q < p < n. This implies
that 2n + 6 < 4p. For 5 � n < 12, and n 6= 5; 7; 11, it is easily veri�ed that
2n+ 6 < 4p.

Assume that n � 5 and that n 6= 5; 7 or 11. Since p > n
2 , it follows that p is

quasi-regular for SU(n). Since 2n + 6 < 4p, the spheres S2n−2p+3 and S2p−3

both appear in the resulting product decomposition. Thus we have

SU(n)(p) �
�
B1(p)� � � � �Bn−p(p)� S2n−2p+3 � � � � � S2p−3 � S2p−1

�
(p)
:

Assume [SU(n); SU(n)] is abelian. Then [SU(n)(p); SU(n)(p)] is abelian, and
therefore [S2n−2p+3 � S2p−3; SU(n)(p)] is abelian.

There are �0 2 �2n−2p+3(SU(n)(p)), �0 2 �2p−3(SU(n)(p)) and
γ0 2 �2n(SU(n)(p)) so that

h�0; �0i = (n− p+ 1)!(p − 2)!γ0

in �2n(SU(n)(p)) �= Z=n!⊗Z(p)
�= Z=p. Since γ0 is a generator of Z=p, we have

h�0; �0i 6= 0. By Lemma 6.1, [S2n−2p+3 � S2p−3; SU(n)(p)] is not abelian, and
so [SU(n); SU(n)] is not abelian.

It remains to prove that [SU(n); SU(n)] is not abelian for n = 5; 7; 11. The
argument we now give applies to SU(p) for any prime p � 5. Notice that
p is regular for SU(p), so it su�ces to show that [S3 � S2p−3; SU(p)(p)] is
nonabelian. Since p is a regular prime for SU(p), we choose generators � 2
�3(SU(p)), � 2 �2p−3(SU(p)) and γ 2 �2p(SU(p)) so that

h�0; �0i = (p− 2)!γ0 6= 0 2 Z=p!⊗ Z(p)
�= Z=p:

Therefore [S3 � S2p−3; SU(p)(p)] is nonabelian by Lemma 6.1.

The proof that [Sp(n); Sp(n)] is not abelian for n � 2 is analogous: one uses
Bott’s result for Samelson products in ��(Sp(n)) [4, Thm. 2] together with a
quasi-regular decomposition for Sp(n). We omit the details.
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Corollary 6.3

(a) For n � 5, Z�(SU(n)) 6= 0, and 2 � t�(SU(n)) � dlog2(n)e.
(b) For n � 2, Z�(Sp(n)) 6= 0, and 2 � t�(Sp(n)) � d2 log2(n+ 1)e .

Proof For an H-space Y , a commutator in [X;Y ] is an element of Z�(X;Y )
[30, Thm. 7]. Thus, if [Y; Y ] is nonabelian, 2 � t�(Y ). The upper bound for
t�(SU(n)) comes from Proposition 2.5 since Singhof has shown that cat(SU(n))
= n [29]. The upper bound on t�(Sp(n)) follows from Proposition 3.5.

Schweitzer [27, Ex. 4.4] has shown that cat(Sp(2)) = 4, so it follows from
Proposition 2.5 that t�(Sp(2)) = 2.

6.2 Some low dimensional Lie groups

Here we consider the Lie groups SU(3), SU(4), SO(3) and SO(4) and make
estimates of t� by either quoting known results or by ad hoc methods. We �rst
deal with SU(3) and SU(4).

Proposition 6.4 The groups [SU(3); SU(3)] and [SU(4); SU(4)] are not ab-
elian.

Proof For the groupSU(3) this follows from results of Ooshima [22, Thm. 1.2].
For SU(4), observe that the prime 5 is regular for both SU(4) and Sp(2), so

SU(4)(5) � (S3 � S5 � S7)(5) and Sp(2)(5) � (S3 � S7)(5):

If [SU(4); SU(4)] is abelian, then so is [SU(4)(5); SU(4)(5)] �= [S3 � S5 �
S7; SU(4)(5)], and thus [S3 � S7; SU(4)(5)] is abelian.

If �0 2 �3(Sp(2)(5)) and �0 2 �7(Sp(2)(5)) are the images of generators of
�3(Sp(2)) �= Z and �7(Sp(2)) �= Z then it follows from [4] that h�0; �0i 6= 0 2
�10(Sp(2)(5)) �= Z=5! ⊗ Z(5)

�= Z=5.

Now we relate SU(4) to Sp(2) via the �bration Sp(2) i−!SU(4)−!S5 . The
exact homotopy sequence of a �bration shows that �10(i) is an isomorphism
after localizing at any odd prime. Since i is an H-map,

hi�(�0); i�(�0)i = i�h�0; �0i 6= 0 2 �10(SU(4)(5)):

Thus [S3�S7; SU(4)(5)] is not abelian, so [SU(4); SU(4)] cannot be abelian.
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Corollary 6.5

(a) Z�(SU(3)) 6= 0, and t�(SU(3)) = 2

(b) Z�(SU(4)) 6= 0, and t�(SU(4)) = 2.

Proof Since the groups [SU(n); SU(n)] are not abelian for n = 3 and 4,
t�(SU(3)) and t�(SU(4)) are at least 2. But cat(SU(n)) = n by [29], so the
reverse inequalities follow from Proposition 2.5.

Next we investigate the nilpotence of SO(3) and SO(4). This provides us with
examples of non-simply-connected Lie groups.

Proposition 6.6 Z�(SO(3)) = 0 and Z�(SO(4)) 6= 0.

Proof Since SO(3) is homeomorphic to RP3 , the �rst assertion follows from
Theorem 5.7. For the second assertion, recall that SO(4) is homeomorphic to
S3 � SO(3). For notational convenience, we write X = SO(3) and Y = S3 .
We show that Z�(X � Y ) 6= 0. Let j : X _ Y −!X � Y be the inclusion and
q : X � Y −!X ^ Y be the quotient map. Consider

q� : [X ^ Y;X � Y ]−! [X � Y;X � Y ]:

Notice that Im(q�) � Z�(X � Y ) because q 2 Z�(X � Y;X ^ Y ), so q induces
a function q�� : [X ^Y;X � Y ]−!Z�(X � Y ). Consider the exact sequence of
groups

[�(X�Y );X�Y ] �j�−! [�(X_Y );X�Y ]−! [X^Y;X�Y ] q�−! [X�Y;X�Y ]:

Since �j� has a left inverse, ker(q�) = 0. Thus q�� is one-one, so it su�ces
to show that [X ^ Y;X � Y ] �= [�3SO(3); SO(3)] � [�3SO(3); S3] is nonzero.
This follows from [33, Cor. 2.12], where it is shown that [�3SO(3); S3] �= Z=4�
Z=12.

Corollary 6.7 t�(SO(3)) = 1 and t�(SO(4)) = 2.

Proof We only have to show that t�(SO(4)) � 2. The remark following
Theorem 5.7 shows that if f 2 Z�(X � Y ) then f jX_Y = 0, so q�� is onto.
Thus f factors through a sphere, so we can proceed as in the proof of Corollary
5.11.
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6.3 The group EΩ(Y )

We conclude the section by relating Z�(Y ) to a certain group of homotopy
equivalences of Y . For any space X , let EΩ(X) � [X;X] be the group of
homotopy equivalences f : X −!X such that Ωf = id. This group has been
studied by Felix and Murillo [10] and by Pavesic [23]. We note that if Y is an
H-space, then the function

� : Z�(Y )−!EΩ(Y )

de�ned by �(g) = id + g is a bijection of pointed sets. In general � does not
preserve the binary operation in Z�(Y ) and EΩ(Y ). Thus EΩ(Y ) is nontrivial
whenever Z�(Y ) is nontrivial.

Proposition 6.8 The groups EΩ(Y ) are nontrivial in the following cases: Y =
SU(n), n � 3; Y = Sp(n), n � 2; and Y = SO(4). The groups EΩ(Y ) are
trivial in the following cases: Y = SU(2), Sp(1), SO(2) and SO(3).

7 Problems

In this brief section we list, in no particular order, a number of problems which
extend the previous results or which have been suggested by this material.

1. Calculate tF (X) for F = S;M or � and various spaces X . In particular,
what is t�(HPn) for n > 4, and t�(Y ) for compact Lie groups Y not
considered in Section 6?

2. Find general conditions on a space X such that Z�(X;Y ) = ZS(X;Y ).
One such was given in Section 5. Is Z�(Y ) = ZS(Y ) if Y is a compact
simply-connected Lie group without homological torsion, such as SU(n)
or Sp(n)?

3. Find lower bounds for tF (X) in the cases F = S;M or � in terms of
other numerical invariants of homotopy type.

4. With F = S;M or �, characterize those spaces X such that ZF (X) = 0.
5. What is the relation between kl�(X) and dlog2(cat(X))e? In particular,

if kl�(X) < 1, does it follow that cat(X) < 1? Notice that both of
these integers are upper bounds for t�(X).

6. Find an example of a �nite H-complex Y such that Z�(Y ) 6= ZS(Y ) (see
Section 4). In the notation of Section 6, this would yield a �nite complex
Y for which EΩ(Y ) 6= ES(Y ). Such an example which is not a �nite
complex was given in [10].
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7. Examine tF (X); klF (X) and clF (X) for various collections F such as the
collection of p-local spheres or the collection of all cell complexes with at
most two positive dimensional cells.

8. Investigate the Eckman-Hilton dual of the results of this paper. One
de�nes a map f : X −!Y to be F -cotrivial if f� = 0 : [Y;A]−! [X;A]
for all A 2 F . One could then study the set ZF (X;Y ) of all F -cotrivial
maps X −!Y and , in particular, the semigroup ZF(X) = ZF (X;X).
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