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“ . . . the angel of topology and the devil of abstract algebra fight for the soul
of each individual mathematical domain”

Herman Weyl [W]

1 Introduction

Since 1988, we have witnessed a fascinating development in the theory of 3-
manifold invariants: from Witten’s ideas to Ohtsuki’s finite type invariants.
In this paper we present one of the few nontrivial applications of this theory
by showing how the periodicity of a 3-manifold is reflected in its quantum
invariants.

In section 2 we recall some necessary conditions for periodicity of links in terms
of the Jones polynomial and the Kauffman bracket. Section 3 contains Theorem
7 which states that periodic homology spheres can be presented as results of
surgeries on periodic links. We also relate periodic homology spheres to free
cyclic covers of homology S1 × S2 ’s. In section 4 we recall the definition and
some properties of the SO(3)-quantum invariants associated to a odd prime p.
These are versions of the 3-manifold invariants first described by Witten [Wi],
and shown to be well-defined by Reshetikhin-Turaev [R-T]. Section 5 contains
Theorem 14 which describes how the existence of a Zp action on a homology
sphere is reflected in the Reshetikhin-Turaev-Witten invariants associated to
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826 Gilmer, Kania-Bartoszynska and Przytycki

p-th roots of unity. Related results for Zp actions when the order of the root
of unity is co-prime to p are discussed in [G1] and [C].

In the last section we apply our criterion to the Brieskorn homology spheres,
Σ(2, |n|, |2n− 1|). In particular, we show that the Poincaré homology sphere is
not p-periodic where p is any prime between 7 and 61 (where we stopped the
computer).

For the convenience of the reader, we include an appendix written by the first
author with a direct proof of Theorem 13 . The original proof in [G1] was given
in a more general context.

Research on this paper was partially supported by NSF-DMS-9626818, NSF-
DMS-9971905, NSF-DMS-0203486 and by USAF grant 1-443964-22502.

2 Periodic Links

In this section we recall criteria for periodicity of links in S3 in terms of the
Jones polynomial and the Kauffman bracket. These criteria motivated our main
result, Theorem 14.

Let n be an integer greater than 1.

Definition 1 A link L in S3 is called n-periodic if there is a smooth faithful
Zn -action on S3 , with a circle as the fixed point set, that maps L onto itself,
and where L is disjoint from the fixed point set. Furthermore, if L is an
oriented link, one assumes that a generator of Zn preserves the orientation of
L or changes it to the opposite one.

Given n-periodic link, we know by the positive solution of the Smith Conjecture
[M-B], that the fixed point set γ of the Zn action is an unknotted circle and
this action is conjugate to an orthogonal action on S3 . In other words, if we
identify S3 with R3∪∞, then the fixed point set can be assumed to be equal to
the “vertical” axis together with ∞. Then the generator of Zn is the rotation
ϕ(z, t) = (e2πi/n · z, t), where the coordinates on R3 come from the product
of the complex plane and the real line, C × R . The n-periodic link may be
represented by a ϕ-invariant diagram as in Figure 1.

Let L+, L−, L0 denote three oriented links that are identical except in some
3-ball as shown in Figure 2. The Jones polynomial [J] of oriented links, VL(t) ∈
Z[t±

1
2 ], is defined recursively as follows:

Algebraic & Geometric Topology, Volume 2 (2002)



3-manifold invariants and periodicity of homology spheres 827

...

.

...

......

... ...

...

γ

ϕ

Figure 1: Periodic link diagram

(i) Vo = 1,

(ii) 1
tVL+(t)− tVL−(t) = (

√
t− 1√

t
)VL0(t).

+L -L L 0

Figure 2: Skein triple

The Kauffman bracket [Ka] is a function on the set of unoriented framed links
in R3 . It takes values in the ring Z[A±1] and is uniquely determined by the
rules:

(1) 〈© · · ·©︸ ︷︷ ︸
m

〉 = (−A2 −A−2)m−1 and

(2)
〈 〉

= A
〈 〉

+A−1
〈 〉

.

We assume, as usual, that the diagrams in condition (2) are identical in the parts
not shown, and that the links are given the blackboard framing. The Kauffman
bracket yields a simple definition of the Jones polynomial for oriented links.
Let L be an oriented link in S3 . For L equipped with some framing the writhe
w(L) (or Tait number) of L is the linking number of the oriented link L and
the push-off of L given by the framing of L. We have

VL(t) = (−A3)−w(L)〈L〉,

Algebraic & Geometric Topology, Volume 2 (2002)



828 Gilmer, Kania-Bartoszynska and Przytycki

where A = t−
1
4 .

One of the notable applications of polynomial knot invariants is a criterion for
periodicity discovered by Murasugi [M], Przytycki [P-1] and Traczyk [T-1], as
given in the following theorem.

Theorem 2 Let p be a prime number, and let L be a p-periodic oriented link
in S3. Then

VL(t) ≡ VL(t−1) mod (p, tp − 1)

where VL(t) denotes Jones polynomial in variable t, and (p, tp− 1) is the ideal

in Z[t±
1
2 ] generated by p and tp − 1.

One obtains a similar criterion involving the Kauffman bracket.

Corollary 3 Let L be a p-periodic oriented link where p is prime. Assume
L has a framing which need not be periodic. We have that

〈L〉A ≡ A6w(L)〈L〉A−1 mod (p,A4p − 1),

where we indicate by a subscript that we change the variable from A to A−1.

Recall that a framed link is an embedding of a disjoint collection of annuli into
S3 . In diagrams we assume blackboard framing. We say that a framed link is
n-periodic if it has an n-periodic diagram. In particular, an n-periodic framed
knot must have writhe divisible by n.

Since w(L) ≡ 0 (mod p) for a p-periodic oriented framed link, we have

Corollary 4 If p is prime, L is a p-periodic (unoriented) framed link, and A
is a 2p-th root of unity, then

〈L〉 ≡ 〈L〉 mod (p).

Here and below z̄ denotes the complex conjugate of z.

This last result motivates Theorem 14 which gives a condition that has to be
satisfied by the quantum invariant of a p-periodic pair (M,L), where M is a
homology 3-sphere, L is a colored framed link in M , and p is an odd prime.
On the other hand, Corollary 4 follows from the proof of Theorem 14 by taking
M to be the 3-sphere, and coloring L with one.

Algebraic & Geometric Topology, Volume 2 (2002)



3-manifold invariants and periodicity of homology spheres 829

3 Periodic Manifolds

In this section we show that any periodic homology sphere can be presented
as the result of surgery on a periodic link. We use this to observe that any
periodic homology sphere can be obtained by doing equivariant surgery along
a knot in a simple covering space of a homology S1 × S2 .

Let n be an integer greater than 1. A Zn action is called semi-free if it is free
outside of the fixed point set.

Definition 5 An orientable 3-manifold M is n-periodic if it admits smooth
semi-free action of the cyclic group Zn with a circle as the fixed point set.

We need the following elementary lemma. First fix some notation. Suppose that
Zn acts on M with the fixed-point set equal to a circle γ . Denote the quotients
by M∗ = M/Zn , and γ∗ = γ , and the projection map by q : M →M∗ .

Lemma 6 The map q∗ : H1(M)→ H1(M∗) is an epimorphism.

Proof Let x0 ∈ γ . Since x0 is a fixed-point of the action, any loop based at
q(x0) lifts to a loop based at x0 . Thus q# : π1(M,x0) → π1(M∗, q(x0)) is an
epimorphism, and since H1 is an abelianization of π1 , the map q∗ is also an
epimorphism.

Theorem 7 Let M be a homology sphere. If Zn acts faithfully on M with
the fixed-point set equal to a circle then M is n-periodic and there exists an
n-periodic framed link L ⊂ S3 such that M is the result of surgery on L, and
the linking number of each component of L with the fixed point set for the
action implied by the n-periodicity of L is equal to zero.

Proof It follows from Smith theory [Br] that any faithful Zn action on a
homology sphere which has a circle as a fixed point set has to be semi-free.
Thus M is n-periodic.

The quotient manifold M∗ can be represented as a result of surgery on some
framed link L∗ in S3 . We can assume that L∗ satisfies the following conditions:

(1) γ∗ ∩ L∗ = ∅;
(2) lk(Li∗, γ∗) = 0, for any component Li∗ of L∗ ;

(3) γ∗ is unknotted in S3 .

Algebraic & Geometric Topology, Volume 2 (2002)
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L∗ satisfying the conditions 1-3 can be obtained as follows: Let L′∗ be a
framed link in S3 such that M∗ is a result of surgery on L′∗ . Let L̂∗ denote
the co-core of the surgery. Co-core is a central line, {0} × S1 , of the solid
torus, D2 × S1 , attached to S3 − int(VL′∗) in order to obtain M∗ . As usual,
VL′∗ denotes a tubular neighborhood of L′∗ in S3 . In particular L̂∗ is a framed
link in M∗ such that S3 is a result of surgery on L̂∗ . Since γ∗ is homologically
trivial in M∗ it bounds a surface F∗ . We can use isotopy to push L̂∗ outside
of F∗ , therefore F∗ survives surgery. It has boundary γ∗ and is disjoint from
L∗ (obtained from L′∗ ) in S3 . Conditions (1) and (2) follow.

Now we are ready to unknot γ∗ using the Kirby calculus ([K], [F-R]). Choose
some orientation on γ∗ . We can add unlinked components with framing ±1
to L∗ around each crossing of γ∗ , making sure that arrows on γ∗ run opposite
ways (i.e. the linking number of γ∗ with the new component of L∗ is zero).
Use the K-move to change the appropriate crossings (see Figure 3), and thus
unknot γ∗ . Thus we obtained condition (3) without compromising conditions
(1) and (2). Consider the n-fold cyclic branched covering of S3 by S3 over

γ∗1

Figure 3: Unknotting γ

γ∗ . Let L denote the pre-image of L∗ . Notice that L is n-periodic. We claim
that the result of performing surgery on L is Zn -homeomorphic to M . The
pre-image of each component of L∗ consists of n components permuted by
Zn action, by condition (2). Therefore Zn acts on the result of surgery on S3

along L, (S3, L), with branched set γ∗ and quotient (S3, L∗). By Lemma 6 the
manifold M∗ = (S3, L∗) is a homology sphere. Therefore H1(M∗ − γ∗) = Z ,
and thus M∗ − γ∗ has unique n-fold cyclic covering. As a consequence, the
branched covering of (M∗, γ∗) is also unique. Thus (S3, L) is Zn -homeomorphic
to M .

A Zn -covering space X of a space X∗ is called simple if it is classified by a
map H1(X∗) → Zn which factors through an epimorphism χ to Z [G1, G2].
One can define a signature defect [H] of a simple covering N → N∗ of closed
orientable 3-manifolds as follows. Since N → N∗ is a boundary of a simple Zn
covering space of 4-manifolds W → W∗ , we may define def (N → N∗) to be
def (W →W∗) = nσ(W∗)− σ(W ). This does not depend on the choice of W .

Algebraic & Geometric Topology, Volume 2 (2002)



3-manifold invariants and periodicity of homology spheres 831

Remark 8 The third author has obtained a version of Theorem 7 for any
p-periodic closed oriented 3-manifold M , where p is prime. This appeared in
[PS]. The third author and Sokolov also obtained a similar theorem for free Zp
actions [PS]. More recently Sakuma has shown that every orientation preserving
finite cyclic action on a closed oriented 3-manifold M has an equivariant framed
link description [Sa].

Corollary 9 Suppose that M is an n-periodic homology sphere. Then M can
be obtained by equivariant framed surgery along a knot in a simple covering
of a homology S1 × S2 . Moreover, the signature defect of such a covering is
always even.

Proof Suppose that Zn acts on M with the fixed-point set equal to a circle
γ . Let L be a periodic framed link surgery description of M given by Theorem
7, and let N be given by surgery on the framed link L+ = L ∪ γ , where γ
has framing zero (i.e., N is obtained by performing zero-framed surgery on M
along γ ).

The free action on M \ γ extends to a free Zn -action on N . Denote by N∗
the orbit space of this action. The manifold N∗ can be obtained by doing
zero framed surgery on M∗ along γ∗ . (We keep the notation from the proof
of Theorem 7.) By Lemma 6, M∗ is a homology sphere, so N∗ is a homology
S1 × S2. It follows that the quotient map N → N∗ is a simple Zn -covering
space. By [G1, Prop 4], def (N → N∗) is even.

Let δ be a meridian of γ in M . The curve δ bounds a disk transverse to γ . We
frame δ so its push-off bounds a transverse disk to γ which misses the original
transverse disk. If δ′ denotes the image of δ in N under the surgery on M
along γ then M can be recovered from N by doing surgery along δ′ .

If L is a framed link in S3, the linking matrix of L has off-diagonal entries
given by the pairwise linking numbers of the components, and diagonal entries
given by the linking numbers of the components with their push-offs according
to the framing. Recall that σ(L) denotes the signature of the linking matrix of
L.

Remark 10 With the notation from the proof above, note that L++ = L∪γ∪δ
is another framed link surgery description of M . We have that σ(L) = σ(L+) =
σ(L++).

Algebraic & Geometric Topology, Volume 2 (2002)
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4 SO(3)-Quantum Invariants at odd primes.

Throughout the rest of this paper we assume p is an odd prime. Let M be a
closed, connected, oriented 3-manifold, and J a framed oriented p-colored link
in M , i.e., a link whose components have been assigned nonnegative integers
less than p− 1. We begin this section by recalling the definition of the SO(3)
invariant Ip(M,J), following the description in [M-R].

Suppose that M is represented by a surgery on a framed link L ⊂ S3, and that
J is disjoint from the co-cores of the surgery, so J lies in S3 \ L. We use the
renormalized Kauffman bracket

[L] = −
(
A2 +A−2

)
〈L〉.

Notice that [∅] = 1. Set the variable A to be a primitive root of unity of order
2p. We denote by k a root of unity such that

k2 = A−6−p(p+1)/2.

If p ≡ −1 (mod 4) then Z[A, k] = Z[A]. If p ≡ 1 (mod 4) then Z[A, k] =
Z[A, i]. Elements ei of the skein module of a solid torus are defined recursively
by e0 = 1, e1 = z and

ei+1 = zei − ei−1,

where z is represented by a longitude of the torus. The value of the Kauffman
bracket of the skein element ei , when the solid torus is embedded in S3 in a
standard way, is given by

∆i = (−1)i
A2i+2 −A−2i−2

A2 −A−2
.

By Ωp we denote the following element of the Kauffman bracket skein module
of a solid torus:

Ωp =

p−3
2∑
i=0

∆iei.

Let

η = k
1
2p
A3(A2 −A−2)A

p(p−1)
2

2p∑
m=1

(−1)mAm
2
.

which satisfies

η2[Ωp] = 1, i.e η2 =
−(A2 −A−2)2

p
.

Algebraic & Geometric Topology, Volume 2 (2002)
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Recall that the invariant Ip(M,J) is given by:

Ip(M,J) = k−σL [L(ηΩp) t J ]. (1)

Here [L(ηΩp) t J ] denotes the bracket of the skein obtained by replacing each
component of L by ηΩp, and replacing each component of J by the skein ei,

where i is the color of the component. If one sets A = e2πi(1+p2)/4p , and chooses
k so that η > 0, the invariant Ip is equal to the quantum SO(3)-invariant
τ
SO(3)
p [K-M].

Our criteria for periodicity of links require that we consider invariants modulo
p. From the definition it is only apparent that Ip(M,J) ∈ Z[A, k, 1

p ]. Thus we
will need the following result proved by Murakami [Mu] when J is empty and
generalized to colored links by Masbaum and Roberts [M-R].

Theorem 11 Let J be a framed p-colored link in M, then Ip(M,J) ∈ Z[A, k].
If p ≡ −1 (mod 4) or β1(M) is even (in particular if M is a homology sphere)
then Ip(M,J) ∈ Z[A].

In the proof of our criterion we also use the following integrality result for closed
3-manifolds with non-zero first Betti number. It was proved by Murakami [Mu],
and by Cochran and Melvin [C-M] for empty J . In full generality it follows
from Gilmer’s [G1, Corollary 4].

We adopt the notation:

〈〈M,J〉〉p = ηIp(M,J).

This is suggested by TQFT notation (see the Appendix).

Theorem 12 Suppose that M is connected and has first Betti number non-
zero, and J is a framed p-colored link in M, then 〈〈M,J〉〉p ∈ Z[A, k].

5 SO(3)-Quantum Invariants and Zp-group actions

We will show in this section how the p-periodicity of M is reflected in quantum
SO(3)-invariant at p, assuming that p is an odd prime. We will need the
following theorem of Gilmer [G1]. For the convenience of the reader, a proof
of this theorem is sketched in an appendix. Notice, that if N is a simple Zp
covering space of N∗, then both N and N∗ have first Betti number nonzero.
Thus, by Theorem 12, it makes sense to consider 〈〈N,J〉〉p modulo p.

Algebraic & Geometric Topology, Volume 2 (2002)
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Theorem 13 If (N,J) is a simple Zp covering space of (N∗, J∗), where N∗ is
connected with odd first Betti number, and p is an odd prime, then for some
n ∈ Z, we have:

〈〈N,J〉〉p = k def (N→N∗)n mod (p).

We are ready to state and prove our main theorem. We remark that this
theorem is uninteresting in the case p = 3 as the conclusion always holds
whether M is 3-periodic or not.

Theorem 14 Suppose that M is a homology sphere, and J is a p-colored
framed link in M. If (M,J) is p-periodic and p is an odd prime then

Ip(M,J) = A2j · Ip(M,J) mod (p)

for some integer j .

Proof We are using the notation introduced in the proof of Corollary 9. By
Remark 10, M is the result of surgery along L++ , so:

Ip(M,J) = k−σ(L++)[L++(ηΩp) t J ].

Expanding δ cabled with ηΩp, where δi denotes δ colored with i, we obtain:

Ip(M,J) = k−σ(L+)η

p−3
2∑
i=0

∆i[L+(ηΩp) t J t δi],

which is equal to
p−3

2∑
i=0

∆i

(
ηk−σ(L+)[L+(ηΩp) t J t δi]

)
or, by the definition of 〈〈 〉〉,

p−3
2∑
i=0

∆i〈〈N,J t δi〉〉.

Theorem 13 implies that, modulo p, this is
p−3

2∑
i=0

∆ik
def (N→N∗)ni,

where ni ∈ Z. Since, by Corollary 9, def (N → N∗) is even,

Ip(M,J) = k2s

p−3
2∑
i=0

ni∆i (mod p),
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where s ∈ Z. Noting that ∆i = ∆i , we have that

Ip(M,J) = k4sIp(M,J) (mod p).

The proof shows that phase factor is k2 def (N→N∗). If M is S3, this defect is
zero, and we obtain Corollary 4, as a consequence of the proof of Theorem 14.

One expects similar results for quantum invariants associated to other Lie
groups. These results should be related to Traczyk-Yokota periodicity crite-
ria involving skein polynomials [P-2], [T-2], [Y]. Corollary 5 in [G1] is a first
step in this direction. In fact, subsequent to an earlier version of this paper, the
results of this paper have been generalized to quantum invariants associated to
simple complex Lie algebras by Chen and Le [C-L].

There should be a criterion for periodicity of other 3-manifolds than homology
spheres in terms of their SO(3)-invariants. At present, we do not know how to
prove it since no version of Theorem 13 has been obtained for non-simple Zp
covers.

6 Examples

We illustrate Theorem 14 by considering the Poincaré homology sphere Σ [Po].
It is well known that Σ is 5-periodic since it is the 5-fold branched cyclic cover
of S3 along the trefoil knot. The 5-periodicity is also apparent by presenting Σ
as a result of surgery on a 5-periodic link L pictured in Figure 4 (compare [Go],
[Ro]) with blackboard framing. One can compute I5(Σ) from its description as

(a)  

T

(b)  L

Figure 4: Surgery descriptions of the Poincaré homology sphere

+1 surgery on the right handed trefoil [D] (knot T in Figure 4):

I5(Σ) = 1− 2A+ 2A2 −A3.

Algebraic & Geometric Topology, Volume 2 (2002)
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Thus
I5(Σ) = A−2(1− 2A−1 + 2A−2 −A−3) = A−2I5(Σ)

i.e. j = −1 in our criterion. It also follows from Theorem 14 that Σ is not
7-periodic. We computed I7(Σ) from the same surgery presentation.

I7(Σ) = −2 +A+ 2A3 −A4

One can check that
I7(Σ) 6≡ A2jI7(Σ) (mod 7)

for any j . Thus Σ is not 7-periodic.

More generally, consider the Brieskorn homology spheres Σ(2, |n|, |2n− 1|), for
n odd. Let Kn be a right handed (2, n) torus knot if n is positive, and a
left handed (2,−n) torus knot if n is negative. Denote by Mn the manifold
obtained by +1 surgery along Kn. It was shown by Seifert in [S] that Mn is a
Seifert fibered homology sphere, with three exceptional fibers with multiplicities
2, |n|, and |2n− 1|. Moreover, also according to [S], fixing n, there is only one
homology sphere with such Seifert fibers (up to orientation). Thus Mn is, up to
orientation, the Brieskorn homology sphere Σ(2, |n|, |2n−1|). One can evaluate
Ip(Mn) using the recoupling theory of [K-L, Chapter 9]. To obtain the value
of the bracket of Kn colored with i, use the first part of (9.15) to fuse the
two strands, then apply (9.9) to untwist the resulting theta curve, and finally
evaluate the resulting planar theta curve using (9.10). We obtain:

Ip(Mn) = ηk−1

p−3
2∑
i=0

(−A)i(i+2)(1−n)∆i

i∑
j=0

∆2j(λi i2j )−n

 ,

where [K-L, 9.9]:
λi i2j = (−1)i−jAi(i+2)−j(2j+2).

Lawrence derived the SU(2) invariants of this manifold in a related way [L].

We programmed Mathematica to evaluate Ip(Mn) symbolically and check
whether the conclusion of Theorem 14 holds. Since Mn is p-periodic for any
odd prime p dividing n or 2n− 1, we know the conclusion should hold in this
case. We checked to see if the conclusion held for odd primes 5 ≤ p ≤ 19,
and for odd integers satisfying 3 ≤ |n| ≤ 19. The condition held as expected
whenever p divided n or 2n−1. This happened in 27 cases. It also held for the
following list of ten other pairs of (n, p) : (9, 5), (11, 5), (13, 7), (15, 7), (19, 5),
(−9, 5), (−11, 5), (−13, 7), (−15, 7), (−19, 7). For the 71 other pairs in the
above range, we can say Σ(2, |n|, |2n − 1|) is not p-periodic. Thus we checked
the conclusion for 6× 2× 9 = 108 different pairs of prime p and manifold M .
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3-manifold invariants and periodicity of homology spheres 837

The conclusion of Theorem 14 held in only 37 cases. In 27 of these cases the
manifold is known to be p–periodic, as mentioned above.

In addition, we checked the criterion for the Poincaré homology sphere Σ = M3

for larger values of p, and concluded that Σ is not p-periodic if p is any prime
between 7 and 61 (where we stopped the computer).

Remark 15 Zhang has proven that the only periods for the Poincaré homol-
ogy sphere are 2, 3, and 5, [Z]. More generally, we were informed by Boileau
[Bo] that it follows from the orbifold theorem [Bo-Po] and the previous work
of Meeks and Scott [M-S] and Seifert that if the Brieskorn homology sphere,
Σ(2, |n|, |2n − 1|) (|n| > 2), is Zp periodic (p odd prime) then p divides n or
2n− 1.

Remark 16 Chen and Le [C-L] checked that our periodicity criterion is also
sufficient to prove that the only possible prime periods for the Poincaré homol-
ogy sphere are 2, 3 and 5, and the only possible prime periods for Σ(2, 3, 7)
are 2, 3 and 7.
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Appendix: Quantum invariants of simple free Zp covers

Patrick M. Gilmer

As background for the proof of Theorem 13 we now describe some features of the
topological quantum field theory defined in [BHMV2], and the relation of the functor
(Vp, Zp) to Ip(M,J), and 〈〈M,J〉〉p.
The notion of a p1 -structure provides one solution to the problem of finding extra
structures for surfaces and 3-manifolds so that one can remove the “framing anomalie”
in the Reshetikhin-Turaev-Witten TQFTs. See [BHMV2] for the definition of p1 -
structures.

For a closed 3-manifold M with p1 -structure α, there is an associated integer σ(α)
which specifies the p1 -structure up to homotopy.

Let κ be a cube root of k. Let Rp be the ring Z[A, κ, 1
p ]. The functor Vp assigns a

free finitely generated module over Rp to a surface Σ equipped with a p1 -structure
and some even-colored framed points. This module is denoted Vp(Σ). Let N be a
3-dimensional cobordism with a framed even-colored link J and p1 -structure, whose
boundary is identified with −Σ1 t Σ2 . Link J must meet the boundary in the col-
ored framed points. The functor Zp assigns to N a module homomorphism Zp(N) :
Vp(Σ1)→ Vp(Σ2).

A closed 3-manifold M with p1 -structure and an even-colored framed link J can be
considered as a cobordism from the empty set to the empty set. As Vp(∅) = Rp,
Zp(M) is multiplication by some scalar in Rp. This scalar is denoted 〈M〉p . The
invariant Ip(M,J) is a rescaled version of the invariant 〈M〉p with the dependence on
the p1 -structure removed. One has:

〈M〉p = κσ(α)ηIp(M,J),

and
〈〈M,J〉〉p = κ−σ(α)〈M〉p.

Thus 〈〈M,J〉〉p is 〈M̃, J〉p, where M̃ is M with a reassigned p1 -structure whose σ
invariant is zero. Note that when we use the quantum invariant notations: Ip and
〈〈 〉〉p, we explicitly include J. However when using the TQFT notations: Zp and
〈 〉p, the symbols for the cobordisms M and N etc., implicitly include the data of J
and a p1 structure.

If σ(α) = 3(β0(M) + β1(M)) (mod 6), one has [BHMV2, §2][BHMV1] that 〈M,J〉p ∈
Z[A, 1

p ].

Suppose that E is a cobordism from Σ to itself. Then one may form C(E), the closure
of E , by identifying the two copies of Σ which make up the boundary. We have the
important trace property:

〈C(E)〉p = Trace(Zp(E)).
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If H is a connected cobordism from ∅ to Σ, let [H] denote the image of 1 ∈ Vp(∅)
in Vp(Σ) under Zp(H). The module Vp(Σ) is finitely generated by such elements.
Moreover there is a well-defined non-degenerate Hermitian form 〈 , 〉Σ on Vp(Σ)
given by

〈[H1], [H2]〉Σ = 〈H1 ∪Σ −H2〉p.
This completes the summary of the properties of (Vp, Zp) that we need for the proof
of Theorem 13.

Proof If N∗ and N contain some link components with odd colors, trade them for
even colors using the fact that exchanging e p−1

2 +i with e p−3
2 −i

does not change the
value of 〈〈N〉〉p [BHMV1]. Give N∗ a p1 -structure α∗, with σ(α∗) = 0, so that
〈N∗〉p ∈ Z[A, 1

p ] . By Theorem 12 〈〈N∗, J∗〉〉p ∈ Z[A, k]. Thus 〈N∗〉p ∈ Z[A, k]. There-
fore 〈N∗〉p ∈ Z[A, k] ∩Z[A, 1

p ] = Z[A].

N acquires an induced p1 -structure α. By [G2, Lemma 4], we have that 3 def (N →
N∗) = −σ(α). Since k = κ3, we have that 〈〈N, J〉〉 = k def (N→N∗)〈N〉p.

Since N → N∗ is simple, it can be defined using reduction modulo p of some epimor-
phism χ : H1(N∗)→ Z . Let Σ be a connected surface in N∗ which is Poincare dual to
the class of χ in H1(N∗). Let E denote N∗ slit along Σ. The manifold E is connected
and we may regard E as a cobordism from Σ to Σ. We denote the composition in the
cobordism category of E with itself n times by En. We have that N∗ = C(E), and N
is diffeomorphic to C(Ep). Thus 〈N∗〉p = Trace(Zp(E)), and 〈N〉p = Trace((Zp(E))p),

We will show below that there is a matrix M whose coefficients are algebraic integers
such that Trace(M) = Trace(Zp(E)), and Trace(Mp) = Trace(Zp(E)p). Assuming
the existence of M, we now complete the proof.

We have that Trace(M) =
∑

i λi, where {λi} denotes the list of eigenvalues of M,
with multiplicities. Each λi is an algebraic integer as it satisfies the characteristic
polynomial of M, whose coefficients are algebraic integers. Moreover Trace(Mp) =∑
i λ

p
i . Moreover

∑
i λ

p
i − (

∑
i λi)

p is p times an algebraic integer, since
(
p
j

)
= 0

(mod p) for 0 < j < p.

So 〈N〉p − (〈N∗〉p)p is p times an algebraic integer. As 〈N∗〉p ∈ Z[A], we have that
(〈N∗〉p)p is congruent modulo p to an ordinary integer, say n. Thus 〈N〉p−n is p times
an algebraic integer. It follows that 〈〈N, J〉〉 − k def (N→N∗)n is p times an algebraic
integer. This is the conclusion of the theorem.

Thus we only need to find M. Let Sp(Σ) denote the Z[A, κ] submodule of Vp(Σ)
generated by all elements of the form [H ] where H is a connected cobordism from ∅
to Σ. As this set spans Vp(Σ) over Rp, we have that Sp(Σ)⊗Z[A,κ] Rp = Vp(Σ).

We claim that Sp(Σ) is a finitely generated projective Z[A, κ] -module. To see this
pick a finite set of generators: {[Hi]}1≤i≤m for Vp(Σ) where Hi : ∅ → Σ are connected.
We have an injective map

Sp(Σ)→ Z[A, κ]m,
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given by

[H ] 7→ 1
η

(〈[H ], [H1]〉Σ, · · · , 〈[H ], [Hm]〉Σ).

The reason that this map takes values in Z[A, κ]m is Theorem 11. As Z[A, κ] is
a Dedekind domain, a submodule of Z[A, κ]m is necessarily finitely generated and
projective [Ja, Proposition 10.12].

The Z[A, κ] submodule Sp(Σ) of Vp(Σ) is preserved by Zp(E) : Vp(Σ)→ Vp(Σ). This
is seen as follows. Given a connected H : ∅ → Σ, Zp(E)[H ] = [H ∪Σ E], and H ∪Σ E
is connected. We denote the induced map by Z : Sp(Σ)→ Sp(Σ).

There is an ideal J in Z[A, κ] such that Sp(Σ)⊕J ≈ Z[A, κ]l , where l = dimVp(Σ)+1
[Ja, Theorem 10.14]. So, denoting by 0J the zero map from J to itself,

Trace(Zp(E)) = Trace(Z ⊕ 0J ) = Trace(M),

where M is a matrix which represents the endomorphism Z ⊕ 0J of free Z[A, κ]
modules. Similarly

Trace(Zp(Ep)) = Trace(Zp ⊕ 0J ) = Trace(Mp).
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