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On the CAT(0) dimension of 2-dimensional
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Abstract Let K be a 2-dimensional finite flag complex. We study the
CAT(0) dimension of the ‘Bestvina-Brady group’, or ‘Artin kernel’, ΓK .
We show that ΓK has CAT(0) dimension 3 unless K admits a piecewise
Euclidean metric of non-positive curvature. We give an example to show
that this implication cannot be reversed. Different choices of K lead to
examples where the CAT(0) dimension is 3, and either (i) the geometric
dimension is 2, or (ii) the cohomological dimension is 2 and the geometric
dimension is not known.
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Let Γ be a countable group. We denote the cohomological dimension of Γ
by cd(Γ) and the geometric dimension by gd(Γ). See [7], pp 184–5, for def-
initions of these notions. It was shown by Eilenberg and Ganea [9] that if
cd(Γ) ≥ 3 then cd(Γ) = gd(Γ). The same is true if cd(Γ) = 0 (Γ trivial), or
cd(Γ) = 1 (by the Stallings–Swan Theorem [11, 12]). There remains however
the possibility that there exists a group Γ with cd(Γ) = 2 but gd(Γ) = 3,
that is, a counter-example to the so-called Eilenberg-Ganea Conjecture. In the
search for such an example, two promising families of groups have been pro-
posed. Both constructions begin by choosing a finite flag 2-complex K which
is acyclic but not contractible, such as, for example, any finite flag subdivision
of the 2-spine of the Poincaré homology sphere. For the first family, due to
Bestvina and Davis, one considers a torsion free finite index subgroup GK of
the right-angled Coxeter group associated to the 1-skeleton K1 . In the second
case (Bestvina-Brady [1]) one considers the kernel ΓK of the length homomor-
phism on the right-angled Artin group associated to K1 . These groups may be
defined for an arbitrary finite flag complex K . In the case of interest, where
K is a non-contractible, acyclic flag 2-complex, the groups GK and ΓK are
known to have cohomological dimension 2 but their geometric dimensions are
not known.

c© Geometry & Topology Publications



922 John Crisp

Metric spaces of global nonpositive curvature, or CAT(0) spaces, provide a
natural supply of contractible spaces. Moreover, in many cases the CAT(0)
condition, and hence contractibility of a given space, may be easily verified in
terms of local geometric information. This motivates our interest in CAT(0)
spaces and group actions on these spaces, and leads us to the notion of the
CAT(0) dimension of a group (we adopt the definition used by Bridson in [5]):

dimss(Γ) = min(D ∪ {∞}) , where

D = {dim(X) : X is a complete CAT(0) space on which
Γ acts properly by semi-simple isometries} .

Here dim(X) denotes the covering dimension of a metric space X (see [10]).
Note that D may well be an empty set (i.e. no such actions exist) in which case
dimss(Γ) =∞.

Let K be an arbitrary finite 2-dimensional flag complex. The main result of
this paper (Theorem 2.1) states that, unless the 2-complex K is aspherical (in
fact, unless it admits a piecewise Euclidean metric of nonpositive curvature),
the group ΓK does not act properly semi-simply on any 2-dimensional CAT(0)
space, and hence has CAT(0) dimension 3. In particular, dimss(ΓK) = 3 in
the case where K is acyclic but not aspherical, as for example when K is a
flag decomposition of the 2-spine of the Poincaré homology sphere (Corollary
2.2). However, we do not rule out the possibility that dimss(ΓK) = 2 for
some aspherical but non-contractible flag 2-complex K . We note also that this
result is still a very long way from showing that some ΓK with cohomological
dimension 2 has geometric dimension 3. It merely indicates, as one might
already expect, that for these examples a 2-dimensional Eilenberg-MacLane
complex will not be so easy to find, if in fact such a complex exists.

Theorem 2.1 is a result of the fact that the group ΓK contains many ‘overlap-
ping’ Z×Z subgroups, which imply the existence of flat planes embedded in any
CAT(0) space on which the group acts. Our argument proceeds by studying
how these flat planes interact. The Bestvina-Davis examples, GK , also contain
Z×Z subgroups, however they arise in a less regular manner than in the Artin
kernels, and the present techniques seem less applicable. It would be interesting
to know whether similar results hold for the groups GK .

It is already known that requiring that a group act properly semi-simply on
a CAT(0) space imposes constraints both on the group and on the dimen-
sion of the space. For example, the Baumslag-Solitar groups BS(n,m) =
〈x, t|t−1xnt = xm〉, for 1 ≤ n < m, have geometric dimension 2 but do not
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admit any proper semi-simple actions on CAT(0) spaces (which may be seen
by considering the translation length of x). There are also recent examples
given of finitely presented groups Γ having gd(Γ) = 2 but dimss(Γ) = 3 (see
[3, 5]). We note that Bridson’s example [5] is actually an index two subgroup
of a group with CAT(0) dimension 2. The examples of both [3] and [5] are all
CAT(0) groups, that is they act properly and cocompactly on CAT(0) spaces.

In Corollary 2.3 we give a simple method for constructing infinitely many further
examples of finitely presented groups with geometric dimension 2 but CAT(0)
dimension 3. These are the groups ΓK where K is any flag triangulation of
a contractible 2-complex which does not admit a CAT(0) metric. Zeeman’s
dunce hat is such a complex. We note that the 3-dimensional CAT(0) actions
which are known to exist for these groups are semi-simple, but not cocompact.
It is not known whether any of the examples given by Corollary 2.3 are CAT(0)
groups.

In the last section of the paper we give a refinement (Theorem 3.1) of the main
result which, in the case that K is a simply-connected finite flag 2-complex,
leads to an “if and only if” statement. This allows us to give an example of a
group ΓK where K admits a CAT(0) piecewise Euclidean metric, but where
we still have gd(ΓK) = 2 and dimss(ΓK) = 3. Since submission of this paper,
Noel Brady has informed me that this particular example has a cubic Dehn
function [2], and so cannot be a CAT(0) group.

We close with the following remark: all the groups Γ considered in this paper
have the property that every finite index subgroup of Γ contains a subgroup
isomorphic to Γ. Thus all the examples given in this paper of 2-dimensional
groups with CAT(0) dimension 3 have the further property that every finite in-
dex subgroup has CAT(0) dimension 3 as well. This distinguishes our examples
from the example given by Bridson in [4] which has an index 2 subgroup with
CAT(0) dimension 2. On the other hand, it is not known whether the CAT(0)
dimension can drop when passing to finite index subgroups in any of the Artin
group examples given in [2].
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Jens Harlander, Ian Leary and the referee for many helpful comments and
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at the UMPA ENS-Lyon. I acknowledge the support of the CNRS during that
period, and also wish to thank the members of the Unité de Mathématiques
Pures et Appliquées, ENS-Lyon, for their hospitality.
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1 Some CAT(0) geometry

We introduce just the basic concepts of CAT(0) geometry which we will need
here. We refer to [6] for details.

Let (X, d) be a metric space. By a geodesic segment with endpoints x and y ,
usually denoted [x, y], we mean the image of an isometric embedding of the
closed interval [0, d(x, y)] into X such that the endpoints are mapped to x
and y . A geodesic triangle ∆(x, y, z) in X is simply a union of three geodesic
segments [x, y]∪ [y, z]∪ [z, x]. Note that ∆ need not be uniquely determined by
the three points x, y and z . However, for every triple x, y, z ∈ X there is (up
to isometry) a unique comparison triangle ∆′(x, y, z) in the Euclidean plane E2

which has vertices x′, y′, z′ such that dE2(x′, y′) = d(x, y), dE2(y′, z′) = d(y, z),
and dE2(x′, z′) = d(x, z). In the case that x is distinct from both y and z , we
write ∠′x(y, z) for the angle at x′ between the sides [x′, y′] and [x′, z′] in the
comparison triangle ∆′ .

There are various equivalent formulations of global nonpositive curvature (for
geodesic spaces) in terms of comparison triangles (see [6], Chapter II.1). We
will make use of the following one:

Given distinct points x, y, z ∈ X and geodesic segments [x, y], [x, z] one defines
the (Alexandrov) angle ∠([x, y], [x, z]) between the two geodesic segments to be

lim
ε→0

sup{∠′x(p, q) : p ∈ [x, y], q ∈ [x, z] and 0 < d(p, x), d(q, x) < ε} .

A geodesic metric space X (one in which there is a geodesic segment joining
any pair of points) is said to be a CAT(0) space if, for every geodesic triangle
∆(x, y, z) with distinct vertices, the Alexandrov angle between any two sides
of ∆ is no greater than the corresponding angle in the comparison triangle
∆′(x, y, z) in E2 .

This definition leads quickly to the following:

Lemma 1.1 Let X be a CAT(0) space, and P = P (v1, v2, . . . , vm) a geodesic
polygon in X with distinct vertices v1, v2, . . . , vm (m ≥ 3) and sides [vi, vi+1]
for 1 ≤ i ≤ m (indices mod m). Write φi = ∠([vi, vi−1], [vi, vi+1]) for the angle
of the polygon at vi , for i = 1, . . . ,m. Then

angle sum of P =
m∑
i=1

φi ≤ (m− 2)π .
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Proof If m = 3 then the result follows directly from the CAT(0) inequal-
ity. Otherwise, take the (unique) geodesic segment [v1, v3] to form a triangle
∆(v1, v2, v3) and an (m− 1)-gon P ′(v1, v3, . . . , vm). Let ψ1 , ψ2(= φ2) and ψ3

be the angles of ∆, and φ′1, φ
′
3, φ4, . . . , φm the angles of P ′ . Then, by induction

on the number of sides of a polygon, we have

ψ1 + φ2 + ψ3 ≤ π , and (1)
φ′1 + φ′3 + φ4 + · · · + φm ≤ (m− 3)π (2)

But φ1 ≤ φ′1 + ψ1 and φ3 ≤ φ′3 + ψ3 , so that the result follows immediately by
adding the two inequalities (1) and (2).

Let g be an isometry of a metric space (X, d). The translation length of g ,
denoted by `(g), is defined to be

`(g) = inf{d(x, gx) |x ∈ X} ,

and the minset of g , denoted by Min(g), is defined to be the possibly empty
set

Min(g) = {x ∈ X | d(x, gx) = `(g)} .

An isometry of a CAT(0) space is called semi-simple if it has a nonempty
minset. If g is semi-simple with nonzero translation length then we say that g
is hyperbolic. In this case any g -invariant geodesic line in X shall be called an
axis of g or g-axis. By [6] Proposition II.6.2, the g -axes all lie in Min(g).

The following statements may be found in [6], Chapter II.6. Let g be a semi-
simple isometry of a CAT(0) space X . Then Min(g) is always a closed, convex
subspace of X . If `(g) 6= 0 then Min(g) is isometric to the metric product of R
with a CAT(0) space Y , where each R-fibre is an axis of g . The element g acts
on Min(g) by translating along the R factor and fixing the Y factor pointwise,
and each isometry of X which commutes with g leaves Min(g) invariant while
respecting the product structure. Moreover, if g belongs to a group Γ of semi-
simple isometries acting properly on X then CΓ(g)/〈g〉 acts properly by semi-
simple isometries on Y . (c.f: Propositions II.6.9-10 of [6]). Here CΓ(g) denotes
the centralizer of g in Γ.

We wish to restrict our attention now to group actions on 2-dimensional spaces.
The following is a special case of Bridson’s Flat Torus Theorem [4, 6]. We
refer to [10] for the theory of ‘covering dimension’. We note that the covering
dimension of a simplicial complex agrees with the (simplicial) dimension, and
that the covering dimension of a metric space is bounded below by the dimension
of any subspace.
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Proposition 1.2 Let A be a free abelian group of rank 2 acting properly by
semi-simple isometries on a CAT(0) space X of covering dimension 2. Then
Min(A) = ∩a∈AMin(a) is an A-invariant isometrically embedded flat plane
(∼= E2 ) and the group A acts by translations on Min(A) with quotient a 2-
torus.

Proof By the Flat Torus Theorem, Min(A) is non-empty and splits as a prod-
uct Y × E2 , where each fibre {y} × E2 has the desired properties. The dimen-
sion constraint ensures that Y consists of precisely one point. For if p, q ∈ Y
are distinct points then, by convexity, Y contains the geodesic segment [p, q],
and hence X contains a subspace [p, q] × E2 of dimension 3, contradicting
dim(X) = 2.

Notation Suppose that A is a free abelian group of rank 2 acting properly
by semi-simple isometries on a CAT(0) space X of covering dimension 2. For
any pair of nontrivial elements x, y ∈ A, we write θ(x, y) for the angle between
any positively oriented x-axis and any positively oriented y -axis in Min(A).
More precisely

θ(x, y) = ∠([p, x(p)], [p, y(p)]) , for any p ∈Min(A) .

Note that 0 < θ(x, y) < π in the case that x and y generate A.

We now prove the following Lemma.

Lemma 1.3 Suppose that Γ is a group acting properly by semi-simple isome-
tries on a CAT(0) space X of covering dimension 2. Suppose that we have
a cyclic sequence of m ≥ 4 group elements a1, a2, . . . , am = a0 of Γ (indices
taken mod m) such that, for each i = 1, . . . ,m, we have

(i) 〈ai−1, ai+1〉 = F2 (free group of rank 2), and

(ii) 〈ai, ai+1〉 ∼= Z× Z.

Then

m∑
i=1

θ(ai, ai+1) ≥ 2π .

Proof For i = 1, 2, . . . ,m, write Π(i, i + 1) for the flat plane Min(〈ai, ai+1〉)
in X (see Proposition 1.2). Let C(i) denote the convex closure of Π(i− 1, i) ∪
Π(i, i + 1) in X .
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Fix i ∈ {1, . . . ,m}. Note that C(i) is contained in Min(ai) (by convexity
of the minset), and that Min(ai) is isometric to T × R where, since X is 2-
dimensional, T must be an R-tree (see Lemma 3.2 of [5] for more detail). With
respect to this decomposition, Π(i − 1, i) ∼= τ × R and Π(i, i + 1) ∼= σ × R,
where τ and σ are the axes in T for the elements ai−1 and ai+1 respectively,
and C(i) ∼= H × R where H is the convex closure in T of τ ∪ σ .

By hypotheses (i) and (ii) the elements ai−1 and ai+1 generate a rank 2 free
group which commutes with ai and therefore acts properly semi-simply on T .
It follows that their axes τ and σ in T are either disjoint, or intersect in
a closed interval of finite length. We define the finite (possibly zero) length
closed interval I = I(i) in T as follows. If τ and σ are disjoint, then I is the
unique shortest geodesic segment joining them. In this case H = τ ∪ I ∪ σ .
Otherwise, we set I = τ ∩ σ .

Now define the subspace A(i) = I×R of C(i), noting that A(i) separates each
of Π(i− 1, i) and Π(i, i + 1) into two 〈ai〉-invariant components.

For each i = 1, . . . ,m, define Q(i, i + 1) to be the component of Π(i, i + 1) \
(A(i) ∪ A(i+ 1)) such that both ai(Q(i, i + 1)) and ai+1(Q(i, i + 1)) lie again
in Q(i, i+ 1). This is a sector of the plane with angle θ(ai, ai+1) and bounded
by positive semi-axes for ai and ai+1 respectively.

Again fix i ∈ {1, . . . ,m}. Now, for some p, q ∈ I(i) and r, s ∈ R, we may write

Q(i− 1, i) ∩A(i) = {p} × {t ∈ R : t ≥ r} , and
Q(i, i + 1) ∩A(i) = {q} × {t ∈ R : t ≥ s} .

Let t0 = max(r, s) and define

B(i) = [p, q]× {t ∈ R : t ≥ t0} ,
µ(i) = {p} × {t ∈ R : t ≥ t0} , bi = (p, t0) ∈ µ(i) , and

Q̂(i, i+ 1) = B(i) ∪Q(i, i+ 1) .

These definitions are illustrated in Figure 1 below. Note that the ray µ(i) is
common to both Q̂(i − 1, i) and Q̂(i, i + 1). Also, Q̂(i, i + 1) is contained in
the convex set C(i).We now choose, for each i = 1, . . . ,m, a point vi in µ(i),
different from the basepoint bi of the ray µ(i). These points may be chosen
sufficiently far along their corresponding rays that the unique geodesic segment
in X from vi to vi+1 lies wholly in Q̂(i, i + 1). It is also easy to arrange
that the vi are mutually distinct. We now apply Lemma 1.1 to the polygon
P = P (v1, v2, . . . , vm). See Figure 1.

For each i = 1, . . . ,m, write

αi = ∠([vi, vi−1], [vi, bi]) and βi = ∠([vi, vi+1], [vi, bi]).
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Figure 1: Examples of C(i) and the construction of the polygon P (v1, .., vm)

From the Euclidean geometry of Π(i, i+ 1) we have, for each i,

βi + αi+1 + θ(i, i+ 1) = π . (3)

Note that by choosing the points vi equidistant from their corresponding base-
points bi and sufficiently far away, we may suppose that the angles αi and βi
are all acute (in fact αi+1 and βi approach one another as d(vi, bi) = C →∞,
since for any fixed point b in the vicinity of either bi or bi+1 , the triangle
∆(vi, vi+1, b) will tend towards an isosceles triangle).

As in Lemma 1.1, write φi = ∠([vi, vi−1], [vi, vi+1]). By measuring in the convex
subspace C(i) of X , and supposing that αi and βi are acute, it is easily seen
that

φi = αi + βi . (4)

Combining (3) and (4), and applying Lemma 1.1, we now have
m∑
i=1

θ(i, i+ 1) = mπ −
m∑
i=1

φi ≥ 2π ,

completing the proof.

Remark We have tried to make the proof of the above Lemma as elementary
as possible. The argument may be simplified considerably by using the fact
that, if X is a complete CAT(0) space, then its boundary ∂X (with the Tits,
or angular, metric) is a complete CAT(1) space (see Theorem II.9.13 of [6]).
Each flat sector Q(i, i + 1) determines a geodesic segment of length θ(i, i+ 1)
between the points a+∞

i and a+∞
i+1 in ∂X . The essence of the argument is to
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see that the union of these segments forms a locally geodesic circle in ∂X and
hence must have total length at least 2π . (Local geodicity at a+∞

i comes from
the fact that, by the dimension constraint, the minset Min(ai) is isometric to
T ×R, where T is an R-tree, and is convex in X ). Note however that the more
elementary proof makes no use at all of the hypothesis that X be complete.

2 Application to Artin kernels

A simplicial complex is called a flag complex if whenever n + 1 vertices span
a complete graph in the 1-skeleton they span an n-simplex in K . Let K be
a finite connected 2-dimensional flag complex. Let V(K) denote the set of
vertices of K and E(K) the set of ordered pairs (u, v) ∈ V(K) × V(K) such
that u and v are distinct vertices joined by an edge in K . The elements
(u, v) ∈ E(K) are thought of as directed edges of K .

The right-angled Artin group associated to the 1-skeleton of K is the group

AK = 〈V(K) | uv = vu if (u, v) ∈ E(K)〉 .
The fact that K is a 2-dimensional flag complex ensures that mutually com-
muting subsets of the generating set V(K) contain at most three elements,
and that whenever one sees three distinct mutually commuting generators they
span a 2-simplex in K . In fact AK acts freely on a 3-dimensional CAT(0) cube
complex [1], so that

cd(AK) = gd(AK) = dimss(AK) = 3 .

Let l : AK → Z denote the ‘length’ homomorphism which takes every generator
in V(K) to 1. We define the Artin kernel, or Bestvina-Brady group, to be the
group

ΓK = ker(l : AK → Z) .

Since K is a connected complex, it follows (see [8]) that ΓK is generated by
the set

G(K) = {x(u,v) = u−1v : (u, v) ∈ E(K)} .
In fact, in [8], Dicks and Leary show that a complete presentation of ΓK may
be obtained by taking as relators all words xn(u1,u2)x

n
(u2,u3) · · · xn(uk,u1) where the

sequence of edges (u1, u2), (u2, u3), . . . , (uk, u1) ∈ E(K) forms a directed cycle
in K , and where n ∈ Z. In particular, we have the following relations in ΓK :

x(v,u) = x−1
(u,v) for all (u, v) ∈ E(K) ,

x(u,v)x(v,w) = x(u,w) = x(v,w)x(u,v) whenever u, v,w span a 2-simplex in K .
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It is known, from [13], that if L is a full subcomplex of K , then the natural map
AL → AK is injective. For L < K , we identify ΓL and AL with their images
in ΓK and AK respectively, via this map. In particular, if σ is a 2-simplex in
K , then Γσ is a free abelian group of rank 2 sitting inside Aσ ∼= Z× Z× Z.

Before stating the following Theorem we recall that a geodesic metric space is
said to have nonpositive curvature if it is locally CAT(0), i.e: if every point has a
convex open neighbourhood which is CAT(0) with the induced metric. If X is a
complete geodesic metric space of nonpositive curvature then its universal cover
X̃ is a CAT(0) space (with the induced length metric). This is a generalisation
of the Cartan-Hadamard Theorem (see [6] Chapter II.4 for a discussion). Any
CAT(0) space is contractible ([6] II.1.5), so that in the above situation X̃ is
contractible and X is aspherical. We now have the following:

Theorem 2.1 Let K be a finite connected 2-dimensional flag complex. If ΓK
acts properly by semi-simple isometries on a 2-dimensional CAT(0) space X ,
then K admits a complete piecewise Euclidean metric of nonpositive curvature,
and in particular, K is aspherical.

Proof We define a piecewise Euclidean metric on K as follows. Firstly define
a Euclidean metric on each 2-simplex σ of K in such a way that the length of
each edge (u, v) of σ is equal to the translation length of x(u,v) on X . (That
this is always possible will become clear in the following paragraph). Now, as
in [6] Chapter I.7, there is a complete geodesic metric on K defined by setting
d(x, y) to be the infimum of the lengths of all piecewise linear paths from x to
y in K (where the length of such a path is just the sum of the lengths of its
linear segments as measured inside the individual simplexes).

Suppose that u, v,w span a 2-simplex σ in K . The elements x(u,v) , x(u,w) and
x(v,w) generate a rank two abelian subgroup Γσ of ΓK so that, by Proposition
1.2, their minsets intersect in a Γσ -invariant flat plane Π. Take any point
W ∈ Π and let ∆ denote the triangle in Π with vertices W , V = x(v,w)(W ) and
U = x(u,w)(W ). Then by the ‘triangle relation’ in Γ(K) we have x(u,v)(V ) = U ,
and clearly the triangle ∆(U, V,W ) is isometric to σ(u, v,w). In particular, σ
will have an angle at w precisely equal to θ(x(v,w), x(u,w)), and similarly for the
other angles.

We recall ([6] Chapter II.5) that a 2-dimensional piecewise Euclidean metric
complex K is nonpositively curved if and only if it satisfies the link condition,
that every simple loop in Lk(v,K) has length at least 2π , for every vertex v
in K . With the information given in the previous paragraph, it now follows
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immediately from Lemma 1.3 that the given piecewise Euclidean structure on
K satisfies the link condition at every vertex, and hence is nonpositively curved.
(Since K is a flag 2-complex, the link of any of its vertices is a graph in which
all circuits have edge length at least 4. With regard to hypotheses (i) and (ii) of
Lemma 1.3, it is not too hard to see that given distinct edges (u, v) and (u′, v′)
the elements x(u,v) and x(u′,v′) always generate either Z×Z or a free subgroup
Z ? Z according to whether or not the two edges lie in a common simplex).

Let K be a finite acyclic flag 2-complex with nontrivial fundamental group.
It is known that cd(ΓK) = 2 (Bestvina and Brady [1]), and that gd(ΓK) ≤
gd(AK) = 3, but it is unknown whether or not the geometric dimension of ΓK
agrees with the cohomological dimension. (Note, however, that if K is acyclic
and has trivial fundamental group then it is contractible and the Bestvina-
Brady argument shows that cd(ΓK) = gd(ΓK) = 2.) There are examples of
acyclic 2-complexes which are not aspherical. This happens, for instance, if
the acyclic complex has nontrivial torsion in its fundamental group. One such
example is the spine of the Poincaré homology sphere, namely the quotient of
the dodecahedral tiling of S2 in which opposite faces are identified with a π

5
twist. The fundamental group of this complex is finite. Theorem 2.1 now gives:

Corollary 2.2 Let K be a finite acyclic flag 2-complex whose fundamental
group has nontrivial torsion. Then dimss(ΓK) = 3 while cd(ΓK) = 2. In these
cases gd(ΓK) is not known.

If K is a contractible complex then the Morse theory argument used in [1]
shows that gd(ΓK) = 2. In this case we have the following:

Corollary 2.3 Let K be a finite contractible flag 2-complex which has no free
edges. Then dimss(ΓK) = 3 while gd(ΓK) = 2. In these cases ΓK is finitely
presented (see [1]; an explicit presentation is given in [8]) and FP∞ (c.f. [1]).

The hypotheses on K ensure that it cannot admit a piecewise Euclidean metric
of nonpositive curvature. The “no free edges” condition implies that any such
metric would have the geodesic extension property (see Proposition 5.10 of
[6]), while contractibility implies that the metric would be (globally) CAT(0).
Together these condition force the metric to be unbounded, contradicting K
finite. Zeeman’s dunce hat D (a 2-simplex ∆(a, b, c) with oriented edges (a, b),
(a, c) and (b, c) all identified) is contractible with no free edges. Thus, for
example, any flag triangulation of D will satisfy the hypotheses of Corollary
2.3.
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3 Refinement of Theorem 2.1

As in the previous section, let K be a finite connected 2-dimensional flag com-
plex. Suppose also that K is given a piecewise Euclidean metric. We associate
to K a metric graph L(K) as follows. The vertex set of L(K) is defined to
be the set E(K) of oriented edges of K . There is an edge of L(K) between
(u, u′), (v, v′) ∈ E(K) if (u, u′) and (v, v′) are distinct edges of a common 2-
simplex σ in K and either u = v or u′ = v′ . The length of such an edge of
L(K) is defined as the angle in σ between the two sides in question. The situ-
ation of a single simplex is illustrated in Figure 2. Each simplex contributes to
L(K) a circle of length precisely 2π . These are identified pairwise along “great
0-circles” (pairs of antipodal points) according to the edge identifications be-
tween adjacent 2-simplexes in K . Note that L(K) also contains, as a locally
isometrically embedded subgraph, the link of each vertex in K . Thus Theorem
2.1 is a consequence of the following.

u

v

w

(u,v)

(v,u) (v,w)

(w,v)

(w,u)(u,w)

σ :

(σ)L

Figure 2: Defining L(K) – the contribution from a 2-simplex σ

Theorem 3.1 Let K be a finite connected 2-dimensional flag complex. If ΓK
acts properly by semi-simple isometries on a 2-dimensional (complete) CAT(0)
space X , then K admits a piecewise Euclidean metric such that L(K) is a
CAT(1) metric graph (or equivalently L(K) contains no simple closed circuit
of length strictly less than 2π).

Proof We will use the fact, as pointed out in the remark following Lemma
1.3, that if X is a complete CAT(0) metric space then its Tits boundary ∂X
is CAT(1). In particular, any locally geodesic circle in ∂X has length at least
2π .
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The metric on K is defined exactly as in the proof of Theorem 2.1. For any 2-
simplex σ in K , let Π(σ) denote the flat plane in X associated with Γσ . Then
L(σ) is isometric to ∂Π(σ) by an isometry which associates a vertex (u, v) of
L(σ) with the boundary point x+∞

(u,v) . Since Π(σ) is a convex subspace of X
its boundary embeds canonically as a locally convex subspace of ∂X . Thus
we have a locally isometric map L(σ) → ∂X for each 2-simplex σ . (In fact,
this map is isometric since L(σ) has diameter π). Combining these maps we
have a map ψ : L(K) → ∂X which we claim is locally isometric. To check
this, it suffices to look at a neighbourhood of each vertex (u, v) of L(K). Such
a neighbourhood may be chosen to lie inside the subgraph L(N(u, v)), where
N(u, v) denotes the union of all 2-simplices containing the edge (u, v). Now the
Π(σ) for σ ∈ N(u, v) are mutually distinct planes all of which lie in Min(x(u,v)).
Since this minset is a convex subspace and, by the dimension constraint on X ,
has the structure of T × R where T is an R-tree, it follows that L(N(u, v))
now embeds locally isometrically in ∂X . This embedding is with respect to the
intrinsic metric in the subgraph L(N(u, v)), not the metric induced from L(K)
(these metrics do not agree if the subgraph is not convex). However, locally
these metrics do agree, showing that ψ is a local isometry.

Since the local isometry ψ maps simple closed circuits in L(K) to locally
geodesic circles of the same length in ∂X it now follows that all simple closed
circuits in L(K) have length at least 2π and hence that L(K) is CAT(1).

[Note that the hypothesis that X be complete is actually artificial, since the
same result may be obtained with a little more effort by reworking the original
proof of Theorem 2.1. It is hypothesis (i) of Lemma 1.3 which needs refining so
as to allow the case where ai = ai−1ai+1 , meaning that the three consecutive
elements lie in the same Z×Z subgroup but in such a way that one will always
have θ(ai−1, ai+1) = θ(ai−1, ai) + θ(ai, ai+1).]

Suppose now that K is a finite simply-connected piecewise Euclidean flag com-
plex. We now define a piecewise Euclidean complex T (K) as follows. For each
2-simplex σ in K let T (σ) denote the the union of two isometric copies of σ
glued along their edges as shown in Figure 3 so as to form a flat torus. Ori-
ented edges of T (σ) are labelled by elements of the generating set G(K) of
ΓK as indicated in the figure. We now construct T (K) by taking the union
of all T (σ) for σ ∈ K and identifying edges (by isometries) according to the
labelling. Combinatorially, T (K) is none other than the presentation complex
associated to the finite presentation for ΓK given in [8] (Corollary 3) for the
case K simply-connected. Thus ΓK acts freely, cocompactly and isometrically
on the universal cover T̃ (K). Moreover, observe that the link of every vertex
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in T̃ (K), or rather the link of the unique vertex in T (K), is isometric to the
metric graph L(K). If L(K) is CAT(1) then T (K) is non-positively curved

and T̃ (K) is CAT(0). We therefore have the following Corollary to Theorem
3.1.

σ : Τ(σ) :

u

v

w x(u,w)

x(u,v) x(v,w)

x(u,w)

x(u,v)

Figure 3: Building the complex T (K) – the torus T (σ) associated to a 2-simplex σ

Corollary 3.2 Let K be a finite simply-connected 2-dimensional flag com-
plex. Then the group ΓK acts properly by semi-simple isometries (or even
freely co-compactly) on a 2-dimensional (complete) CAT(0) space X if and
only if K admits a piecewise Euclidean metric such that L(K) is a CAT(1)
metric graph.

We finish with an example which shows that Theorem 3.1 really is stronger than
Theorem 2.1. The 2-dimensional flag complex K0 shown in Figure 4 clearly
admits a CAT(0) piecewise Euclidean metric, however we now show that there
is no piecewise Euclidean metric on K0 such that L0 = L(K0) is a CAT(1)
graph. Suppose that K0 did admit such a metric. In particular, K0 would
have to be locally CAT(0), and hence CAT(0), with respect to this metric. We
now consider the lengths of the following circuits in L0 (we describe a circuit
by giving the sequence of vertices of L0 – or rather, oriented edges of K0 –
through which it passes):

c1 = (b, h, r, e, s, k, d, v, a, u, b)

c2 = (b, x−1, d, k, x, h, b)

c3 = (b, x−1, d, v, a, u, b)
c4 = (h, r, e, s, k, x, h)

The circuit c1 has length exactly 2π , since on the one hand it is a circuit in the
CAT(1) link L0 , so at least 2π , while on the other hand its length is exactly
the angle sum of the quadrilateral in K0 with sides u, v, s, r , so at most 2π .
The circuit c2 has length 2π either by similar reasoning or by simply noting
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that its length is the total angle sum of two Euclidean triangles. But we also
have

`(c3) + `(c4) = `(c1) + `(c2)− 2dL0(b, h)− 2dL0(d, k) < 4π .

Therefore at least one of the circuits c3 or c4 is strictly shorter than 2π , con-
tradicting L0 CAT(1).

kd

x

b h

a

v s

u r

e

4c
3c

Figure 4: The flag complex K0

By Theorem 3.1, we have that dimss(ΓK0) = 3 while gd(ΓK0) = 2.

Let L denote the subcomplex of K0 which is the graph consisting of the three
edges labelled a, x, e in Figure 4. Then K0 is just the suspension of L. If
C(L) denotes the simplicial cone over L, then ΓC(L) is canonically isomorphic
to AL . Thus ΓK0 is isomorphic to the double of AL over the normal subgroup
ΓL < AL :

ΓK0
∼= AL ?

ΓL
AL .

Noel Brady [2] has a proof that ΓK0 has a Dehn function which is at least cubic.
It follows (see [6], for instance) that ΓK0 cannot act properly cocompactly
on any CAT(0) space, i.e: it is not a CAT(0) group. Without reproducing
Brady’s argument on the Dehn function we can still deduce that this example
is not a CAT(0) group as follows. By the Exercises on page 499 of [6], the
group ΓK0 may be re-expressed as the trivial HNN-extension of AL over ΓL ,
and as such is a CAT(0) group only if ΓL is quasi-isometrically embedded
in AL . However, ΓL is sufficiently distorted in AL for this not to be the
case. Write AL = 〈u1, u2, u3, u4|[u1, u2] = [u2, u3] = [u3, u4] = 1〉, and observe
that ΓL ∼= F3 , freely generated by the elements a = u−1

2 u1 , x = u−1
2 u3 and

e = u−1
3 u4 . For each N ∈ N, the freely reduced word wN := (axNex−N )N , of
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length 2(N2 + N), represents an element of the free group ΓL which is equal
in AL to

((u−1
2 u1)u−N2 uN3 (u−1

3 u4)u−N3 uN2 )N = (u−N2 (u−1
2 u1.u

−1
3 u4)uN2 )N

= u−N2 (u−1
2 u1.u

−1
3 u4)NuN2 .

The latter word in the generators of AL has length 6N , implying that ΓL is at
least quadratically distorted in AL , and so is not quasi-isometrically embedded.
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