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Abstract Let Vj and V; be complex vector bundles over a space X.
We use the theory of divisors on formal groups to give obstructions in
generalised cohomology that vanish when V) and V; can be embedded in a
bundle U in such a way that V5 NV; has dimension at least k everywhere.
We study various algebraic universal examples related to this question, and
show that they arise from the generalised cohomology of corresponding
topological universal examples. This extends and reinterprets earlier work
on degeneracy classes in ordinary cohomology or intersection theory.
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1 Introduction

There are a number of different motivations for the theory developed here, but
perhaps the most obvious is as follows. Suppose we have a space X with vector
bundles V and V. (Throughout this paper, the term “vector space” refers to
finite-dimensional complex vector spaces equipped with Hermitian inner prod-
ucts, and similarly for “vector bundle”.) We define the intersection index of Vj
and V] to be the largest k such that Vj and V; can be embedded isometrically
in some bundle U in such a way that dim(Vp, NVi,) > k for all x € X. We
write int(Vp, V1) for this intersection index. Our aim is to use invariants from
generalised cohomology theory to estimate int(Vp, V1), and to investigate the
topology of certain universal examples related to this question.

We will show in Proposition 5.3 that int(Vp, V1) is also the largest k such that
there is a linear map Vj — Vi of rank at least k& everywhere. This creates a
link with the theory of degeneracy loci and the corresponding classes in the
cohomology of manifolds or Chow rings of varieties, which are given by the
determinantal formula of Thom and Porteous. The paper [9] by Pragacz is a
convenient reference for comparison with the present work. The relevant theory
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1062 N. P. Strickland

is based strongly on Schubert calculus, and could presumably be transferred
to complex cobordism (and thus to other complex-orientable theories) by the
methods of Bressler and Evens [1].

However, our approach will be different in a number of ways. Firstly, we use
the language of formal groups, as discussed in [10] (for example). We fix an
even periodic cohomology theory E with a complex orientation z € EYCP™.
For any space X we have a formal scheme X = spf(EYX), the basic examples
being S := (point)g and G := CP¥ = spf(E°[x]), which is a formal group
over S. If V is a complex vector bundle over X , we write PV for the associated
bundle of projective spaces. It is standard that E°(PV) = E°(X)[z]/fv (),
where fy(z) = >, _gim) c;z?, where ¢; is the i’th Chern class of V. In
geometric terms, this means that the formal scheme D(V') := (PV)g is natu-
rally embedded as a divisor in G xg Xg. Most of our algebraic constructions
will have a very natural interpretation in terms of such divisors. We will also
consider the bundle U(V) = [[,cx U(V,) of unitary groups associated to V.
A key point is that E*U(V) is the exterior algebra over E*X generated by
E*~'PV. This provides a very natural link with exterior algebra, and could
be regarded as the “real reason” for the appearance of determinantal formulae,
which seem rather accidental in other approaches. Our divisorial approach also
leads to descriptions of various cohomology rings that are manifestly indepen-
dent of the choice of complex orientation, and depend functorially on G. This
functorality implicitly encodes the action of stable cohomology operations and
thus gives a tighter link with the underlying homotopy theory.

We were also influenced by work of Kitchloo [5], in which he investigates the
cohomological effect of Miller’s stable splitting of U(n), and draws a link with
the theory of Schur functions.

In Section 3 we use the theory of Fitting ideals to define an intersection index
int(Dg, D1), where Dy and D; are divisors on G. In Section 4 we identify
E*U(V) with the exterior algebra generated by E*~!PV and show that this
identification is an isomorphism of Hopf algebras. In Section 5 we use this to
prove our first main theorem, that int(Vp, V1) < int(D(Vp), D(V1)); this implic-
itly gives all the relations among Chern classes that are universally satisfied
when int(Vp, V1) > k for some given integer k. Next, in Section 6 we study the
universal examples of our various algebraic questions, focusing on the scheme
Int,(do, dy) which classifies pairs (Dg, D7) of divisors of degrees dy and d; such
that int(Dg, D1) > k. Our next task is to construct spaces whose associated
schemes are these algebraic universal examples. In Section 7 we warm up by
giving a divisorial account of the generalised cohomology of Grassmannians and
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Common subbundles and intersections of divisors 1063

flag spaces, and then in Section 8 we show that the space
I(do, dv) == {(V0, V1) € Gay(C™) x G, (C) | dim(Vo NV1) = K}

satisfies I (do,d1)g = Int,(dp,d1). (The origin of the present work is that the
author needed to compute the cohomology of certain spaces similar to I (dp, d;)
as input to another project; it would take us too far afield to discuss the back-
ground.) This completes the main work of the paper, but we have added three
more sections exploring the isomorphism E*U (V) ~ A*E*~! PV in more detail.
Section 9 treats some purely algebraic questions related to this situation, and
in Sections 10 and 11 we translate all the algebra into homotopy theory. In
particular, this gives a divisorial interpretation of the work of Mitchell, Richter
and others on filtrations of QU(n): the scheme associated to the k’th stage in
the filtration of QxU (V) is D(V)¥/%y, and the scheme associated to QxU (V)
is the free formal group over Xp generated by D(V').

Appendix A gives a brief treatment of the functional calculus for normal oper-
ators, which is used in a number of places in the text.

Remark 1.1 There is a theory of degeneracy loci for morphisms with sym-
metries, where the formulae involve Pfaffians instead of determinants. It would
clearly be a natural project to reexamine this theory from the point of view of
the present paper, but so far we have nothing to say about this.

2 Notation and conventions

2.1 Spheres

We take R™ U {oo} as our definition of S™, with oo as the basepoint; we
distinguish S* from the homeomorphic space U(1) := {z € C | |z| = 1}.
Where necessary, we use the homeomorphism ~: U(1) — S! given by
Y(2) = (2 +1)(z = 1)1/
yH(t) = (it + 1)/ (it — 1),

One checks that () = cot(—0/2), which is a strictly increasing function of
6 for 0 <0 < 2m.
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1064 N. P. Strickland

2.2 Fibrewise spaces

We will use various elementary concepts from fibrewise topology; the book of
Crabb and James [3] is a convenient reference. Very few topological technicali-
ties arise, as our fibrewise spaces are all fibre bundles, and the fibres are usually
finite complexes.

In particular, given spaces U and V over a space X, we write U x x V for the
fibre product, and U¥% for the fibre power U xx ... xx U. If U is pointed (in
other words, it has a specified section s: X — U) and FE is any cohomology
theory we write E}‘(U = E*(U,sX). We also write ¥xU for the fibrewise
suspension of U, which is the quotient of S* x U in which {co} x UU St x sX
is collapsed to a copy of X . This satisfies E}‘(E xU = E}_IU . We also write
QxU for the fibrewise loop space of U, which is the space of maps w: S' — U
such that the composite S? — U — X is constant and w(co) € sX. If V
is another pointed space over X, we write U Ax V for the fibrewise smash
product. If W is an unpointed space over X then we write W x = W I X,
which is a pointed space over X in an obvious way.

2.3 Tensor products over schemes

If T is a scheme and M, N are modules over the ring O, we will write M @7 N
for M ®p, N. Similarly, we write A%M for )\](“OTM , the k’th exterior power of
M over Or.

2.4 Free modules

Given a ring R and a set T, we write R{T} for the free R-module generated
by T'.

3 Intersections of divisors

Let G be a commutative, one-dimensional formal group over a scheme §S.
Choose a coordinate x so that Og = Oglz]. Let Dy and D; be divisors
on G defined over S, with degrees dy and d; respectively. This means that
Op, = Og/fi = Og[z]/fi(z) for some monic polynomial f;(x) of degree d;
such that fi(z) = 2% modulo nilpotents. It follows that Op, is a free module
of rank d; over Og, with basis {27 | 0 < j < d;}.
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Common subbundles and intersections of divisors 1065

As Dy and D; are closed subschemes of G we can form their intersection, so
that

Oponp, = Oc/(fo, 1) = Osla]/(fo(x), fr(x))-

Typically this will not be a projective module over Og, so some thought is
required to give a useful notion of its size. We will use a measure coming from
the theory of Fitting ideals, which we now recall briefly.

Let R be a commutative Noetherian ring, and let M be a finitely generated

R-module. We can then find a presentation P; Lo Py So, M, where Py

and P, are finitely generated projective modules of ranks py and p; say, and
M = cok(¢1). The exterior powers M P; are again finitely generated projective
modules. We define I;(¢1) to be the smallest ideal in R modulo which we
have M (¢1) = 0. More concretely, if Py and P are free then ¢; can be
represented by a matrix A and I;(¢1) is generated by the determinants of all
J x j submatrices of A. We then define I;(M) = I,,—;(¢1); this is called the
7’th Fitting ideal of M. It is a fundamental fact that this is well-defined; this
was already known to Fitting (see [8, Chapter 3], for example), but we give a
proof for the convenience of the reader.

Proposition 3.1 The ideal I;(M) is independent of the choice of presentation
of M.

Proof We temporarily write I;(M, P, ¢,) for the ideal called I;(M) above.
Put N = ker(¢g) and let 3: N — Py be the inclusion. Then ¢; factors as

P S N A, Py, where « is surjective. For any ideal J < R we see that
Mea is surjective mod J, so A\¥¢q is zero mod J iff \¥f3 is zero mod J. This
condition depends only on the map ¢g: Py — M, so we can legitimately define
Ij(M, P(), ¢0) = Ij(M, P*, ¢*) .

Now suppose we have another presentation @1 ¥, Qo Yo, M , where (); has
rank ¢;. Define xo: Py @ Qo — M by (u,v) — ¢o(u) + 1o(v). It will suffice to
prove that

]](M7 PO7 ¢0) = IJ(M7 PO S QO?XO) = I](M7 QO?Q;Z)O)?

and by symmetry we need only check the first of these. By projectivity we can
choose amap 0: Qo — Py with ¢pf = 1), and define y1: PL®Qy — PodQo by
(u,v) — (P1(u)—0(v),v). It is easy to check that this gives another presentation

Pl@Qoﬁpo@QoﬂM
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If k < qo then M\¥xq is certainly nonzero, because the composite

)\k
NQo — N (PL @ Qo) =5 M (Py @ Qo) — Qo
is the identity, and \*Qq # 0. If k > gy and A*x; = 0 then (by restricting to
Ne=do Py @ \0Qq) we see that \F=90¢p; = 0.

For the converse, notice that A*N is a graded ring for any module IV, and that
A« is a ring map for any homomorphism « of R-modules. One can check that
N+ (P @ Qq) is contained in the ideal in A\*(Py @ Q) generated by M Py. It
follows that if M¢; = 0 then ATy, = 0.

This shows that (1) = 14 (x1), and thus that I(M, Py, ¢o) = I(M, Py @
Qo, X0), as required. 0

It is clear that
Iy(M)<...<IL,(M)=R,

and we define
rank(M) = rankp(M) = min{r | I,(M) # 0}.

We call rank(M) the Fitting rank of M. For example, if R is a principal ideal
domain with fraction field K, one can check that rank(M) = dimg (K®@rM) for
all M. However, we will mostly be interested in rings R with many nilpotents,
for which there is no such simple formula.

The following lemma is easily checked from the definitions.

Lemma 3.2 (a) The Fitting rank is the same as the ordinary rank for pro-
jective modules.

(b) If N is a quotient of M then rank(N) < rank(M).

(¢) If there is a presentation P — () — M then rank(Q) — rank(P) <
rank(M) < rank(Q). O

(It is not true, however, that rank(M @ N) = rank(M) + rank(N); indeed, if
a # 0 and a? = 0 then rank(R/a) = 0 but rank(R/a ® R/a) = 1.)

Definition 3.3 The intersection multiplicity of Dy and D; is the integer
int(D(), Dl) = rankos((’)DOmpl).

We also put
Intr(Do,Dl) = SpeC(OS/Irfl(ODOmpl)),

which is the largest subscheme of S over which we have int(Dy, D1) > r.
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Remark 3.4 Let S’ be a scheme over S, so that G’ := G xg S’ is a formal
group over S’. We refer to divisors on G’ as divisors on G over S’. Given two
such divisors Dy and D;, we get a closed subscheme Int,.(Dgy, D) C S’. We
will use this kind of base-change construction throughout the paper without
explicit comment.

To make the above definitions more explicit, we will describe several different
presentations of Op,np, that can be used to determine its rank.

Construction 3.5 First, recall that we can form the divisor

Do + Dy = spec(Og/ fof1) = spec(Os[z]/ fo(x) f1(x)).

This contains Dy and D7, so we have a pullback square of closed inclusions as
shown on the left below. This gives a pushout square of Og-algebras as shown
on the right.

DoN Dy —— Dy Openp, «+—— Op,
Dy — Do+ D, OD1 S OD0+D17

which gives a presentation
OD0+D1 - ODO @ ODI - ODoﬂDl'

Explicitly, this is just the presentation

Oc/(fof1) 2 Oc/fo® Oc/fi L Oc/(fo. 1)
given by
¢(g mod fof1) = (g mod fo, —g mod f1)
¥(go mod fp, g1 mod f1) = go + g1 mod (fo, f1)-

Although this is probably the most natural presentation, it is not easy to write
down the effect of ¢ on the obvious bases of Og/(fof1) and Og/f;. To remedy
this, we give an alternate presentation.

Construction 3.6 Let J; be the ideal generated by f; and put J = JyJi.
Then J;/J is free over Og with basis {27 f;(z) | 0 < j < d1_;} and the inclusion
maps J; — Og give rise to a presentation

J()/JEB Jl/J i> O((;,/J = ODO+D1 i’ OG/(JO + Jl) - ODoﬂDl'
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Let ¢;; be the coefficient of x%=7 in fi(x), so that c;p = 1 and fi(z) =
Zdi:jJrk Cij{lfk. Then
do+j
C(27 fo(x),0) = Z C0.dotj— k" for 0 <j<d;
k=j
di+7
C(O,xjfl(x)) = Z 017d1+j_kxk for 0 < j < dy,
k=j
and this tells us the matrix for ¢ in terms of the obvious bases of Jy/J @ J1/J
and Og/J. For example, if dy =2 and d; = 3 the matrix is

Cp2 0 0 C13 0

cr co2 0 |ci2 c3
I cor co2|ci1 ci2
0 1 Co1 1 C11
0 0 1 0 1

In general, we have a square matrix with do + d; rows and columns. The left
hand block consists of d; columns, each of which contains dy —1 zeros. The right
hand block consists of dy columns, each of which contains dg — 1 zeros. Clearly
Int, (Dy, D7) is the closed subscheme defined by the vanishing of the minors of
this matrix of size dy+d; —r+ 1. In particular, Inty(Dg, D1) is defined by the
vanishing of the determinant of the whole matrix, which is classically known as
the resultant of fo and fi. If fo(z) = [[;(# —a;) and fi(z) = [[;(x —b;) then

the resultant is just []; ;(a; —b;). We do not know of any similar formula for
the other minors.

Construction 3.7 For a smaller but less symmetrical presentation, we can
just use the sequence J;/J — Og/Jy — Og/(Jo+ J1) induced by the inclusion
of Ji in Og. This is isomorphic to the presentation Og/Jy 2, 06 /Jo —
Og/(Jo + J1), where ui1(g9) = fig. However, the isomorphism depends on
a choice of coordinate on G (because the element f; does), so the previous
presentation is sometimes preferable. There is of course a similar presentation
Og/J1 2% Og /T — Og/(Jo + J1).

Finally, we give a presentation that depends only on the formal Laurent series
fo/ f1 and thus makes direct contact with the classical Thom-Porteous formula.

Construction 3.8 Write Mg = R((z)) = Og[r~!]. Note that f;(z)/z% is a
polynomial in z~! whose constant term is 1 and whose other coefficients are
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nilpotent, so it is a unit in R[z~1]. Tt follows that f; is a unit in R((x)). Put
Q = 7 R[z71] € R((z)), so that R((x)) = R[z] ® Q. Multiplication by the
series 2% fo/f1 induces a map
_ Rl o, R(@)

fiR[z]

! zh R[z] @ Q

We claim that the cokernel of ¢ is isomorphic to R[x]/(fo, f1) = Opynb,, SO
we have yet another presentation of this ring. Indeed, the cokernel of ¢ is
clearly given by R((x))/(z™ fof; 'R[z] + 2M R[z] + Q). The element f; /2% is
invertible in R[z~!] so it is invertible in R((z)) and satisfies (f1/2%)Q = Q.
Thus, multiplication by this element gives an isomorphism

R((x)) - R((x))
a2 fof 7 'Rlx] + 24 R[z] + Q — foR[z] + fiR[z] + Q

As R((z)) = R[z] @ Q, we see that the right hand side is just R[z]/(fo, f1) as
claimed.

The elements {1,z,...,2% !} give a basis for both Py and P;, and the matrix
elements of ¢ with respect to these bases are just the coefficients of fy/f1
(suitably indexed). More precisely, we have

fo/fr = 2% MY e,
i>0
where ¢y = 1 and ¢; is nilpotent for ¢ > 0. We take ¢; = 0 for ¢ < 0 by
convention. The matrix elements ®;; of ¢ are then given by ®;; = cg4,4;—; for
0 <1,j < dj. For example, if dy =3 and d; = 5 then the matrix is

3 C C5 Cg Ct

€2 €3 €4 C5 Cg

b = €l €3 €3 €4 Cs
1 Cl Cy €3 C4

0 1 Cl1 Cy C3

Now suppose that our divisors D; arise in the usual way from vector bundles V;
over a stably complex manifold X, and we have a generic linear map g: Vy —
V1. Let Z, be the locus where the rank of g is at most r, and let ¢: Z, — X
be the inclusion. Generically, this will be a smooth stably complex submanifold
of X, so we have a class 2z, = i,[Z,] € E°X. The Thom-Porteous formula says
that z, = det(V,), where U, is the square block of size dy — r taken from the
bottom left of ®. More explicitly, the matrix elements are (¥, );; = Cay—k+i—;j
for 0 < 4,j < dy —r. Clearly det(V,) € I4,—r(¢) = L(Opynp,). If Z,
is empty then z. = 0. On the other hand, Proposition 5.3 will tell us that
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int(Dy, D1) > r and so I,(Op,np,) = 0, so det(¥,) = 0, which is consistent
with the Thom-Porteous formula. It is doubtless possible to prove the formula
using the methods of this paper, but we have not yet done so.

Proposition 3.9 We always have int(Dy, D;) < min(dy,d;) (unless the base
scheme S is empty). Ifint(Do, Dl) = d() then DO S Dl, and if int(Do, Dl) = d1
then D1 < Do.

Proof The presentation Op, £, Op, — Opynp, shows that
int(Dy, D1) = rank(Op,p,) < rank(Op,) = d;.

If this is actually an equality we must have A4 ~%+1 (1) = 0 or in other words
o = 0, 50 fo = 0 (mod f1), so D1 < Dy. The remaining claims follow by
symimetry. D

Proposition 3.10 If there is a divisor D of degree k such that D < Dy and
D S Dl, then int(Do,Dl) Z k.

Proof Clearly Op is a quotient of the ring Op,np, , and it is free of rank £,
so int(Dy, D) = rank(Opynp,) > k. O

Definition 3.11 Given two divisors Dy, D1, we write Sub,(Dgy, D;) for the
scheme of divisors D of degree r such that D < Dy and D < D;. The
proposition shows that the projection 7: Sub,(Dgy, D1) — S factors through
the closed subscheme Int,.(Dg, D1).

Remark 3.12 Proposition 3.9 implies that Intg, (Do, D1) is just the largest
closed subscheme of S over which we have Dy < D;. From this it is easy to
see that Subg, (Do, D) = Intg, (Do, D1).

It is natural to expect that the map mw: Sub,.(Dy, D1) — Int,.(Dg, D1) should
be surjective in some suitable sense. Unfortunately this does not work as well
as one might hope: the map 7 is not faithfully flat or even dominant, so the
corresponding ring map 7" need not be injective. However, it is injective in a
certain universal case, as we shall show in Section 6.

We conclude this section with an example where 7* is not injective. Let G

be the additive formal group over the scheme S = spec(Z[a]/a?). Let Dy
and D; be the divisors with equations z?> — a and 2, respectively. Then
Operp, = Oslz]/ (2% — a,2?) = Og[z]/(a,x?), which is the cokernel of the map
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1 (’)5[96]/962 _ (’)5[:1:]/:1:2 given by M(t) = at. The matrix of Wois < g 2 )

which is clearly nonzero, but A\?(u) = a® = 0. It follows that int(Dg, D1) = 1,
so Inty(Dy,D1) = S. However, Suby(Dg, D7) is just the scheme Dy N Dy =
spec(Og[z]/(a,x?)), so 7*(a) = 0.

For a topological interpretation, let Vg be the tautological bundle over HP! =
5%, and let V; be the trivial rank two complex bundle. If we use the cohomology
theory E*Y = (H*Y)[u,u™'] (with |u| = 2) and let a be the second Chern
class of Vy we find that E°X = Z[a]/a?, and the equations of D(Vj) and D(V7)
are 2 — a and z?. Using the theory to be developed in Section 5 and the
calculations of the previous paragraph, we deduce that V;; and V; cannot have
a common subbundle of rank one, but there is no cohomological obstruction
to finding a map f: Vo — Vi with rank at least 1 everywhere. To see that
such a map does in fact exist, choose a subspace W < H? which is a complex
vector space of dimension 2, but not an H-submodule. We can then take the
constant bundle with fibre HQ/W as a model for V;. The bundle Vj is by
definition a subbundle of the constant bundle with fibre H?, so there is an
evident projection map f: Vg — V3. As W is not an H-submodule, we see
that f is nowhere zero and thus has rank at least one everywhere, as claimed.

4 Unitary bundles

In order to compare the constructions of the previous section with phenomena
in topology, we need a topological interpretation of the exterior powers \*Op
when D is the divisor associated to a vector bundle.

Let V be a complex vector bundle of dimension d over a space X. We can
thus form a bundle U(V) of unitary groups in the evident way (so U(V) =
{(z,9) | + € X and g € U(Vy;)}). The key point is that E*U(V) can be
naturally identified with A7. XE*_IPV (the exterior algebra over the ring F*X
generated by the module E*PV'). Moreover, we can use the group structure
on U(V) to make E*U(V) into a Hopf algebra over E*X, and we can make

% xE*" 1PV into a Hopf algebra by declaring E*PV to be primitive. We
will need to know that our isomorphism respects these structures. All this is of
course well-known when X is a point and F represents ordinary cohomology.
Kitchloo [5] has shown that if one chooses the right proof then the restriction
on F can be removed. With just a few more words, we will be able to remove
the restriction on X as well.
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We start by comparing U (V') with a suitable classifying space. First let V' be a
vector space rather than a bundle. We let EU (V') denote the geometric realisa-
tion of the simplicial space {U(V)"*1},,5¢ and we put BU(V) = EU(V)/U(V),
which is the usual simplicial model for the classifying space of U(V). There
is a well-known map n: U(V) — QBU(V), which is a weak equivalence of
H-spaces. By adjunction we have a map (: XU(V) — BU(V), which gives a
map

¢*: E*BU(V) — E*SU(V) = E*'U(V).

The fact that n is an H-map means that ( is primitive, or in other words that
Cop=Co(m+m) € [BUV)2 BUNV).

We can also construct a tautological bundle T'= EU (V') X1y V over BU(V).

We now revert to the case where V is a vector bundle over a space X, and
perform all the above constructions fibrewise. Firstly, we construct the bundle
BU(V) ={(z,e) |z € X and e € BU(V,)}. Note that each space BU(V,) has
a canonical basepoint, and using these we get an inclusion X — BU(V).

A slightly surprising point is that there is a canonical homotopy equivalence
BU(V) — X x BU(d). Indeed, we can certainly perform the definition of
T fibrewise to get a tautological bundle over BU(V'), which is classified by a
map ¢q: BU(V) — BU(d), which is unique up to homotopy. We can combine
this with the projection p: BU(V) — X to get a map f = (p,q): BU(V) —
X x BU(d). The map p is a fibre bundle projection, and the restriction of
q to each fibre of p is easily seen to be an equivalence. It is now an easy
exercise with the homotopy long exact sequence of p to see that f is a weak
equivalence. (Nothing untoward happens with 7y and m because BU(d) is
simply connected.)

Remark 4.1 Let go: X — BU(d) be the restriction of q. Then g classifies
the bundle T'|x ~ V', so in general it will be an essential map. Thus, if we just
use the basepoint of BU(d) to make X x BU(d) into a based space over X,
then our equivalence f: BU(V) ~ X x BU(d) does not preserve basepoints,
and cannot be deformed to do so. If it did preserve basepoints we could apply
the fibrewise loop functor Qx and deduce that U(V) ~ X x U(d), but this is
false in general.

It follows from the above that E*BU(V) is a formal power series algebra over
E* X, generated by the Chern classes of T'. It will be convenient for us to
modify this description slightly by considering the virtual bundle T'—V (where
V' is implicitly pulled back to BU(V) by the map p: BU(V) — X). We
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have fr(t) = t¢ Zi:o apt™" and fy(t) = t? Zi:o bt % for some coefficients
ap € EOBU(V) and b, € EYX so fT_V(t) = fT(t)/fv(t) = Zk>0 thfk for
some ¢, € E'BU(V). For k < d we have ¢, = a; (mod bl,...:bd) and it
follows easily that

E*BU(V) = (E*X)[ey, . .., cd].

Note that the restriction of T'— V to X C BU(V) is trivial, so the classes ¢,
restrict to zero on X.

Next, consider the fibrewise suspension X xU (V). By dividing each fibre into
two cones we obtain a decomposition ¥ xU (V) = CyUC; where the inclusion of
X in each Cj is a homotopy equivalence, and CoNCy = U(V). Using a Mayer-
Vietoris sequence we deduce that E%XxU(V) ~ E*"1U(V) and that this can
be regarded as an ideal in E*¥xU(V) whose square is zero. Moreover, the
construction of ¢ can be carried out fibrewise to get a map XxU (V) — BU(V)
which is again primitive. It follows that ¢ induces a map

¢*: Ind(E*BU(V)) — Prim(E*'U(V)).

(Here Ind and Prim denote indecomposables and primitives over E*X.) Note
also that Ind(E*BU(V)) is a free module over E*X generated by {c1,...,cq}.

To prove that ¢* is injective, we need to consider the complex reflection map
p: BxPV.x — U(V), which we define as follows. For t € S = R U {0}
and x € X and L € PV,, the map p(t,z, L) is the endomorphism of V, that
has eigenvalue v~!(¢) on the line L, and eigenvalue 1 on L. Here y~(t) =
(it +1)/(it —1) € U(1), as in Section 2.1. Using this we obtain a map & =
CoSxp: S%PVix — BU(V).

Our next problem is to identify the virtual bundle £*(T — V) over X3 PV, x.
For this it is convenient to identify S? with CP! and thus Y?PV,x with a
quotient of CP' x PV . We have tautological bundles H and L over CP! and
PV, whose Euler classes we denote by y and z.

Lemma 4.2 We have *(T' — V) ~ (H — 1) ® L. Moreover, there is a power
series g(s) € E°[s] with g(0) = 1 such that £*c;, = —yz*~lg(z) for k =
1,...,d. (If E° is torsion-free then g(s) = 1/log(x).)

Proof In the proof it will be convenient to write Ty, and Ly instead of T and
L, to display the dependence on V.

First consider the case where X is a point and V = C. Then p: S* — U(1) =
U(C) is a homeomorphism and BU(C) ~ CP*. It is a standard fact that

Algebraic € Geometric Topology, Volume 2 (2002)



1074 N. P. Strickland

¢: S? — BU(C) can be identified with the inclusion CP* — CP>, and thus
that €*Tc = H.

In the general case, note that we have a map &,: CP! x PL — BU(L) of
spaces over PV. The projection PL — PV is a homeomorphism which we
regard as the identity. If we let 7: PV — X be the projection, we have a
splitting 7*V = L @ (7*V © L). The inclusion L — 7*V gives an inclusion
U(L) — 7m*U(V) and thus an inclusion BU(L) — 7*BU(V), or equivalently a
map ¢: BU(L) — BU(V) covering 7. As Ty =V Xy ) EU(V) and U(L)
acts trivially on 7*V © L we see that ¢*Ty =T @ (7*V & L).

Next, we note that tensoring with L gives an isomorphism 7: U(C) x PV —
U(L) and thus an isomorphism B7: BU(C) x PV — BU(L) with (B71)*Ty, =
Te® L.

One can check that the following diagram commutes:

CP! x PV —— CP! x PV —— CP!' x PV

§oxl L &v

BU(C) x PV % BU(L) BU(V).

It follows that &7y ~ ({c x 1)*(BT)*¢* Ty, and the previous discussion identi-
fies this with (H® L)@ (7*V & L). It follows that &, (Ty — V) ~ (H®L)— L =
(H—1)® L, as claimed.

Now let g(s) be the partial derivative of ¢ +r s with respect to ¢ evaluated
at t = 0. This is characterised by the equation t +p s = tg(s) + s (mod t2);
it is clear that g(0) = 1, and by applying log; we see that g(s) = 1/log(s)
in the torsion-free case. As y?> = 0 we see that the Euler class of H ® L is
x+ry=x+yg(x). Thus, we have

frer-L(t) = (t —z —yg(x))/(t — x)
=1-yg(x)t™' /(1 —a/t)
=1- Zyg(m)xk_lt_k.

The k’th Chern class of (H —1)® L is the coefficient of t=* in this series, which
is —yg(x)z*~! as claimed. O

Corollary 4.3 The induced map ¢*: Ind(E*BU(V)) — E*(X%PVix, X) =
E*~2PV is an isomorphism. m|
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Theorem 4.4 There is a natural isomorphism \*E*~'PV — E*U(V') of Hopf
algebras over E* X .

Proof Put a; = {*¢; € Prim(E*U(V)) for i« = 1,...,d. Given a sequence
I'=(i1,...,0p) with1 <43 <...<i, <d,putar= Hjai].. We first claim that
the elements a; form a basis for E*U(V') over E*X . This is very well-known
in the case where X is a point (so U(V) ~ U(d)) and E represents ordinary
cohomology; it can proved using the Serre spectral sequence of the fibration
U(d—1) — U(d) — S?¥~1. For a more general theory E we still have an Atiyah-
Hirzebruch-Serre spectral sequence HP(S??~1; U (d — 1)) = EPYIU(d). Tt
follows easily that the elements a; form a basis whenever X is a point. A
standard argument now shows that they form a basis for any X. Indeed, it
follows easily from the above that they form a basis whenever V' is trivialisable.
We can give X a cell structure such that V is trivialisable over each cell, and
then use Mayer-Vietoris sequences to check that the elements a; form a basis
whenever X is a finite complex. Finally, we can use the Milnor exact sequence
to show that the elements a; form a basis for all X.

The ring E*U(V) is graded-commutative so we certainly have a;a; = —aja;
and in particular 2a22 = 0 for all 7. Suppose we can show that a? = (0. Then
¢* extends to give a map \y. y Ind(E*BU(V)) — E*~1U(V) of Hopf algebras,
and from the previous paragraph we see that this is an isomorphism. Combin-
ing this with the isomorphism of Corollary 4.3 gives the required isomorphism
NE*LPYV — E*U(V).

All that is left is to check that a? = 0. For this we consider the case of
the tautological bundle T over BU(d), and take E = MP = MU][u,u™!].
(We use this 2-periodic version of MU simply to comply with our standing
assumptions on E; we could equally well use MU itself.) Here it is standard
that M P*BU(d) is a formal power series algebra over M P* and thus is torsion-
free. The ring MP*U(T) is a free module over M P*BU(d) and thus is also
torsion-free. As 2a? = 0 we must have a? = 0 as required. More generally, for
an arbitrary bundle V' over a space X we have a classifying map X — BU(d)
giving rise to a map U(V) — U(T). Moreover, for any E we can choose an
orientation in degree zero and thus a ring map MP — E. Together these
give a ring map M P*U(T) — E*U(V), which carries a; to a;. As a? =0 in
MP*U(T), the same must hold in E*U(V). O

We will need to extend the above result slightly to give a topological interpre-
tation of the quotient rings

ASTEFTLPV = N E*TIPV/NCTEFTI PV

Algebraic € Geometric Topology, Volume 2 (2002)



1076 N. P. Strickland

For this we recall Miller’s filtration of U(V):
FUV)={g€U(V)| codim(ker(g — 1)) < k}
={g€U(V)| rank(g — 1) < k}.
More precisely, this is supposed to be interpreted fibrewise, so
F,UV)={(z,9) |z € X and g € U(V,) and rank(g — 1) < k}.
It is not hard to see that p gives a homeomorphism X xPV,.x — FiU(V). It
is known from work of Miller [6] that when X is a point, the filtration is stably
split. Crabb showed in [2] that the splitting works fibrewise; our outline of
related material essentially follows his account.
We will need to recall the basic facts about the quotients in Miller’s filtration.
Consider the space
Gr(V)={(z,W) |z e X, W<V, , dim(W) = k}.
For each point (z,W) € Gi(V) we have a Lie group U(W) and its associated
Lie algebra u(W) = {a € End(W) | o + o* = 0}. These fit together to
form a bundle over Gy(V) which we denote by u. Given a point (z, W, a)
in the total space of this bundle one checks that a — 1 is invertible and that
g:= (a+1)(a—1)"! is a unitary automorphism of W without fixed points, so
g® Ly € FLU(Vy) \ Fr—1U(V,). It is not hard to show that this construction
gives a homeomorphism of the total space of u with FRU(V)\ F_1U(V) and
thus a homeomorphism of the Thom space G (V)* with F,U(V)/EF,_1U(V).
If g € F;U(V,) and h € FRU(V,) then ker(g — 1) Nker(h — 1) has codimension
at most j + k, so gh € F;,U(V), so the filtration is multiplicative. A less
obvious argument shows that it is also comultiplicative, up to homotopy:

Lemma 4.5 The diagonal map ¢: U(V) — U(V) xx U(V) is homotopic to
a filtration-preserving map.

Proof For notational convenience, we will give the proof for a vector space; it
can clearly be done fibrewise for vector bundles.

We regard U(1) as the set of unit complex numbers and define py,p1: U(1) —
U(1) as follows:

) 22 ifIm(z) >0
Z) =
po 1 otherwise
22 if Im(2) <0
pi(2) = () <
1 otherwise.
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Thus (po,p1): U(1) — U(1) x U(1) is just the usual pinch map U(1) — U(1)V
U(l) cU(1) xU(1).

Note that if ¢ € U(V) and r € {0,1} then the eigenvalues of g lie in U(1)
so we can interpret p,.(g) as an endomorphism of V as in Appendix A. As
p(U(1)) C U(1) we see that p,.(z) = p.(2)~! for all z € U(1) and thus that
pr(9)* =pr(g)71, so p, gives a map from U(V) to itself.

We now define ¢': U(V) — U(V) x U(V) by §(g) = (po(g9),p1(g)). It is clear
that the filtration of py(g) is the number of eigenvalues of g (counted with
multiplicity) lying in the open upper half-circle, and the filtration of p;(g) is
the number in the open lower half-circle. Thus, the filtration of §'(g) is the
number of eigenvalues not equal to 41, which is less than or equal to the
filtration of g.

On the other hand, each map p,: U(l) — U(1) has degree 1 and thus is
homotopic to the identity, so ¢’ is homotopic to J. O

Theorem 4.6 There is a natural isomorphism A5~ E* 1PV — E*Fj,_U(V).

Proof For brevity we write A* = M\, . E*71PV. We also write \* = @, A\
and \2F = D> N oand A\<F = \*/\2F = D, M.

Because the filtration of U (V) is stably split, the restriction map \*E*~1PV =
E*U(V) — E*F,_1U(V) is a split surjection, with kernel J say. Note that
X*/Jy and Jy are both projective over E*X . We need to show that J; = A2k,

First, we have FoU(V) = X and it follows easily that J; = A\=1.

We next claim that J;J, < Jj4 for all j, k. Indeed, J; is the image in coho-
mology of the map U(V) — U(V)/Fj_1, and so J;Jj is contained in the image
in cohomology of the map

é
o= (U(V) — U(V) X x U(V) — U(V)/Fj_l Nx U(V)/Fk,l)
Note that ¢ is homotopic to the map ¢’, which sends Fji,_; into Fj_; Xx
UWV)UU(V) xx Fr_1. It follows that the restriction of ¢ to Fjyr_q is null,

and thus that J;J, < J;1 as claimed. It follows inductively that X2k < J,. for
all k. This gives us a natural surjective map A\<¥ — E*F,_U(V).

We previously gave a natural basis {ar} for A\*, and it is clear that the subset
{ar | |I| < k} is a basis for A<F. It will be enough to prove that the images
of these form a basis for E*Fj,_1U(V). The argument of Theorem 4.4 allows
us to reduce to the case where X is a point, V = C?, and E represents
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ordinary cohomology. A proof in this case has been given by Kitchloo [5] (and
possibly by others) but we will sketch an alternate proof for completeness. As
the map A\<F — H*[F,_,U(d) is surjective, it will suffice to show that the
source and target have the same rank as free Abelian groups. For this, it will
suffice to show that M H*CP%"! has the same rank as H*(F;U(d)/F;—1U(d))
for0<j<d. As H *CP?% 1 has rank d, it is clear that M H*CP% ! has rank
( d > . On the other hand F;U(d)/Fj—1U(d) is the Thom space G;(C%)". Note

J
that although u is not a complex bundle, it is necessarily orientable because

G;(C%) is simply connected. Thus, the Thom isomorphism theorem tells us
that the rank of H*G;(C%)" is the same as that of H*G;(C%). By counting

Schubert cells we see that this is again ( ;Z ), as required. (This will also

follow from Proposition 7.3.) O

5 Intersections of bundles

Let X be a space, and let Vy and V; be complex vector bundles over X. In
Section 3 we defined divisors D(V;) = (PV;)g on G over Xp, and we also
defined the intersection index int(Vp, V7).

Theorem 5.1 We have int(Vp, V1) < int(D(Vy), D(V4)).

Proof Suppose we have isometric linear embeddings Vj 2% w <L V; such that
dim((joVoz) N (j1Viz)) > r for all . We must show that rank(Og/(fvy, f11)) >
r. Put d; = dim(V;) and e = dim(W). Recall that E'PV; = Og/fy, and
that EYPW = Og/fw. As each V; embeds in W we see that fy, divides fu
and there is a natural surjection E°PW — E°PV;. By combining these maps
we get a map ¢: ECPW — E°PVy @ E°PVy, whose cokernel is Og/(fvy, fuy)-

From the definition of the Fitting rank, we must prove that Atd -+l — (.

For this, we first note that an isometric embedding j: V — W of vector spaces
gives rise to a homomorphism j,: U(V) — U(W) by

Jx(g) = jgjil @ Ly.: W =jV @jVJ‘ — W.

The alternative description j.(g) = jgj* + 1 — jj* makes it clear that j.(g)
depends continuously on j and g.
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We now extend this definition fibrewise, and define v: U(Vp)xxU (V1) — U(W)
by (g0, 91) = (joxgo) (jxg1). We have E*U(W) = A*E*~'PW and

E*U(Vy) xx U(V1) = E*U(Vy) @p-x E*U(V)
= NEIPV, @pex N'E* 1PV}
= \(E*'PVy @ E*' PW).

Using the fact that E*~'PW is primitive in E*U (W), we find that v* = \*¢.
Next, observe that if g; € U(Vj,) for i = 0,1 we have

(90, 91) € U(joVoz + j1Viz) C UW)

and dim(joVog + j1Viz) < do + di — r so ¥(90,91) € Fiytd,—U(W). Thus
~ factors through Fy, i q,_-U(W), and it follows that \dot+da—r+l1p==1pyy ig
mapped to zero by ~*, as required. O

As an addendum, we show that some natural variations of the definition of
intersection index do not actually make a difference.

Lemma 5.2 Let V and W be vector bundles over a space X, and let j: V —
W be a linear embedding. Then j is an isometric embedding if and only if
j*j = 1 (where j* is the adjoint of j). In any case, there is a canonical
isometric embedding j: V — W with the same image as j.

Proof If j*j = 1 then |jv||?> = (jv,jv) = (v,j*jv) = (v,v) = |[v||?, so j is
an isometry. Conversely, if j is an isometry then it preserves inner products so
(V' % jv) = (§v', ju) = (', v) for all v,v" which means that j*jv = v.

Even if j is not an isometry we have (v, j*jv) = |jv||> which implies that j*j
is injective. It is thus a strictly positive self-adjoint operator on V', so we can
define (j%5)~'/2 by functional calculus (as in Appendix A). We then define
j=14jo (j*j)_l/Q. This is the composite of j with an automorphism of V',
so it has the same image as j. It also satisfies 7*j = 1, so it is an isometric
embedding. O

Proposition 5.3 Let Vy and Vi be bundles over a space X. Consider the
following statements:
(a) There exists a bundle V' of dimension k and linear isometric embeddings
Vo2V 51,
(a’) There exists a bundle V' of dimension k and linear embeddings Vj L
V.
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(b) There exist a bundle W and isometric linear embeddings Vj LRy Vg Vi
such that dim((joVoz) N (j1Viz)) = k for all x € X.

(b") There exist a bundle W and linear embeddings Vj B w2 vy such
that dim((joVoz) N (71Viz)) > k for all x € X .

(¢) There is a linear map f: Vi — V; such that rank(f,) >k for all z € X .
Then (a)& (a' )= (b)< (b )< (c).

Proof It follows immediately from Lemma 5.2 that (a)< (a’) and (b)<(b').

(a)=(b): Define W, jy and j; by the following pushout square:

20

14 Vo

Jo

Vi—— W.

J1
Equivalently, we can write V/ for the orthogonal complement of i,V in V; and
then W=V & Vjo V.

(b)=(c): Put f = j¥jo: Vo — Vi. By hypothesis, for each x we can choose
an orthonormal sequence uq,...,ur in (joVoz) N (j1Viz). We can then choose
elements v, € Vp, and w, € Vi, such that w, = jov, = jiw,. We find
that (fvp, wg) = (Jovp, 1wg) = (Up, uq) = 6pq. This implies that the elements
fui,..., fu, are linearly independent, so rank(f) > k as required.

(¢c)=(b): Note that f)fy: Vo — Vb, is a nonnegative self-adjoint operator
with the same kernel as f,, and thus the same rank as f,. Similarly, f,f is a

nonnegative self-adjoint operator on Vi, with the same rank as f,. More basic
facts about these operators are recorded in Proposition A.2.

As in Definition A.3 we let \; = e;(fifz) be the j’th eigenvalue of f;f,
(listed in descending order and repeated according to multiplicity). We see
from Proposition A.4 that ); is a continuous function of x. Moreover, as f} f
has rank at least k we see that A\ > 0. Now define 7,: [0,00) — [0,00)
by 7,(t) = max(A\g,t), and define p, = 7,(frf:) and v, = 7(f.f¥). (Here
we are using functional calculus as in Appendix A again.) Omne checks that

fotbz = vz fo and pzfr = frv,. We now have maps

P Vo — Vo

f:Vo—W"

(+ 07V V= W,
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which we combine to get a map

o= (W2 fo(u+ [ )72 Vo= Voo Wi
Similarly, we define

a= (e )T Vi - e

It is easy to check that jjjo = 1 and jij1 = 1, so jo and j; are isometric
embeddings.

Now choose an orthonormal sequence vy, ..., v, of eigenvectors of f7 f,, with
eigenvalues Aq,..., ;. Put v} = fi(v;)/v/Ai € Vi; these vectors form an or-
thonormal sequence of eigenvectors of f,f, with the same eigenvalues.

For i < k we have \; > \; > 0 50 7(\) = \i 50 (i + f*F) 72 (v) = vi/ /2N
and p'/2(v;) = VAwi so jo(v;) = (v;,v])/v/2. This is the same as j;(v}), so it
lies in (joVoz) N (j1Viz). Thus, this intersection has dimension at least k, as
required. m]

We conclude this section with a topological interpretation of the scheme D(V()N
D(Vy) itself.

Proposition 5.4 Let Vy and Vi be vector bundles over a space X, and let
Ly and Ly be the tautological bundles of the two factors in PVy xx PVj.
Then there is a natural map S(Hom(Lo, L1))g — D(Vo) N D(V4), which is an
isomorphism if the map E*P(Vy ® V1) — E*PVy & E* PV} is injective.

Proof We divide the sphere bundle S(Vy @ V;) into two pieces, which are
preserved by the evident action of U(1):

Co = {(vo,v1) € S(Vo ® V1) | lvoll = [loa |}

Cr={(vo,v1) € SVo & V1) [ [[v1]l = [Jwol[}-

The inclusions V; — Vp @ Vi give inclusions S(V;) — C; which are easily seen
to be homotopy equivalences. It follows that C;/U(1) ~ PV;. We also have

CoNCr = {(vo,0) | [lvoll = [[onl| = 2712} = S(Vp) x S(V3).

Given a point in this space we have a map a: Cvy — Cuvy sending vg to v;.
This has norm 1 and is unchanged if we multiply (vg,v1) by an element of
U(1). Using this we see that (Co N C1)/U(1) = S(Hom(Lg,L;)). Of course,
we also have (Cy U C)/U(1) = P(Vp @ Vi). We therefore have a homotopy
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pushout square as shown on the left below, giving rise to a commutative square
of formal schemes as shown on the right.

S(Hom(Lo, L)) —2— PV, S(Hom(Lo, L1))p —— D(Vp)
i1 Jo J ]
PV P(Vo @ V1) D(W1) D(Vo @ V).

J1
This evidently gives us a map S(Hom(Lo, L1))r — D(Vo) N D(V1).

se. W Ry . :
To be more precise, we use the Mayer-Vietoris sequence associated to our
pushout square. This gives a short exact sequence

cok(f%) & E°S(Hom(Lg, L1)) 5 ker(f~1),
where
F =g, i) EFP(Vy @ Vi) — EFPVy @ EFPV;.

We have seen that cok(f%) = O D(Vo)nD(v1)» and the map p just corresponds to
our map

S(Hom(Lo, L1))5 — D(Vo) N D(V1).

This map will thus be an isomorphism if f* is injective, as claimed. O

6 Algebraic universal examples

Let G be a formal group over a formal scheme S. Later we will work with
bundles over a space X, and we will take S = Xg and G = (CP*® x X)g. We
write Div} = Div}(G) ~ G¢/Z,, so ODiv: = Ogle1, - -, ed.

Fix integers dgy,dy,r > 0. We write Int,(dy, d;) for the scheme of pairs (Dg, D)
where Dy and D, are divisors of degrees dy and d; on G, and int(Dg, D7) > 7.
In other words, if D; is the evident tautological divisor over DiV:lLO X Div}1 then
Int,(do,dy) = Int,. (Do, D1). We will assume that r < min(dy,d;) (otherwise
we would have Int,.(dy,d;) =0.)

For a more concrete description, put
R= ODiv;;O x Divy = Osleoj | § < do]lers | 7 < di].

Let A be the matrix of ( over R as in Section 3, and let I be the ideal in
R generated by the minors of A of size dy + dy —r + 1. Then Int,(dy,d;) =
spf(R/I).
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We will also consider a “semi-universal” case. Suppose we have a divisor D on
G over S, with degree d;. Let Dy be the tautological divisor over Divjo. We

can regard Dy and D; as divisors on G over Divj{o and thus form the closed
subscheme Int,.(Dy, D1) C DiV:er. We denote this scheme by Int,(dy, D1).

We can also define schemes Sub,(dy,d;) and Sub,(dy, D7) in a parallel way.

Remark 6.1 Sub,(dy,d;) is just the scheme of triples (D, Dy, D;) for which
D < Dy and D < D;. This is isomorphic to the scheme of triples (D, D{, D}) €
Div;" x Divy _ x Divy _ ., by the map (D, Dg, D}) — (D, D + Dy, D + Df).

Definition 6.2 We write Sub, (D) for the scheme of divisors D’ of degree r
such that D’ < D. Using Remark 3.12 we see that Sub,(D) = Sub,(r, D) =
Int,(r, D).

Theorem 6.3 The ring Oy, (4y,4,) 1S freely generated over
OS[[COi | O<i§d0—r]][[clj |0<j Sdl]]

by the monomials
do

(6 2 (67
cy = H Coi

i=do—r+1
for which ), a; < dy —r. Moreover, if we let 7: Sub,(do, d;) — Int,(do,dy) be
the usual projection, then the corresponding ring map ©* is a split monomor-
phism of modules over ODiv: (so m itself is dominant).
1

The proof will be given after a number of intermediate results. It seems likely
that the injectivity of 7* could be extracted from work of Pragacz [9, Section
3]. He works with Chow groups of varieties rather than generalised cohomology
rings of spaces, and his methods and language are rather different; we have not
attempted a detailed comparison.

We start by setting up some streamlined notation. We put n = dg — r and
m = d; —r. We use the following names for the coordinate rings of various
schemes of divisors, and the standard generators of these rings:

Cy= ODiv;rO = Ogui, ..., Uptr]
Ci = ODivj;l = Og[viy - Ve
A = Op;r = Oslar, ..., an]
B = Opjy+ = Os[b1, . ..., bn]
C = Opyy+ = Osler, ..., o]
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(In particular, we have renamed cg; and cy; as u; and v;.) We put uy = vg =
ag =bg =co=1. We define u; =0 for i <0 or ¢ > n—+r, and similarly for v;,
a;, b; and ¢;. The equations of the various tautological divisors are as follows:

folx) = Zuix”+r_i € Cplz]
fi(z) = Zvixm”*i € C4[z]
flx) = Zaix”_i € Alx]

i
g(x) = Z bix™ " € Blz]
i
h(z) = Zcm“i € Clz].
i
We write Tp for the set of monomials of weight at most m in wpqq, ..., Upyr,

and T for the set of monomials of weight at most m in ¢1,...,¢.. We also
introduce the subrings

C(/) - OS[[Ul,...,Un]] C Co
Cy = Oglu, ..., un—1] C Cj.

We note that the ring @ := Oty (dy,4,) has the form (Co®C1)/I for a certain

ideal I. The theorem claims that @ is freely generated as a module over C()@Cl
by TO .

The map
7 CoRC; — ARB®RC

sends fo(z) to f(x)h(z) and fi(z) to g(z)h(x). This induces a map 7*: Q —
ARB®C, and the theorem also claims that this is a split injection.

We will need to approximate certain determinants by calculating their lowest
terms with respect to a certain ordering. More precisely, we consider monomials
of the form u® = [[] u, and we order these by u® < v if there exists i such
that a; > 3; and a; = §; for 7 > 7. The mnemonic is that u; < ... < Up4, 50
any difference in the exponent of u; overwhelms any difference in the exponents
of ULy oo oy Uj—1-

Lemma 6.4 Suppose we have integers ; satisfying 0 < vg < ... < Y <
m +r, and we put M;j = Upypyi—ry; for 0 <i,j < m, where uy, is interpreted
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as 0 if k <0 or k > n+r. Then the lowest term in det(M) is the product of
the diagonal entries, so

m
det(M) = H Unptr+i—ry; + higher terms .
i=0

Remark 6.5 Determinants of this type are known as Schur functions.

Proof Put § = [[\"Untrti—,. Let M/ be obtained from M by removing
the 0’th row and ¢’th column. The matrix M) has the same general form as
M so by induction we have det(M)) = [[;~| un4rti—v, + higher terms . If we
expand det(M) along the top row then the 0’th term is uy4,—q, det(M}) =
0 + higher terms . As 0 < v < ... < 7, we have v > i 4+ v and so ¢
only involves variables w; with j < n +r — <. The remaining terms in the
row expansion of det(M) have the form (—1)"uy,4r—~o+; det(M]) for i > 0, and
Unptr—no+i is either zero (if ¢ > ) or a variable strictly higher than all those
appearing in d. The lemma follows easily. m]

Lemma 6.6 The ring @ is generated by Ty as a module over C(’)@Cl.

Proof Let J be the ideal in C(’)@Cl generated by uy,...,u, and vi, ..., Vmir,
so (C4®CY)/J = Og. We also put Cl! = (Co®C1)/J = Ostntt,---sUnir]-
As J is topologically nilpotent, it will suffice to prove the result modulo J. We
will thus work modulo J throughout the proof, so that f; = ™", and we
must show that @/J is generated over Og by Tj.

Let p: C{[z]/z™t" — C{[x]/2™*" be defined by u(t) = fot, and let M be
the matrix of u with respect to the obvious bases. It is then easy to see that
Q/J = C{/I, where I is generated by the minors of M of size m + 1. The
entries in M are M;; = Upyryi—j.

We next claim that all the generators uy are nilpotent mod I, or equivalently
that u, = 0 in the ring R = C!///T for all k. By downward induction we may
assume that u; = 0 in R for k <1 < n +r. We consider the submatrix M’ of
M given by Mi’j = M pir—k+j = Uitk—j for 0 < 4,5 < m. By the definition
of I we have det(M’) € I and thus det(M’) =0 in R. On the other hand, we
have u; = 0 for [ >k so M’ is lower triangular so det(M’) = [, M}, = u}"™'.
Thus wy is nilpotent in R but clearly Nil(R) =0 so ur = 0 in R as required.
It follows that @/J is a quotient of the polynomial ring Oglun 1, .., Uptr] C

Oslung1,-- s Untr].
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Now let W be the submodule of Q/J spanned over Og by Tj; we must prove
that this is all of @Q/J. As 1 € W, it will suffice to show that W is an ideal.
In the light of the previous paragraph, it will suffice to show that W is closed
under multiplication by the elements wy,1,...,Uptr, or equivalently that W
contains all monomials of weight m + 1.

We thus let o = (ap41,-..,an+r) be a multiindex of weight m + 1. There is
then a unique sequence (f,...,0n) with n+r > Gy > ... > [, > n and
u® =l ug. Put vy =n+4+r+i— 0, sothat 0 <y <... <y, <m+r. Let
M, be the submatrix of M consisting of the first m + 1 columns of the rows
of indices 7o, .. .,%m, so the (4,7) th entry of M is wup4rti—r,. Note that the
elements r, := det(M,,) lie in I.

Lemma 6.4 tells us that the lowest term in ro is [[; untrti—y, = [[; ug, = u®.
It is clear that the weight of the remaining terms is at most the size of M,,
which is m + 1. By an evident induction, we may assume that their images in
C{/I liein W. As ro € I we deduce that u® € W as well. O

Corollary 6.7 Let Dy be a divisor of degree di on G over S’, for some

scheme " over S. Then Oty (4y,p,) is generated over Ogr|cot, . .., co,dy—r] by
do

the monomials cf = [[;2, _, 1 coi for which |a| <dj —r.

Proof The previous lemma is the universal case. O

We next treat the special case of Theorem 6.3 where n =0 and so r = dy. As
remarked in Definition 6.2, the map 7: Sub,(d;) = Sub,(r,d1) — Int,(r,d1) is
an isomorphism in this case.

Lemma 6.8 Let D be a divisor of degree d on G over S. For any r < d we let
P.(D) denote the scheme of tuples (u1,...,u,) € G" such that >, [u,] < D.
Then Op, (py is free of rank d!/(d —r)! over Og.

Proof There is an evident projection P.(D) — P,_1(D), which identifies
P.(D) with the divisor D — [u1] — ... — [up—1] on G over P,_;(D). This
divisor has degree d —r+1, so Op, (p) is free of rank d —7 +1 over Op,_,(p)-
It follows by an evident induction that Op, p) is free over Og, with rank
dd—=1)...(d—r+1)=dl/(d—r). O

Lemma 6.9 Let D be a divisor of degree d on G over S, let D' be the
tautological divisor of degree r over Sub,(D), and let f(z) = >_I_,c;z"~* be
the equation of D. Then the set T' of monomials of degree at most d — r in
C1,...,¢r Is a basis for Ogyy,, (p) over Og.
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Proof Put K = |T|; by elementary combinatorics we find that K = ( f )

Put R = Ogyp,(p)- Using T we obtain an Og-linear map 3: Oé( — R, which
is surjective by Lemma 6.6; we must prove that it is actually an isomorphism.

Now consider the scheme P,.(D); Lemma 6.8 tells us that the ring R’ := Op,.(p)
is a free module over Og of rank d!/(d —r)! = r!K. On the other hand, P,(D)
can be identified with the scheme of tuples (D', uq,...,u,) where D’ € Sub, (D)
and D' = [u1]+...+[u,]. In other words, if we change base to Sub, (D) we can
regard P,(D) as P,(D’), and now Lemma 6.8 tells us that R’ is free of rank r!
over RR.

Now choose a basis eq,...,e, for R’ over R. We can combine this with (3
to get a map v: Og"® — R’. This is a direct sum of copies of 3, so it is
surjective. Both source and target of v are free of rank r!K over Og. Any
epimorphism between free modules of the same finite rank is an isomorphism
(choose a splitting and then take determinants). Thus « is an isomorphism,
and it follows that 3 is an isomorphism as required. O

Corollary 6.10 The set T is a basis for B&C' over C.

Proof This is the universal case of the lemma. D

Corollary 6.11 The set T is a basis for AQ BRC' over C{)@Cl.

Proof Note that AB®C = (B®C)[ay,...,a,]. For 0 <i < n we have
i u; = Z ajc, = a; + ¢; mod decomposables,
i=j+k
where ¢; may be zero, but a; is nonzero. It follows that our ring A®BXC
can also be described as (BRC)[u1, . . ., u,], or equivalently as C{@B&C. The

claim now follows easily from the previous corollary. m]
Now let Ty be the set of monomials of the form u?,c{" ...c% for which 0 < i <

|a| < m. These monomials can be regarded as elements of ARB®C, giving a
map (C{)’@Cl){Tl} — A®B®C'. The map 7: CoRC; — ARB®C also gives
us a map (C4&C){Ty} — ARB®C, and by combining these we get a map

¢: (CHRCH{TH} @ (CHRC){T1} — ARBRC ~ (CH{RC){T}

of modules over C/®C;. Our main task will be to prove that this is an isomor-
phism. The proof will use the following lemma.
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Lemma 6.12 Let R be a ring, and let «: M — N be a homomorphism of
modules over R[z]. Suppose that M can be written as a product of copies
of R[x], and similarly for N. Suppose also that the induced map M/xM —
N/xN is an isomorphism. Then « is also an isomorphism.

Proof We have diagrams as shown below, in which the rows are easily seen to
be exact:

M/z*M —— M /"M —— M/zM

Ot‘( Ot‘( ‘/O&
N/a*N —— N/2""'N —— N/azN

We see by induction that the maps M/z*M — N/zFN are all isomorphisms,
and the claim follows by taking inverse limits. |

Our map ¢ is a map of modules over the ring
CYRCy = Osut, ..., Un_1,01, ..., Vmir].
Moreover, we have C{RC) = (C{@C1)[un] =~ [[iey CH&C1. Now let J be the

ideal in C(’)’@C’l generated by {ui,...,up—1,V1,...,Vmir}, SO (C’(’)’@Cl)/,] =
Og and ¢ induces a map

¢: Os[un]{To} ® Os{T1} = Osun]{T}.

Note also that Og{T'} is the image of C in (AR B®C')/.J and is thus a subring
of Os[un]{T'}. By an evident inductive extension of the lemma, it will suffice
to show that ¢ is an isomorphism.

Lemma 6.13 We have u,+j = u,cj+w; (mod J) for some polynomial w; in
Cly...,Cp.

Proof For any monic polynomial p(z) of degree d we write p(y) = y?p(1/y). If
p(x) = >, rx®" then p(y) = >, my'. Note that pg = pg, and that p(0) = 1.
As we work mod (u; | i < n) we have fo = 1 (mod y"). As we work mod
(vj | 7 £ m+r) we have fi = 1. We also have fh = fo and gh = f1,
so fh = fo =1 (mod y™) and Gh = fi = 1. Tt follows easily that f = §
(mod y™), so a; = b; for i < n.

We now have to distinguish between the case m < n and the case m > n. First
suppose that m < n. Then for ¢ > n we have a; = b; = 0, and also b, = 0, and
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a; = b; for i < n by the previous paragraph. This implies that f g = apy"
We also have ( f g)h fo — 1, and by comparing coefficients we deduce that
GnC; = Upy; for 1 =0,... 7. The case ¢ = 0 gives up = Gp, SO Upi; = Upc; for
i=1,...,r, so the lemma is true with w; = 0.

Now suppose instead that m > n. As a; =0 for ¢ > n we have

m
f —g— (an - bn)yn = = Z biyl S C[y]
i=n-+1
We now multiply this by h and use the fact that (f — §)h = fo — 1. By
comparing coefficients of y" we find that u, = a, — b,. In view of this, our
equation reads

fo —1- uny”iL =—( Z blyz)ﬁ € Clyl.

The right hand side has the form ) >0 w;y"7 with w; € C, and by comparing
coefficients we see that w,,; = u,c; +w; as claimed. O

Proof of Theorem 6.3 Lemma 6.13 tells us that ¢(u®) is ul?lee plus terms
involving lower powers of wu,. It follows easily that if we filter the source
and target of ¢ by powers of u,, then the resulting map of associated graded
modules is a isomorphism. It follows that ¢ is an isomorphism, and thus that
¢ is an isomorphism. It follows that the map (CL&CH{Ty} — ABRBRC is a
split monomorphism of modules over C 'R0 (and thus certainly of modules
over (7). We have seen that this map factors as

(CHBCH{TY % Q = ABBEC,

where v is surjective by Lemma 6.6. It follows that ¢ is an isomorphism and
that 7* is a split monomorphism, as required. O

7 Flag spaces

In the next section we will (in good cases) construct spaces whose associated
formal schemes are the schemes Sub,(D(Vp), D(V1)) and Int,(D(Vp), D(V1))
considered previously. As a warm-up, and also as technical input, we will first
consider the schemes associated to Grassmannian bundles and flag bundles.
The results discussed are essentially due to Grothendieck [4]; we have merely
adjusted the language and technical framework.
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Let V be a bundle of dimension d over a space X. We write P.(V) for the
space of tuples (x,L1,...,L;) where z € X and Ly,...,Ly € PV, and L;
is orthogonal to L; for i # j. Recall also that in Lemma 6.8 we defined
P.(D(V)) to be the scheme over Xpg of tuples (ui,...,u,) € G" for which
[u1] + ...+ [u,] < D(V).

Proposition 7.1 There is a natural isomorphism P.(V)g = P.(D(V)).

Proof For each i we have a line bundle over P,(V) whose fibre over the
point (x,Ly,...,L,) is L;. This is classified by a map P.(V) — CP*°, which

gives rise to a map u;: P.(V)g — G. The direct sum of these line bundles
corresponds to the divisor [u;] + ...+ [u,]. This direct sum is a subbundle of
V,so [ul] + ...+ [u] < D(V). This construction therefore gives us a map

B (V) — B(D(V)).

In the case r = 1 we have P;(V) = PV and P;(D(V)) = D(V) so the claim
is that (PV)g = D(V), which is true by definition. In general, suppose we
know that P._1(V)g = P,_1(D(V)). We can regard P.(V) as the projective
space of the bundle over P._1(V') whose fibre over a point (z, L1,...,L,_1) is
the space V, © (L1 @ ... ® L,_1). It follows that P.(V)g is just the divisor
D(V) = ([u1] + ... + [ur—1]) over P,_1(D(V)), which is easily identified with
P,.(D(V')). The proposition follows by induction. D

Remark 7.2 One can easily recover the following more concrete statement.
The ring E°P,(V) = Op,(p(v)) s the largest quotient ring of (E°X)[x1,... 2]
in which the polynomial fy(t) is divisible by Hle(t —x;). It is a free module
over EYX with rank d!/(d — r)!, and the monomials x* with 0 < a; < d —i
(for ¢ =1,...,r) form a basis. More details about the multiplicative relations
are given in Section 9.

We next consider the Grassmannian bundle

G (V)=A(z,W)|ze X, W<V, and dim(W) = r}.
Proposition 7.3 There is a natural isomorphism G,(V)g = Sub,(D(V)).

Proof Let T' denote the tautological bundle over G,(V). This is a rank r
subbundle of the pullback of V' so we have a degree r subdivisor D(T") of the
pullback of D(V') over G,(V')g. This gives rise to a map G, (V) — Sub,(D(V)).

Next, consider the space P,.(V). There is a map FP.(V) — G,(V) given by
(x,L1,...,Ly) — (z,L1 & ... ® L,). This lifts in an evident way to give a
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homeomorphism P.(V) ~ P.(T). Of course, this is exactly parallel to the proof
of Lemma 6.9. Over P,(D(T)) we have points ay,...,a, of G with coordinate
values x1,...,2, € Op (p(1)) say. Let B be the set of monomials x* with
0<a; <r—ifori=1,...,r. From our earlier analysis of Sub,(D(V)) and
P.(D(T)) we see that B is a basis for Op (p(r)) over Ogyp,, (p(v))- We also
see from Remark 7.2 (applied to the bundle T') that B is a basis for E°P,.(T)
over E°G,.(V). This means that our isomorphism f: Op.(p(vy) — E°P.(V) is
a direct sum (indexed by B) of copies of our map g: Osu,. (p(v)) — E°Gr(V).
It follows that g must also be an isomorphism. O

Remark 7.4 Lemma 6.9 now gives us an explicit basis for E°G,.(V) over
E%X | consisting of monomials in the Chern classes of the tautological bundle
T.

8 Topological universal examples

In this section we construct spaces whose associated formal schemes are the
algebraic universal examples considered in Section 6.

We first consider the easy case of the schemes Sub,.(Dg, D1).

Definition 8.1 Given vector bundles V and Vi over X, we define G, (Vy, V1)
to be the space of quadruples (z, Wy, W1, g) such that

(a) zeX;
(b) W; is an r-dimensional subspace of V;, for i = 0,1; and
(c) g is an isometric isomorphism Wy — W;.

(We would obtain a homotopy equivalent space if we dropped the requirement
that g be an isometry.)

If V; is the evident tautological bundle over BU(d;) we write G,(dy,d;) for
G,(Vp,V1). More generally, if V is a bundle over X and dy > 0 we can let
Vi be the pullback of V' to BU(dy) x X, and let Vy be the pullback of of
the tautological bundle over BU(dp); in this context we write G,(dy, V') for
GT(%) Vl) .

Theorem 8.2 There is a natural map p: G,(Vy,V1)g — Sub,(D(Vp), D(V1)).
In the universal case this is an isomorphism, so

Gr(d07 dl)E - SUbT(d07 dl)
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More generally, there is a spectral sequence
Torg*BU(dO)XBU(dl)(E*X, E*Gr(do, dl)) == 4 E*GT(‘/O7 Vl),
whose edge map in degree zero is the map

P*: Osub, (D(ve),p(v1)) — E°Gr(Vo, V).

The spectral sequence collapses in the universal case. (We do not address the
question of convergence in the general case.)

Proof First, we can pull back the bundles V; from X to G,(Vp, Vi) (with-
out change of notation). We also have a bundle over G,(Vp, Vi) whose fi-
bre over a point (x, Wy, Wi,g) is Wp; we denote this bundle by W, and

note that there are natural inclusions Vj L w % Vi. We then have di-
visors D(W) and D(V;) on G over G,(Vo,Vi)g with D(W) < D(Vp) and
D(W) < D(Vy), so the triple (D(Vy),D(V1), D(W)) is classified by a map
G,(Vo,V1)g — Sub,(D(Vy), D(V1)).

We next consider the universal case. As our model of EU (d) we use the space of
orthonormal d-frames in C*°, so BU(d) is just the Grassmannian of d-planes
in C*. Given a point

(u,v) = (u1,...,Udgy,V1,-..,04) € EU(dy) x EU(d1)
we construct a point ((Vo, V1), Wo, W1, g) € G,(do, d1) as follows:

Vo is the span of uy,...,uq,

Vi is the span of vy,...,vq,

)
)

(¢c) Wy is the span of uq,...,u,
) W is the span of vy,..., v,
)

g is the map Wy — W that sends u; to v;.

This gives amap f: EU(dy) x EU(d1) — Gy(do,d1). Next, the group U(dy) X
U(dy) has a subgroup U(r) x U(dy —r) x U(r) x U(dy; — r), inside which we
have the smaller subgroup I' consisting of elements of the form (h, ko, h, k1).
It is not hard to see that I' ~ U(r) x U(dg — ) x U(dy —r), and that f gives
a homeomorphism (EU(dy) x EU(dy))/T" — G,(do,d1). Moreover, EU(dy) X
EU(d;) is contractible and I' acts freely so G, (do,d1) ~ BI' = BU(r)x BU (dy—
) x BU(dy =), so Gy(do,d1)p = Div,;f x Divy _ xDivy _ = Sub,(do,d:) as
claimed.
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In the general case we can choose maps f;: X — BU(d;) classifying V;, and
this gives rise to a pullback square as follows:

GT‘(‘/Oa ‘/1) — Gr(d(]u dl)

The vertical maps are fibre bundle projections so this is actually a homotopy
pullback square. This give an Eilenberg-Moore spectral sequence as in the
statement of the theorem. On the edge we have

E*X ®p«Bu(dy)xBU(d)) £ Gr(do, d1),
which is the same as

E* X ®Eopu(de)x BU(dy) £ Gr(do, dy).
We can now identify this as the tensor product of E*X with Ogy, (4y,4,) OVer
ODiij X Div} " The part in degree zero is easily seen to be Ogup, (D(vp),D(11)) @8

claimed. D

We next show that our map G, (Vo, Vi) — Sub,(D(Vp), D(V1)) is an isomor-
phism in the semiuniversal case as well as the universal case. We start by
analysing the semiuniversal spaces G, (dp, V) in more familiar terms.

Proposition 8.3 There are natural homotopy equivalences
G, (do, V) ~ G,(V) x BU(dy — )
(and in particular G,(r,V) ~ G(V) ).

Proof A point of G,(do, V) is a tuple (Vp, z, Wy, W1, g) where Vj € G4,(C*),
xe X, WyeG.(Vp), Wi € G.(V) and g: Wy — W;. We can define a map
f: Gr(do, V) — GT(V) X BU(do —7“) by f(V(), x, Wy, W1, g) = (.’/U, Wi, Vo @W()).
It is not hard to see that this is a fibre bundle projection, and that the fibre
over a point (z, W, V') is the space of linear isometric embeddings from W
to C* & V’/. This space is homeomorphic to the space of linear isometric
embeddings of C" in C*°, which is well-known to be contractible. Thus f is a
fibration with contractible fibres and thus is a weak equivalence. O

Corollary 8.4 The map G,(do,V)g — Sub,(dy, D(V')) is an isomorphism.
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Proof Recall that Sub,(dy, D(V)) is the scheme of pairs (D, D) where Dy
is a divisor of degree dy, D is a divisor of degree r and D C D; N D(V).
There is an evident isomorphism Sub,(D(V)) xg DiV:{O,T — Sub,(dp, D(V))
sending (D', D) to (D + D', D). The proposition tells us that G,(dy,V) =
G,(V) x BU(dyp — r). We already know that BU(dy — r)g = Div;rofr, and
Proposition 7.3 tells us that G,(V)g = Sub,(D(V)). We therefore have an
isomorphism G, (do,V)r = Sub.(D(V)) xg Divj, . = Sub,(do, D(V)). (This
involves an implicit Kiinneth isomorphism, which is valid because BU (dy — )
has only even-dimensional cells.) We leave it to the reader to check that this
isomorphism is the same as the map considered previously. O

We now turn to parallel results for the schemes Int,(D(Vp), D(V1)).

Definition 8.5 Given vector bundles V; and V; over a space X, we define
I.(Vp, V1) to be the space of pairs (z, f) where f: Vi, — Vi, is a linear map
of rank at least r. We define the universal and semiuniversal spaces I,.(dy, d;)
and I,.(do, V) by the evident analogue of Definition 8.1.

Remark 8.6 There is a natural map
GT‘(‘/Ou Vl) - Ir(‘/(]p V1)7
sending (x, Wy, W1,g) to (z, f), where f is the composite

Vo 2% wy L owy v
This gives a homeomorphism of G, (Vp, V1) with the subspace of I.(Vy, V1)
consisting of pairs (z, f) for which f*f and ff* are idempotent.

Definition 8.7 We define a natural map ¢: I,(Vp, V1) — Int,.(D(Vp), D(V1))
as follows. If we let m denote the projection I.(Vp,Vi) — X then we have
a tautological map f: 7#*Vy — 7w*V; which has rank at least r everywhere.
Proposition 5.3 now tells us that int(7*Vy, 7*V;) > r. We can therefore apply
Theorem 5.1 and deduce that the map I.(Vp,V1)p — Xp factors through a
map q: I,(Vo, V1) — Int,.(D(Vo), D(V1)) € XE as required.

Later we will show that the map ¢ is an isomorphism in the universal case. For

this, it will be convenient to have an alternative model for the universal space
I,(do,dy).

Proposition 8.8 Put
I;(do,dl) = {(V(),Vl) € Gdo (COO) X Gd1 (COO) ‘ dlm(VO N Vl) > k‘}
Then I/(dy,dy) is homotopy equivalent to I,.(dy,dy).
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Proof The basic idea is to refine the proof of Proposition 5.3. We will take
G4(C>) as our model for BU(d). We write I = I,(dy,dy) and I' = I/(dy,d;)
for brevity.

We will need various isometries between infinite-dimensional vector spaces. We
define 6: C*® — C>® @ C>® by 6(v) = (v,v)/v/2, and we define §: C*®C>® —
C* by 0(v,w) = (vg,wp,v1,w1,...). Next, it is well-known that the space of
linear isometric embeddings of C* in itself is contractible, so we can choose a
continuous family of isometries ¢y with ¢g = 66 and ¢ = 1. Similarly, we can
choose continuous families of isometric embeddings ¥, 9! : C* — C> @& C*®
with ¥J(v) = 0(v,0) and ¥?(v) = 0(0,v) and g (v) = Pi(v) = v.

We now define a map a: I' — I by a(Vo, V1) = (Vo, Vi, f), where f is the
orthogonal projection map from Vy to Vi. This acts as the identity on V5 NV;
and thus has rank at least k. If we choose n large enough that Vo + V3 < C”

and let Vj o, cn ol Vi be the inclusions, then f = i]i.
Next, we need to define a map 3: I — I'. Given (Vp,Vi,f) € I we can
construct maps

p: Vo — Vo

v: V1 — V1

Jo: Vo= Vo@® Vi <C®@C™

i Vi=VoeV <C*¥aC™

as in the proof of the implication (¢)=-(b) in Proposition 5.3, so dim(joVp N
71V1) > k. We can thus define g: I — I’ by 8(Vp, Vi, f) = (050V0,051V4).

Suppose we start with (Vp, V1) € I’, define f: Vo — V; to be the orthogonal
projection, and then define jy, j; as above so that Sa(Vp, V1) = (650V0, 051V1).
Observe that f*f: Vj — Wy decreases distances, and acts as the identity on
Vi=VonVi. If welet \i,..., A\g, be the eigenvalues of f*f (listed in the usual
way) we deduce that \y = ... = Xy = 1 and that 0 < \; <1 for all 7. It follows
from this that © and v are the respective identity maps, so

o= Lo+

=00 (L fF) 72
In particular, we have jo(v) = j1(v) = (v,v)/Vv2 for v € V', s0 jolv = jilv =
Sy
Next, for 0 < ¢ < 1 we define ji: Vj — C>® & C™ by

Gb = (o, tio + (1= 1)f) o (L+12 + (1= 2) f* )72
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One can check that this is an isometric embedding, with jJ = jo and j§ = d]y,
and jb|y = 6|y for all ¢. Similarly, if we put

gt = (intio + (1= 0)f) o (L+ 8+ (1 - ) )72,

we ﬁnd that this is an isometric embedding of V; in C® @ C*® with j9 = j;
and ji = 6|y, and ji|y = 6|y for all ¢. It follows that (055Vo,05iV;) € I’ for
all ¢, and this gives a path from Ba(Vh, Vi) = (640Vh,071V1) to (00Vy,05V1).
Recall that we chose a path {¢;} from 6§ to 1. The pairs (¢:Vp, ¢:V1) now
give a path from (06Vp,86V1) to (Vp, Vi) in I’. Both of the paths considered
above are easily seen to depend continuously on the point (Vp, Vi) € I’ that we
started with, so we have constructed a homotopy fa ~ 1.

Now suppose instead that we start with a point (Vp, V1, f) € I; we need a
path from af(Vo, Vi, ) to (Vo, Vi, f). We have B(Vo, Vi, f) = (65oV, 01 Vh),
so af(Vo, Vi, f) = (050V0, 071 V4, '), where f': 0joVy — 6j1V1 is the orthog-
onal projection. One can check that this is characterised by f/'(6jo(v)) =
041 (4% jo(v)). Next, for 0 <t <1 we define k: Vo — Vo @ Vi by

= (V1= +82ptf)o(1 -+ u+2ff)71/2

This is an isometric embedding with k} = jo and kJ(v) = (v,0). Similarly, we
define k%: V3 — Vo @& V) by

k= (tf V1 =2+ t20) o (1 — 2 + 2w+ t2f %)~V
and we define f/: 0kiVy — 0kiV; by
JL(OKG(0)) = Ok (57 jo(v)),
so fi = f. The points (k{Vo, ki V4, f]) give a path from af(Vo, V4, f) to (6(Vo®
0),0(0® V1), f}) in I.

Next, we define f;": viVo — ¥iVy by f/'(vh(v)) = (jfjo(v)). The points
(wOVO,WVh /') give a path from (0(Vp @ 0),60(0 & V1), f§) to (Vo, Vi, 4ijo) in
I. Using Proposmon A.2 one can check that

jijo =@+ ff) o (fVr+Vvf)o(u+ff)
=fo@u(u+ N7,
The map ¢ := 2u'/2(pu+ f*f)~! is a strictly positive self-adjoint automorphism
of Vp, so the same is true of ¢t + (1 — ¢)¢ for 0 <¢ < 1. The points (Vp, V1, f o
(t+ (1 —1t)¢)) form a path from (Vp,Vi,5770) to (Vo, Vi, f). All the paths

considered depend continuously on the point (Vp, Vi, f) that we started with,
so we have defined a homotopy a3 ~ 1. O
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Theorem 8.9 The map q: I,(dy,d1)g — Int,(dy,dy) is an isomorphism.

Proof We first replace I,.(dy,d1) by the homotopy-equivalent space I (dy,dy).
We write I, = I).(dy,d1) and G, = G,(do,d;) for brevity, and similarly for Int,
and Sub,.. We first claim that there is a commutative diagram as follows.

Omt, = Osup,

E°I, — E'G,.
Indeed, the isomorphism
Pt Osub,(do.dr) — E°Gr(do, dy)

comes from Theorem 8.2, and the map ¢ comes from Definition 8.7. It was
proved in Theorem 6.3 that the top horizontal map is a split monomorphism of
Og-modules, and it follows that the same is true of the map ¢: Oy, — E°I,.

We now specialise to the case where E is H|[u,u '], the two-periodic version of
the integer Eilenberg-MacLane spectrum. We then have EYX = I H?:X for
all spaces X . This splits each of the rings on the bottom row of our diagram
as a product of homogeneous pieces, and it is not hard to check that there is a
unique compatible way to split the rings on the top row. We know that ¢ is a
split monomorphism; if we can show that the source and target have the same
Poincaré series, it will follow that ¢ is an isomorphism. If » = min(dp, d;) then
Int, = Sub, so the claim is certainly true. To work downwards from here by
induction, it will suffice to show that

PS(H*I41) — PS(H"I,) = PS(Oms,,,) — PS(Omus, )
for all r.
To evaluate the left hand side, we consider the space
I\ I,11 = {(Vo,V1) € G4, (C™) x Gg,(C®) | dim(VpN'V;) = k}.

Let G be the space of triples (V,Vj,V/) of mutually orthogonal subspaces
of C* such that dim(V) = r and dim(V;) = d; — r. This is well-known
to be a model of BU(r) x BU(dy — r) x BU(dy — r) and thus homotopy-
equivalent to G,-; the argument uses frames much as in the proof of Theorem 8.2.
Let W be the bundle over G| whose fibre over (V,Vy,V/) is Hom(V{,Vy). If
a € Hom(Vy,V{) and we put Vj = V @ V/ and Vi = V @ graph(a) then
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VonVi =V and so (Vp, Vi) € .. Tt is not hard to see that this construction
gives a homeomorphism of the total space of W with I,,\ I, 1. This in turn gives
a homeomorphism of the Thom space (G.)" with the quotient space I,./I 1.
By induction we may assume that H*I.,; is concentrated in even degrees,
and it is clear from the Thom isomorphism theorem that the same is true of
H*(G;)"W. This implies that H*I, is in even degrees and that PS(H*I,) —
PS(H*I,41) = PS(H*(G/)"). As W has dimension (dy — r)(d; — 1), we see
that PS(H*(G)W) = 2=~ pS(H*G). We also know that H*G/ ~
Ogub, - The conclusion is that

PS(H*I,) = PS(H*I,11) = t*0= =) PS(Ogyy, ).

We next evaluate PS(Omys,,,) — PS(Omt,). Put

*
RT = Z[[C(]l? ---5,C0dy—r>C115 - - - 7cl,d1]]'

We know from Theorem 6.3 that Opy, is freely generated over R by the
monomials [[;_; gy .., for which 377, a; < di —r. It follows that the
monomials [];_, cgfdoﬂq 4; for which -1 @i <dy —r form a basis for Opyy, over
Ry . Similarly, those for which >>7_o; < dy —r form a basis for Opy,.,, over

+i1- Thus, if we let M™* be the module generated over R}, by the monomials
with Y7} oy < di—r < Y7 a4, we find that PS(Ohyy, ) —PS (O, ) = PS(M*).

It is not hard to check that the monomials for which ZS «; = di —r form a basis
for M* over R;. Next, let N* be generated over Z by the monomials []}_, ¢}"
for which ZS a; = di — r; note that this involves the variables 1 = ¢g,..., ¢,
rather than the variables cgy—,...,cq, used in M*. Because deg(cq,—r4i) =

deg(c;) + 2(dy — r) we have
deg(H i) = deg(H ) +2(do — 1) Z Q.

Using this, we see that PS(M*) = t2(do=")(1-7)pS(N*)PS(R¥). However,
Corollary 6.11 essentially says that Ogyup, ~ Rr® N* as graded Abelian groups,
so PS(N*)PS(R}) = PS(Osup,), so
PS(Ont,,,) = PS(Ony,) = tA0™ " PS(Ogus, )
= PS(H*I,) — PS(H"I,11).

As explained previously, this implies that ¢ is an isomorphism in the case
E = H[u,u"!]. We next consider the case E = MU[u,u"!]. Let I be the
kernel of the usual map MU, — Z. Because H*I,. is free of finite type and
concentrated in even degrees, we see that the Atiyah-Hirzebruch spectral se-
quence collapses and that the associated graded ring gryMU* I, is isomorphic
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to grry (MU *)@H *I,.. Using this it is not hard to check that ¢ is an isomorphism
in the case E = MU[u,u™"] also. Finally, given an arbitrary even periodic ring
spectrum E we can choose a complex orientation in E°CP> and thus a ring
map MU[u,u~!] — E. Using this, we deduce that ¢ is an isomorphism for all
E. ]

Corollary 8.10 Let Vy and Vi be bundles of dimensions dy and di over a
space X . Then there is a spectral sequence

Tor*E**BU(dO)XBU(dI)(E*X, E*I.(dy,d1)) = E*I.(Vp, V1),
whose edge map in degree zero is the map

7"t O, (p(ve),0n)) — E°L:(Vo, V1).

The spectral sequence collapses in the semiuniversal and universal cases. (We
do not address the question of convergence in the general case.)

Proof This is another Eilenberg-Moore spectral sequence. O

9 The schemes P.D

Let D be a divisor of degree d on G over S, with equation

d
ft) = fo(t) =Y ca® € Os]t],

i=0
say. In this section we assemble some useful facts about the scheme P.D.
This is a closed subscheme of G, so Op,p = Os[zo,...,zx_1]/Jk for some
ideal Ji; our main task will be to find systems of generators for Ji. We put
pi(t) =[];<;(t —z;), and we let g;(t) and r;(t) be the quotient and remainder
when f(t) is divided by p;(t). Thus f(t) = ¢;(t)ps(t) + ri(t) and r;(t) has the
form Z};}) aijtj for some a;p,...,a;;—1 € Og. From the definitions it is clear
that Ji is the smallest ideal modulo which f(¢) becomes divisible by pg(t), or
in other words the smallest ideal modulo which 74(t) = 0, so Ji is generated
by aro,...,akk—1. Now put b; = a;41,; for 0 < i < k; we will show that these
elements also generate Jj.

Lemma 9.1 We have b; = ¢;(x;) and r;+1 = bjp; + r; for all 1.
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Proof The polynomial g;(t) —¢;(x;) is evidently divisible by ¢ — x;, say ¢;(t) —
qi(ws) = (t — w3) g (t). If we put i (t) = qi(ws)pi(t) +7ri(t) we find that 7],
is a polynomial of degree at most i and that f(t) = q;,;(t)piy1(t) + i (1),
so we must have ¢iy1 = ¢}, ; and ri4y = 7} ;. Thus b; is the coefficient of ¢’
in i, (t). As r; has degree less than i and p; is monic of degree i we deduce
that b; = qz(xz) . O

Corollary 9.2 The ideal Jj, is generated by by, ...,bp_1.

Proof Put J; = (bo,...,bx—1). If we work modulo J; then it is immediate
from the lemma that r, = r,—1 = ... = ro = 0; this shows that J, C J;.
Conversely, if we work modulo J then f is divisible by p; and hence by p; for
all i <k,sorg=...=r,=0. It follows from the lemma that b;p; = 0 for all
i, and p; is monic so b; = 0. Thus J;, C Jj. O

We now give a determinantal formula for the relators b;. Consider the Vander-
monde determinant

v, = det(a )o<ijek = H (z; — ;).
0<i<j<k
We also define a matrix By by

! if0<j<k—1
(Br)ij = .
flz) ifj=k—1.

Proposition 9.3 We have b; = det(B;)/v; for all j. (More precisely, we have
vjb; = det(B;) € Og[xo,...,xj—1], and v; is not a zero-divisor in this ring.)

Proof Define a: Og? — Og[t]/p;(t) by

a(ug, ..., uj_2,w) = Zuiti +wf(t) (mod p;)= Zuiti—i—wrj(t) (mod pj).

Next, define 3: Og[t]/p;(t) — Og’ by B(g) = (9(z0), ..., 9(zj-1)). We iden-
tify Og[t]/p;(t) with Og’ using the basis {t' | 0 < i < j}. It is easy to see that
det(8) = v; and det(Ba) = det(B;). Moreover, the matrix of a has the form
( é l: ) so det(a) = b;. It follows immediately that v;b; = det(B;). It is
easy to see that none of the polynomials x; —x; (where i < j) are zero-divisors,
so v; is not a zero-divisor. O
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We next need to relate the schemes P, D to the exterior powers A*Op.

Lemma 9.4 The ideal J;, maps to zero under the natural projection Opr =
O%F — NeOp.

Proof It is enough to prove the corresponding result in the universal case,
where D is the tautological divisor over Div;r. As the map G¢ — G¢/%,; =
Div:lr is faithfully flat, it is enough to prove the result after pulling back along
this map. In other words, we need only consider the divisor over the ring
R = Oga = Ogly; | i < d] with equation f(t) = [[;(¢ —v;). Let w be
the discriminant of this polynomial, so w = [[,,;(yi —y;) € R. Put N =
{0,...,d — 1}, and let F(N,R) denote the ring of functions from N to R,
with pointwise operations. We can define ¢: Op — F(N,R) by ¢(9)(i) =
9(yi), and the Chinese Remainder Theorem tells us that the resulting map
w™'Op — F(N,w™'R) is an isomorphism, and it follows that w= 'Oy, =
F(N* w='R). We also have Opx = R[z; | j < k[/(fp(=z;) | 7 < k); the
element x; corresponds to the function n +— yp, .

Now put
Np = {(ng,...,np_1) € N¥ | n; # n; when i # j},

and Nf = N¥\ Ny. Let r(t) be the remainder when the polynomial fp(t) :=
[Tica(t — i) is divided by fp:(t) := [][;o4(¢t — 2;). This corresponds to the
function n + ry(t), where ry(?) is the remainder of fp(¢) modulo [, (t —
Yn;)- As the discriminant is invertible in w™"R we see that r,(t) = 0 iff n € Ny,
and otherwise some coefficient of r, () is invertible. Using this, we deduce that
w'Op,p = F(Ng,w™'R) and w™Jy = F(N{,w™'R). If we let {ep,...,ex_1}
be the evident basis of (NN, R) over R, this means that w™!J is spanned over
w™'R by the elements ny @ ... R ey, , for which n; = n; for some i # j, and
these elements satisfy e,, A ... Aey, , =0 so the map w T, — wIAFOp is
zero. As w is not a zero-divisor we deduce that the map J, — AOp is zero,
as claimed. m]

Next note that the symmetric group ¥ acts on DF and P,D and thus on the

corresponding rings. In either case we define alty(a) = >_ .y, sgn(o)o.a. We

also let pg: O%k — MOp be the usual projection, or equivalently the restric-
tion of the product map pg: (A\*Op)®* — X*Op. Dually, we let 1: \*Op —
O%k be the component of the coproduct map vy: A*Op — (A*Op)®*. We
also let p*: O%k = Opr — Op,p denote the usual projection, corresponding
to the closed inclusion P,D — DF.
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Proposition 9.5 There is a natural commutative diagram as follows.

alty

Op.D

V
D
y

Op.b

%
p* A0
7

Rk Rk
OD OD

alty

Proof The main point to check is that ¥gur = alty: O%k — O%k. Consider
an element a = ap® ... ®ap_, € O%k. Let a! denote the element 1%/ ® a; ®

196=3=1 ¢ O%F 50 that ¢y(a;) = Z;‘:é ag and Yrpx(a) = I1; 25 ag. We are
interested in the component of this in O%k C (\*Op)®k | which is easily seen

to be > T, a;’(i). Moreover, one checks that

H a?(i) =sgn(0)a,1(0) ® - .- ® ay-1(,_1) = sgn(o)o.a,

so the relevant component of 9y (a) is Y sgn(o)o.a = alty(a), as claimed.

Let A be the set of multiindices o = (ag,...,ap—1) with 0 < «o; < d for
all 7, and let Ag be the subset of those for which ag > ... > «ap_1. Put
% = 2% @ ... @21 € OFF. Then {2 | a € A} is a basis for OFF,
and {ug(z®) | « € Ag} is a basis for \*Op. Moreover, if a € Ay and we
write Prpug(z®) = altg(z) = D504 capt® we see that caq = 1 and cap = 0 if
8 € Ay and § # «. It follows that g is surjective and vy is a split injection
of Og-modules, as indicated in the diagram.

Lemma 9.4 tells us that sy factor as pp* for some pj: Op,p — NeOp, and
a diagram chase shows that j is surjective. This gives the right hand triangle
of the diagram. We simply define ¢, = p*¢;, to get the left hand triangle. As

p* is Yp-equivariant we have

alty p* = p* alty = p*Yruk = Yjppp™.
As p* is surjective, this proves that 1/; uj, = alty, so the top triangle commutes.

O

We next study certain orbit schemes for actions of Xj;. Recall that Ogr =
Ogx; | © < k] has a topological basis consisting of monomials in the variables
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x;. This basis is permuted by X, and the sums of the orbits form a topological
basis for the invariant subring (’)é’]j = Ogk/s, = (’)Div:. It is clear from this
analysis that our quotient construction commutes with base change, in other
words (S’ xg G*)/Z), = S xg (G¥/%}) for any scheme S’ over S. Similarly,
the set {z® | a; < d for all i} is a basis for Opr that is permuted by Xy, so
the orbit sums give a basis for OE’Z and we have a quotient scheme DF/%; =
spf(O]E)’;) whose formation commutes with base change. By comparing our
bases we see that the projection Og — Op = Og/fp induces a surjective map
Ogk /s, — Opk /s, - In other words, we have a commutative square of schemes
as shown, in which j and j' are closed inclusions, and g9 is a faithfully flat
map of degree d!.

Dk Gk

D*/%), ——— G*/%; = Div}
j

One might hope to show that Py (D)/3); = Subg(D) in a similar sense, but this
is not quite correct. For example if D = 3[0] (so fp(t) = t3) and k = 2 then
Op,p = Ogz,y]/(x3, 2% + xy + y?). If we define a basis of this ring by

{607 s 765} = {17 T,Y, x27 _xQ - XY, «’13224}7
we find that the generator of Yo has the effect

€0 < €0, €1 ¢ €2, €3 > €4, €5 > —€x.

If Og has no 2-torsion we find that O]EDQQD is spanned by {1,z +y,zy} and thus
is equal to Ogyp,(p)- However, if 2 =0 in Og we have an additional generator

2%y, so Ong is strictly larger than Ogy,,(p). This example also shows that

the formation of OIZJ;D is not compatible with base change.

The following proposition provides a substitute for the hope described above.

Proposition 9.6 There is a commutative diagram as follows, in which i,
7', j and j' are closed inclusions, and qy and qo are faithfully flat of degree
k!.  Moreover, the outer rectangle is a pullback, and if Jy := ker(:*) then
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ker((¢')*) = szk .

P.D D¥ G*
q0 q1 q2
Subk(D) S Dk/Ek — Gk/Ek = Div—k’—
g J

Proof We have already produced the right hand square. The map ¢ is just
the obvious inclusion. The map qo sends (ag,...,ax—1) € PrD to [ap] + ... +
[ak—1] € Subg(D); it was observed in the proof of Lemma 6.9 that this makes
Op,p into a free module of rank k! over Ogyp,(p), so qo is faithfully flat of
degree k!.

The points of Suby (D) are the divisors of degree k contained in D, so Suby(D)
is a closed subscheme of Div} ; we write m’: Suby(D) — Div] for the inclu-
sion, and note that m/qy = ¢oji. As qo is faithfully flat and m’qy factors
through DF/¥; we see that m’ factors through DF/¥;, so there is a unique
map 4': Suby(D) — D¥/%, such that m/ = j'i'. As m’ is a closed inclu-
sion, the same is true of 7. A point of the pullback of m and ¢o is a list
a = (ag,...,ax—1) of points of G such that the divisor g2(a) = ), [a,] lies in
Suby (D), and thus satisfies ) [a,] < D. It follows from the definitions that
this pullback is just P, D as claimed.

As qqo is faithfully flat we have ker((i')*) = ker(qj(i')*) = ker(i*q}). By con-
struction, ¢f is just the inclusion of the ¥j-invariants in Opk, so ker(i*¢}) =
ker(i*) >k = sz’“ as claimed. O

Corollary 9.7 MOp is naturally a module over Osuby,(D) -

Proof We can certainly regard Opr as a module over the subring Opk 5, =

Ok

Dk
AOp = image(alty) into a module over Og’,g. If a € Jk.z’c and b € Opk then
aalty(b) = alty(ab) but ab € J; so altg(ab) = 0. This shows that \*Op is

annihilated by sz k. so it is a module over (912)’,“c / sz ¥ = Oguby (D) > as claimed. D

and the map alty: Opr — Opr respects this structure. This makes

We next identify \A*Op as a module over Osub, (D) - Let D' be the tautological
divisor of degree k over Suby(D). Then Op is naturally a quotient of the ring
Op ®s Ogup,,(p), Which contains the subring Op = Op ® 1. This gives us a
map Op — Opr, which extends to give a map ¢: )\'ngD — )\gubk(D)OD/‘
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Proposition 9.8 The map ¢: )\f‘z)%OD — )\Igubk(D)OD/ is an isomorphism of
free rank-one modules over Ogy,, (p)-

Proof Put T = Subg(D) for brevity. Note that
Op = Os{z" | i < d}
MNeOp =0g{z® A ANz | d>dg> ... > ip_1}
Op = Op{z' | i < k}
MNOp = Op{a* ™ AL A0}

In particular, we see that )\’fg(’)D is free of rank K := ( Z ) over Og, and

)\1}(’) p 18 free of rank one over Op. We also know from Lemma 6.9 that Orp is
free of rank K over Og, so A%OD/ is also free of rank K over Og.

Suppose for the moment that ¢ is a homomorphism of Op-modules. It is clear
that
pFIA A2 = AL A0,

and this element generates A?O pr, S0 ¢ is surjective. As the source and target
are free of the same finite rank over Og, we deduce that ¢ is an isomorphism
as claimed.

We still need to prove that ¢ is linear over Or. By the argument of Lemma 9.4
we reduce to the case where D is the divisor with equation H?;ol (t—y;) defined
over the ring

R := Oga = Os[yo, - - -, ya-1],

and we can invert the discriminant w = J[,.;(y; — y;). We reuse the no-
tation in the proof of that lemma, so w™'Op = F(N,w 'R) and w1Opr =
F(N*,w™'R) and w='Op p = F(Ny,w ' R). We see from Proposition 9.6 that
w~tO7 is the image of w‘l(’)gﬂi in w™'Op,p, which is the ring F(Ny, w1 R)**
of symmetric functions from N to w™'R. If we write N,j ={n¢€ Nk | ng >
... >mng_1} then Ny = X x Nk'f' as Ek-seis so w lO0pp = F(N,j,w_lR). On
the other hand, Or is also a quotient of R®OD1VZ , which is the ring of symmet-
ric power series in k variables over R; a symmetric power series p corresponds

to the function n — p(yn) == P(Yngs -+ > Ynp_, ) -

If n € N*¥ we put e, = €y ® ... @ ey, ,, so these elements form a basis
for w™rOFF over w'R. Similarly, the set {ux(e,) | n € N,} is a basis for
w™ A Op. Using the previous paragraph we see that p.uy(en) = p(yn)ik(en),
which tells us the @p-module structure on w=I\*Op.
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We next analyse w~'Ops. This is a quotient of the ring

w'Or® Op = F(N,w™'0p) = [[ w'R{e; | i<d}.
@GN};"

It is not hard to check that the relevant ideal is a product of terms I,,, where
I,, is spanned by the elements e; that do not lie in the list e,,,...,e,, ,. Thus

w_IOD/ = Hw_lR{enj |j < ,IC}
n
wil)\lr%OD/ = HwilR.enO VANPIRAN €ng_1-
n

Let e}, be the element of this module whose n’th component is ey, A... Aep,
and whose other components are zero. Clearly {e], | n € N,;r } is a basis
for wil)\é(’)D/ over w™'R. As a symmetric power series p corresponds to
the function n — p(y,) and e}, is concentrated in the n’th factor we have
p.el, = p(yn)e,. Tt is also easy to see that ¢(ug(e,)) = €),, and it follows that
¢ is Op-linear as claimed. B O

We next give a formula for ¢ in terms of suitable bases of )\]ng p and )‘gub,« Opr.
(This could be used to give an alternative proof that ¢ is an isomorphism.)

Proposition 9.9 Suppose we have an element % A. . . AzP—1 € AlgOD, where
0<py<...<pPBgk-1. Let yo,...,7x—1 be the elements of {0,...,d — 1} \
{Bo,---,Pd—k—1}, listed in increasing order. Then

¢(.’/Uﬁ0 VAN :1:’6’“—1) =+20A .. AP, det(ck+if'yj)0§i,j<d7ka

where the elements c¢; are the usual parameters of the divisor D’.

Proof For any increasing sequence ap < ... < ap—; we write z(a) = 2% A
. Azt We also write ¢ = x(0,1,...,k—1) and e = 2(0,1,...,d—1), and
we put T' = Suby (D).

We certainly have ¢(x(8)) = bge’ for some bg € Or. To analyse these ele-
ments, put J' = ker(Or ® Op — Opr, which is freely generated over Op by
{2'fpi(z) | i < d— k}. Consider the element

a = fD’ A fo/ AL $d_k_1fD/ [ )\d_kjl C OT ® )\d—k‘OD

This clearly annihilates J' € Or ® A'Op, so multiplication by a induces a map
XNeOp — Or @ \¥Op. As fp/ is monic of degree k, we see that ¢'a = e. It
follows that z(8)a = bge’a = bge.
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On the other hand, we can expand a in the form a =} a,x(v), where v runs
over sequences 0 < vy < ... < yg_g—1 < d. We have z(8)z(y) = xe if § and ~v
are related as in the statement of the proposition, and z(3)z(y) = 0 otherwise.
It follows that x()a = +a~e, and thus that bg = +a,.

Let A, be the matrix whose (i, j) 'th entry is the coefficient of 2% in 2’ fp/(z);
it is then clear that a, = det(A,). On the other hand, we have z'fp/(x) =
S Cn ™ 50 (Ay)i = Ck+i—v; » and the proposition follows.

O

10 Thom spectra of adjoint bundles

The following proposition is an immediate consequence of Theorem 4.6 and its
proof (the first statement is just the case k = d of the second statement).

Proposition 10.1 Let V be a d-dimensional bundle over a space X. Then
there are natural isomorphisms

0y —d yru(V d 0

EOn—dxu(V) = 4, EOPV

By ~FG vt =2k CEOPV for0 <k <d. O

Remark 10.2 Note that the proposition gives two different descriptions of
the module E'SFGV*: the first statement with X replaced by G (V) and
V by T gives B

E°S7FGypvY = My  EOPT,
whereas the second statement gives

EOSRGL(V)Y = My EOPV.
We leave it to the reader to check that these two descriptions are related by the
isomorphism ¢: )\’fg(’)p — )\Igubk(D)OD/ of Proposition 9.8.

In the present section we examine the isomorphisms of Proposition 10.1 more
carefully. We will construct a diagram as follows, whose effect in cohomology
will be identified with the diagram in Proposition 9.5.

skpV.L - sk PV,
\q/‘ /’
p Gp(V)* p
/ \
sk pvE , FPVE
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Here PV* means the fibre product
PVF =PV xx...xxPV ={(x,Ly,...,Lp_1) |z € X, Lo,...,Lp_1 € PV, }.

Write QrU(V) = FRU(V)/Fr_1U(V), so that Qi U(V) ~ GxV*. As the fil-
tration of U(V) is multiplicative, the multiplication U(V)* — U(V) induces a
map (QU(V))*®) — Q U(V), or equivalently X*¥PV, — Gj(V)*. This is the
map ¢ in the diagram.

Recall that P,V is the set of points (x, Ly, ..., Ly_1) € PV* such that the lines
L; are mutually orthogonal. The map p: P,V — PV* is just the inclusion.
We also have a map P,V — GV sending (z,L) to (x,&, L;), and we note
that u(€P, L;) contains @, u(L;). Moreover, when L is one-dimensional there
is a canonical isomorphism u(L) ~ iR ~ R, so @, u(L;) ~ R*, so we get an
inclusion ¥*¥P,V, — G,V*, which we call ¢’. It is not hard to see that this is
the same as gp, so the left hand triangle commutes on the nose.

We next define the map r': GiV* — ¥¥P,V, by a Pontrjagin-Thom con-
struction. Let N} C R be the set of sequences (to,...,t;_1) such that
to < ...<tr_1, and let N’ be the space of triples (z, W, «) where W € G;V,
and o € u(W) and « has k distinct eigenvalues. This is easily seen to be
an open subspace of the total space of the bundle u over G;V. Given such a
triple, we note that the eigenvalues of o are purely imaginary, so we can write
them as itg, ..., ity with to < ... < ty_1. We also put L; = ker(a — it;), so
the spaces L; are one-dimensional and mutually orthogonal, and their direct
sum is W. Using this we see that the map gqp: Y*P,V, — G;V* induces a
homeomorphism N x P,V — N’, and this gives a collapse map

GpV" — N'U{oo} =~ (N} x P,V) U {oo} =~ (NjU {o0}) A BV,

On the other hand, the inclusion N} — R¥ gives a collapse map S* — NjU{oc}
which is a homotopy equivalence; after composing with the inverse of this, we
obtain a map GV* — X¥P,V, , which we denote by 7’.

We now define a map r: GxV" — Pfo. We first mimic Lemma 4.5 and define
maps mj: U(1l) — U(1) (for 0 < j < k) by

() ek if k< 0/2n < (j+1)/k
mile =
’ 1 otherwise

(where 6 is assumed to be in the interval [0,27]). We then define 6, : U(V) —
UV)E by 6.(9) = (mo(g),...,mk_1(g)). This is homotopic to the diagonal
and preserves filtrations so it induces a map GpV* = Q U (V) — Qw(U(V)F).
The target of this map is the wedge of all the spaces Q;,U(V)A...AQy,_,U(V)
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for which >, l; = k. We can thus project down to the factor QU(V) A ... A
QU((V) = ZkPfo to get a map GRV" — ZkPfo, which we call r.

It is not hard to recover the following more explicit description of r. Recall
that we have a homeomorphism

v: U1) = RU {oo}

given by v(z) = (z + 1)(z — 1)71/i and v~ 1(t) = (it +1)/(it — 1). One
checks that v(e?) = — cot(/2), which is a strictly increasing function of 6 for
0 < 6 < 27m. Let A; denote the arc {e? | j/k < 0/2m < (j + 1)/k}, so vA;
is the interval (— cot(mj/k), — cot(w(j +1)/k)). We also define m; = ym;y~!,
which can be regarded as a homeomorphism vA;U{oco} — RU{oo}, homotopy
inverse to the evident collapse map in the opposite direction. If we put Ny =
Hj vA; C Nj C R* then the maps m; combine to give a homeomorphism
m: NoU {oo} — RF U {oo}, which is again homotopy inverse to the evident
collapse map in the opposite direction. Now let N C N’ be the space of triples
(z,W,a) such that «/i has precisely one eigenvalue in yA; for each j. If
(z,W,a) € N and t; is the eigenvalue in vA; and L; = ker(a — it;) then
we find that t € Ny and L € PV, and r(z,W,«a) = (m(t),xz,L). On the
other hand, if (z,W,«a) ¢ N we find that r(z,W,«) = oco. It follows that
r is constructed in the same way as 1/, except that N’ and N{, are replaced
by the smaller sets N and Ny. The projections N’ U {oc} — N U {oo} and
Nj U {0} — Ny U {oo} are homotopy equivalences, and it follows that r is
homotopic to pr’. This shows that the right hand triangle in our diagram
commutes up to homotopy.

We now consider the composite s = r'¢’: £*¥P, V. — S*P,V, | which is essen-
tially obtained by collapsing out the complement of (¢')~'(N’). There is an
evident action of the symmetric group ¥j on the space X*¥P,V, , given by

U.(i, L) = (ta*1(0)7 e ,t(771(k_1), Lo.—l(o), e ,LU—l(k_l)).

One checks that (¢')"*(N’) = [[, 0.(N} x PV), and using this one can see
that s is just the trace map trs, =3 v 0.

Finally, we define
. vk pysk k pysk
s'=rq: Z"PV} — PV,

We can also define try;, : ZkPfo — EkPfo; we suspect that this is not the
same as s’, although we will see shortly that it induces the same map in coho-
mology.
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We now apply the functor Ek(—) = EOZ*'{(—) to our diagram of spaces and
write D = D(V) to get the following diagram:

Op,.D - Op.D
D P

(cm\
p* o)
/

®k
OD

N
Rk
(s')* OD
The map p*: O%k = Opr — Op,p is the same as considered previously; this
is the definition of our identification of (P,V)g with P,D. It follows from the
Hopf algebra isomorphism of Theorem 4.4 that r* = u; and ¢* = ¥y, and thus
that (s")* = ¥rur = alty. As ui factors uniquely through p* we must have
(r)* = p).. As ¢ = pq and ¢, = p*y, we have (¢')* = 1);.. Finally, we know
that s = try, and any permutation o € ¥j, acts on the sphere Sk with degree
equal to its signature so it follows that s* = alt,: E°P,V — E'P,V.

11 Fibrewise loop groups

We conclude the main part of this paper by studying the fibrewise loop space
QxU(V) and thereby providing a topological realisation of the diagram in
Proposition 9.6.

First, the group structure on U(V) gives a group structure on QxU (V). We
also have QxU (V) ~ Q3 BU(V), and there is a canonical homotopy showing
that a double loop space is homotopy-commutative, so the proof goes through
to show that QxU(V) is fibrewise homotopy commutative.

We next recall certain subspaces of QxU (V') which have been considered by a
number of previous authors — we will mostly refer to Crabb’s exposition [2],
which cites on Mitchell’s paper [7] and (apparently unpublished) work of Ma-
howald and Richter.

i— N a;z" with
coefficients a; € End(V) can be regarded as a map U(1) — End(V) which

we can compose with the standard homeomorphism y~!: S' — U(1) to get
amap f: S' — End(V). We write QU (V) for the space of based loops

Let V be a vector space. Any finite Laurent series f(z) = SN
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u: St — U(V) that have the form u = f for some finite Laurent series f, and
call this the space of Laurent loops. Similarly, we write QPO (V) for the space
of loops that have the form f for some polynomial f.

If u = f is a Laurent loop we have f(z)~! = f(2)* = >, aiz~" which is again
a finite Laurent series. Using this we see that that QU (V) is a subgroup of
QU(V) (but QP°IU(V) is merely a submonoid). We also find that the function
d(z) = det(f(z)) is a finite Laurent series in C[z, 2] satisfying d(z)d(z) = 1
and d(1) = 1; it follows easily that d(z) = z" for some integer n, called the
degree of u.

Definition 11.1 (a) We write S;V for the space of polynomial loops of
degree k on U(V).

(b) The product structure on QU (V) induces maps SV x S;V — SpV,
which we call py;.

(c) Given W € G}V and z € U(1) we have a polynomial zmy + (1 —my) €
End(V)[z] giving rise to a based loop in U (V') which we call ¢5(W). This
defines a map ¢p: GV — SV . It is not hard to show that ¢,: PV —
S1V is a homeomorphism.

(d) By combining ¢; with the product map we get a map vy: PVE — SiV.

If V is a bundle rather than a vector space, we make all these definitions
fibrewise in the obvious way.

Note that v, induces a map E*S,V — (E*PV)®* where the tensor product
is taken over E*X. We write Sym*(E*PV) for the submodule invariant under
the action of Y.

Proposition 11.2 v, induces an isomorphism E*S,V = Sym*(E*PV), and
thus an isomorphism D(V)* /3y — (SiV)E.

Proof Put d = dim(V) and let A be the set of lists o = (o | # < k) with
0 < a; <d. We have

E*PVE = (E*PV)®F = E*[x; | i < K]/ (fv(x) | i < k),

and the set {z® | a € A} is a basis for this ring over E*X. Put A, = {a €
Alag < ... <apt and My = @aeq, E7X, and let E*PVE — M, be
the obvious projection. This clearly induces an isomorphism Sym* E*PV —
M.
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We take as our basic input (proved by Mitchell [7]) the fact that when X
is a point, the map v; induces an isomorphism (H*PV)(%]]: — H.S.V. In
particular, this means that H,SV is a finitely generated free Abelian group,
concentrated in even degrees. By duality we see that H*S,V = Sym* H*PV |
and thus that the map 7} : H*S,V — @ Ay H*X is an isomorphism. Using
an Atiyah-Hirzebruch spectral sequence we see that 7v): E*S,V — @ Ay E*X
is an isomorphism for any E.

Now let X be arbitrary. If V is trivialisable with fibre Vj then SV = X x
SkVo and it follows from the above that mv] is an isomorphism. If V' is not
trivialisable, we can still give X a cell structure such that the restriction to
any closed cell is trivialisable, and then use Mayer-Vietoris sequences, the five
lemma, and the Milnor sequence to see that 7, is an isomorphism.

We next claim that the maps
,uzl: E*SkJer — E*SLV Qp«x E*S|V

give rise to a cocommutative coproduct. To see this, let C'(V) denote the
following diagram:

SV x SV L 5 v

[1

SV x SV —— SeV.

twist

The claim is that the diagram E*C(V) commutes. Let ig,i1: V — V? be the
two inclusions. The map ig induces a map E*C(V?) — E*C(V), and it follows
easily from our previous discussion that this is surjective. It will thus be enough
to show that the two ways round E*C(V?2) become the same when composed
with the map

(Sk(io) x Si(io))*: E*(Sk(V?) xx Si(V?)) = E*(SkV xx SiV).

It is standard that iy is homotopic to ¢; through linear isometries, so Si(ip) is
fibre-homotopic to S;(i1). Similarly, the identity map of Sy, ;(V?) is homotopic
to Sk4i(twist). It is thus enough to check that the two composites S,V x S;V —
Si+1(V?) in the following diagram are the same:

k (40) X Sp (i1)

S(V) x S (VIFEERNG, (12) « §y(v2) — L2

Sk1(V?)

twist Skl (twist)

SI(VQ) X Sk(VQ) n Sk+l(v2).
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This is easy to see directly.
We now see that the map
vi: E*SLV — (E*PV)%k

factors through Sym”(E*PV). As the map n: Sym*(E*PV) — M, and
its composite with v} are both isomorphisms, we deduce that v} : E*SpV —
Sym*(E*PV) is an isomorphism as claimed. O

Corollary 11.3 The formal scheme (Q2xU(V'))g is the free commutative for-
mal group over X generated by the divisor DV .

Proof We refer to [10, Section 6.2] for background on free commutative formal
groups; the results there mostly state that the obvious methods for constructing
such objects work as expected under some mild hypotheses. Given a formal
scheme T over a formal scheme S, we use the following notation:

(a) MTT is the free commutative monoid over S generated by T'. This is
characterised by the fact that monoid homomorphisms from M*T to any
monoid H over S biject with maps T' — H of schemes over S. It is clear
that if there exists an M™T with this property, then it is unique up to
canonical isomorphism. Similar remarks apply to our other definitions. In
reasonable cases we can construct the colimit [[, 7%/%) and this works
as M*T; see [10, Proposition 6.8] for technicalities.

(b) MT is the free commutative group over S generated by T'.

(c) If T has a specified section z: S — T', then NTT is the free commutative
monoid scheme generated by the based scheme T, so homomorphisms
from N*tT to H biject with maps T' — H such that the composite
S 5 T — H is zero. In reasonable cases NtT can be constructed as
lii)nk TSk

(d) If T has a specified section we also write NT' for the free commutative
group over S generated by the based scheme T'.

The one surprise in the theory is that often NT = NTT'; this is analogous to
the fact that a graded connected Hopf algebra automatically has an antipode.
It is easy to check that MT = 7Z x NT', where Z is regarded as a discrete group
scheme in an obvious way.

We first suppose that V has a one-dimensional summand, so V = L ® W
for some bundles L and W with dim(L) = 1. Note that for each x € X
there is a canonical isomorphism C — End(L) giving U(1) x X ~ U(L). This
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gives an evident inclusion a: U(1) x X — U(V) with detoa = 1. We define

B: U(V) — SU(V) by B(g) = a(det(g))~"g, and note that S(a(2)g) = A(g)
for all z.

We also have an evident map z: X ~ PL — PV ~ §;V splitting the projection
PV — X. Left multiplication by z gives a map ix: SV — Sk11V. We also
define iy : SV — QxSU(V) to be the restriction of Qx5 to SV C QxU (V).
Using the fact that f(a(z)g) = B(g) we see that jii19% = ji. Thus, if we define
S0V to be the homotopy colimit of the spaces S, V', we get a map joo: SV —
QxSU(V) of spaces over X . Using the usual bases for E*S,V = Sym*(E*PV)
we find that the maps i} : Sym" ™ (E*PV) — Sym"(E*PV) are surjective. It
follows using the Milnor sequence that E*S,V = 1(£nk Sym*(E*PV) and thus

that (SooV)E = lim DV¥/¥,. We claim that this is the same as N*DV;
—k

this is clear modulo some categorical technicalities, which are covered in [10,
Section 6.2]. In the case where X is a point, it is well-known and easy to check
(by calculation in ordinary homology) that the map S,V — QxSU(V) is a
weak equivalence. In the general case we have a map between fibre bundles
that is a weak equivalence on each fibre; it follows easily that the map is itself
a weak equivalence, and thus that QxSU(V)g = NTDV. On the other hand,
as QxSU(V) is actually a group bundle, we see that QxSU(V)g is a formal
group scheme, so NTDV = NDV..

We now turn to the groups QxU (V). We define Zx = Zx X, viewed as a bundle
of groups over X in the obvious way. This can be identified with Qx(U(1) x
X) so the determinant map gives rise to a homomorphism 6: QxU(V) —
Zx. Given (n,z) € Zx we have a homomorphism U(1) — U(V,) given by
z + «(z™). This construction gives us a map o: Zx — QxU(V) with do =
1 and thus a splitting QxU(V) ~ Z x QxSU(V) and thus an isomorphism
QxU(V)g =Z x NDV = MDV . One can check that the various uses of the
map « cancel out and that the standard inclusion DV — MDYV is implicitly
identified with the map coming from the inclusion PV = S;V — QxU(V).
This proves the corollary in the case where V' has a one-dimensional summand.

Now suppose that V' does not have such a summand. We have an evident
coequaliser diagram PV xx PV = PV — X, giving rise to a coequaliser
diagram DV xx, DV — DV — Xpg of schemes over Xg, in which the map
DV — Xpg is faithfully flat. The pullback of V' to PV has a tautological one-
dimensional summand, which implies that (PV x xQxU(V))g has the required
universal property in the category of formal group schemes over PVg. Similar
remarks apply to PV x x PV x xQxU (V). It follows by a descent argument that
QxU(V) itself has the required universal property, as one sees easily from [10,
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Proposition 2.76 and Remark 4.52]. i

We next recall the standard line bundle over S; V', which we will call T'; see [2, 7]
for more details. Write A = C[z] and K = C[z,271]. A point of S5V has the
form (z, f) for some f € Endc(Vy)[z] ~ Enda(A ® V,). Multiplication by f
defines a surjective endomorphism m(f) of (K/A) ® V', and we define T, y)
to be the kernel of this endomorphism. Omne can check that this always has
dimension k over C and that we get a vector bundle. This is classified by
a map 7,: SV — BU(k) x X of spaces over X. It is easy to see that the

restriction of T' to GV C S;V is just the tautological bundle.
There are evident short exact sequences
m(g)
ker(m(g)) — ker(m(fg)) = ker(m(f)),

which can be split using the inner products to give isomorphisms pz,T" ~ 751" @
T over S,V x x5V . This means that the map 7: [[, SpV — ([[, BU(k)) x
X is a homomorphism of H -spaces over X.

We now have a diagram of spaces as follows:

k

PV —2 s prk s (CP®)F x X
qw Vi ‘/
(o Tk

It is easy to identify the corresponding diagram of schemes with the diagram
of Proposition 9.6.

A Appendix : Functional calculus

In this appendix we briefly recall some basic facts about functional calculus
for normal operators. An endomorphism « of a vector space V is normal
if it commutes with its adjoint. For us the relevant examples are Hermitian
operators (with o = «), anti-Hermitian operators (with a* = —«) and unitary
operators (with o* = a~1).

For any operator a and any A € C we have

ker(a — A\t = image((a — \)*) = image(a* — \).
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If o is normal we deduce that ker(a — )\)l is preserved by «, and it follows

easily that V' is the orthogonal direct sum of the eigenspaces of «. It follows in
turn that the operator norm of a (defined by ||« = sup{||a(v)| : ||v|| = 1})
is just the same as the spectral radius (defined as the maximum absolute value
of the eigenvalues of «).

Now let X be a subset of C containing the eigenvalues of «, and let f: X — C
be a continuous function. We define f(a) to be the endomorphism of V' that
has eigenvalue f(\) on the space ker(a — A). From this definition it is clear
that the following equations are valid whenever they make sense:

(a)
id(a) =«
Re(a) = (a+a*)/2
Im(a) = (o — a™)/(2i)
(f +9)(a) = fla) + g(e)
(f9)(a) = fla)g(a)
fla) = f(@)*
(fog)a) = f(g(a))
[f(e)]| < Sg}lﬂ;lf(fvﬂ

The continuity properties of f(a) are less clear from our definition. However,
they are provided by the following result.

Proposition A.1 Let X be a closed subset of C, and V' a vector space. Let
N(X,V) be the set of normal operators on V whose eigenvalues lie in X, and
let C(X,C) be the set of continuous functions from X to C (with the topology
of uniform convergence on compact sets). Define a function E: C(X,C) x
N(X,V)—End(V) by E(f,a) = f(a). Then E is continuous.

Proof Let A be the set of functions f € C(X,C) for which the function
a +— f(«) is continuous. Using the above algebraic properties, we see that A is
a subalgebra of C'(X,C) containing the functions z — Re(z) and z — Im(z).
By the Stone-Weierstrass theorem, it is dense in C(X,C). Now suppose we
have f € C(X,C), a e N(X,V) and € >0. Put Y ={z € X | |z| < |Jof| + 1},
which is compact. As A is dense we can choose p € A with |f—p| <e/4don Y.
As p € A can choose § such that ||p(8) — p(a)|| < €/4 whenever || —«f < 4.
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We may also assume that ¢ < 1, which means that when || — a|| < § we have
BeY. Nowif |[f—g|<e/4onY and ||a — G| < J then

1f () = g(B)| <[If () = p(e)]] + [[p(c) — p(B) |+
Ip(8) = FBI +11£(B) = 9Bl
<e/d+e€/d+e/d+e/d =¢,

as required. O

The following proposition is an elementary exercise in linear algebra.

Proposition A.2 Let a: V — W be a linear map. Then o*« and aa* are
self-adjoint endomorphisms of V and W with nonnegative eigenvalues. For
each t > 0 the map « gives an isomorphism of ker(a*a —t) with ker(aa™ —1t),
so the nonzero eigenvalues of a*«a and their multiplicities are the same as those
of ac*. If f: [0,00) — R then ao f(a*a) = f(aa™)oa. O

Definition A.3 We write w(V) = {a € End(V) | a* = a} (the space of
self-adjoint endomorphisms of V). If a € w(V') then the eigenvalues of « are
real, so we can list them in descending order, repeated according to multiplicity.
We write ep(«) for the k’th element in this list, so e;(a) > ... > e,(«) and

det(t — ) = [T, (t - ex(c)).
We will need the following standard result:

Proposition A.4 The functions e: w(V) — R are continuous.

Proof Let v be a simple closed curve in C and let m be an integer. Let U
be the set of endomorphisms of V' that have precisely m eigenvalues (counted
according to multiplicity) inside «, and no eigenvalues on 7. A standard argu-
ment with Rouché’s theorem shows that U is open in End(V).

Given real numbers r < R, consider the rectangular contour -, g with corners
at r+£¢ and R+ 4. Clearly ex(a) > r iff o has at least k eigenvalues inside
Yr,r for some R. It follows that {« | ex(a) > r} is open, as is {a | ex() <7}
by a similar argument. This implies that ey is continuous. O
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