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On asymptotic dimension of groups
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Abstract We prove a version of the countable union theorem for asymp-
totic dimension and we apply it to groups acting on asymptotically �nite
dimensional metric spaces. As a consequence we obtain the following �nite
dimensionality theorems.

A) An amalgamated product of asymptotically �nite dimensional groups
has �nite asymptotic dimension: asdimA �C B <1.

B) Suppose that G0 is an HNN extension of a group G with asdimG <
1. Then asdimG0 <1.

C) Suppose that Γ is Davis’ group constructed from a group � with
asdim� <1. Then asdimΓ <1.

AMS Classi�cation 20H15; 20E34, 20F69

Keywords Asymptotic dimension, amalgamated product, HNN exten-
sion

1 Introduction

The notion of the asymptotic dimension was introduced by Gromov [8] as an
asymptotic analog of Ostrand’s characterization of covering dimension. Two
sets U1 , U2 in a metric space are called d-disjoint if they are at least d-apart,
i.e. inffdist(x1; x2) j x1 2 U1; x2 2 U2g � d. A metric space X has asymptotic
dimension asdimX � n if for an arbitrarily large number d one can �nd n+ 1
uniformly bounded families U0; : : : ;Un of d-disjoint sets in X such that the
union [iU i is a cover of X . A generating set S in a group Γ de�nes the word
metric on Γ by the following rule: dS(x; y) is the minimal length of a presen-
tation of the element x−1y 2 Γ in the alphabet S . Gromov applied the notion
of asymptotic dimension to studying asymptotic invariants of discrete groups.
It follows from the de�nition that the asymptotic dimension asdim(Γ; dS) of
a �nitely generated group does not depend on the choice of the �nite gener-
ating set S . Thus, asdimΓ is an asymptotic invariant for �nitely generated
groups. Gromov proved [8] that asdimΓ < 1 for hyperbolic groups Γ. The
corresponding question about nonpositively curved (or CAT(0)) groups remains
open. In the case of Coxeter groups it was answered in [7].
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In [13] G. Yu proved a series of conjectures, including the famous Novikov Higher
Signature conjecture, for groups Γ with asdimΓ < 1. Thus, the problem
of determining the asymptotic �nite dimensionality of certain discrete groups
became very important. In fact, until the recent example of Gromov [9] it was
unknown whether all �nitely presented groups satisfy the inequality asdimΓ <
1. In view of this, it is natural to ask whether the property of asymptotic
�nite dimensionality is preserved under the standard constructions with groups.
Clearly, the answer is positive for the direct product of two groups. It is less
clear, but still is not di�cult to see that a semidirect product of asymptotically
�nite dimensional groups has a �nite asymptotic dimension. The same question
about the free product does not seem clear at all. In this paper we show that
the asymptotic �nite dimensionality is preserved by the free product, by the
amalgamated free product and by the HNN extension.

One of the motivations for this paper was to prove that Davis’ construction pre-
serves asymptotic �nite dimensionality. Given a group � with a �nite classify-
ing space B� , Davis found a canonical construction, based on Coxeter groups,
of a group Γ with BΓ a closed manifold such that � is a retract of Γ (see
[1],[2],[3],[10]). We prove here that if asdim� < 1, then asdimΓ < 1. This
theorem together with the result of the second author [6] (see also [5]) about the
hypereuclideanness of asymptotically �nite dimensional manifolds allows one to
get a shorter and more elementary proof of the Novikov Conjecture for groups
Γ with asdimΓ <1.

We note that the asymptotic dimension asdim is a coarse invariant, i.e. it is an
invariant of the coarse category introduced in [11]. We recall that the objects
in the coarse category are metric spaces and morphisms are coarsely proper
and coarsely uniform (not necessarily continuous) maps. A map f : X ! Y
between metric spaces is called coarsely proper if the preimage f−1(Br(y)) of
every ball in Y is a bounded set in X . A map f : X ! Y is called coarsely
uniform if there is a function � : R+ ! R+ , tending to in�nity, such that
dY (f(x); f(y)) � �(d(x; y)) for all x; y 2 Y . We note that every object in the
coarse category is isomorphic to a discrete metric space.

There is an analogy between the standard (local) topology and the asymptotic
topology which is outlined in [4]. That analogy is not always direct. Thus, in
Section 2 we prove the following �nite union theorem for asymptotic dimension
asdimX [ Y � maxfasdimX; asdimY g whereas the classical Menger-Urysohn
theorem states: dimX [ Y � dimX + dimY + 1. Also the Countable Union
Theorem in the classical dimension theory cannot have a straightforward ana-
log, since all interesting objects in the coarse category are countable unions
of points but not all of them are asymptotically 0-dimensional. In Section 2
we formulated a countable union theorem for asymptotic dimension which we
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found useful for applications to the case of discrete groups.

The second author was partially supported by NSF grant DMS-9971709.

2 Countable union theorem

De�nition A family of metric spaces fF�g satis�es the inequality asdimF� �
n uniformly if for arbitrarily large d > 0 there are R and R-bounded d-disjoint
families U0

� : : :Un� of subsets of F� such that the union [iU i� is a cover of F� .

A typical example of such family is when all F� are isometric to a space F
with asdimF � n.

A discrete metric space X has bounded geometry if for every R there is a
constant c = c(R) such that every R-ball BR(x) in X contains at most c
points.

Proposition 1 Let f� : F� ! X be a family of 1-Lipschitz injective maps
to a discrete metric space of bounded geometry with asdimX � n. Then
asdimF� � n uniformly.

Proof For a metric space A we de�ne its d-components as the classes under
the following equivalence relation. Two points a; a0 2 A are equivalent if there
is a chain of points a0; a1; : : : ; ak with a0 = a, ak = a0 and with d(ai; ai+1) � d
for all i < k . We note that the d-components are more than d apart and also
note that the diameter of each d-component is less than or equal to djAj, where
jAj is the number of points in A.

Let d be given. Then there are R-bounded d-disjoint families V0; : : : ;Vn cov-
ering X . For every V 2 Vi and every � we present the set f−1

� (V ) as the
union of d-components: f−1

� (V ) = [Cj�(V ). Note that the diameter of ev-
ery d-component is � dc(R) where the function c is taken from the bounded
geometry condition on X . We take U i� = fCj�(V ) j V 2 Vig.

Theorem 1 Assume that X = [�F� and asdimF� � n uniformly. Suppose
that for any r there exists Yr � X with asdimYr � n and such that the family
fF� n Yrg is r-disjoint. Then asdimX � n.

Finite Union Theorem Suppose that a metric space is presented as a union
A [B of subspaces. Then asdimA [B � maxfasdimA; asdimBg.
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Proof We apply Theorem 1 to the case when the family of subsets consists of
A and B and we take Yr = B .

The proof of Theorem 1 is based on the idea of saturation of one family by the
other. Let V and U be two families of subsets of a metric space X .

De�nition For V 2 V and d > 0 we denote by Nd(V ;U) the union of V and
all elements U 2 U with d(V;U) = minfd(x; y) j x 2 V; y 2 Ug � d. By d-
saturated union of V and U we mean the following family V[dU = fNd(V ;U) j
V 2 Vg [ fU 2 U j d(U; V ) > d for all V 2 Vg.
Note that this is not a commutative operation. Also note that f;g [d U = U
and V [d f;g = V for all d.

Proposition 2 Assume that U is d-disjoint and R-bounded, R � d. Assume
that V is 5R-disjoint and D-bounded. Then V [d U is d-disjoint and D +
2(d+R)-bounded.

Proof First we note that elements of type U are d-disjoint in the saturated
union. The same is true for elements of type U and Nd(V ;U). Now consider
elements Nd(V ;U) and Nd(V 0;U). Note that they are contained in the d+R-
neighborhoods of V and V 0 respectively. Since V and V 0 are 5R-disjoint, and
R � d, the neighborhoods will be d-disjoint.

Clearly, diamNd(V ;U) � diamV + 2(d +R) � D + 2(d+R).

Proof of Theorem 1 Let d be given. Consider R and families U0
� : : :Un�

from the de�nition of the uniform inequality asdimF� � n. We may assume
that R > d. We take r = 5R and consider Yr satisfying the conditions of
the Theorem. Consider r-disjoint D-bounded families V0; : : : ;Vk from the
de�nition of asdimYr � k . Let �U i� be the restriction of U i� over F� n Yr , i.e.
�U i� = fU nYr j U 2 U i�g. Let �U i = [� �U i� . Note that the family �U i is d-disjoint
and R-bounded. For every i we de�ne Wi = Vi [d �U i . By Proposition 2 the
family Wi is d-disjoint and uniformly bounded. Clearly [iWi covers X .

3 Groups acting on �nite dimensional spaces

A norm on a group A is a map k k : A! Z+ such that kabk � kak+ kbk and
kxk = 0 if and only if x is the unit in A. A set of generators S � A de�nes
the norm kxkS as the minimal length of a presentation of x in terms of S . A
norm on a group de�nes a left invariant metric d by d(x; y) = kx−1yk. If G
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is a �nitely generated group and S and S0 are two �nite generating sets, then
the corresponding metrics dS and dS0 de�ne coarsely equivalent metric spaces
(G; dS) and (G; dS0 ). In particular, asdim(G; dS) = asdim(G; dS0 ), and we can
speak about the asymptotic dimension asdimG of a �nitely generated group
G.

Assume that a group Γ acts on a metric space X . For every R > 0 we de�ne
the R-stabilizer WR(x0) of a point x0 2 X as the set of all g 2 Γ with
g(x0) 2 BR(x0). Here BR(x) denotes the closed ball of radius R centered at
x.

Theorem 2 Assume that a �nitely generated group Γ acts by isometries on
a metric space X with a base point x0 and with asdimX � k . Suppose that
asdimWR(x0) � n for all R . Then asdimΓ � (n + 1)(k + 1)− 1.

Proof We de�ne a map � : Γ ! X by the formula �(g) = g(x0). Then
WR(x0) = �−1(Br(x0)). Let � = maxfdX(s(x0); x0) j s 2 Sg. We show now
that � is �-Lipschitz. Since the metric dS on γ is induced from the geodesic
metric on the Cayley graph, it su�ces to check that dX(�(g); �(g0)) � � for all
g; g0 2 Γ with dS(g; g0) = 1. Without loss of generality we assume that g0 = gs
where s 2 S . Then dX(�(g); �(g0)) = dX(g(x0); gs(x0)) = dX(x0; s(x0)) � �.

Note that γBR(x) = BR(γ(x)) and γ(�−1(BR(x))) = �−1(BR(γ(x))) for all
γ 2 Γ, x 2 X and all R .

Given r > 0, there are �r-disjoint, R-bounded families F0; : : : ;Fk on the orbit
Γx0 . Let V0; : : : ;Vn on W2R(x0) be r-disjoint uniformly bounded families
given by the de�nition of the inequality asdimWR(x0) � n. For every element
F 2 F i we choose an element gF 2 Γ such that gF (x0) 2 F . We de�ne
(k + 1)(n + 1) families of subsets of Γ as follows:

Wij = fgF (C) \ �−1(F ) j F 2 F i; C 2 Vjg

Since multiplication by gF from the left is an isometry, every two distinct
sets gF (C) and gF (C 0) are r-disjoint. Note that �(gF (C) \ �−1(F )) and
�(gF 0(C) \ �−1(F 0)) are �r-disjoint for F 6= F 0 . Since � is �-Lipschitz, the
sets gF (C) \ �−1(F ) and gF 0(C 0) \ �−1(F 0) are r-disjoint. The families Wij

are uniformly bounded, since the families Vj are, and multiplication by g from
the left is an isometry on Γ. We check that the union of the families Wij forms
a cover of Γ. Let g 2 Γ and let �(g) = F , i.e. g(x0) 2 F . Since diamF � R ,
x0 2 g−1

F (F ) � R and g−1
F acts as an isometry, we have g−1

F (F ) � BR(x0).
Therefore, g−1

F g(x0) 2 BR(x0), i. e. g−1
F g 2WR(x0). Hence g−1

F g lies in some
set C 2 Vj for some j . Therefore g 2 gF (C). Thus, g 2 gF (C) \ �−1(F ).
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Theorem 3 Let � : G! H be an epimorphism of a �nitely generated group
G with kernel ker� = K . Assume that asdimK � k and asdimH � n. Then
asdimG � (n+ 1)(k + 1)− 1.

Proof The group G acts on H by the rule g(h) = �(g)h. This is an action
by isometries for every left invariant metric on H . Let S be a �nite generating
set for G. We consider the metric on H de�ned by the set �(S). Below we
prove that the R-stabilizer of the identity WR(e) coincides with NR(K), the
R-neighborhood of K in G. Since NR(K) is coarsely isomorphic to K , we
have the inequality asdimWR(e) � k .

Let g 2WR(e), then k�(g)k � R . Therefore, there is a sequence i1; : : : ; ik with
k � R such that �(g) = �si1 : : : �sik where �s = �(s), s 2 S . Let u = si1 : : : sik .
Then dS(g; gu−1) � R and hence, dS(g;K) � R . In the opposite direction, if
dS(g;K) � R , then d(g; z) � R for some z 2 K . Hence d�(S)(�(g); e) � R .

We apply Theorem 2 to complete the proof.

Remark The estimate (n + 1)(k + 1) − 1 in Theorems 2 and 3 is far from
being sharp. Since in this paper we are interested in �nite dimensionality only,
we are not trying to give an exact estimate which is n + k . Besides, it would
be di�cult to get an exact estimate just working with covers. Even for proving
the inequality

asdimΓ1 � Γ2 � asdimΓ1 + asdimΓ2

it is better to use a di�erent approach to asdim (see [7]).

4 Free and amalgamated products

Let fAi; k kig be a sequence of groups with norms. Then these norms generate
a norm on the free product �Ai as follows. Let xi1xi2 : : : xim be the reduced
presentation of x 2 �Ai , where xik 2 Aik . We denote by l(x) = m the length
of the reduced presentation of x and we de�ne kxk = kxi1ki1 + : : :+ kximkim .

Theorem 4 Let fAi; k kig be a sequence of groups satisfying asdimAi � n
uniformly and let k k be the norm on the free product �Ai generated by the
norms k ki . Then asdim(�Ai; k k) � 2n+ 1.
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Proof First we note that the uniform property asdimAi � n and Theorem 1
applied with Yr = Br(e), the r-ball in �Ai centered at the unit e, imply that
asdim [Ai � n.

We let G denote �Ai . Then we consider a tree T with vertices left cosets xAj
in G. Two vertices xAi and yAj are joined by an edge if and only if there
is an element z 2 G such that xAi = zAi and yAj = zAj and i 6= j . The
multiplication by elements of G from the left de�nes an action of G on T . We
note that the m-stabilizer Wm(A1) of the vertex A1 is the union of all possible
products Ai1 : : : AilA1 of the length � m+ 1, where ik 6= ik+1 and il 6= 1. Let
Pm = fx 2 �Ai j l(x) = mg and let P km = fx 2 Pm j x = xi1 : : : xim ; xim =2
Akg. Put Rm = Wm(A1) nWm−1(A1). Then Rm � Pm+1

By induction on m we show that asdimPm � n. This statement holds true
when m = 0, since P0 = feg. Assume that it holds for Pm−1 . We note
that Pm = [x2P i

m−1
xAi . Since multiplication from the left is an isometry, the

hypothesis of the theorem implies that the inequality asdimxAi � n holds
uniformly. Given r we consider the set Yr = Pm−1Br(e) where Br(e) is the
r-ball in �Ai . Since Yr contains Pm−1 and is contained in r-neighborhood of
Pm−1 , it is isomorphic in the coarse category to Pm−1 . Hence by the induction
assumption we have asdimYr � n. We show that the family xAinYr , x 2 P im−1

is r-disjoint. Assume that xAi 6= x0Aj . This means that x 6= x0 if i = j . If
i 6= j the inequality ka−1

i x−1x0ajk � ka−1
i ajk = kaik + kajk holds for any

choice of ai 2 Ai and aj 2 Aj . If i = j , the same inequality holds, since
x 6= x0 and they are of the same length. If xai 2 xAi n Yr and x0aj 2 xAj n Yr ,
then kaik; kajk � r and hence dist(xai; x0aj) � 2r . Theorem 1 implies that
asdimPm � n. The Finite Union Theorem implies that asdimWm(A1) � n for
all n.

It is known that every tree T has asdimT = 1 (see [7]). Thus by Theorem 2
asdim(�Ai; k k) � 2n+ 1.

Corollary Let Ai , i = 1; : : : ; k , be �nitely generated groups with asdimAi �
n. Then asdim �ki=1 Ai � 2n+ 1.

Theorem 5 Let A and B be �nitely generated groups with asdimA � n
and asdimB � n and let C be their common subgroup. Then asdimA �C B �
2n+ 1.

We recall that every element x 2 A �C B admits a unique normal presen-
tation c�x1 : : : �xk where c 2 C , �xi = Cxi are nontrivial alternating right
cosets of C in A or B . Thus, x = cx1 : : : xk . Let dist( ; ) be a met-
ric on the group G = A �C B . We assume that this metric is generated
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by the union of the �nite sets of generators S = SA [ SB of the groups A
and B . On the space of the right cosets C n G of a subgroup C in G one
can de�ne the metric �d(Cx;Cy) = dist(Cx;Cy) = dist(x;Cy). The follow-
ing chain of inequalities implies the triangle inequality for �d: dist(Ca;Cb) �
dist(a; c0b) = ka−1c0bk � ka−1czk + k(cz)−1c0bk = dist(a; cz) + dist(cz; c0b):
We chose c such that dist(a; cz) = dist(a;Cz) = �d(Ca;Cz) and c0 such that
dist(cz; c0b) = dist(cz; Cb) = �d(Cz;Cb).

For every pair of pointed metric spaces X and Y we de�ne a free product
X�̂Y as a metric space whose elements are alternating words formed by the
alphabets X n fx0g and Y n fy0g plus the trivial word x0 = y0 = ~e . We de�ne
the norm of the trivial word to be zero and for a word of type x1y1 : : : xryr
we set kx1y1 : : : xryrk = �idX(xi; x0) + dY (yi; y0). If the word starts or ends
by a di�erent type of letter, we consider the corresponding sum. To de�ne the
distance d(w;w0) between two words w and w0 we cut o� their common part u
if it is not empty: w = uxv , w0 = ux0v0 and set d(w;w0) = d(x; x0)+kvk+kv0k.
If the common part is empty, we de�ne d(w;w0) = kwk+kw0k. Thus, d(w; ~e) =
kwk.

Proposition 3 Let c�x1 : : : �xr be the normal presentation of x 2 A�CB . Then
kxk � �i �d(�xi; C).

Proof We de�ne a map � : A�CB ! (CnA)�̂(CnB) as follows. If c�x1 : : : �xr is
the normal presentation of x, then we set �(x) = �x1 : : : �xr and de�ne �(e) = ~e.
We verify that � is 1-Lipschitz. Since A �C B is a discrete geodesic metric
space space, it su�ces to show that d(�(x); �(xγ)) � 1 where γ is a gen-
erator in A or in B . Let x = cx1 : : : xr be a presentation corresponding
to the normal presentation c�x1 : : : �xr . Then the normal presentation of xγ
will be either c�x1 : : : (xrγ) or c�x1 : : : �xr�γ . In the �rst case, d(�(x); �(xγ)) =
�d(�xr; xrγ) = dist(Cxr; Cxrγ) � dist(xr; xrγ) = 1. In the second case we have
d(�(x); �(xγ)) = �d(C;Cγ) = dist(C;Cγ) � dist(e; γ) = 1.

Then kxk = dist(x; e) � d(�(x); ~e) = d(�x1 : : : �xr; ~e) = kx1 : : : xrk = �i �d(�xi; �e).

Proposition 4 Suppose that the subset (BA)m = BA : : : BA � A �C B
is supplied with the induced metric and let asdimA; asdimB � n. Then
asdim(BA)m � n for all m.
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Proof Let l(x) denote the length of the normal presentation c�x1 : : : �xl(x) of x.
De�ne Pk = fx j l(x) = kg, PAk = fx 2 Pk j xl(x) 2 CnAg and PBk = fx 2 Pk j
xl(x) 2 CnBg. Note that Pk = PAk [PBk . Also we note that (BA)m � [2m

k=1Pk .
In view of the Finite Union Theorem it is su�cient to show that asdimPk � n
for all k . We proceed by induction on k . It is easy to see that PAk+1 � PBk A.
Assuming the inequality asdimPk � n, we show that asdimPBk A � n. We
de�ne Yr = PkN

A
r (C) where NA

r (C) denotes an r-neighborhood of C in A.
First we show that Yr � Nr(Pk). Let y 2 Yr , then y has the form uz where u 2
PBk , z 2 A and dist(z;C) � r , i.e. kz−1ck � r for some c 2 C . Let c0�x1 : : : �xk
be the normal presentation of u, then uz = c0x1x2 : : : xk−1xkz where xk 2
B n C . We note that the element uc has the normal presentation c0�x1 : : : xkc
and hence uc 2 Pk . Then dist(y; uc)) = kz−1ck � r , therefore dist(y; Pk) � r ,
i.e. y 2 Nr(Pk). Since the r-neighborhood Nr(Pk) is coarsely isomorphic to
the space Pk , by the induction assumption we have asdimNr(Yr) � n and
hence, asdimYr � n.

We consider families xA with x 2 PBk . Let xA and x0A be two di�erent cosets.
Since x and x0 are di�erent elements with l(x) = l(x0), and x−1x0 =2 A, the
normal presentation of a−1x−1x0a0 ends by the coset Ca0 .

Then by Proposition 3 dist(xA n Yr; x0A n Yr) = ka−1x−1x0a0k � �d(Ca0; C) =
dist(Ca0; C) = dist(a0; C) > r: Note that PBk A is the union of these sets xA.
Since all xA are isometric, we have a uniform inequality asdimxA � n. Accord-
ing to Theorem 1 we obtain that asdimPBk A � n and hence asdimPAk+1 � n.
Similarly one obtains the inequality asdimPBk+1 � n. The Finite Union Theo-
rem implies that asdimPk+1 � n.

Proof of Theorem 5 We de�ne a graph T as follows. The vertices of T are
the left cosets xA and yB . Two vertices xA and yB are joined by an edge if
there is z such that xA = zA and yB = zB . To check that T is a tree we
introduce the weight of a vertex Y 2 T given by w(Y ) = minfl(y) j y 2 Y g.
Note that for every vertex e with w(e) > 0 there is a unique neighboring
vertex e− with w(e−) < w(e). Since we always have w(zA) 6= w(zB), we get
an orientation on T with w(e−) < w(e+) for every edge e. The existence this
orientation implies that T does not contain cycles. Since every vertex of T
can be connected with the vertex A, the graph T is connected. Thus, T is a
tree. The action of A �C B on T is de�ned by left multiplication. We note
that the k -stabilizer Wk(A) is contained in (BA)k . Then by Proposition 4
asdimWk(A) � n. By Theorem 2 asdimA �C B � 2n+ 1.

Let fAi; k kig be a sequence of groups with norms and let C � Ai be a common
subgroup. These norms de�ne a norm k k on the amalgamated product �CAi
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by taking kxk equal the minimum of sums �lk=1kaikkik where x = ai1 : : : ail
and aik 2 Aik .

The following theorem generalizes Theorem 4 and Theorem 5.

Theorem 6 Let fAi; k kig be a sequence of groups satisfying asdimAi � n
uniformly and let k k be the norm on a free product �Ai generated by the
norms k ki . Let C be a common subgroup. Then asdim(�CAi; k k) � 2n + 1.

The proof is omitted since it follows exactly the same scheme.

The following fact will be used in Section 6 in the case of the free product.

Proposition 5 Assume that the groups Ai are supplied with the norms which
generate the norm on the amalgamated product �CAi . Let  : �CAi ! Γ be a
monomorphism to a �nitely generated group such that the restriction  jAi is
an isometry for every i. Then  is a coarsely uniform embedding.

Proof Since  is a bijection onto the image, both maps  and  −1 are
coarsely proper. We check that both are coarsely uniform. First we show that
 is 1-Lipschitz. Let x; y 2 �CAi and let x−1y = ai1 : : : ain with kx−1yk =
�nk=1kaikkik . Then dΓ( (x);  (y)) �
dΓ( (x);  (xai1 )) + dΓ( (xai1);  (xai1ai2)) + : : : + dΓ( (xai1 : : : ain−1);  (y))

= �nk=1k (aik)kΓ = �nk=1kaikkik = kx−1yk = dist(x; y):

Now we show that  −1 is uniform. For every r the preimage  −1(Br(e)) is
�nite, since Br(e) is �nite and  is injective. We de�ne �(r) = maxfkzk j z 2
 −1(Br(e))g. Let �� be strictly monotonic function which tends to in�nity and
�� � � . Let � be the inverse function of �� . Then

dΓ( (x);  (y)) = k (x−1y)kΓ = �(��(k (x−1y)kΓ)) � �(�(k (x−1y)kΓ)) �
�(kx−1yk) = �(d(x; y))

The last inequality follows from the inequality �(k (z)k) � kzk and the fact
that � is an increasing function.

5 HNN extension

Let A be a subgroup of a group G and let � : A! G be a monomorphism. We
denote by G0 the HNN extension of G by means of �, i.e. a group G0 generated
by G and an element y with the relations yay−1 = �(a) for all a 2 A.
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Theorem 7 Let � : A ! G be a monomorphism of a subgroup A of a
group G with asdimG � n and let G0 be the HNN extension of G. Then
asdimG0 � 2n+ 1.

We recall that a reduced presentation of an element x 2 G0 is a word

g0y
�1g1 : : : y

�ngn = x;

where gi 2 G, �i = �1, with the property that gi =2 A whenever �i = 1 and
�i+1 = −1 and gi =2 �(A) whenever �i = −1 and �i+1 = 1. The number n is
called the length of the reduced presentation g0y

�1g1 : : : y
�ngn .

The following facts are well-known [12]:

A) (uniqueness) Every two reduced presentations of the same element have the
same length and can be obtained from each other by a sequence of the following
operations:

(1) replacement of y by �(a)ya−1 ,

(2) replacement of y−1 by a−1y�(a), a 2 A
B) (existence) Every word of type g0y

�1g1 : : : y
�ngn can be deformed to a re-

duced form by a sequence of the following operations:

(1) replacement of ygy−1 by �(g) for g 2 A, (2) replacement of y−1�(g)y by
g for g 2 A, (3) replacement of g0�g by g = g0�g 2 G if g0; �g 2 G.

In particular the uniqueness implies that for any two reduced presentations
g0y

�1g1 : : : y
�ngn and g00y

�01g1 : : : y
�0ng0n of the same element x 2 G0 we have

(�1; : : : ; �n) = (�01; : : : ; �
0
n).

Let G be a �nitely generated group and let S be a �nite set of generators. We
consider the norm on G0 de�ned by the generating set S0 = S [ fy; y−1g.

Proposition 6 Let g0y
�1g1 : : : y

�ngn be a reduced presentation of x 2 G0 .
Then kxk � d(gn; A) if �n = 1 and kxjj � d(gn; �(A)) if �n = −1.

Proof We consider here the case when �n = 1. A shortest presentation of x in
the alphabet S0 gives rise an alternating presentation x = r0

0y
�01r0

1 : : : y
�0m0 r0

m0
,

r0
i 2 G, �0i = �1 with kxk = m0 + kr0

0k+ : : :+ kr0
m0
k. We consider a sequence

of presentations of x connecting the above presentation with a reduced presen-
tation r1

0y
�11r1

1 : : : y
�1m1 r1

m1
by means of operations (1)-(3) of B). Then by A) we

have that m1 = n, �1n = �n = 1 and gn = ~ar1
n , ~a 2 A. Because of the nature

of transformations (1)-(3) of B), we can trace out to the shortest presentation
the letter y = y�

1
n from the reduced word. This means that the 0-th word has
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the form r0
0y
�01r0

1 : : : y
�0l r0

l yw where w is an alternating word representing rkmk
.

Then kxk � kwk = krkmk
k = k~a−1gnk � d(gn; A).

We denote by l(x) the length of a reduced presentation of x 2 G0 . Let Pl =
fx 2 G j l(x) = lg.

Proposition 7 Suppose that asdimG � n, n > 0. Then asdimPl � n for all
l .

Proof We use induction on l . We note that P0 = G and Pl � Pl−1yG [
Pl−1y

−1G. We show �rst that asdim(Pl\Pl−1yG) � n. Let r be given. We de-
�ne Yr = Pl−1yNr(A) where Nr(A) is the r-neighborhood of A in G. We check
that Yr � Nr+1(Pl−1). Let z 2 Yr , then z = xyg = xyaa−1g = x�(a)ya−1g
where x 2 Pl−1 , g 2 Nr(A) and a 2 A with ka−1gk � r . Then x�(a) 2 Pl−1

and d(x�(a); z) = kya−1gk � kyk+ka−1gk = r+1. Since Yk is coarsely isomor-
phic to Pl−1 , by the induction assumption we have asdimYk � n. We consider
the family of sets xyG with x 2 Pl−1 . If xyG 6= x0yG, then y−1x−1x0y =2 G. A
reduction in this word can occur only in the middle. Therefore x−1x0 =2 �(A).
Moreover the reduced presentation of y−1x−1x0y after these reductions in the
middle will be of the form y−1r1 : : : rsy . Then d(xyG n Yr; x0yG n Yr) =
d(xyg; x0yg0) = kg−1y−1x−1x0y0g0k. Since g−1y−1x−1x0y0g0 is a reduced pre-
sentation, by Proposition 6 kg−1y−1x−1x0y0g0k � d(g;A) > r . So, all the con-
ditions of Theorem 1 are satis�ed and, hence asdimPl−1yG � n. Similarly one
can show that asdim(Pl \ Pl−1y

−1G) � n. Then the inequality asdimPl � n
follows from the Finite Union Theorem.

Proof of Theorem 7 We consider a graph T with vertices the left cosets
xG. A vertex xG is joined by an edge with a vertex xgy�G, g 2 G, � = �1
whenever both x and xgy� are reduced presentations. Since l(x) = l(xg) for
all g 2 G, we can de�ne the length of a vertex xG of the graph. Thus all edges
in T are given an orientation and every vertex is connected by a path with the
vertex G. Since the length of vertices grows along the orientation, there are no
oriented cycles in T . We also note that no vertex can be the end point of two
di�erent edges. All this implies that T is a tree. The group G0 acts on T by
multiplication from the left. We note that the r-stabilizer Wr(G) is contained
in Pr . Hence by Proposition 7 asdimWr(G) � n. Then Theorem 2 implies
that asdimG0 � 2n+ 1.

Remark Both the amalgamated product and the HNN extension are the fun-
damental groups of the simplest graphs of the group [12]. We note that theorems
of Sections 4-5 can be extended to the fundamental groups of general graph of
groups, since all of them are acting on the trees with the R-stabilizers having
an explicit description.
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6 Davis’ construction

We recall that a rightangled Coxeter group W is a group given by the following
presentation:

W = hs 2 S j s2 = 1; (ss0)2 = 1; (s; s0) 2 Ei

where S is a �nite set and E � S � S . A barycentric subdivision N of any
�nite polyhedron de�nes a rightangled Coxeter group by the rule: S = N (0)

and E = f(s; s0) j (s; s0) 2 N (1)g. The complex N is called the nerve of W
(see [1]). We recall that the group W admits a proper cocompact action on
the Davis complex X which is formed as the union X = [w2WwC , where
C = cone(N) is called the chamber. Note that the action of W on the set of
centers of the chambers (i.e. cone vertices) is transitive. The orbit space of this
action is C , and all isotropy groups are �nite. Note that the Davis complex
X is contractible. There is a �nite index subgroup W 0 in W for which the
complex X=W 0 is a classifying space. We denote @C = N . Let X@ denote a
subcomplex X = [w2Ww@C � X . In [1] it was shown that there is a linear
order on W , e � w1 � w2 � w3 � : : : such that the union X@

n+1 = [n+1
i=1 wi@C

is obtained by attaching wn+1@C to X@
n along a contractible subset. Assume

that N � M is a subset of an aspherical complex M . We can build the space
XM with an action of the group W on it by attaching a copy of M to each
w@C . Then by induction one can show that every complex XM

n is aspherical
and therefore XM is aspherical.

For every group � with K = K(�; 1) a �nite complex, M. Davis considered
the following manifold. Let M be a regular neighborhood of K � Rk in
some Euclidean space and let N be a barycentric subdivision of a triangulation
of the boundary of M . Then Davis’ manifold is the orbit space XM=W 0 .
It is aspherical, since XM is aspherical. We refer to the fundamental group
Γ = �1(XM=W 0) as Davis’ extension of the group � . By taking a su�ciently
large k , we may assume that the inclusion N �M induces an isomorphism of
the fundamental groups. Then in the above notation Γ = �1(X@=W 0).

Theorem 8 If asdim� <1, then asdimΓ <1.

Proof Since X@ is path connected, the inclusion X@ � X induces an epimor-
phism � : Γ = �1(X@=W 0)! �1(X=W 0) = W 0 . Let K be the kernel. We note
that K = �1(XM ) = �1(X@) = lim!f�i�1(wi@C)g. It was proven in [7] that
asdimW <1. The following lemma and Theorem 3 complete the proof.

Lemma 1 Assume that K � Γ is supplied with the induced metric from Γ.
Then asdimK � asdim� .
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Proof We �x a �nite generating set S for Γ. We consider Aw = �1(w@C),
w 2W as a subgroup of K de�ned by a �xed path Iw joining x0 with w(x0).
Assume that Aw is supplied with the norm induced from Γ. We show that the
inequality asdimAw � asdim� holds uniformly and by Theorem 4 we obtain
that asdim(�wAw; k k) � asdim� for the norm k k generated by the norms on
Aw . Then we complete the proof applying Proposition 5.

Let p : X@ ! @C be projection onto the orbit space under the action of W .
Then p = q � p0 where p0 : X@ ! X@=W 0 is a covering map. We consider
the norm on � = �1(@C) de�ned by the generating set q�(S). This turns
� into a metric space of bounded geometry. Then the homomorphism q� :
�1(X@) = Γ ! �1(@C) = � is 1-Lipschitz map. The restriction of q� onto
Aw de�nes an isomorphism acting by conjugation with an element generated
by the loop p(Iw). Then according to Proposition 1 we have the inequality
asdimAw � asdim� uniformly.
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