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Engel structures with trivial characteristic foliations
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Abstract Engel structures on M×S1 and M×I are studied in this paper,
where M is a 3–dimensional manifold. We suppose that these structures
have characteristic line fields parallel to the fibres, S1 or I . It is proved
that they are characterized by contact structures on the cross section M ,
the twisting numbers, and Legendrian foliations on both ends M × ∂I in
the case of M × I .
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0 Introduction

In any category of geometry, exotic structures are interesting objects to study.
In addition, the classification is an important problem. Engel structures are
largely dominated by the characteristic foliations. This paper is devoted to the
characterization of Engel structures on M × S1 and M × I , where M is a
3–dimensional manifold, with the same characteristic foliation as the standard
Engel structure.

A maximally non-integrable distribution of rank 2 on a 4–dimensional man-
ifold is called an Engel structure (see Section 1.1 for the precise definition).
Engel structures have have no local invariant, similarly to contact and sym-
plectic structures. There exists a local normal form, written as a kernel of two
differential 1–forms,

dy − z·dx = 0, dz − w·dx = 0, (0.1)

where (x, y, z, w) is a coordinate system. Further, it is known that this prop-
erty occurs only on line fields, contact structures, even-contact structures, and
Engel structures, among regular tangent distributions on manifolds (see [M1],
[VG]). An even-contact structure is a hyperplane field on an even dimensional
manifold with maximal non-integrability. The fact above indicates the impor-
tance of the study of Engel structures. However, different from contact struc-
tures, global stability does not hold for Engel structures, that is, the Gray type
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theorem does not hold. There exists a line field L(D2), which is canonically
defined by a given Engel structure D , especially by an even-contact structure
D2 := D + [D,D] (see Section 1.1). It is called the characteristic line field of
D or D2 . The foliation L(D2), whose leaves are integral curves of the char-
acteristic line fields, is called the characteristic foliation of D or D2 . This is
the obstruction to global stability. It is proved by A. Golubev and R. Mont-
gomery in [Go] and [M2] that a deformation of an Engel structure is realized
by an isotopy if it fix the characteristic line field. If the above two differential
1–forms (0.1) are defined globally on R4 , the obtained Engel structure is called
the standard Engel structure on R4 . Let Dst denote it. The standard Engel
structure has its characteristic line field spanned by a vector field in the w di-
rection, L(Dst2) = Span〈∂/∂w〉. V. Gershkovich constructs in [Ge] examples of
Exotic Engel structures on R4 with periodic orbits in their characteristic line
fields. To study exotic Engel structures with the same characteristic line field
as the standard Engel structure is a motivation for this paper.

In order to state the results of this paper, we prepare some basic notions. Let ξ
be a contact structure on a 3–dimensional manifold M . Let us construct a new
4–dimensional manifold P(ξ) from ξ . A contact structure ξ is a certain 2–plane
field. Then the manifold P(ξ) is obtained by the fibrewise projectivization of
ξ : P(ξ) = ∪p∈MP(ξp), where P(ξp) is the projectivization of the tangent plane
ξp . This manifold has a structure of the S1–bundle over M , because each fibre
is equivalent to S1 : P(ξp) ∼= RP 1 ∼= S1 . We can regard a point l ∈ P(ξp) of a
fibre as a line on the plane ξp through the origin. A 2–plane D(ξ)(p,l) at a point
(p, l) ∈ P(ξ) is induced by the pull back of a line l ⊂ P(ξp) by the projection
π : P(ξ) → M . Then we obtain a 2–plane field D(ξ) on P(ξ). It is known
that this 2–plane field D(ξ) is an Engel structure on P(ξ) (see [M2]). This
Engel manifold (P(ξ),D(ξ)) is called a prolongation of a contact 3–manifold
(M, ξ) (see Section 1.2 for the definition). Furthermore, we consider its fibrewise
n–fold covering and the corresponding Engel structure. Let (Pn(ξ),Dn(ξ))
denote them. We regard (P(ξ),D(ξ)) as (P1(ξ),D1(ξ)), if necessary. We note
that the prolonged manifold Pn(ξ) is diffeomorphic to M × S1 if the given
contact structure ξ is trivial as plane field. There is a canonical identification
ψn : Pn(ξ) → M × S1 in this case. According to this identification, we obtain
an Engel structure D̄n(ξ) := (ψn)∗Dn(ξ) on M × S1 from a contact structure
ξ on M and a natural number n ∈ N. Prolongations and deprolongations are
discussed in Section 1.2.

In this paper, Engel structures on M×S1 and M×I with trivial characteristic
foliations are investigated. We say a characteristic foliation L is trivial if it is
isotopic to a foliation which consists of leaves {pt}×S1 ⊂M×S1 or {pt}×I ⊂
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M × I . In the following, we suppose that these isotopies have been applied.
Namely, we assume in the following that a trivial characteristic foliation consists
of leaves {pt} × S1 or {pt} × I . In this case, we can define invariants for
Engel structures. Let D be an Engel structure on M × S1 with a trivial
characteristic foliation. An Engel structure, as a 2–plane field, is spanned by the
characteristic line field and a line field twisting along leaves of the characteristic
foliation (see Section 1.1). Now each leaf of characteristic foliation is a fibre
{pt} × S1 ⊂ M × S1 . Then we can define an invariant, the twisting number
tw(D) of D , by counting the rotation along a leaf with respect to a fixed
framing of ξ . Similarly we, define the minimal twisting number tw-(D) for
Engel structures on M × I . (see Section 1.3 for the definitions.)

Next, we consider the induced Legendrian foliations. Let D be an Engel struc-
ture on M × S1 or M × I with a trivial characteristic foliation L(D2). Let us
identify cross sections of M × S1 and M × I with M itself by the standard
projection. This projection is the projection along the characteristic foliation
L(D2) too. We note that this M is transverse to the characteristic foliation
L(D2). It is known that the even-contact structure D2 induce a contact struc-
ture ξ(D2) on M (see [M2] and [Ge]). It does not depend on the choice of
the cross section (see Section 1.2). Similarly the Engel distribution D induce
an 1–dimensional foliation F(M,D) on M by the integral of the line field
defined by the intersection of D and M . We note that the leaves of this folia-
tion F(M,D) are tangent to the induced contact structure ξ(D2) everywhere.
Curves in contact 3–manifolds, which are tangent to the contact structures
everywhere, are called Legendrian curves. We call this foliation F(M,D) the
induced Legendrian foliation.

Now, we are ready to state the results of this paper. First, we consider Engel
structures on M × S1 with trivial characteristic foliations.

Theorem 1 (1) Let ξ , ζ be parallelizable contact structures, that is, they
have global framings. If the prolonged Engel structures D̄(ξ) and D̄(ζ) are
isotopic preserving the characteristic foliation, then the contact structures ξ
and ζ are isotopic.

(2) For any Engel structure D on a 4–dimensional manifold M × S1 with a
trivial characteristic foliation, there exist a contact structure ξ on M and a
natural number n ∈ N, for which the n–fold prolonged Engel structure D̄n(ξ)
of ξ on M × S1 is isotopic to D .

In other words, this theorem implies the following.
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Corollary 1 Engel structures on M ×S1 with trivial characteristic foliations
are characterized, up to isotopies, by isotopy classes of contact structures on
M and the twisting number tw(D) ∈ N.

We note that we can construct an Engel structure D̄n(ξ) on M × S1 for any
isotopy class [ξ] of of contact structures on M which are trivial as plane fields,
and a natural number n ∈ N.

Next, we show that Engel structures on M × I with the trivial characteristic
foliation are determined by the induced contact structures, the minimal twisting
numbers, and the induced Legendrian foliations on both ends M × ∂I .

Theorem 2 (1) Let D and D̃ be Engel structures on M × I with the triv-
ial characteristic foliations. If they have the same induced contact structure,
induced Legendrian foliations on both ends M × ∂I , and minimal twisting
number, then they are isotopic relative to the ends.

(2) Let ξ be a parallelizable contact structure on a 3–manifold M , (F0 , F1)
a pair of Legendrian foliations on (M, ξ), and n ∈ Z≥0 a non-negative integer.
Then there exists an Engel structure D = D(ξ,F0,F1, n) on M × I , which
has the induced contact structure ξ(D) = ξ , the induced Legendrian foliations
F(M × {i},D) = Fi, i = 0, 1, and the minimal twisting number tw-(D) = n.

This theorem implies the following.

Corollary 2 Engel structures on M×I with the trivial characteristic foliation
are determined by the induced contact structures and the induced Legendrian
foliations on both ends M × ∂I and the minimal twisting numbers.

This paper was established while the author was visiting at Stanford University
and the University of Pennsylvania. He would like to express his gratitude to
Professor Yakov Eliashberg and Professor John Etnyre for some discussions and
the hospitality. This work was partially supported by JSPS Research Fellowship
for Young Scientists.

1 Preliminary

1.1 Definitions and important properties.

Let W be a 4–dimensional manifold. A distribution of rank 2 or a 2–plane field
D on W is a distribution of 2–dimensional tangent planes Dp ⊂ TpW , p ∈W .
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It is considered as a rank 2 subbundle of the tangent bundle TW . We can think
of D as a locally free sheaf of smooth vector fields on M . Let [D,D] denote the
sheaf generated by all Lie brackets [X,Y ] of vector fields X,Y on M , which
are cross sections of D . We set D2 := D+ [D,D] and D3 := D2 + [D,D2]. The
Engel structure is defined as follows.

Definition A distribution D of rank 2 on a 4–dimensional manifold W is
called an Engel structure if it satisfies,

dimD2 = 3, dimD3 = 4, (1.1)

at any point p ∈W .

We note that D2 is a distribution of rank 3 and D3 is the tangent bundle TW
itself, if D is an Engel structure. This corank 1 distribution D2 is an even-
contact structure on W . Let E denote it. An even-contact structure is, by
definition, a corank 1 distribution E on an even-dimensional manifold, which
is defined, at least locally, by 1–form θ with a property that θ ∧ (dθ)n/2−1 is
never-vanishing (n − 1)–form, where n is the dimension of the manifold. An
even-contact structure E on a 4–manifold W has a characteristic 1–dimension.
We define a rank 1 subdistribution L(E) of E by [L(E), E ] ⊂ E . In other words,
it is a maximal integrable subdistribution of E . In this case, its rank is 1. It
is called the characteristic line field of E = D2 or sometimes of D . We call the
1–dimensional foliation obtained by integrating the characteristic line field the
characteristic foliation of D2 or D . We note that an Engel structure D should
include its characteristic line field to satisfy the Engel condition (1.1).

Contact structures are sometimes described in terms of contact forms. Similarly,
Engel structures are described in terms of pairs of differential 1–forms. A pair
of 1–forms (α, β) on a 4–manifold W is called an Engel pair of 1–forms if it
satisfies the following three conditions,

(1) α ∧ β ∧ dα never vanishes,

(2) α ∧ β ∧ dβ ≡ 0,

(3) β ∧ dβ is a never-vanishing 3–form.

It is known that the distribution D := {α = 0, β = 0} defined by an Engel
pair of 1–forms is an Engel structure (see [Ge]). Under these conditions above,
the 1–form β defines an even-contact distribution as D2 = {β = 0}, and the
characteristic line field L(D2) is defined as a kernel of the 3–form β ∧ dβ .
For an even-contact distribution E = {β = 0}, a vector field X0 is called the
characteristic vector field of E , if it satisfies X0yΩ = β ∧ dβ for some volume
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form Ω on W . We note that it generates the characteristic line field and
foliation of E .

At the end of this section, we introduce important properties of Engel struc-
tures. They play important roles in the proof of Theorems. The following
theorem is proved by R. Montgomery in [M2], after E. Cartan’s theory.

Theorem 1.1 Let D0, D1be Engel structures defined near an embedded 3–
manifold M in a 4–manifold W . We assume that their characteristic foliation
L(D2

i ), i = 0, 1, are transverse to M , and that these Engel structures Di , i =
0, 1, have the same induced Legendrian foliation on M : F(M,D0) = F(M,D1).
Then they are locally isotopic along M ⊂W .

A slight generalization of this theorem is shown in [A]. The case where the
embedded 3–manifold is not transverse to the characteristic foliation is consid-
ered in [A]. The following theorem is proved in [M2] and [Go]. It is well known
that contact structures on a closed orientable 3–manifold are isotopic if they
are homotopic among contact structures (the Gray Theorem). The following
theorem is the Gray type theorem for Engel structures.

Theorem 1.2 Let Dt , t ∈ [0, 1], be a family of Engel structures on a closed
orientable 4–manifold W . We assume that it has the fixed characteristic folia-
tion: L(D2

t ) ≡ L. Then there exists a family φt : W → W , t ∈ [0, 1], of global
diffeomorphisms which satisfies (φt)∗Dt = D0 , (φt)∗L = L.

1.2 Prolongation procedures of contact manifolds.

The notion of prolongation is introduced by E. Cartan in the theory of exterior
differential systems (see [C], [BCG3]). We consider the prolongations of contact
structures on 3–manifolds. Let ξ be a contact structure on a 3–manifold M ,
namely a certain 2–plane field. We construct a new 4–dimensional manifold
from ξ by fibrewise projectivizations,

P(ξ) :=
⋃
p∈M

P(ξp),

where P(ξp) is a projectivization of a tangent plane ξp . A point of P(ξ) can be
regarded as a line l in the contact plane ξp through the origin. The constructed
4–manifold P(ξ) has a structure of a circle bundle over M . Let π : P(ξ)→M
be its projection. This 4–manifold is endowed with a 2–plane field D(ξ) induced
naturally as follows. We define 2–plane D(ξ)q ⊂ Tq(P(ξ)) at q = (p, l) ∈ P(ξ).
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A point q = (p, l) ∈ P(ξ) is regarded as a pair of a point p ∈ M and a
tangent line l ⊂ ξp ⊂ TpM . Then we set D(ξ)q := (dπ−1)ql . Thus we obtain
a 2–plane field D(ξ) on a 4–manifold P(ξ). We call this (P(ξ),D(ξ)) the
prolongation of a contact structure ξ on a 3–manifold M . It is known that the
prolongation (P(ξ),D(ξ)) is an Engel manifold (see [M2]). We note that the
prolonged manifold P(ξ) is diffeomorphic to M × S1 if the contact structure ξ
belongs to the trivial class as plane fields. In this paper we consider this case
especially.

Furthermore, we consider some variants of prolongations. Let (P(ξ),D(ξ)) be
the prolongation of a contact structure ξ on a 3–manifold M . We define a new
4–manifold Pn(ξ) by fibrewise n–fold covering of P(ξ),

Pn(ξ) :=
⋃
p∈M

Pn(ξp),

where Pn(ξp) is an n–fold covering space of P(ξp). Let ϕn : Pn(ξ)→ P(ξ) be a
fibrewise covering bundle mapping. We obtain a corresponding Engel structure
Dn(ξ) on Pn(ξ): (ϕn)∗Dn(ξ) = D(ξ). This pair (Pn(ξ),Dn(ξ)) is called the
n–fold prolongation of a contact structure on a 3–manifold M . According to
this notation, we have (P(ξ),D(ξ)) = (P1(ξ),D1(ξ)). When the given contact
structure ξ on a 3–manifold M is trivial as plane fields, Pn(ξ) is diffeomorphic
to M × S1 for any n ∈ N. Let V0, V1 be vector fields on M spanning ξ :
ξ = Span〈V0, V1〉. There is a canonical identification ψn : M × S1 → Pn(ξ)
defined as follows,

ψn : (p, θ) 7→
(
p, l =

[
(V0)p· cos

(
nθ

2

)
+ (V1)p· sin

(
nθ

2

)])
,

where l ∈ Pn(ξp) is a line in ξp defined by a vector field (V0)p· cos(nθ/2) +
(V1)p· sin(nθ/2). Then we obtain a corresponding Engel structure on M × S1

by setting D̄n(ξ) := (ψ−1
n )∗Dn(ξ), n = 1, 2, 3, . . . . In addition, we consider a

fibrewise universal covering of a prolongation P(ξ), and let (P̃(ξ), D̃(ξ)) denote
it.

Next, we consider the deprolongation procedure, the inverse of the prolonga-
tion, in a sense. Similarly to the above, we consider deprolongation of Engel
structures especially. Let D be an Engel structure on a 4–manifold W , E := D2

its even-contact structure, and L(E) its characteristic foliation. We consider
the leaf space W/L(E) and its projection π : W →W/L(E). The foliation L(E)
is said to be nice, according to [M2], if W/L(E) is a smooth 3–manifold and
π is a submersion. We suppose here that L(E) is nice. We set ξ(E) := π∗E .
It is a 2–plane field on W/L(E), which is well defined because the character-
istic vector field X0 , along L(E), preserves the even-contact structure E . In
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fact, the even-contact structure E = D2 is determined by the second 1–form
β of the Engel pair of 1–forms (α, β). Since the characteristic vector field X0

is defined so that X0y(β ∧ dβ) = 0 (see Section 1.1), we have LX0β = f ·β ,
for some function f . This implies that X0 preserves E . Therefore, we have
ξ(E)π(p) := (dπ)p(Ep) = (dπ)q(Eq) for any point q on the same leaf of L(E) as
p because π is the projection along L(E) or X0 . It is known that this distribu-
tion ξ = ξ(E) is a contact structure on W/L(E) (see [M2], [Ge]). We call this
(W/L(E), ξ(E)) the deprolongation of the Engel structure D .

Let (W,D) be an Engel manifold with the characteristic foliation L(D2), and
M ⊂ (W,D) an embedded 3–manifold. We assume that M is transverse to
the characteristic foliation L. Then we can take a neighborhood U of M as
a flow-box for L. In this neighborhood U , the foliation L is nice in the sense
above. Thus we can apply the deprolongation procedure. In this case, we can
identify the leaf space U/L(D2) with M . Then the obtained contact structure
is π∗D2 = TM ∩ D2 . In the case where the Engel manifold is a prolongation
(P(ξ),D(ξ)) of a contact structure ξ on a 3–manifold M and embedded 3–
manifold is a cross section Mθ , the characteristic foliation L(D(ξ)2) is nice
globally. Then, the leaf space P(ξ)/L(D2) is identified with Mθ = M and the
obtained structure is the original ξ .

1.3 Twisting property and Development mappings.

The development mapping is a local Engel diffeomorphism or an immersion
into a prolongation (P(ξ),D(ξ)) or (P̃(ξ), D̃(ξ)), introduced in [M2]. It is con-
structed by a property that an Engel structure is twisting along leaves of its
characteristic foliation. First, we observe the twisting condition of Engel struc-
tures. Let us recall that an Engel structure D contains its characteristic line
field L = L(D2) ⊂ D of D2 =: E . Let D̃ be another rank 2 distribution which
is contained in E and contains L = L(E): L ⊂ D̃ ⊂ E . Then the twisting
condition:

D̃ + [L, D̃] = E (1.2)

implies that D̃ is Engel, that is, the Engel condition (1.1). Let X0 be a charac-
teristic vector field of E , and V a vector field which forms a basis of D̃ with X0 .
We note [V, E ] 6⊂ E because V is independent of the integrable subdistribution
L(E) ⊂ E . Then the derived distributions are

D̃2 = D̃ + [L, D̃] + [V, D̃] = E ,
D̃3 = E + [L, E ] + [V, E ] = E + [V, E ],
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where we use the fact that the rank of D̃ is 2. Therefore we obtain dim D̃2 = 3,
dim D̃2 = 4, namely, the Engel condition (1.1).

Using this twisting condition, we construct a mapping from a domain in an
Engel manifold with a nice characteristic foliation to a prolongation of some
contact structure. Let (W,D) be an Engel manifold, and L = L(D2) the
characteristic foliation. Let U ⊂ (W,D) be a domain where the characteristic
foliation L is nice in the sense above, and π : U → U/L the projection to
the leaf space. We set ξ := π∗(D2). It is a deprolonged contact structure
on U/L from D . Let l ⊂ W be a leaf of L, and q ∈ l ∩ U a point. From
another point of view, l is a point of the leaf space U/L. For a point q ∈ l ,
there corresponds a tangent 2–plane Dq ⊂ TqU . Since an Engel distribution
D contains the characteristic line field L = L(D2), and is contained in D2 :
L ⊂ D ⊂ D2 , there corresponds a tangent line dπq(Dq) ⊂ dπq(D2

q) = ξl , that
is, a point of P(ξl). In this way, we obtain a mapping from l to P(ξl). As the
domain U with a nice foliation is regarded as a union of leaves ∪l∩U 6=∅(l ∩
U), we obtain a map from a nice domain U to a prolongation P(ξ). We
call this mapping ΦD : U → P(ξ) the development mapping associate to the
Engel structure D . The twisting condition (1.2), and the argument following
it, ensure that this development mapping is diffeomorphic locally. From the
construction, the development mapping ΦD preserves the characteristic line
field and another line field in the Engel distribution twisting in the sense of the
twisting condition, with respect to the given D on U and the prolongation D(ξ)
on P(ξ). Therefore the development mapping is an Engel diffeomorphic locally
(see [M2]). We consider the lift Φ̃D : U → P̃(ξ) of the development mapping.
We also call this the development mapping.

Now, we define the twisting number for Engel structures on M×S1 and M×I ,
with trivial characteristic foliations. We begin with M×S1 . Let D be an Engel
structure on M × S1 with a trivial characteristic foliation, and ξ = ξ(D) its
deprolongation. Let l ∈ L(D2) be a leaf of the characteristic foliation corre-
sponding to a point p ∈M = (M × I)/L(D2). We note that l is diffeomorphic
to S1 . Then we obtain a mapping from l ∼= S1 to P(ξp) ∼= RP 1 ∼= S1 , defined
as θ 7→ D(p,θ) ∩ TpM , which can be regarded as a mapping S1 → S1 . The
twisting number tw(D) of D is defined as the degree of this mapping. We
suppose that the orientation of a fibre l is defined by the characteristic vector
field X0 . Considering the basis (v0, v1) of ξ such that [X0, v0] = v1 , we ob-
tain an orientation of ξ , and then that of S1 ∼= P(ξp). We consider the above
degree with respect to those orientations. We note that it is independent of
the choice of points p ∈ M . In other words, the Engel structure D with the
twisting number tw(D) = n is Engel diffeomorphic to (Pn(ξ),Dn(ξ)) by the
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development mapping, where ξ = ξ(D). Next, we define the minimal twisting
number for Engel structures on M × I with trivial characteristic foliations. Let
D̄ be an Engel structure on M × I with the trivial characteristic foliation, and
ξ̄ = ξ(D̄) its deprolongation. We take a pair (V0, V1) of non-vanishing vector
fields on M , which is a positively oriented basis of ξ as above, such that V0

defines the induced Legendrian foliation F0 = F(M × {0}, D̄). Then we ob-
tain a family gt : M → R of functions, which satisfies that g0 ≡ 0 and that
the vector fields (V0· cos(gtπ) + V1· sin(gtπ)) define the line fields D̄ ∩ TMt , by
identifying Mt with M . We call the non-negative integer n ∈ Z≥0 such that
n ≤ minp∈M g1 < n+ 1 the minimal twisting number of D̄ . Let tw-(D̄) denote
it. We note that it is independent of the choice of V1 and the orientation of V0 .

2 Characterization on M × S1

In this section, we prove Theorem 1. First, we show (1) of the theorem.

Proof of Theorem 1-(1) Let ϕt : M × S1 → M × S1 , t ∈ [0, 1], be a given
isotopy between D̄(ξ) and D̄(ζ), which satisfies ϕ0 = id, ϕ1∗(D̄(ζ)) = D̄(ξ),
and (ϕt)∗L = L, where L = L(D̄(ξ)) = L(D̄(ζ)) is a trivial characteristic
foliation. We set Dt := (ϕt)∗D̄(ζ). It is a family of Engel structures with the
same characteristic foliation L. Let Et denote an even-contact structure D2

t on
M × S1 . We set M(t) := ϕt(M0) ⊂M × S1 , where M0 = M × {0} ⊂M × S1

is the zero section. We note that M(t) intersects every leaf of L transversely,
for any t ∈ [0, 1]. As mentioned in Section 1.2, ξt := TM(t) ∩ Et is a contact
structure on M(t). Each M(t) is sent to M0 by a time one mapping of a vector
field ft·(∂/∂θ) =: Wt for some function ft , where θ ∈ S1 is the coordinate of a
fibre. Let ψt1 : M × S1 → M × S1 be this family of time one mappings. Each
mapping ψt1 preserves each even-contact structure Et , because ∂/∂θ is the
characteristic vector field for each Et (See Section 1.2). Then, the restriction
of ψt1 ◦ ϕt : M × S1 →M × S1 to M0 = M is the required isotopy. In fact, we
have ψt1 ◦ ϕt(M0) = M0 , ψ0

1 ◦ ϕ0 = id, and

(ψ1
1 ◦ ϕ1)∗ζ = ψ1

1∗ ◦ ϕ1∗(TM0 ∩ D̄(ζ)2)

= ψ1
1∗(TM(1) ∩ D̄(ξ)2)

= TM0 ∩ D̄(ξ)2 = ξ.

Next, we show (2) of Theorem 1.
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Proof of Theorem 1-(2) Let D be a given Engel structure on M × S1

with the trivial characteristic foliation L. We set E := D2 . It is an even-
contact structure on M × S1 . We identify the leaf space (M × S1)/L with
M0 = M × {0} ⊂ M × S1 . Then the projection M × S1 → (M × S1)/L is
the first projection π : M × S1 → M = M0 . In terms of Section 1.2, this foli-
ation L is nice. According to a deprolongation procedure, we obtain a contact
structure ξ := π∗E on M (see Section 1.2). Let n ∈ N be the twisting number
of D : tw(D) = n. We show that the given structure D is isotopic, preserving
the characteristic foliation L, to an n–fold prolongation D̄n(ξ) of a depro-
longation ξ . Now, we consider a development mapping ΦD : (M × S1,D) →
(P(ξ),D(ξ)), defined in Section 1.3. In this case, the characteristic foliation is
nice globally, and each leaf is S1 . Therefore, it is immersed into a prolongation
(P(ξ),D(ξ)) covering n times. In fact, each leaf l ∈ L is immersed onto each
leaf of the characteristic foliation of D(ξ)2 , winding n times, because a line
dπ(D) ⊂ ξ twists n/2 times along l . Then we obtain an Engel diffeomorphism
Φ̃(D) : (M ×S1,D)→ (Pn(ξ),Dn(ξ)) as a lift for a fibrewise covering mapping
ϕn : (Pn(ξ),Dn(ξ)) → (P(ξ),D(ξ)). By a canonical identification ψn , we ob-
tain an Engel diffeomorphism ψ−1

n ◦ Φ̃(D) : (M × S1,D) → (M × S1, D̄n(ξ)).
We note that it is isotopic to identity because it is a bundle map over identity
between product bundles.

This Theorem 1 implies that Engel structures on M × S1 with the trivial
characteristic foliation are classified, up to isotopy, if contact structures on the
3–manifold M are classified. The classification of contact structure has been
an important problem for a long time. There are some results on this subject
(for example, [El1], [El2], [K], [Et], [Gi], [H]). Here we take S3 for example.

Example Let us consider Engel structures on S3 × S1 with trivial character-
istic foliations. Contact structures on S3 are classified, up to isotopy, to the
following structures (see [El1], [El2]): a tight structure ζ , overtwisted structures
ξm , m ∈ Z. Then, any Engel structure on S3× S1 with a trivial characteristic
foliation is isotopic to one of the followings:

D̄n(ζ), D̄n(ξm), n ∈ N, m ∈ Z.
These Engel structures are not isotopic each other.

3 Characterization on M × I

In this section, we prove Theorem 2. First, we show that the given pair of
Legendrian foliations on the contact manifold (M, ξ) can be extended to an
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Engel structure on M × I with a trivial characteristic foliation so that it has
the given non-negative integer as the minimal twisting number. This implies
Theorem 2-(2). It is also proved that such Engel structures are determined by
the given contact structures, pairs of Legendrian foliations, and non-negative
integers. Next, we construct a homotopy between the given Engel structures
which preserves the trivial characteristic foliation. Then, we apply Theorem 1.2
to show Theorem 2-(1).

3.1 Extension of Engel structures from M × ∂I to M × I .

We show the following Proposition. This implies the second part of Theorem 2.

Proposition 3.1 Let M be a compact orientable 3–manifold. We suppose
that a parallelizable contact structure ξ on M , a pair (F0, F1) of Legendrian
foliations on (M, ξ), and a non-negative integer n ∈ Z≥0 are given. Then
an Engel structure D(ξ,F0,F1, n) = D with a trivial characteristic foliation,
the induced contact structure ξ(D) = ξ , the induced Legendrian foliations
F(M × {i},D) = Fi , i = 0, 1, and the minimal twisting number tw-(D) = n,
is determined up to isotopy by the given ξ , F0 , F1 , and n.

Proof Since the given contact structure ξ is parallelizable, there exists a global
framing of ξ . Let (V0, V1) be a pair of non-vanishing vector fields on M which
spans ξ . We can take this pair so that V0 defines the given Legendrian fo-
liation F0 . Then, the Legendrian directions are described by this framing
(V0, V1). Therefore, we obtain a function g : M → R such that the vector field
(V0· cos g + V1· sin g) generates the given Legendrian foliation F1 , and that it
has its minimum value between 0 and π : 0 < minp∈M g(p) ≤ π . We define the
distribution D(ξ,F0,F1, n) of rank 2 on M × I as the plane field spanned by
the vector fields ∂/∂t and V n , where t ∈ I is a parameter and

V n := V0· cos(t(g + nπ)) + V1· sin(t(g + nπ)), n ∈ Z≥0.

We note that this distribution D(ξ,F0,F1, n) is Engel. It is proved by an easy
calculation as follows. The Lie bracket[

∂

∂t
, V n

]
= (g + nπ)·{−V0· sin(t(g + nπ)) + V1· cos(t(g + nπ))} =: Un

is independent of the distribution D(ξ,F0,F1, n). In addition, the Lie bracket

[V n, Un] = (g + nπ)·[V0, V1]
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is independent of D(ξ,F0,F1, n) and Un because (V0, V1) is a framing of
a contact structure, that is, a completely non-integrable distribution. Then
D(ξ,F0,F1, n) is Engel. The characteristic foliation of this structure is trivial:
L
(
D(ξ,F0,F1, n)2

)
= Span〈∂/∂t〉. It is nice globally on M × I . From the

construction, it is clear that the induced contact structure by the deprolonga-
tion procedure is the given ξ . In addition, the induced Legendrian foliations
on M × {i}, (i = 0, 1), is F (M × {i},D(ξ,F0,F1, n)) = Fi , and the minimal
twisting number is tw-(D(ξ,F0,F1, n)) = n. We observe that this structure
D(ξ,F0,F1, n) depends only on the given ξ,F0,F1 , and n, up to an isotopy.
We show that it is independent of the choices of the framing (V0, V1) of the
given contact structure. Let (Ṽ0, Ṽ1) be another choice of the framing of ξ ,
such that Ṽ0 defines the Legendrian foliation F0 , and that it has the same
orientation as the frame (V0, V1). Then, there exists a matrix valued function,
with a positive determinant,

A(p) =
(
f1(p) 0
f2(p) f3(p)

)
,

which represents a transformation between (Ṽ0, Ṽ1) and (V0, V1):(
V0

V1

)
=
(
f1(p) 0
f2(p) f3(p)

)(
Ṽ0

Ṽ1

)
.

We note that f1 , f3 are non-vanishing functions with the same sign. Then we
have a family of matrix valued functions As(p), s ∈ [0, 1], between A0(p) =

A(p) and A1 = ±
(

1 0
0 1

)
, with positive determinants: |As(p)| > 0. We set

(
V s

0

V s
1

)
:= As

(
Ṽ0

Ṽ1

)
.

It is a family of bases of the given contact structure ξ , between (V 0
0 , V

0
1 ) =

(V0, V1) and (V 1
0 , V

1
1 ) = ±(Ṽ0, Ṽ1). We construct a family Ds , s ∈ [0, 1], of

Engel structures on M × I as above with respect to the bases (V s
0 , V

s
1 ). We

note that we obtain the same Engel structure D1 for both ±(Ṽ0, Ṽ1). These
contact structures coincide at the ends M × ∂I . In fact, the defining vector
fields (V n)s = V s

0 · cos(t(gs + nπ)) + V s
1 · sin(t(gs + nπ)) are taken so that they

determine Fi on M × {i}, i = 0, 1, for all s ∈ [0, 1]. From the construction,
their characteristic foliations are constant: L((Ds)2) = Span〈∂/∂t〉. Accord-
ing to the relative version of Theorem 1.2, this family Ds is described by a
global isotopy. This implies that the induced Engel structure D(ξ,F0,F1, n) is
independent of the choice of the framing of the given contact structure ξ .
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By using the development mappings, the Engel manifold (M×I,D(ξ,F0,F1, n))
above is regarded as a certain subset of the prolongation of ξ . We consider the
development mapping ΦD(ξ,F0,F1,n) : (M × I,D(ξ,F0,F1, n)) → (P̃(ξ), D̃(ξ)).
It is an Engel embedding. In this case, the development mapping ΦD(ξ,F0,F1,n)

is described in terms of V n as follows:

ΦD(ξ,F0,F1,n) : (p, t) 7→ (p, [(V n)(p,t)]),

where [(V n)(p,t)] is a point of P̃(ξp) represented by the line in ξp defined by
(V n)(p,t) . We set Q(ξ,F0,F1, n) := ImΦD(ξ,F0,F1,n) and

Mn(Fi) := ΦD(ξ,F0,F1,n)(M × {i}), i = 0, 1,

that is,

Mn(F0) = {(p, [(V0)p]) | p ∈M},
Mn(F1) = {(p, [V0· cos(g + nπ) + V1· sin(g + nπ)]) | p ∈M}.

As the given contact structure ξ on M is parallelizable, P̃(ξ) is identified with
M × R by the relation

Ψ(V0,V1) : P̃(ξ)→M × R, (p, [(V0· cos s+ V1· sin s)p]) 7→ (p, s),

with respect to the framing (V0, V1). By this identification, Mn(F0) corre-
sponds to the zero-section M ×{0} ⊂M ×R, and Mn(F1) corresponds to the
graph {(p, g(p) + nπ) ∈M × R | p ∈M} of the function g + nπ on M .

At the end of this section, we observe a version of the above proposition for fam-
ilies of Legendrian foliations and minimal twisting numbers. We suppose that a
parallelizable contact structure ξ on M , a family (Fs0 ,Fs1 ), s ∈ [0, 1], of Legen-
drian foliations on (M, ξ), and non-negative integers n(s) ∈ Z≥0 depending on
s ∈ [0, 1] are given. We suppose that n(s) changes one by one. Let (V s

0 , V
s

1 ) be a
family of framings of ξ , such that V s

0 generate Fs0 , s ∈ [0, 1]. Then there exists
a family gs : M → R of functions, such that (V s

0 · cos gs+V s
1 · sin gs) generate Fs1

and n(s)π ≤ minp∈M gs < (n(s)+1)π . In a similar way to the proof of Proposi-
tion 3.1, we construct a family D(ξ,Fs0 ,Fs1 , n(s)) of Engel structures on M×I as
plane fields spanned by ∂/∂t and (V s

0 · cos gs+V s
1 · sin gs). By similar arguments

to the proof of Proposition 3.1, Ds := D(ξ,Fs0 ,Fs1 , n(s)) is a family of Engel
structures on M × I with trivial characteristic foliations, the induced contact
structure ξ(Ds) = ξ , the induced Legendrian foliations F(M × {i},Ds) = Fsi ,
(i = 0, 1), and the minimal twisting numbers tw-(Ds) = n(s). The obtained
family Ds of Engel structures is determined up to isotopy by the given ξ , Fs0 ,
Fs1 , and n(s), as above.

Algebraic & Geometric Topology, Volume 2 (2002)



Engel structures with trivial characteristic foliations 253

3.2 Proof of Theorem 2.

In this Section, we prove Theorem 2-(1). We take J := [−1, 1] as a closed
interval instead of I = [0, 1], for convenience. Let D be an Engel structure
on M × J with the trivial characteristic foliation. This Engel structure has
the induced contact structure ξ = ξ(D), the induced Legendrian foliations
Fi := F(M × {i},D), i = ±1, and the minimal twisting number n = tw-(D).
We show that the given Engel structure D is isotopic to the Engel structure
D(ξ,F−1,F1, n) from Proposition 3.1. This implies that any Engel structure on
M×J which has the same induced contact structure ξ on M , pair of Legendrian
foliations (F−1 , F1) on M × ∂J , and minimal twisting number n, is isotopic
to D(ξ,F−1,F1, n), that is, Theorem 2-(1). We set Ws := M × [−s, s] ⊂M ×J
for s ∈ [0, 1]. We note that the induced contact structure on M for D|Ws are
ξ = ξ(D) constantly for all s ∈ [0, 1]. We set Ft := F(M ×{t},D), t ∈ [−1, 1].
Identifying M × {t} ∈ M × J with M by the standard projection, Ft can be
regarded as a family of Legendrian foliations on (M, ξ). Let n(s) := tw-(D|Ws)
be the minimal twisting number of D restricted to Ws . We note that n(1) =
tw-(D), n(ε) = 0 for sufficiently small ε > 0, and that it is monotone with
respect to s ∈ (0, 1]. According to Proposition 3.1 and its version for families,
we obtain a family D̃s, s ∈ [0, 1], of Engel structures on M × I which have

ξ(D̃s) = ξ, F(M × {0}, D̃s) = F−s, F(M × {1}, D̃s) = Fs,

and tw-(D̃s) = n(s).

Applying a family of diffeomorphisms ψs : M × I → Ws = M × [−s, s], pre-
serving fibres, we obtain a family Ds of Engel structures on each Ws with the
trivial characteristic foliation, which is endowed with the given informations:

ξ(Ds) = ξ, F(M × {±s},Ds) = F±s, and tw-(Ds) = n(s).

Now, we consider the following family Es, s ∈ [ε, 1], of Engel structures on
M × J , where ε > 0 is sufficiently small,

Es :=

{
D on (M × J) \Ws,

Ds on Ws.

We note that Theorem 1.1 guarantees the pasting of Engel structures along
M × {±s}. This family is a path, relative to the ends M × ∂J , between Eε
and E1 = D1 . The structure D1 = D(ξ,F0,F1, n) is determined, up to isotopy,
only by the given contact structure, pair of Legendrian foliations, and non-
negative integer. According to Theorem 1.1, the germ of Engel structure along
M×{0} is determined only by the induced Legendrian foliation F(M×{0},D)
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on M × {0}. Therefore, the structure Eε is isotopic to the given structure D .
We note that the family Es above preserves the trivial characteristic foliation:
L(Es2) ≡ Span〈∂/∂t〉, so we can apply the relative version of Theorem 1.2.
Consequently, the given Engel structure is isotopic, relative to the ends M×∂I ,
to the Engel structure

D(ξ(D),F(M × {−1}),F(M × {1}), tw-(D)),

which depends only on the induced contact structure and Legendrian foliations
on both ends, and the minimal twisting number.

Let us conclude this paper by an open problem. The results of this paper need
some conditions. It is natural and might be interesting to consider more general
cases.

Question Let ξ0 , ξ1 be contact structures on a 3–manifold M , which are
not isomorphic to each other. Is there any Engel structure D on a 4–manifold
M × I , whose characteristic foliation L(D2) is transverse to both M × {0},
M × {1}, and which induce the given contact structures ξ0 , ξ1 on M × {0},
M × {1}, respectively?

We note that there must be leaves of characteristic foliation which do not in-
tersect both ends M × {0}, M × {1}, if such an Engel structure exists.
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