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Presentations for the punctured mapping
class groups in terms of Artin groups

Catherine Labruere
Luis Paris

Abstract Consider an oriented compact surface F of positive genus, pos-
sibly with boundary, and a nite set P of punctures in the interior of F,
and de ne the punctured mapping class group of F relatively to P to
be the group of isotopy classes of orientation-preserving homeomorphisms
h:F ¥ F which pointwise x the boundary of F and such that h(P) = P.
In this paper, we calculate presentations for all punctured mapping class
groups. More precisely, we show that these groups are isomorphic with quo-
tients of Artin groups by some relations involving fundamental elements of
parabolic subgroups.
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1 Introduction

Throughout the paper F = Fg,r will denote a compact oriented surface of

set of points in the interior of F, called punctures. We denote by H(F;P) the
group of orientation-preserving homeomorphisms h : F ¥ F that pointwise

x the boundary of F and such that h(P) = P. The punctured mapping
class group M(F;P) of F relatively to P is de ned to be the group of isotopy
classes of elements of H(F; P). Note that the group M(F; P) only depends up
to isomorphism on the genus g, on the number r of boundary components, and
on the cardinality n of P. If P is empty, then we write M(F) = M(F; ;), and
call M(F) the mapping class group of F.

The pure mapping class group of F relatively to P is de ned to be the subgroup
PM(F; P) of isotopy classes of elements of H(F; P) that pointwise x P. Let
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74 Catherine Labruere and Luis Paris

class group and the pure mapping class group are related by the following exact
sequence.
1Y PM(F;Pn) ® M(F;P,) ¢ 1 1:

mii =1 forall i=1;:::;1;
Mij =m;;i 212;3;4;:::;1g,fori&j.

A Coxeter matrix M = (m;;j) is usually represented by its Coxeter graph I".
This is de ned by the following data:

two vertices x; and x; are joined by an edge if mj;;  3;

the edge joining two vertices X; and X;j is labelled by mj;; if mj;; 4.

ey = (Xixg)MiE 2 if mj.j is even;
prod(xi; x;; ;) = (Xin)(mi;j —D=2y, if m;;j is odd:

The Artin group A(I") associated with I (or with M) is the group given by the
presentation:

relations x> =1, i = 1;:::;1. We say that I or A(I") is of nite type if W (I")
is nite.
For a subset X of the set fxy;:::;x;g of vertices of I, we denote by INx

the Coxeter subgraph of I generated by X, by Wx the subgroup of W(I')
generated by X, and by Ax the subgroup of A(I") generated by X. It is
a non-trivial but well known fact that Wx is the Coxeter group associated
with 'x (see [3]), and Ax is the Artin group associated with 'x (see [16],
[19]). Both Wx and Ax are called parabolic subgroups of W (I") and of A(IN),
respectively.

De ne the quasi-center of an Artin group A(I") to be the subgroup of elements
in A(I") satisfying X ~! = X, where X is the natural generating set of A(I").
If I is of nite type and connected, then the quasi-center is an in nite cyclic
group generated by a special element of A(I"), called fundamental element, and
denoted by (") (see [8], [4]).
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Presentations for punctured mapping class groups 75

The most signi  cant work on presentations for mapping class groups is certainly
the paper [10] of Hatcher and Thurston. In this paper, the authors introduced
a simply connected complex on which the mapping class group M(Fg0) acts,
and, using this action and following a method due to Brown [5], they obtained
a presentation for M(Fg.0). However, as pointed out by Wajnryb [25], this
presentation is rather complicated and requires many generators and relations.
Wajnryb [25] used this presentation of Hatcher and Thurston to calculate new
presentations for M(Fg.1) and for M(Fg0). He actually presented M(Fg;1)
as the quotient of an Artin group by two relations, and presented M(Fg;0) as
the quotient of the same Artin group by the same two relations plus another
one. In [18], Matsumoto showed that these three relations are nothing else
than equalities among powers of fundamental elements of parabolic subgroups.
Moreover, he showed how to interpret these powers of fundamental elements
inside the mapping class group. Once this interpretation is known, the relations
in Matsumoto’s presentations become trivial. At this point, one has \good"
presentations for M(Fg:1) and for M(Fg:0), in the sence that one can remember
them. Of course, the de nition of a \good" presentation depends on the memory
of the reader and on the time he spends working on the presentation.

One can nd in [17] another presentation for M(Fy;1) as the quotient of an
Artin group by relations involving fundamental elements of parabolic subgroups.
Recently, Gervais [9] found another \good" presentation for M(Fg;r) with many
generators but simple relations.

In the present paper, starting from Matsumoto’s presentations, we calculate pre-
sentations for all punctured mapping class groups M(Fg;r; Pn) as quotients of
Artin groups by some relations which involve fundamental elements of parabolic
subgroups. In particular, M(Fg:0; Pn) is presented as the quotient of an Artin
group by ve relations, all of them being equalities among powers of fundamen-
tal elements of parabolic subgroups.

The generators in our presentations are Dehn twists and braid twists. We de ne
them in Subsection 2.1, and we show that they verify some \braid" relations that
allow us to de ne homomorphisms from Artin groups to punctured mapping
class groups. The main algebraic tool we use is Lemma 2.5, stated in Subsection
2.2, which says how to nd a presentation for a group G from an exact sequence
18T KT¥GUEH T 1andfrom presentations of K and H. We also state in
Subsection 2.2 some exact sequences involving punctured mapping class groups
on which Lemma 2.5 will be applied. In order to nd our presentations, we

rst need to investigate some homomorphisms from nite type Artin groups
to punctured mapping class groups, and to calculate the images under these
homomorphisms of some powers of fundamental elements. This is the object
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of Subsection 2.3. Once these images are known, one can easily verify that the
relations in our presentations hold. Of course, it remains to prove that no other
relation is needed. We state our presentation for M(Fg.r+1;Pn) (where g 1,
and r;n  0) in Theorem 3.1, and we state our presentation for M(Fg:0; Pn)
(where g;n 1) in Theorem 3.2. Then, Subsection 3.1 is dedicated to the
proof of Theorem 3.1, and Subsection 3.2 is dedicated to the proof of Theorem
3.2.

2 Preliminaries

2.1 Dehn twists and braid twists

We introduce in this subsection some elements of the punctured mapping class
group, the Dehn twists and the braid twists, which will play a prominent role
throughout the paper. In particular, the generators for the punctured mapping
class group will be chosen among them.

By an essential circle in F n P we mean an embedding s: S* ¥ F nP of the
circle whose image is in the interior of F nP and does not bound a disk in FnP.
Two essential circles s;s’ are called isotopic if there exists h 2 H(F; P) which
represents the identity in M(F;P) and such that h s =s'. Isotopy of circles
is an equivalence relation which we denote by s > s'. Let s: S ¥ FnP bean
essential circle. We choose an embedding A : [0;1] S' ¥ FnP of the annulus
such that A(%;z) = s(z) for all z 2 S*, and we consider the homeomorphism
T 2 H(F;P) de ned by

(T A)tz) =A(te? 2); t2][0;1]; z2 S

and T is the identity on the exterior of the image of A (see Figure 1). The
Dehn twist along s is de ned to be the element 2 M(F;P) represented by
T. Note that:

the de nition of  does not depend on the choice of A;
the element  does not depend on the orientation of s;
if s and s are isotopic, then their corresponding Dehn twists are equal;

if s bounds a disk in F which contains exactly one puncture,then = 1;
otherwise, is of in nite order;

if 2 M(F;P) is represented by ¥ 2 H(F;P), then ~1 is the Dehn
twist along (s).
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Presentations for punctured mapping class groups 7

Figure 1: Dehn twist along s

By an arc we mean an embedding a : [0;1] ¥ F of the segment whose image is
in the interior of F, such that a((0; 1)) \ P = ;, and such that both a(0) and
a(1) are punctures. Two arcs a;a’ are called isotopic if there exists h 2 H(F; P)
which represents the identity in M(F;P) and such that h a = a'. Note that
a(0) = a'(0) and a(1) = a'(1) if a and a are isotopic. Isotopy of arcs is an
equivalence relation which we denote by a ” a’. Let a be an arc. We choose
an embedding A : D? ¥ F of the unit disk satisfying:

a(t) = A(t—3) for all t20;1],
A(D?)\ P = fa(0); a(1)g,
and we consider the homeomorphism T 2 H(F;P) de ned by
(T A)2) =A@ Hz); z2D?%

and T is the identity on the exterior of the image of A (see Figure 2). The
braid twist along a is de ned to be the element 2 M(F;P) represented by
T. Note that:

the de nition of does not depend on the choice of A;
if a and a’ are isotopic, then their corresponding braid twists are equal;

if 2 M(F;P) isrepresented by f 2 H(F; P), then ~1 js the braid twist
along f(a);

if s:SY ¥ FnP is the essential circle de ned by s(z) = A(z) (see Figure
2), then 2 is the Dehn twist along s.

We turn now to describe some relations among Dehn twists and braid twists
which will be essential to de ne homomorphisms from Artin groups to punc-
tured mapping class groups.

The rst family of relations are known as \braid relations™ for Dehn twists (see

[2D).
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Figure 2: Braid twist along a

Lemma 2.1 Let s and s’ be two essential circles which intersect transversely,
and let and ° be the Dehn twists along s and s, respectively. Then:

0= 10 if s\s'=:;
0 =00 if js\s'j=1: m|

The next family of relations are simply the usual braid relations viewed inside
the punctured mapping class group.

Lemma 2.2 Let a and a’ be two arcs, and let and ¢ be be the braid twists
along a and a’, respectively. Then:

0= ifaa’=;;
b =0 0 jfa0) =a1) and a\a' = fa(0)g: o

To our knowledge, the last family of relations does not appear in the literature.
However, their proofs are easy and are left to the reader.

Lemma 2.3 Let s be an essential circle, and let a be an arc which intersects
s transversely. Let be the Dehn twist along s, and let  be the braid twist
along a. Then:
= ifs\a=7;;
= if js\aj=1: O

We nish this subsection by recalling another relation called lantern relation
(see [13]) which is not used to de ne homomorphisms between Artin groups and
punctured mapping class groups, but which will be useful in the remainder.

We point out rst that we use the convention in gures that a letter which
appears over a circle or an arc denotes the corresponding Dehn twist or braid
twist, and not the circle or the arc itself.
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Lemma 2.4 Consider an embedding of Fo.4 in F n P and the Dehn twists
e1;€2;€e3;e4;a;b;c represented in Figure 3. Then

g16763684 = abc: O

Figure 3: Lantern relation

2.2 Exact sequences

Now, we introduce in Lemma 2.5 our main tool to obtain presentations for
the punctured mapping class groups. Briefly, this lemma says how to nd a
presentation for a group G from an exact sequence 1 ' K * G ¥ H ¢ 1
and from presentations of H and K. This lemma will be applied to the exact
sequences (2.1), (2.2), and (2.3) given after Lemma 2.5.

Consider an exact sequence
1" KIGIHIL

and presentations H = hSyjRyi1, K = hSkjRki for H and K, respectively.
For all x2 Sy, we x some x 2 G such that (x) = x, and we write

Sy =1x; X2 SHa:

Let r = x;':::%," in Ry. Write F = x;*:::%" 2 G. Since r is a relator of
H, we have () =1. Thus, Sk being a generating set of the kernel of , one
may choose a word w, over Sk such that both r and w, represent the same
element of G. Set

Ry =frw, ! ; r2Rug:
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Let x 2 Sy and y 2 Sk. Since K is a normal subgroup of G, xyx~! is also
an element of K, thus one may choose a word v(X;y) over Sk such that both
xyx~1 and v(x;y) represent the same element of G. Set

Ry = fxyx v(x;y) ™1 ; x2Sy and y 2 Skg:

The proof of the following lemma is left to the reader.

Lemma 2.5 G admits the presentation
GZhSH [SKle[Rz[RKiZ O

The rst exact sequence on which we will apply Lemma 2.5 is the one given in
the introduction:

(2:1) 18 PM(F;P,) * M(F;Pr) @ 11,
where  denotes the symmetric group of f1;:::;ng.

The inclusion Pn—; Py gives rise to a homomorphism ” : PM(F;P,) 1
PM(F;Ph-1). By [1], if (g;r;n) & (1;0;1), then we have the following exact
sequence:

(2:2) 1% 3(FnPp—1;Pn) 8 PM(F;Pp) — PM(F;Pnh-1) ¥ 1:

We will need later a more precise description of the images by , of certain
elements of 1(F nPp—1;Pnr). Consider an essential circle Sl Y FnPh
such that (1) = Pn. Here, we assume that is oriented. Let be the element
of ((FnPn—1;Py) represented by . We choose an embedding A : [0;1] St ¥

F nPp—1 of the annulus such that A(%; z) = (2) forall z 2 St (see Figure 4).
Let Sp;s1: ST ¥ F nP,, be the essential circles de ned by

so(z) = A(0;2); s1(z) =A(l;z); z2Sh

and let o; 1 be the Dehn twists along sp and si, respectively. Then the
following holds.

Lemma 2.6 We have ()= g% 1. O

Now, consider a surface Fg;r+m of genus g with r +m boundary components,

Algebraic & Geometric Topology, Volume 1 (2001)



Presentations for punctured mapping class groups 81

0)).

Figure 4: Image of a simple circle by n

be a set of punctures in the interior of Fy.r, where Q; is chosen in the interior
found in [21].

Lemma 2.7 Assume that (g;r;m) 2 £(0;0;1);(0;0;2)g. Then we have the
exact sequence:

(2:3) 18 ZM 8 PM(Fgr+m;Pn) ¥ PM(Fg;r;Prem) ¥ 1;

where Z™M stands for the free abelian group of rank m generated by the Dehn
twists along the c¢;’s. O

2.3 Geometric representations of Artin groups

De ne a geometric representation of an Artin group A(I") to be a homomor-
phism from A(I") to some punctured mapping class group. In this subpara-
graph, we describe some geometric representations of Artin groups whose prop-
erties will be used later in the paper.

The rst family of geometric representations has been introduced by Perron
and Vannier for studying geometric monodromies of simple singularities [22].

satisfying:
Si :[0;1] ¥ D? is an embedding for all i =1;:::;I;
Si(0);Si(1) 2 @D?, and S;j((0;1)) \@D? =;, forall i =1;:::;I;

either S; and S; are disjoint, or they intersect transversely in a unique point
in the interior of D?, for i & j.

From this data, one can rst de ne a Coxeter matrix M = (M;;j)i;j=1;:1 by

seting mj;j; = 2 if S; and S; are disjoint, and m;;; = 3 if S; and S; intersect
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transversely in a point. The Coxeter graph ' associated with M is called
intersection diagram of the chord diagram. It is an \ordinary" graph in the
sence that none of the edges has a label. From the chord diagram we can also
de ne asurface F by attaching to D? a handle H; which joins both extremities
of S, forall i = 1;:::;1 (see Figure 5). Let ; be the Dehn twist along the circle
made up with the segment S; together with the central curve of H;. By Lemma
2.1, one has a geometric representation A(I') ¥ M(F) which sends xj on

representation.

%

Figure 5: Chord diagram and associated surface and Dehn twists

If ™ is connected, then the Perron-Vannier representation is injective if and
only if " is of type A, or Dy [15], [26]. In the case where T is of type A, Dy,
Eg, or E7, the vertices of I will be numbered according to Figure 6, and the

Dehn twists 1;:::; | are those represented in Figures 7, 8, 9.
Al e—eo—---—o B, 04—0—0—---—0
X1 X2 X] X1 X2 X3 X
X
e — o
Dy X3 Xa X
X2
X1 X2 X3 Xa4 Xs X1 X2 X3 X4 X5 Xg
Ec @ ® I ® ° E; e ° ° I ® °
Xe X7

Figure 6: Some nite type Coxeter graphs
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Type Azp+1

Figure 7: Perron-Vannier representations of type A,

The Perron-Vannier representation of the Artin group of type Aj—1 can be
extended to a geometric representation of the Artin group of type B, as follows.
First, we number the vertices of B, according to Figure 6. Then Aj_; is the

subgraph of B generated by the vertices Xp;:::;%. We start from a chord
diagram Sy;:::;S; whose intersection diagram is Aj—;, and we denote by F
the associated surface. For i = 2;:::;l, we denote by s; the essential circle of

F made up with S; and the central curve of the handle H;. We can choose two
points P1; P, in the interior of F and an arc a; from P; to P, satisfying:

fP1;Pog\sj=; forall i=2;:::;1,;

unique point (see Figure 10).

Let 1 be the braid twist along a;, and let ; be the Dehn twist along s;, for
i = 2;:::;1. By Lemma 2.3, there is a well de ned homomorphism A(B;) I
M(F; fP1; P»g) which sends x; on 1, and xj on j for i =2;:::;l. Itis shown
in [14] that this geometric representation is injective.

Now, consider a graph G embedded in a surface F. Here, we assume that G has

.....

by mij = 3 if aj and a; have a common vertex, and m;j = 2 otherwise.
Denote by I the Coxeter graph associated with M. By Lemma 2.2, one has
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b1

Type Dop+1

Figure 8: Perron-Vannier representations of type D,

a homomorphism A(I") ¥ M(F;P) which associates with X; the braid twist

i along aj, for all i = 1;:::;1. This homomorphism will be called graph
representation of A(I"). Its image clearly belongs to the surface braid group
of F based at P. The particular case where F is a disk has been studied
by Sergiescu [23] to nd new presentations for the Artin braid groups. Graph
representations have been also used by Humphries [12] to solve some Tits’
conjecture.

Assume now that G is a line in a cylinder F = S* 1. Let ay;:::;a be the

circle s; : ST ¥ F nP such that:

s; does not bound a disk in F;

unique point (see Figure 11).

Let 1 be the Dehn twist along s;, and let ; be the braid twist along a; for
i =2;:::;1. By Lemma 2.3, there is a well de ned homomorphism A(B;) ¥
M(S1 I;P)) which sends x; on 1, and xj on  for i = 2;:::;1. This
homomorphism is clearly an extension of the graph representation of A(A—1)
in M(St I;P).

Let ' be a nite type connected graph. Recall that the quasi-center of A(I")
is the subgroup of elements  in A(IN) satisfying X ~! = X, where X is
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| S o ()

Figure 9: Perron-Vannier representations of type Es and Ey

the natural generating set of A(I"), and that this subgroup is an in nite cyclic
group generated by some special element of A(I"), called fundamental element,
and denoted by (I'). (see [4] and [8]). The center of A(I") is an in nite
cyclic group generated by () if " is By, Dy (I even), E7, Eg, Fs4, H3, Hy,
and I»(p) (p even), and by (") if I is A;, D; (I odd), Es, and 12(p) (p
odd). Explicit expressions of (") and of 2(I") can be found in [4]. In the
remainder, we will need the following ones.

Proposition 2.8 (Brieskorn, Saito [4]) We number the vertices of A, By,
D, Es, and E; according to Figure 6.

2(A) = (axpiiix)tt;

(B1) = (xaxz:iix);

(Dzp) = (XaXz:::xp)?P 1,
2(Dap+1) = (XaXp:iiXops1)™ ;

?(Es) (X1Xz 111 Xe)2 ;
(E7) = (Xaxz:iixy)':

We will also need the following well known equalities (see [20]).

Proposition 2.9 We number the vertices of A;, By, and D, according to
Figure 6. Then:
(A) = xiiix (A,
(B)) = Xp:iiixoxaXo i X (Bi=1); -
(D)) = Xp:iX3XiXoXz::: X (Dy=y):
Our goal now is to determine the images under Perron-Vannier representa-

tions and under graph representations of some powers of fundamental elements
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Figure 11: Graph representation of type B,

(Proposition 2.12). To do so, we rst need to know generating sets for the
punctured mapping class groups. So, we prove the following.

Proposition 2.10 Letg landr;n O.

Corollary 2.11 Letg l1andn O.
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Figure 13: Generators for PM(Fg.0; Pn) and M(Fg.0; Pn)

Proof The key argument of the proof of Proposition 2.10 is the following
remark stated as Assertion 1, and which we apply to the exact sequences (2.1),
(2.2), and (2.3) of Subsection 2.2.

Assertion 1 Let
1" KYITGAIHUIII]

be an exact sequence, and let Sy; Sk be generating sets of H and K, respec-
tively. For each x 2 Sy we choose x 2 G such that (%) = x, and we write
Sy = fx;x 2 Syg. Then Sk [ Sy generates G.

ated by the loops 1;:::; n; 1;:::; 29—1 represented in Figure 14. Applying
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Assertion 1 to the exact sequence (2.2), one has that PM(Fg.1; Pp) is generated
by ag;:::;an—1, b1;iiiibog—1, C, 1;::i n, 13iii; 2g—1. One can directly
verify the following equalities:

i = (hanai-1bian—1)"t pl(b1anai-1bian—1); i=1::,n—1;
1= (b1an—1)"! n(bran—1);
i = (bjbj—1)™* j_a(bjbj—1); j=2;::29—1:

and, from Proposition 2.6, one has:

— a1 .
n = ap_18n;

Figure 14: Generators for 1(Fg:1 N Pn—1;Pn)

Now, applying Assertion 1 to (2.3), one has that P M (Fg;r+1;Pn) is generated

Assertion 2 Let ag; ar;a, be the Dehn twists and  the braid twist in M(S?
I;fP1; P2g) represented in Figure 15. Then

d; 4dp — qpap -
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Q

Figure 15: A relation in M(S? I;fP1;P2g)

Proof of Assertion 2 We consider the Dehn twist az along a circle which
bounds a small disk in S 1 which contains P1, and the Dehn twist a4 along
a circle which bounds a small disk in S* 1 which contains P,. As pointed
out in Subsection 2.1, we have az = a4 = 1. The lantern relation of Lemma 2.4

says:

2 -1 _ .
a; a = qpazazay -

Thus, since  commutes with ag and ay, we have:

a; ai; = qpay -

Now, we prove (ii). Applying Assertion 1 to (2.1), one has that M(Fg;r+1; Pn)
is generated by ag;:::;an+r;b1;iiibog—1;Cd1; it dey 15t n—1. But, As-

c,dy;:i:ndr, 131115 n—1. m]

Proposition 2.12 (i) For I equal to A}, Dy, Eg, or E7, we denote by
pv . A(lN) ¥ M(F) the Perron-Vannier representation of A(I"). In each case,
b; denotes the Dehn twist represented in the corresponding gure (Figure 7, 8,
or 9), for i =1;2;3. Then:
pv( 2(Agp+1)) = Dbiby;
pv( “(Ap) = by
pv( 2(Dzp+1)) = bibP
pv( (Dz)) = bybob Y
pv( %(Ee)) = by
pv( (E7) = bibd:
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(i) We denote by pyv : A(B)) ¥ M(F;fP1;P2g) the Perron-Vannier rep-
resentation of A(B,). In each case, b; denotes the Dehn twist represented in
Figure 10, for i =1;2. Then:

pv( (Bzp)) = biby;
pv( ?(Bap+1)) = bi:

(iii) We denote by g : A(B)) ¥ M(S! I;P)) the graph representation of
A(B)) in the punctured mapping class group of the cylinder. Let by; b, denote
the Dehn twists represented in Figure 11. Then:

s( (B))=b"h:

Part (i) of Proposition 2.12 is proved in [18] with di erent techniques from the
ones used in this paper. Matsumoto’s proof is based on the study of geometric
monodromies of simple singularities. Our proof consists rst on showing that
the image of the considered element lies in the center of the punctured mapping
class group, and, afterwards, on identifying this image using the action of the
center on some curves.

Proof We only prove the equality

( (Bzp)) = bib
of Part (ii): the other equalities can be proved in the same way.

By Proposition 2.10, M(F; fP1; P,g) is generated by the Dehn twists a;;ay; as,
b1, 2;:::; 2p—1 and the braid twist 1 represented in Figure 10. Since (Bgzp)
is in the center of A(Bzp), pv( (B2p)) commutes with 1; ;:::; 2p—1. The
Dehn twist by belongs to the center of M(F; TP1; P20), thus pyv ( (B2p)) also
commutes with b;. Let s;j be the de ning circle of a;, for i = 1;2;3. Using the
expression of  (Bzp) given in Proposition 2.8, we verify that pyv ( (B2p))(si)
is isotopic to sj, thus py ( (Bzp)) commutes with a;.

So, pv( (B2p)) is an element of the center of M(F;fP1;P20). By [21],
this center is a free abelian group of rank 2 generated by b, and b,. Thus
pv ( (Bzp)) = b*b3* for some q1;q, 2 Z.

Now, consider the curve y of Figure 10. Clearly, the only element of the center of
M(F; P1; P2g) which xes y up to isotopy is the identity. Using the expression
of (Bgp) given in Proposition 2.8, we verify that py ( (Bzp))by byt xes y
up to isotopy, thus qp = g2 =1 and pyv( (Bzp)) = bibo. O
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2.4 Matsumoto’s presentation for M(Fy;1) and M(Fg,0)

This subparagraph is dedicated to the statement of Matsumoto’s presentations

We rst introduce some notation. Let I' be a Coxeter graph, and let X be

Coxeter subgraph generated by X, and Ax denotes the parabolic subgroup of
A(l") generated by X. If I'x is a nite type connected Coxeter graph, then
we denote by (X) the fundamental element of Ax, viewed as an element of
A(l).

Theorem 2.13 (Matsumoto [18]). Let g 1, and let 'y be the Coxeter graph
drawn in Figure 16.

(i) M(Fg;1) isisomorphic with the quotient of A("g) by the following relations:
) fYiy2iysz) = (X0 Y1iY2;Y3:2) ifg 2
) 2V Y2 Y3 YaiYs:2) = (Xosyiiy2iyasiyarysiz)  ifg o 3

(i) M(Fg:0) is isomorphic with the quotient of A(I"g) by the relations (1) and

(2) above plus the following relation:

®) (Xoy1)® 1 ifg=1;
xgd 2 2(y2iy3Z;Ya i Yag—1)  ifg 2

Xo Y1 Y2 Y3 Ya Y2g—1
9 - - —
z

Figure 16: Coxeter graph associated with M(Fg:1) and with M(Fg.0)

Proposition 2.10), this homomorphism is surjective. By Proposition 2.12, both
( *(y1:y2;y3:2)) and ( 2(Xo:y1;Y2:Yy3;z)) are equal to the Dehn twist 1 of

equal to the Dehn twist , of Figure 17. Let G4 denote the quotient of A(I"y)

by the relations (1) and (2). So, the homomorphism : A(l3) ¥ M(Fg;1)
induces a surjective homomorphism : Gg ¥ M(Fg;1). In order to prove
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that this homomorphism is in fact an isomorphism, Matsumoto [18] showed
that the presentation of Gy as a quotient of A(Ig) is equivalent to Wajnryb’s
presentation of M(Fg;1) [25].

Similar remarks can be made for the presentation of M(Fg.0).

1 2

Figure 17: Relations in M(Fg:1)

3 The presentation

Recall that, if I is a nite type connected Coxeter graph, then (") denotes
the fundamental element of A(I"). If I is any Coxeter graph and X is a subset

then we denote by (X) the fundamental element of Ax = A(I"'x) viewed as
an element of A(I").

Theorem 3.1 Letg 1,letr,n O, and let Iy be the Coxeter graph
drawn in Figure 18. Then M(Fg:r+1;Pn) is isomorphic with the quotient of
A(lg:r:n) by the following relations.

Relations from M(Fg:1):

(R1) Y1 Y2;¥3:2) = 2(XoiY1Y2;Y3:2) ifg 2
(R2)  2(yuyzyayaysz) = (Xo:yuY2:ysyays;z) ifg 3

Relations of commutation:
(R3) Xk “(Xien;XjiY)Xi  (Xiv1Xj; Y1)
= XienXpY)Xi KienXpy)xe 0 k<j<i

(R4 y2 MXi+1XjiyD)Xi (Xis1iXj; Y1)
= Xz X yOxi Kiss Xjiy)y2 if0 j<i randg 2
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Expressions of the u;’s:
(R5) u; =  (Xo;X1;Y1,Y2:Y3:Z) ~2(X1;Y1¥2:Y3,2) ifg 2
(RE)Ui+1 = (Xi;Xi+1:Y1:Y2:Y3:2)  ~2(Xix1;Y1;Y2;Y3;2)

2(x0; Xi+1;Y1) L(Xo;Xi;Xix1;y1) if1 i r—1;g 2

Other relations:

(R7) (Xr;Xr+1;Y15V1) = 2(Xr+13Y1; V1) ifn 2
(R8a)  (Xo;X1;Y1,Y2i¥3;2) = 2(Xu;Yiiy2;y32) ifn 1,9 2 r=0;
(R8b) (Xr; Xr+1;Y1:Y2:Y312) "2 (Xea1; Y11 Y21 Y31 2)
= (Xo;Xr;Xr+1;Y1) 2(Xo; Xr+1:Y1) ifn 1g 2;r 1
4
Xr -—-—-—
) Xr+1 V1 Vo Vh—1
° L ° '\l 9 - - —y
Cgirn uz uz Ur \ Yi Y2 lys Ya Y2g—1
X1 ’ z
Xo

Figure 18: Coxeter graph associated with M(Fg:r+1; Pn)

Notice that only the relations (R1), (R2), (R7), and (R8a) remain in the pre-
sentation of M(Fg.1;Pn), and (R8a) has to be replaced by (R8b) if r 1.

Assume that ¢ 2. From the relations (R5) and (R6) we see that we can

relations comming from the ones in the Artin group A(Ig;;n). For example,
one hasthat  (Xo;X1;Y1;Y2;Y3:2) ~2(X1;Y1;Y2;Y3;z) commutes with y, in the
quotient, since u; commutes with y; in A(lg:rn).

surjective by Proposition 2.10. If w; = wy is one of the relations (R1),...,(R7),
(R8a), (R8b), then we have (w1) = (wy). This fact can be easily proved using
Proposition 2.12 in the case of the relations (R1), (R2), (R5), (R6), (R7), (R8a),
and (R8b), and comes from the following reason in the case of the relations (R3)
and (R4). We have the equality

-1 .t .t —y—1ly-1,-1,-1 .
Kiv1; X5 Y)Xi - (Xiv15 Xj3 Y1) = Y1 X5 X Y1 XiY1XjXi+1Y1;
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and the image by by "a;;;a; 'by* of the de ning circle of a; is disjoint from the
de ning circle of ax, up to isotopy, if k < j, and is disjoint from the de ning
circle of by, up to isotopy.

Let G(g;r;n) denote the quotient of A(Ig:;n) by the relations (R1),..,(R7),
(R8a), (R8b). By the above considerations, the homomorphism :
“A(Cgrn) ¥ M(Fgr+1;Pn)

induces a surjective homomorphism : G(g;r;n) ¥ M(Fg;r+1;Pn). In order
to prove Theorem 3.1, it remains to show that this homomorphism is in fact an
isomorphism. This will be the object of Subsection 3.1.

Theorem 3.2 Letg 1,letn 1,andlet I4o,n be the Coxeter graph drawn
in Figure 18. Then M(Fg:0; Pn) is isomorphic with the quotient of A(I"g:0:n)
by the following relations.

Relations from M(Fg:1;Pn):

(R1) YY1:Y2:y3:2) = A(X0iY1:Y2:Y3;2) ifg 2
(R2) 2(y1;Y2; Y3 Y4 Y5;2) = (XoiY1:Y2Yaiyaiys;z) ifg 3
(R7) (Xo;X1;Y1;V1) = 2(X1;Y1;V1) ifn 2
(R8a) (Xo; X1;Y1;Y2;Y3,Z) = 2(X1;Y1;Y2;Y3;2) ifn landg 2

Other relations:
(R92) X392 (xq;Vi;iii;Vno1) = 2(ziy2;iiiiyag-1) ifg 2
(R9b) Xg = (Xuiviiiiiivp-1)  ifg=1,
(R9c) Y(x0y1) =  2(viiiiiVa-1) ifg=1

Note that, in the above presentation, the relation (R9a), which holds if g 2,
has to be replaced by the relations (R9b) and (R9c) when g = 1.

represented in Figure 13. From Subsection 2.1 follows that there is a well
de ned homomorphism o : A(lg.on) ¥ M(Fg0; Pn) which sends x; on a;
for i = 0;1, yi on bj for i = 1;:::;290 — 1, z on ¢, and vij on j for i =

denote the quotient of A(Ig.0;n) by the relations (R1), (R2), (R7), (R8), (R%),
(R9b), and (R9c). As before, using Proposition 2.12, one can easily prove
that the homomorphism ¢ : A(lg;0,n) ¥ M(Fg0;Pn) induces a surjective
homomorphism ¢ : Go(g;n) ¥ M(Fg.0;Pn). In order to prove Theorem 3.2,
it remains to show that this homomorphism is in fact an isomorphism. This
will be the object of Subsection 3.2.
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3.1 Proof of Theorem 3.1

The proof of Theorem 3.1 is organized as follows. In the rst step, starting from
Matsumoto’s presentation of M(Fy;1) [18] (see Theorem 2.13), we determine
by induction on n a presentation of PM(Fg:1; Pn) (Proposition 3.3), applying
Lemma 2.5 to the exact sequence (2.2) of Subsection 2.2. In the second step,
we determine a presentation of PM(Fg.r+1;Pn) (Proposition 3.7), applying
Lemma 2.5 to the exact sequence (2.3). Finally, we prove Theorem 3.1 applying
Lemma 2.5 to the exact sequence (2.1).

Proposition 3.3 Letg 1,letn 0, and let Plgo.n be the Coxeter graph
drawn in Figure 19. Then PM(Fg.1;Pn) is isomorphic with the quotient of
A(PTg4:0:n) by the following relations.

Relations from M(Fg;1):
(PR1) Ay Y2;Y3:Z) = 2(XoiY1Y2:Y3iZ) ifg 2
(PR2)  2(y1;y2:¥3:Y4;¥5:2) =  (Xo;Y1;Y2,Y3:Yarys;z) ifg 3

Relations of commutation:

(PR3) Xk “HXir1iXjiyDXi (Xie1i Xji Y1)
= XX y)Xi i Xyn)xe if0 k<j<i n-—1
(PR4) Yo YK X yOXi (Xie1; X3 Y1)

= MXiru X y)Xi Xien X y2)y2 if0 j<i n-—1,g 2

Relations between fundamental elements:

(PR5) (Xo;X1;Y1:Y2:Y3:2) = 2(X1;y1;Y2;y3:2) ifg 2
(PR6) (Xi; Xi+1: Y1, Y2, ¥3:2)  “2(Xi+1:Y1;Y2: Y3, 2)
= (Xo;Xi;Xi+1;¥1) ~2(Xo; Xi+1; Y1) ifl i n—-19g 2
Xn—19 Xn
( R
Plg.0:n \/l Y1 Y2 IYS Ya Y2g—1
X1 z
Xo

Figure 19: Coxeter graph associated with PM(Fg:1; Pn)

The following lemmas 3.4, 3.5, and 3.6 are preliminary results to the proof of
Proposition 3.3.
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Lemma 3.4 Let I be the Coxeter graph drawn in Figure 20, and let G be
the quotient of A(I") by the following relation:

Xa X XsY)X2 (XuiXay) = T1(Xexay)Xe (X1 X3iY)Xa
Then the following equalities hold in G.
Xz TTX2iXaiY)X1 (X2;Xay) = TH(XoiXa;Y)Xi (X2 Xa:Y)Xs;
X2 TIXuXaY)Xae (XiiX3y) = THXaXs Y)Xa (X5 Xs; Y)Xz;
X1 TYxoXa;Y)xs (XoiXary) = Tr(XaiXa y¥)Xs (Xo;Xa;Y)Xi:
X3
X2 |y xa
X1
Figure 20

Proof It clearly su ces to prove the rst equality.

X3 XX V)Xt (%o Xa;Y)Xs 't TE(X2i X Y)XTT (X2iX4;Y)

= Xay TG G YT IXayXaXay X3ty TG Pty TIX tyxaxay

=y X3 lyxexs I Ixayxg Ioxaxz ty Tixexy I Iy TIX Txaxs Y

= y G I xoyxg Ixaxaxg tyxaxT IXg oy TIxg T xax ty T ixax g txg
X3X2y

=y Gy T Ixayxaxayxay TIxg TGty TG tyxaxayxg ty I TGt Xaxay

=y hohGY T X (aixaiy)xa THXXay)Xg 't (Xai X Y)Xg
“H(x1iX3;y) yXaxzy

= 1: O

Lemma 3.5 We number the vertices of the Coxeter graph D, according to
Figure 6. Then the following equalities hold in A(Dy).

1(X2;222§X|—1)X1_1X12 (%2ii1iXi—1) RO X)XG XL (X2t Xi)
=X THxr i xim)X X (K25t Xi—)X)
—1(X ..... X)X—lx (X ..... X) —1(X ..... X )X—lx (X ..... X )
E! R 2 1_1 25 y A _21 -y A—1 2 1 25 y A—=1
= X1 T(XoiniX)Xp oXa o (XopiiiiX)Xy
Proof
Xt Tk X)X g 0237353 %1-1) Yxg; ot X)X 1
(X250 X)X Yxap i xima)Xg " Xg (X25iiiiXi—1)
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= Xt T xi—2) O G XX oG X X T (Xg; it Xg)
Ykos it Xi—)XaXo F(X2 11t Xi—)  (Xoi i1l Xi—2)
= T inxi—2)X O X xR e x g ) Xa (% 1 X)X
(X3:iiX—1) (X2;1115X1—2)
= xarnx—2) 06 oG OXTEoG T i xg D (X ) )Xa (X3 1 X))
(X2;::13X1—2)
=1
Yokas i xxg X (Xoiinsxi) THXertinXim)Xo TXe (X2piiiiXi—1)
Xi—1 & XXX (Xo) i X)X
= 1(i<2; CX)XE X (Ko X)X tXaXe (X2; i Xi—n) T R(X2; X)X
X2X3 (251115 %1)
= kg nx)xa (ke i X)Xa (G G X XXt (X1t Xi)
Yo i x)xaxXa(Xa X)) O i nxg xy gt (ke x)
= 1: O

Several algorithms to solve the word problem in nite type Artin groups are
known (see [4], [8], [6], [7]). We use the one of [7] implemented in a Maple
program to prove the following.

Lemma 3.6 (i) We number the vertices of Dg according to Figure 6. Let

wy = _1(X1;X3)X1_1X21 (X1; X3)
Wy = TL(Xq;Xs; Xa)X] Xz (X1; X3; X4)
W3 = T1(Xq;X3;Xa; Xs)X] X2 (X1; X3; X4; X5)

Then the following equality holds in A(Deg).

-1 —1,,—1,,~1 Ly =2fg e g .
X5 "X1W7 "Wy “W3 "XeW3Xg W1 = (X2; X350 %g)  (X1;X2;X3; 1105 Xp):

(i) We number the vertices of D, according to Figure 6. Let
w =351 TH(Xe; Xar Xa)X7 X (Xe; Xa; Xa)Xz!
Then the following equality holds in A(Dg).

X7 IXoW = T2(X1; X3 Xa)  (X1; X2; X3; Xa): O

Proof of Proposition 3.3 We set r = 0 and we consider the Dehn twists
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on c¢. This homomorphism is surjective by Proposition 2.10. Let PG(g;0;n)
denote the quotient of A(PIg0:n) by the relations (PR1),...,(PR6). One
can easily prove using Proposition 2.12 that: if w; = w, is one of the re-
lations (PR1),...,(PR6), then (w;) = (w). So, the homomorphism
A(PTg.0.n) ¥ PM(Fg;1;Pn) induces a surjective homomorphism :

:PG(g;0;n) ¥ PM(Fg:1;Pn):

Now, we prove by induction on n that is an isomorphism. The case n = 0
is proved in [18] (see Theorem 2.13). So, we assume that n > 0. By the
inductive hypothesis, PM(Fg;1; Pn—1) is isomorphic with PG(g;0;n —1). On

freely generated by the loops 1;:::; n, 1,:::; 29—1 represented in Figure
14. Applying Lemma 2.5 to the exact sequence (2.2) of Subsection 2.2, one
has that PM(Fg;1;Pn) is isomorphic with the quotient of the free product

PG(g;0;n—1) F( 1;:::; ny 1,005, 2g—1) by the following relations.
Relations involving the j’s:
(PTL) xj in_1 = for0 j<i n;
(PT2) x5 ;' = ;i ijwr forl i j n-—1g
(PT3) y1 iy;t = 1% forl1 i n;
(PT4) yj iy; - = i forl i nand2 j 29-1;
(PT5) z izt = forl i n:
Relations involving the ;’s:
(PT6) Xj G = 1 j+ for0 j n-—1;
(PT7) Xj i1 = for0 j n—1land2 i 29-1;
(PT8) Vi i¥;t = forj&i—1landj&i+1;
(PTY)  Yi1 ¥Vis = i i1 for2 i 2g9-—1;
(PT10) VYi+1 iyi_f% = L ) forl i 29-—2;
(PT11) 232" = 321171
(PT12) z iz7t = for i & 3:
Consider the homomorphism f : PG(g;0;n—1) F( 1;:::; n; 13000 2g-1) B
P G(g;0;n) de ned by:
T(Xi) = X for0 i n—1;
f(yi) =i fori i 29-—1;
f(2) =z

O =x72 20 Xie1 YD)Xa Xn—1  (Xn; Xi—1;Y1)Xn—1 forl i n-—1;
f(n)= Xﬁflxn;
FO) = TXno1Y1 5 Yi)Xni Xn (Xn—13y1;:00syi) forl i 2g—1
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Assertion 1 T induces a homomorphism f : PM(Fg.1;Pn) ¥ PG(g;0;n).

One can easily verify on the generators of PG(g;0; n) that £ is the identity
of PG(g;0;n). So, Assertion 1 shows that is injective and, therefore, nishes
the proof of Proposition 3.3.

Proof of Assertion 1 We have to show that: if w; = w, is one of the
relations (PT1),...,(PT12), then f(wy) = F(wy).

By an easy case we mean a relation w; = w, such that the equality f(wq) =
f(wz) in PG(g;0; n) is a direct consequence of the braid relations in A(Pg:0:n).
For instance, (PT5), (PT6), and (PT8) are easy cases.

Relation (PT1): (PT1) is an easy case if either j =i—1 or i =n. So, we
assumethat 0 j<i—1<n-—1. Then:
LGS e (G
= XiXpts  THXniXim13 YI)Xa Xno1 (Xni Xio13Y1)Xn-1X) T Xp2g
“H(Xn; Xi—13Y1)XpZaXn  (Xn; Xi—13Y1)Xn—1
= XaliXh X M Xi—ny)Xn-1 (i Xi—nYDXG T T Xie1 Y)Xnty
(Xn; Xi-1;Y1) Xi—1Xn—1
=1 (by (PR3)):

Relation (PT2): (PT2) is an easy case if j = n—1. So, we assume that
J<n-—1. Then:
f(xj ixj_l)f( J_-&l i j+1)_1
= XjXpZ1 i Xim13Y)Xn X1 (Xni Xie1YD)Xn—1X XnZ1 T (Xni XjiY1)
Xt Xn  (Xni Xj5 YD) Xn—1Xnt1  (%ns Xi—1; Y1)Xnt1Xn  (Xni Xi=1; Y1)Xn—1
X;il _1(Xn;xj;Y1)XE1Xn—1 (Xn;Xj;Y1)Xn—1
= XjXnta Xt THnsXi—1 Y)Xn—1 (XniXi—13Y1) " 2(Xni Xj: Y1)Xntg
s Xji Y1) T s X1 YD)XnZ (XniXic1iYD)Xict H(Xni X5 Y1)Xn—1
(X3 Xj5 Y1) Xn-1X] *
= XpXnti Xy TR0 Xie1i Y1) Xn—1 (%niXie13Y1) T H(Xni Xji Y1) Xntq
Xn;Xji Y1) T X Xi—1YDXnZ (XniXic1iY1) T (Xni XjiY1)Xn—1
(Xni Xj; Y1)Xi—1Xn—1X; * (by (PR3))
=X X;i1Xi_—11y1_1X;1Xi_—llyl_lxn—lylxnxi—1y1y1_1X;1Xj_1y1_1X;E1y1XnXj
YY1 X XY X2y iXnXio1Y1Y 1 Xn TG YT Xn—1Y1Xn X Y1Xim1Xn—1X]
= XX X1 X G Xn—1Y1 Xt Xim 1 Xn—1Y 7 X2 X X Xn—1

1,1 -1 -1 -1
Y1 "XnZ1Xi—1Xj " Xn-1Y1Xp 21 XjXnY1Xi—1Xn—1Xj
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— vyl Ll y—ly—1 vy v lu=Ly. =1 y=1y. . y—1y—1 _

= XjXpZ1Xi21Y1 " Xn T Xn—-1Y1Xi-1Y1 TY1Xj TY1 Y1Xio1Ya TY1XjY1 T Xp 2 XnY1Xi-1
-1

=1

Relation (PT3): (PT3) is an easy case if i = n. So, we assume that i <n.
Then:

fyr iyr DF( 7 )™
= yiXpts T1(Xns Xi—1; YOX Xn—1 (Xn; Xie1; Y1)Xn—1Y7 “Xn14
"1 (Xns Xim13 YD) XntaXn (X Xim13Y1)Xn—1  ~*(Xn=1; Y1)Xpt1Xn  (Xn—1; Y1)
=YXty XX YT X I X n— 1Y 1Xn Xi—1Y 1Xn—1Y1 T Xpt1Y1 T Xn IXTh YT Xty
XnY1XnXi—1Y1Xn—1X311Y1 Xpt1 XnY1Xn—1
= Xn21Y1 Xn—1Xn X Y1 X X n—1Y 1 Xn Xi—1Y1Xn—1Xn 21 YT Xt Xn Xy
X;ilxnylxnxi—1X;i1Xny1Xn—1
= XL y1 XXy X YT G X 1YY X YT Y1 XnY 1Xi—1Xn X5 Y1 Xn—1
n—1Y1 n i—1Y1 n 1 n—1J1 n—1
= 1:

Relation (PT4): (PT4) is an easy case if either i = nor j 3. So, we
assume that j =2 andi n—1. Then:

y2F( i)Yzt
= yoXply T (e Xic1 YOXa tXno1 (Xnj Xie1; Y1) Xn—1Y5
= ;X Y2 T Xni Xiet Y1) Xn-1  (Xn; Xie1;Y1)Y5 Xn—1
= X026 T HXniXic1 Y)Xn—1 (XniXi—1;¥1)Xn-1  (by (PR4))

=f( i)

Relation (PT7): (PT7) is an easy case if j = n—1. So, we assume that

i n — 2. We prove by induction on i 2 that x; and f( i) commute.
Assume rst that i = 2. (PR4) and Lemma 3.4 imply:
Xj -1 Y1 ¥2)Xn (Xn-13Y1i¥2) = T (Xn—1Y1¥2)Xn  (Xn—13Y1:Y2)Xj;

and this last equality implies:
xiF( 2)xt =F( 2):
Now, we assume that i > 2. The rst equality of Lemma 3.5 implies:
fO)=FCim)yif(i-) 7yt

Thus, since xj commutes with y; and with f( j—1) (inductive hypothesis), X;j
also commutes with f( ;).

Relation (PT9): The equality
yieaFCiyicy = FC)F( i-a)
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is a straightforward consequence of the second equality of Lemma 3.5.
Relation (PT10): The equality
YissFCYiey = FC i) (D)
is a straightforward consequence of the rst equality of Lemma 3.5.
Relation (PT11): Assume rst that n=1. Then:

)T )T )T ) TTZF( 3)z7H( 1)
“2(X1;Y1;Y2,Y3:2)  (Xo; X1;Y1;Y2:Y3;2)  (by Lemma 3:6:(i))
1 (by (PR5)):

Now, assume that n 2. Lemma 3.6.(i) implies:

X xno1F( )71 )7 3) 1z ( 3)z7IF( 1)
= T2(Xn;Y1,¥2:Y3:Z)  (Xn—1;Xn:Y1;Y2;Y3: 2);

and Lemma 3.6.(ii) implies:
Xt xno1F( 1) = T2(X0;XniY1) (X0; Xn—1; Xn; Y1):
Thus:

f( ) )T )T 3)t2F( 3)z7F( 1)
“H(%0i Xn—1;Xn; Y1) 2(XoiXniY1) T2(Xn;Y1iY2:Y31Z)  (Xn—1iXn;Y1;Y2iY32)
1 (by (PR6)):

Relation (PT12): (PT12) is an easy case if i = 1;2. We prove by induction
oni 4 that z and f( ;) commute. Recall rst that the rst equality of
Lemma 3.5 implies:

f( i) =F(Ci—)yif( -yt
Assume that i = 4. Then:
zf( 4zt
2F( 3)yaf( 3) 7ty tz 7t

FODF( DFC DFC DFC )7yaf( )F( DT )T )T 3) 7 hys
by (PT11)

f( a)yaf( 3)7ty;! (by (PT4) and (PT8))
f( 4):

Now, we assume that i > 4. Then z commutes with f( ;), since it commutes
with y; and with f( j—;) (inductive hypothesis). O
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Now, in view of Proposition 3.3, and applying Lemma 2.5 to the exact se-
quences (2.3) of Subsection 2.2, one has immediately the following presentation

Proposition 3.7 Letg;r 1,letn 0, andlet Plgyn be the Coxeter graph
drawn in Figure 21. Then PM(Fg;r+1;Pn) is isomorphic with the quotient of
A(PTg:rn) by the following relations.

Relations from M(Fg;1):

(PR1) 4(y1;Y2;Y3; 2) 2(x0; Y1 Y23 Y31 2) ifg 2
(PR2)  2(y1:y2:¥3:¥a;¥5:2) =  (XoiYiiY2iYaYays;2z) ifg 3

Relations of commutation:
(PR3) Xk “(Xix1:XjyOXi  (Xis1; Xj; Y1)
= _1(Xi+1;Xj:y1)xi Xi+1; Xj;y)xk if0 k<j<i r+n-—1;
(PR4)  yo “(Xi+1;Xj:y1)Xi  (Xie1; Xj; Y1)
= TYXien X YO)Xi XKisn XYYz 0 j<i r+n-—1;

Relations between fundamental elements:

(PR5a) Ui =  (Xo;X1;Y1;,Y2:¥3:2) ~2(X1;Y1;Y2: Y3 2);
(PR6a) Uix1 = (Xi;Xi+1;Y1:Y2;Y3;:2) ~2(Xi+11Y1;Y2;Y3:2)
2(Xo; Xi+1: Y1) T (XoiXisXi+1sy1) if 1 i r—1;
(PR6b)  (Xi;Xi+1;Y1;Y2:Y3:2)  ~2(Xi+1;Y1:Y2;Y3;2)
= (XoiXi;Xi+1;Y1) T2(Xo;Xix1;y1) if r i n+r—1

\Ixn+r

° - ° ‘: . - - ——

Plgrn U1 U2 ur /lyl y2 lys Ya Yag-1
z

X1
Xo

Figure 21: Coxeter graph associated with PM(Fg;r+1; Pn)

Let PG(g; r; n) denote the quotient of A(PIg.r;n) by the relations (PR1),(PR2),

:PG(g;r;n) ¥ PM(Fgr+1;Pn) between PG(g;r;n) and PM(Fg;r+1;Pn)
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is given by (xj) =aj for i =0;:::;n+r, (yj)=bj fori =1;:::;29—1,

As in Lemma 3.6, we use the algorithm of [7] to prove the following.

Lemma 3.8 (i) We number the vertices of the Coxeter graph Dg according
to Figure 6. Then the following equality holds in A(Dg).

X3XaX7 IX3 X IXG TXaxaXa Xy IXg Xy IxaxaXox Xz Xy L
(i) We number the vertices of the Coxeter graph D, according to Figure 6.
Then the following equality holds in A(Dg).
(X1 X2 X33 Xa)  ~2(X15 X35 Xa) = XaXaXa X1Xg 1 Xg XaXaxaXy X Ixg O
Proof of Theorem 3.1 Recall that I'q;r;n denotes the Coxeter graph drawn in
Figure 18, and that G(g; r;n) denotes the quotient of A(I"g.;n) by the relations

(R1),...,(R7), (R8a), (R8b). Recall also that there is a well de ned epimor-
phism :G(g;r;n) ¥ M(Fg.r+1;Pn) which sends X on a;j for i =0;:::;r+1,

on j for i = 1;:::;n—=1. Our aim now is to construct a homomorphism
. M(Fg;r+1;Pn) ¥ G(g;r;n) such that f is the identity of G(g;r;n). The
existence of such a homomorphism clearly proves that is an isomorphism.

We set Ag = Xr, A1 = Xr+1, and

Aj= x}_i (Xr+1;V1;:i05vi—1) fori=2;:::;n
These expressions are viewed as elements of G(g; r;n). Note that, by Proposi-
tion 2.12, we have (Aj) =ar+j forall i=0;1;:::;n.

Assertion 1 (i) The following relations hold in G(g;r;n):
(T Aim1Ai+v1 = ViAViA;

= AjviAjvj forl 1 n-—1;
(T2) AiA; = AjA; for0 i<j n
(T3) Aivj = VjAj for i & j;
(T4) ViAiy1 = AiyiAi for0O i n:

(ii) The relations (T1),...,(T4) imply that there is a well de ned homomor-
phism hj : A(Bs) ¥ G(g; r;n) which sends xX; on vj, X2 on Aj, X3 on yi, and
X4 0N Aj—1. Then the following relation holds in G(g;r;n):

(T5)  hi( (X1;X2;X3;%4)) = hi( 2(x1;%2;%3)) forl i n:
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Proof of Assertion 1 Relation (T1):

Aiv1 = X' (X3 V130005 Vi)
= X;'WViVie1 D1IVIXpeaV1 D VieVi (X1 Vet Vier) o (by 2:9)
= X Vi (Xre23V25015Vieg) T (Xead Ve Vi)V
(Xr+1; V15575 Vie1) :
= X2 TMXpa1i Va5 Vis)ViXE T (X Ve D Vim VX
(Xr+1; V155575 Vie1)
= Ai__llviAiViAi:
Similarly:

Ajr1 = Ai__llAiViAiViZ

The relations (T2) and (T3) are direct consequences of the \braid" relations
in A(Tg;r;n)-
Now, we prove (T4) and (T5) by induction on i. First, assume i =1. Then

(T4) follows from the \braid" relation y;1Xr+1y1 = Xr+1Y1Xr+1 in A(lg:r;n), and
(T5) follows from the relation (R7) in the de nition of G(g;r;n).

Now, assume i > 1. Then the relation (T4) follows from the following sequence

of equalities.
AiyrAiyr ATy

= A LVictAICVic1AC Y1 AIZ VIS AL Vi ALY TAL S AT ATy

(by (T1))

= A7 VictAimvicAimryiAicVicr Ay ALY AT VAT YA,
Ai—2 (by (T2);(T3); induction)

= AL hici( 2(xa;X2iX3) TH(X1iX2;Xs;Xs)) Ai—z  (by Proposition 2:9)

= 1 (by induction):

The Relation (T5) follows from the following sequence of equalities.

hi( 71(X1:X2: X3;Xa)  2(X1; X2 X3))
= ALY AT AT YT AT yiAiviviAiviyiAivi - (by Propositions 2:8 5 2:9)
= AT AV AT VISA VT VATV AT AT T AT AT AL
Vi1 Ai—1Vic1ViyIAT L A1 Vic 1 Aim1Vie ViV Vie Ai— Viet Ao AT L (TL)
= Aiz ADADYD ALViSATYV ALY VS ATV GA T A2 ALy
AL AL A VIm AL Vi ViYIAT S A1 Vi 1A - 1Vi-1ViY1Vie1 A1 Vie1 A1 Vi
AL (by (T2); (T3); induction)
= A AV ALY AV ATV AT Y AT YA vic iy
AL A VI AL Vi ViV Vi A Vs ViV Vicl A AL
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(by (T2); (T3); induction)

= A AT ViYL ALY AT VIV YA, hisa(C TH(Xes X2 Xai Xa)

(X1;%2:X3)) Y1AI—1Vi-1ViV1A LA 1Vic1Ai-1Vic1Vivie 1 Ai-1V) Vis1Viya

y1 Vic1Ai—1 AL (by Proposition 2:9)

= AiAIViY1 ALY ATV YAV ALY Vi AT YL Vi
ALY YA 1VicViYIAT LA Ve A1 Vi-1ViVie1Y1 A1) VicViys
y1 VictAic1 AL, (by induction)

= Ai2ATViaY1 AlLYTTATIYV Y Vi AT Aoy AV Vivieg
Ai—1ViVi—1ViyiAi—1V; y1vieVio Y; ViciAimi AL ((T2); (T3); induction)

= Ai_zAi_—llvi_—llyl Ai_—lei—1y1_1Ai__11Vi__llvi_1Vi__11Ai__11y1_1Ai__12y1ViVi_1Vi_1Ai_1
ViVic1Y1Ai—1Y1Vie1Vi Y1 VietAisl AL (by (T2); (T3); induction)

= Ai2ACVCY1IAILL ALY ATV Vi ATY D A Yivici Ay
VictAic1yVietAimr Vi ALy ViciAisiAZL  ((T2); (T3); induction)

= AiAT Vi 1AL ALY ATV A VAT YT AT
hii( (X5 %25 %3)) Vi Ahyr vieiAiiAlL,  (by Proposition 2:8)

= A ATV Y1AILL Ay A VY VS ATY A VA 2y A
VictAiciy1Aiovi ALy viciAiciAL  (by induction)

= AiATIVY 1AL ALY ATV Vvl Ay Ao ALY
Vic1Ai—1 AL (by (T2); (T3); induction)

=1 (by (T2);(T3); induction)

Assertion 2 Recall that Py, denotes the Coxeter graph drawn in Figure
21. There is a well de ned homomorphism g : A(PTg;r:n) ¥ G(g;r;n) which

Proof of Assertion 2 \We have to verify that the following relations hold in
G(g;r;n).

(TG) AiAj = Aj A forl i _] n;
(T7) XiAj = AjXi for0 i randl j n;
(T8)  yiAiyi= AjyiA; forl 1 n;
(T9) Aiyj = YjAi forl i nand2 j 29-—1,
(T10) Aiz= zA; forl 1 n

i

(T11) Aiuj = UjA; for 1 nandl j r

The relations (T6) and (T8) hold by Assertion 1, and the other relations are
direct consequences of the \braid™ relations in A(Ig:r:n).
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Recall that PG(g;r;n) denotes the quotient of A(Plgyn) by the relations
(PR1),...,(PR4), (PR5a), (PR6a), (PR6b), and that this quotient is isomorphic
with PM(Fg:r+1;Pn) (see Proposition 3.7).

Assertion 3 The homomorphism g : A(Plg:r;n) ¥ G(g;r;n) induces a ho-
momorphism g : PG(g;r;n) ¥ G(g;r;n).

Proof of Assertion 3 It su ces to show that the following relations hold in
G(g;r;n).

(T12)  g(xk ~(Xie1: X YDXi (Xie1: Xj; Y1)

= g( _1(xi+1;xj;y1)xi Xi+1; X y)x) for0 k<j<i r+n-—1,
(T13)  g(y2 ~(Xi+1:Xj;YDXi  (Xie1: Xj; Y1)

= 9( Y(Xirn X yD)Xi Kies Xjiy)y2) for0 j<i r+n-—1;
(T14) g (XisXi+1;Y1,¥2:Y3:2) “2(Xi+1;Y1:Y2;Y3:2))

= g( (Xo;Xi;Xi+1;Y1) “2(Xo;Xix1;y1)) for r+1 i r+n-—1

Relation (T12): fori r+1and j <i—1, we have:

(ED)  9( ~'(Xie1; X y1)X. (Xi+1;Xj;Y1))
= y1 g(XJ) 1A| r+1Y1 A, rY1Al r+1g(XJ)Y1
= (Xj) Ai—r—1vi LAt 1A| Y1 AI rY1Ai—rVi—rAi—rVi—r

1—r° '1—r I
A= r 19(X1)y1 (by (T1)
= |—ry1 (XJ) 1A. rAI r—1Vi_ A. rAI rY1AiZ rAI rVi— rA|_r 1Ai—r
9(Xj)yrvi—r (by (T2);(T3);(T4))
= vy o0G) A YT Al r— 1y Al g(XG)yavier - (by (T2);(T3); (T4))
= Vi h0( THxi X ydXicr (Xis X5 Yo)Vier:

Fori r+1andj=i—1we have:

(E2)  o( ~*(XirniXi—1y1)Xi  (Xis1; Xi=1;Y1))
= yl_ |_1r 1A|_1r+1y1_ Ai- rY1A| r+1Ai-r—1Y1
=Y 1A_r 1Ai—r—1Vi_ A. Vil i_—lryl_lAi—rYlAi—rVi—rAi—rVi—r
A_r 1A| r—1y1 (by (Tl))
= ViZ ry1 1A. 1r |_er FAi- rYlA PAi—rVi—rAi—rY1Vi—r
(by (T2);(T3);(T4))
= VYT YA y; tyvier  (by (T2);(T3); (T4))

— 1 .
—_ VI_rA|—rV|—r

First, assume that i r. Then the relation (T12) follows from the relation
(R3) in the de nition of G(g;r;n). Now, we assumethat j<r i r+n—1,

Algebraic & Geometric Topology, Volume 1 (2001)



Presentations for punctured mapping class groups 107

and we prove by induction on i that the relation (T12) holds. The case i = r
follows from the relation (R3) in the de nition of G(g;r;n), and the case i >r
follows from the inductive hypothesis and from the equality (E1) above. Now,
we assume that r j <i r+n-—1, and we prove, again by induction on
i, that the relation (T12) holds. The case i = j + 1 follows from the equality
(E2) above, and the case i > j + 1 follows from the inductive hypothesis and
from the equality (E1).

The relation (T13) can be shown in the same manner as the relation (T12).

Relation (T14): We prove by induction on i  supfr;1g that the relation
(T14) holds in G(g;r;n). If i =r 1, then the relation (T14) follows from the
relation (R8b) in the de nition of G(g;r;n). Assume r =0 and i = 1. Then:

9( 2(X2;y1;Y2:Y3:2) T(X1iX2:Y1Y2:Y3:Z)  (XoiXaiX2:Y1) T 2(Xo; X2; Y1)
= 2yayay1A2AT Y1 Y; Y3 2T yayay ALA YT Y Ty Yoy ARAT Y Yy TALYs
AAYTIAT! A1y1A1_1A2y1_ 1A1_1A0y1A1A2_ Yyi*Agt  (by Lemma 3:8)
= zysyzyllellelAa A; y; y; y; z” ysyzylAleA; v;lA; v Yyrtyst
Y3 yzyllellelAO A1 y1 y2 AoylAleAl v1 A1 v1 Wiiagt (T1)
=V ZYSYZY1A1A0 Y yz Yy3 1z lysyay Ao AT YT TYS Ty tyayi AdAG Ty st

AoyleAI yitAGT Vit (by (T2);(T3);(T4))
=vi  2(X1;Y1Y2iY3:Z) T (X0 X1 Y1 Y2iya;z) Vit (by Lemma 3:8)
=1 (by (R8a)):

Now, we assume that i > supfr;1g. Then:

9( 2(Xi+1; Y1 Y2, Y3:2) (X Xie1: Y13 Y2;¥3:2)  (Xo; Xi; Xia1; Y1)
~2(Xo0; Xi+1; Y1)
= Zy3Y2Y1Ai—r+1A‘_—1 Y1 Y5 Y3 2y ey oY1 A e AL YT Y5 Y5 YY1 A
i—-rJ1 2 3 i—-r+1y1 2 3
Ayt y; Ai- rylA._rAr_lrﬂy;lAr_lr Ai—ry1ATL Al ra1yT AT Xoy1
Ai—rAi_ r+1y1 x0 (by Lemma 3:8)
= ZY3Yy2Yy1Vi— I’AI rV| I’AI rA| 1A ryl_ yz_ y3_ Z_ YSYZY1A| rAl —r— 1A|_r
1A| v | rY1 yZ Y3 YZY1V| rAi—rVi—rAi- rA| r—1 A ry1 yz XOYlAl r
A' —-r— 1AI rVv |1rA| rv | ryl Xol(by (Tl))
= Vier ZY3Y2Y1Ai—rAl 11 Y2 Y3 2 yayayi Al AL YT Y s Tyays
Aimr A Y1 Y2 Xoy1 A ALY X vidy (by (T2);(T3);(T4))
= Vier 9( 2(Xi;y1Y2Y32) T(Xic1Xii Y1 Y2, Y3 2)  (Xo; Xie1; Xi; Y1)
~2(xo;Xi;y1)) Vi, (by Lemma 3:8)
= 1 (by induction):

Let Vi;:::;Vh—1 denote the natural generators of the Artin group A(An-1),
numbered according to Figure 6. Applying Lemma 2.5 to the exact sequence
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(2.1) of Subsection 2.2, one has that M(Fg:r+1;Pn) is isomorphic with the
quotient of the free product PG(g;r;n) A(An—1) by the following relations.

Relations from p:
(T15) VP = 2(Xpwio1; Xr+ie13Y1) (Xrio1i Xr+ii Xr+i+13 Y1)
forl i n-—1
Relations from conjugation by the V;’s:
(T16) Viwv, t=wforl1 i n—1and

(T17) Vin+iVi_1 = y1Xr+i—er_—&iy]__lxr+i+1y1Xr+in_-|%i—1y1_1 forl1 i1 n—-1L

We can easily prove using Proposition 2.12 that the relation (T15) \holds™ in
M(Fg:r+1, Pn). The relation (T16) is obvious, while the relation (T17) has to
be veri ed by hand.

Now, the homomorphism g : PG(g;r;n) ¥ G(g;r;n) extends to a homomor-
phism f : PG(g;r;n) A(An-1) ¥ G(g;r;n) which sends V; on v; for all
i=1;:::;n—1.

Assertion 4 The homomorphism T : PG(g;r;n) A(An-1) ¥ G(g;r;n) in-
duces a homomorphism f : M(Fg;r+1;Pn) ¥ G(g;r;n).

One can easily verify on the generators of G(g;r;n) that f is the identity
of G(g;r;n). So, Assertion 4 nishes the construction of f and the proof of
Theorem 3.1.

Proof of Assertion 4 We have to show that: if w; = w, is one of the
relations (T15), (T16), (T17), then f(wy) = F(wy).
Relation (T15):
FO T Rrim1s Xrais Xewie 1 V1) 2(Xewiet Xraie1; Y1) V5 2
= AT AL AT YT AT YA ALY AL 1 Al
(by Propositions 2:8 and 2:9)
= AT AT AT AT VT AT AT Y A AT AV AV AL AT A
Aiviv; 2(by (T1))

= ATy VATV AT AT AT AVIAVIYIAVIAV Y (by (T2); (T3); (T4))

=1 (by (T2);(T3);(T4):

The relation (T16) is a direct consequence of the braid relations in A(Ig;r:n).
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Relation (T17):

F(Y1Xr+i-1X Y7 XraietY1 Xr+iXrai—1Y1 OViF vy
= V1AL AT Y Ay AT v AT
ViIAT ALY AT AviAViVIAVA T Y AT (by (TL);(T2);(T3))
VAT YT AL I AVAVYIAVIATL YT IATVY  (by (T4))

ATYTIAATL Y AVIAVIYIAVAT YT AT (by (T4))

ATYTIAT AV I AViYIAVATL YT ATV (by (T2);(T3);(T4))
ATNYTIATYL hi( (asxzix3)) ALy tATvit (by Proposition 2:8)

= ATYYIATL ACyiAviAly A ALy P AT (by (T5) Proposition 2:9)
= 1: O

3.2 Proof of Theorem 3.2

Let c; : ST ¥ @Fy.; be the boundary curve of Fg.1. We regard Fgy.o as obtained
from Fg1 by gluing a disk D? along c;, and we denote by ~ : M(Fg.1;Pn) ¥
M(Fg:0; Pn) the homomorphism induced by the inclusion of Fg.1 in Fgo. The
next proposition is the key of the proof of Theorem 3.2.

Proposition 3.9 (i) Letg 2, and let a,;al, be the Dehn twists represented
in Figure 22. Then ~ is surjective and its kernel is the normal subgroup of
M(Fq.1; Pn) normaly generated by fa;lalg.

(i) Let g =1, and let ;€' be the Dehn twists represented in Figure 22. Then
” is surjective and its kernel is the normal subgroup of M(F.1;Pyr) normaly
generated by fa;lag;ete'g.

Figure 22: Relations in M(Fg:0; Pn)

Proof We choose a point Q in the interior of the disk D2, and we denote by
Moq(Fg:0; Pn [ Q@) the subgroup of M(Fg.0; Pn [ fQg) of isotopy classes of
elements of H(Fy:0; Pn [ fQg) that x Q. An easy algebraic argument on the
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exact sequences (2.1), (2.2), and (2.3) of Subsection 2.2 shows that we have the
following exact sequences.

Moreover, we have > = 71 75,

A rst consequence of these exact sequences is that
use them for nding a normal generating set of ker ~.

is surjective. Now, we

The group 1(Fg;0 N Pn; Q) is the free group freely generated by the loops
L5050 n, 1t 29—1 represented in Figure 23. One can easily verify by
hand that the following equalities hold in Mq(Fg:0; Pn [ fQQ):

i = 7a(bralaibian)™t Rt 7o(bdlaibian) fori=1;::i;n—1;
1= T2(han)™t 0 72(bian);
j= ’2(bjbj_1)_1 j—1 T2(bjbj—1) forj=2;:::;29 — 1

Moreover, by Lemma 2.6, we have:
— 7 (o140 Y.
n = "2(an"ap):

On the other hand, by Lemma 2.7, the Dehn twists ; along the boundary
curve of Fg.1 generates the kernel of ”,. So, the kernel of * is the normal
subgroup normaly generated by fa;'al; 1g.

Now, assume g 2. Let G’ denote the quotient of M(Fg.1; Pr) by the relation
an = a),. De ne a spinning pair of Dehn twists to be a pair ( ; °) of Dehn
twists conjugated to (an;al), namely, a pair ( ; ') of Dehn twists satisfying:
there exists 2 M(Fg.1;Pn) such that = a, ~*and "= al ~!. Note
that we have the equality = 'in GYif (; % is a spinning pair. Consider
the Dehn twists eg; e;; es;e; e}; e} represented in Figure 24. The pairs (e1;€)),
(e2:€%), (es; €) are spinning pairs, thus we have the equalities e; = €}, e, = €},
ez = €} in G'. Moreover, the lantern relation of Lemma 2.4 implies:

e1e0e3 1 = ejehel:
Thus, the equality 1 =1 holds in G'. This shows that the kernel of ” is the
normal subgroup of M(Fg;1;Pn) normaly generated by fa;lalg.

Now, we assume g = 1. Then a), = ag. Let G be the quotient of M(Fy.1; Pp)
by the relation a, = ag. By Proposition 2.12, we have the following equalities
in G'.
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Figure 23: Generators of 1(Fg:0 N Pn;Q)

18 = (Agb1anaohiao)? = (aobiaoaghiao)?;
e’ = (aghiap)*:

Thus, we have the equality ; =e e’ in G'. So, the kernel of ” is the normal
subgroup of M(F1.1; P) normaly generated by fay'ag; e 1elg. O

Proof of Theorem 3.2 Recall that I'y,0.n denotes the Coxeter graph drawn
in Figure 18, and that G(g;0;n) denotes the quotient of A(I"g;0;n) by the re-
lations (R1), (R2), (R7), (R8a). By Theorem 3.1, there is an isomorphism

: G(9;0;,n) ¥ M(Fg;1;Pn) which sends xj on a; for i = 0;1, y;j on b; for

First, assume g 2. Let Gp(g;n) denote the quotient of G(g;0;n) by the
relation (R9a). Proposition 2.12 implies:

an = (G " (Xva;iiiiVe-1));
_ 3—2
ap = (X9 °

Thus, by Proposition 3.9, induces an isomorphism :
0:Go(g;n) ¥ M(Fg:0;Pn):
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Figure 24: Lantern relation in M(Fg;1; Pn)

Now, assume g = 1. Let Gp(1;n) denote the quotient of G(1;0;n) by the
relations (R9b), (R9c). Proposition 2.12 implies:

an = (5 " (X$;Vi;iin V1))
e = ( 2(vi;:i1;Vno1));
e = ( *(xo;y1)):

Thus, by Proposition 3.9, induces an isomorphism :
0:Go(1;n) ¥ M(F1.0;Pn): O
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