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Equivalences to the triangulation conjecture

Duane Randall

Abstract We utilize the obstruction theory of Galewski-Matumoto-Stern
to derive equivalent formulations of the Triangulation Conjecture. For ex-
ample, every closed topological manifold Mn with n ≥ 5 can be simplicially
triangulated if and only if the two distinct combinatorial triangulations of
RP 5 are simplicially concordant.
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1 Introduction

The Triangulation Conjecture (TC) affirms that every closed topological man-
ifold Mn of dimension n ≥ 5 admits a simplicial triangulation. The vanishing
of the Kirby-Siebenmann class KS(M) in H4(M ;Z/2) is both necessary and
sufficient for the existence of a combinatorial triangulation of Mn for n ≥ 5
by [7]. A combinatorial triangulation of a closed manifold Mn is a simplicial
triangulation for which the link of every i-simplex is a combinatorial sphere of
dimension n − i − 1. Galewski and Stern [3, Theorem 5] and Matumoto [8]
independently proved that a closed connected topological manifold Mn with
n ≥ 5 is simplicially triangulable if and only if

(1.1) δαKS(M) = 0 in H5(M ; kerα)

where δα denotes the Bockstein operator associated to the exact sequence
0 → kerα → θ3

α−→ Z/2 → 0 of abelian groups. Moreover, the Triangulation
Conjecture is true if and only if this exact sequence splits by [3] or [11, page
26]. The Rochlin invariant morphism α is defined on the homology bordism
group θ3 of oriented homology 3-spheres modulo those which bound acyclic
compact PL 4-manifolds. Fintushel and Stern [1] and Furuta [2] proved that
θ3 is infinitely generated.

We freely employ the notation and information given in Ranicki’s excellent ex-
position [11]. The relative boundary version of the Galewski-Matumoto-Stern
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obstruction theory in [11] produces the following result. Given any homeo-
morphism f : |K| → |L| of the polyhedra of closed m-dimensional PL man-
ifolds K and L with m ≥ 5, f is homotopic to a PL homeomorphism if
and only if KS(f) vanishes in H3(L;Z/2). More generally, a homeomorphism
f : |K| → |L| is homotopic to a PL map F : K → L with acyclic point inverses
if and only if

(1.2) δα(KS(f)) = 0 in H4(L; kerα) .

Concordance classes of simplicial triangulations on Mn for n ≥ 5 correspond
bijectively to vertical homotopy classes of liftings of the stable topological tan-
gent bundle τ : M → BTOP to BH by [3, Theorem 1] and so are enumerated
by H4(M ; kerα). The classifying space BH for the stable bundle theory as-
sociated to combinatorial homology manifolds in [11] is denoted by BTRI in
[3] and by BHML in [8]. We employ obstruction theory to derive some known
and new results and generalizations of [4] and [13] on the existence of simplicial
triangulations in section 2 and to record some equivalent formulations of TC
in section 3. Although some of these formulations may be known, they do not
seem to be documented in the literature.

2 Simplicial Triangulations

Let δ∗ denote the integral Bockstein operator associated to the exact sequence
0 → Z

×2−→ Z
ρ−→ Z/2 → 0. We proceed to derive some consequences of

the vanishing of δ∗ on Kirby-Siebenmann classes. The coefficient group for
cohomology is understood to be Z/2 whenever omitted. Matumoto knew in [8]
that the vanishing of δ∗KS(M) implied the vanishing of δαKS(M). Let ιm
denote the fundamental class of the Eilenberg-MacLane space K(Z,m). Since
Hm+1(K(Z,m);G) = 0 for all coefficient groups G, trivially δα(ριm) = 0 in
Hm+1(K(Z,m); kerα). Thus δα vanishes on KS(M) in (1.1) or KS(f) in (1.2)
whenever δ∗ does. This observation together with (1.1) and (1.2) justifies the
following well-known statements. Every closed connected topological manifold
Mn with n ≥ 5 and δ∗KS(M) = 0 admits a simplicial triangulation. Let
f : |K| → |L| be any homeomorphism of the polyhedra of closed m-dimensional
PL manifolds K and L with m ≥ 5. If δ∗KS(f) = 0, then f is homotopic to
a PL map F : K → L with acyclic point inverses.

Proposition 2.1 All k -fold Cartesian products of closed 4-manifolds are sim-
plicially triangulable for k ≥ 2. All products M4×S1 with non-orientable closed
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4-manifolds M4 are simplicially triangulable. Let N4 be any simply connected
closed 4-manifold with KS(N) trivial and also b = rank of H2(N ;Z) ≥ 1. Let
f : |K| → |L| be any homeomorphism with KS(f) nontrivial and |K| = |L| =
N × S1 . Then f is homotopic to a PL map F : K → L with acyclic point
inverses.

Proof of 2.1 Since KS(γ) is a primitive cohomology class for the universal
bundle γ on BTOP, we have KS(M1 ×M2) = KS(M1)⊗ 1 + 1⊗KS(M2) in
H4(M1 ×M2). Triviality of δα on H4(M4) by dimensionality yields triangu-
lability of all k -fold products of closed 4-manifolds for k ≥ 2, and of M4 × S1

by (1.1).

The product N4×S1 admits 2b distinct combinatorial structures by [7]; more-
over, for every non-zero class u in H3(N × S1), there is a homeomorphism of
polyhedra with distinct combinatorial structures whose Casson-Sullivan invari-
ant is u by [11, page 15]. The vanishing of δ∗KS(f) follows from the triviality
of δ∗ on H3(N × S1) = ρ(H2(N ;Z)⊗H1(S1;Z)).

No closed 4-manifold M4 with KS(M) non-zero can be simplicially triangu-
lated. Yet k -fold products of such manifolds M4 by (2.1) and their products
with spheres or tori produce infinitely many distinct non-combinatorial, yet
simplicially triangulable closed manifolds in every dimension ≥ 5. In contrast,
there are no known examples of non-smoothable closed 4-manifolds which can
be simplicially triangulated, according to Problem 4.72 of [6, page 287].

Theorem 2.2 Let Mn be any closed connected topological manifold with
n ≥ 5 such that the stable spherical fibration determined by the tangent bundle
τ(M) has odd order in [M,BSG]. Suppose that either H2(M ;Z) has no 2-
torsion or else all 2-torsion in H4(M ;Z) has order 2. Then M is simplicially
triangulable.

Proof The Stiefel-Whitney classes of M are trivial by the hypothesis of odd
order. We first consider the special case that τ(M) is stably fiber homotopically
trivial. Let g : M → SG/STOP be any lifting of a classifying map τ(M) : M →
BSTOP in the fibration

(2.3) SG/STOP
j−→ BSTOP π−→ BSG

The Postnikov 4-stage of SG/STOP is K(Z/2, 2)×K(Z, 4). Now j∗KS(γ̃) =
ι22 + ρ(ι4) by Theorem 15.1 of [7, page 328] where γ̃ denotes the universal
bundle over BSTOP. Clearly δ∗(j∗KS(γ̃)) = δ∗(ι22) = 2u where u generates
H5(K(Z/2, 2);Z) ≈ Z/4. If all nonzero 2-torsion in H4(M ;Z) has order 2,
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then δ∗KS(M) = 2g∗u = 0. If H2(M ;Z) has no 2-torsion, then δ∗(g∗ι2) = 0
so again δ∗KS(M) = 0. Thus δαKS(M) = 0.

We suppose now that the stable spherical fibration of τ(M) has order 2a + 1
in [M,BSG] with a ≥ 1. Let s : M → S(2aτ(M)) be a section to the sphere
bundle projection p : S(2aτ(M))→M associated to 2aτ(M). Now S(2aτ(M))
is a stably fiber homotopically trivial manifold, since its stable tangent bundle
is (2a + 1)p∗τ(M). Since KS(M) = (2a + 1)KS(M) = s∗(KS(S(2aτ(M))))
we conclude that

(2.4) δ∗KS(M) = s∗(δ∗KS(S(2aτ(M)))) = s∗0 = 0 .

We consider the following homotopy commutative diagram of principal fibra-
tions.

(2.5)

K(kerα, 4) i−→ (K(kerα, 4), ∗) = (K(kerα, 4), ∗)y y yi
BH

i−→ (BH,BPL) t−→ (K(θ3, 4), ∗)yπ yπ̂ yα
S4 ks−→ BTOP

i−→ (BTOP,BPL) K̂S−→ (K(Z/2, 4), ∗)yδαK̂S yδαι
(K(kerα, 5), ∗) = (K(kerα, 5), ∗)

The fiber map α is induced from the path-loop fibration on K(kerα, 5) via the
Bockstein operator δαι on the fundamental class ι of K(Z/2, 4). The induced
morphism α∗ on π4 is the Rochlin morphism α : θ3 → Z/2 by construction.
The relative principal fibration π̂ is induced from α via the map K̂S classifying
the relative universal Kirby-Siebenmann class. Thus (K̂S ◦ i)∗ι = KS(γ).
Inclusion maps are denoted by i in (2.5). The induced morphisms t∗ and
(K̂S)∗ are isomorphisms on π4 . We employ (2.5) in the proof of Theorem 3.1.

3 Equivalent formulations to TC

Galewski and Stern constructed a non-orientable closed connected 5-manifold
M5 in [4] such that Sq1KS(M) generates H5(M) ≈ Z/2. They also proved
that any such M5 is “universal” for TC . Moreover, Theorem 2.1 of [4] es-
sentially affirms that either TC is true or else no closed connected topological
n-manifold Mn with Sq1KS(M) 6= 0 and n ≥ 5 can be simplicially triangu-
lated.
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Theorem 3.1

The following statements are equivalent to the Triangulation Conjecture.

(1) Any (equivalently all) of the classes δαKS(γ), δαK̂S , and δαι in (2.5) is
trivial if and only if any (equivalently all) of the fiber maps π , π̂ , and α
in (2.5) admits a section.

(2) The essential map f : S4 ∪2 e
5 → BTOP lifts to BH in (2.5).

(3) Sq1KS(γ̂) 6= 0 in H5(BH) for the universal bundle γ̂ = π∗γ on BH .

(4) Any closed connected topological manifold Mn with Sq1KS(M) 6= 0 and
n ≥ 5 admits a simplicial triangulation.

(5) Every homeomorphism f : |K| → |L| with KS(f) non-trivial is homo-
topic to a PL map with acyclic point inverses where K and L are any
combinatorially distinct polyhedra with |K| = |L| = N4 × RP 2 . Here
N4 denotes any simply connected, closed 4-manifold with KS(N) trivial
and positive rank for H2(N ;Z).

(6) All combinatorial triangulations of each closed connected PL manifold
Mn with n ≥ 5 are concordant as simplicial triangulations.

(7) The two distinct combinatorial triangulations of RP 5 are simplicially
concordant.

(8) Every closed connected topological manifold Mn with n ≥ 5 that is
stably fiber homotopically trivial admits a simplicial triangulation.

Proof TC ⇔ (1) Statement (1) is equivalent to the splitting of the exact
sequence 0 → kerα → θ3

α−→ Z/2 → 0 through the induced morphisms on
homotopy in dimension 4.

TC ⇔ (2) Let ks : S4 → BTOP represent the Kirby-Siebenmann class in
homotopy. That is, [ks] has order 2 and is dual to KS(γ) under the mod 2
Hurewicz morphism. Now ks admits an extension f : S4 ∪2 e

5 → BTOP, since
the cofibration exact sequence

(3.2) π5(BTOP) −→ [S4 ∪2 e5,BTOP]→ π4(BTOP) ×2−→ π4(BTOP)

corresponds to 0 −→ Z/2 −→ Z ⊕ Z/2 ×2−→ Z ⊕ Z/2. If g : S4 ∪2 e
5 → BH is

any lifting of f , the composite map using (2.5)

(3.3) h : S4 ⊂ S4 ∪2 e
5 g−→ BH

i−→ (BH,BPL) t−→ (K(θ3, 4), ∗)
produces u = [h] in θ3 with 2u = 0 and α(u) = 1, since α(u) = [α ◦ h] =
[K̂S ◦ ks] generates π4(K(Z/2, 4)). Thus TC is true. Conversely, if TC is
true, a section s : BTOP→ BH to π in (2.5) gives a lifting s ◦ f of f .
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TC ⇔ (3) Properties of KS(γ) are enumerated in [9] and [10]. Since
Sq1KS(γ) 6= 0, a section s to π in (2.5) gives Sq1(KS(γ̂) 6= 0 so TC im-
plies 3. We now assume that TC is false and claim that the generator Sq1ι for
H5(K(Z/2, 4)) ≈ Z/2 lies in the image of

H5(K(kerα, 5)) ≈ Hom(π5(K(kerα, 5)), Z/2) ≈ Hom(kerα,Z/2).

The Serre exact sequence then gives α∗(Sq1ι) = 0 in H5(K(θ3, 4)) so

Sq1KS(γ̂) = (t ◦ i)∗(α∗Sq1ι) = 0.

Thus we must construct a morphism kerα → Z/2 which does not extend to
θ3 . We consider the sequence kerα ×2−→ kerα

ρ−→ kerα ⊗ Z/2 and define
h : kerα ⊗ Z/2 → Z/2 as follows. h(v) = 1 if and only if v = ρ(2z) for some
z ∈ θ3 with α(z) = 1. Now h is a well-defined and non-trivial morphism, since
θ3 does not have an element u with 2u = 0 and α(u) = 1 by hypothesis. The
composite morphism h ◦ ρ : kerα→ Z/2 does not extend to θ3 .

TC ⇔ (4) Suppose Mn with Sq1KS(M) 6= 0 admits a simplicial triangu-
lation. Now Sq1KS(M) = g∗Sq1KS(γ̂) for any lifting g : M → BH of
τ : M → BTOP. Since Sq1KS(γ̂) 6= 0, TC holds by (3).

TC ⇔ (5) Clearly triviality of δαK̂S in (2.5) gives δαKS(f) = 0 via naturality
for every f . Suppose that δαKS(f) = 0 for any such f in 5. Now KS(f) =
ρ(v)⊗ i∗a in ρ(H2(M ;Z))⊗H1(RP 2) ≈ H3(L). Here a generates H∗(RP∞)
and i : RP 2 ⊂ RP∞ . Naturality via the universal example CP∞ × RP∞

for ρ(v) ⊗ i∗a gives δαKS(f) = v ⊗ δα(i∗a). Since i∗ : H2(RP∞; kerα) →
H2(RP 2; kerα) is a monomorphism, δα(i∗a) = 0 if and only if δα(a) = 0. Now
δα(a) = 0 if and only if TC is true via the fibration

K(kerα, 1) −→ K(θ3, 1) α−→ RP∞.

TC ⇔ (6) ⇔ (7) TC holds if and only if δαι = 0 for the fundamental class
ι of K(Z/2, 3). Concordance classes of simplicial triangulations of Mn arising
from combinatorial triangulations differ by classes in δαH

3(M). This subgroup
of H4(M, kerα) is trivial by naturality if δαι = 0. Conversely, δαH3(RP 5) = 0
if the two distinct combinatorial triangulations of RP 5 given by Theorem 16.5
in [7, pages 332 and 337] are simplicially concordant. But δα(a3) = 0 if and
only if δαι = 0 via the skeletal inclusion RP 5

3 ⊂ K(Z/2, 3) and naturality for
RP 5 → RP 5

3 .

TC ⇔ (8) Similar to Theorem 5.1 of [12], we consider a regular neighborhood
of the 9-skeleton of SG/STOP embedded in Rm for some m ≥ 19 in order
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to obtain a smoothly parallelizable manifold W with boundary and a map
g : W → SG/STOP which is a homotopy equivalence through dimension 7.
The double DW is smoothly parallelizable and admits an extension ĝ : DW →
SG/STOP. Note that (ĝ)∗ is a monomorphism through dimension 7. Let h :
M → DW be a degree one normal map. Now M is stably fiber homotopically
trivial and h∗ is a monomorphism in cohomology. In particular, (ĝ ◦ h)∗ is
a monomorphism on H5(SG/STOP; kerα). We conclude that δαKS(M) =
(ĝ ◦ h)∗(δαι22) = 0 if and only if δαι22 = 0 for the fundamental class ι2 of
K(Z/2, 2). So statement (8) yields δαι22 = 0.

Let f : K(Z/2, 2) → K(Z/2, 4) classify ι22 . Since δαι22 = 0 assuming statement
(8), f admits a lifting h : K(Z/2, 2) → K(θ3, 4) in (2.5) such that f = α ◦ h.
The diagram

(3.4)

[CP 3,K(θ3, 4)] ≈ θ3

↗h∗
yα∗ y

Z/2 ≈ [CP 3,K(Z/2, 2)]
f∗−→ [CP 3,K(Z/2, 4)] ≈ Z/2

yields a splitting to the exact sequence 0 → kerα → θ3 → Z/2 → 0 so TC
holds.
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