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Abstract Let S be a closed oriented surface of genus g ≥ 2, and let T
denote its Torelli group. First, given a set E of homotopically nontrivial,
pairwise disjoint, pairwise nonisotopic simple closed curves on S , we de-
termine precisely when a multitwist on E is an element of T by defining
an equivalence relation on E and then applying graph theory. Second, we
prove that an arbitrary Abelian subgroup of T has rank ≤ 2g − 3.

AMS Classification 57M60; 20F38

Keywords Mapping class group,Torelli group, multitwist

1 Introduction

Here we present the notation, definitions, and terminology that will be used in
the paper.

1.1 Surfaces

Throughout this work, S will denote a closed, connected, oriented surface. We
use the symbols a, b, c, e, h to denote simple closed curves on S.

The mapping class group, M(S), of S is the group of isotopy classes of orienta-
tion preserving self-homeomorphisms of S. In general, we will not distinguish
between a map f : S→ S and its isotopy class. The symbol De will denote the
right Dehn twist about the simple closed curve e. Recall that if a and b are
simple closed oriented curves on S, then in H1(S), the first homology group of
S with integer coefficients, we have

Da(b) = b+ 〈a, b〉a

where 〈a, b〉 denotes the algebraic intersection number of a and b. Also, the
Dehn twists Da1 and Da2 commute if and only if the isotopy classes of the
curves a1 and a2 have representatives that are disjoint.
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158 William R. Vautaw

The Torelli group, T = T (S), of S is the subgroup of the mapping class group
consisting of the isotopy classes of those self-homeomorphisms of S which induce
the identity isomorphism on H1(S). The Torelli group is torsion-free, and is
trivial in the case of the sphere or torus.

1.2 Graphs

We use graph-theoretic terminology consistent with its use in [2]. We remind
the reader of the less familiar terms, and give the graph-theoretic definitions of
those terms that may be used in different ways in ordinary topology.

Throughout this work, G will denote a connected, finite linear graph. We
include the possibility that G may contain loops or parallel edges. E = E(G)
will denote the edge set of G, and we use the symbols a, b, c, e to denote edges of
G. For E′ ⊂ E(G), G−E′ denotes the subgraph obtained from G by deleting
the edges in E′ , while G + E′′ is the graph obtained from G by adding a set
of edges E′′ . If E = {e}, then we write G − e and G + e instead of G − {e}
and G + {e}. A bond E′ in G is a minimal subset of E(G) such that G − E′
is disconnected. Note that G − E′ consists of precisely two components. We
say that the edge e is a cut edge if G− e is disconnected. We use the symbols
u, v, x, y to denote vertices of G. The degree of a vertex v is the number of
edges incident with v , each loop counting as two edges.

A (v0, vn)–walk W of length n is a finite nonempty alternating sequence, W =
v0e1v1e2v2 . . . envn , of vertices and edges such that the ends of the edge ei are
the vertices vi−1 and vi for 1 ≤ i ≤ n. If the edges of W are distinct, W is
called a trail. A cycle in G is a closed trail of positive length whose origin and
internal vertices are distinct. Thus a cycle is an embedded circle in G. For our
purposes, to denote a trail or cycle, it will be enough to give its sequence of
edges, and we do not distinguish between a closed trail W and another closed
trail whose sequence of edges is a cyclic permutation of W ’s.

A spanning tree T is a subgraph of G with the same vertex set as G such that
T contains no cycles. The number of edges in any spanning tree is equal to one
less than the number of vertices of G. Note that if T is a spanning tree, and e
is an edge of G not in T , then T + e contains a unique cycle C , and e is an
edge of C , so the rank of π1(G) is equal to the number of edges of G outside
any spanning tree. Every connected graph contains a spanning tree.
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2 Reduction Systems and Reduction System Graphs

By a reduction system E on S we mean a collection of simple closed curves on S
that are homotopically nontrivial, pairwise disjoint, and pairwise nonisotopic.
We use the symbols a, b, c, e to denote the elements of a reduction system E,
and SE to denote the natural compactification of S�E; that is, “S cut along
E.”

We partition the set E = {e1, e2, . . . , en} according to the equivalence relation
∼ generated by the rule

ei ∼ ej if


ei = ej
or
{ei, ej} is a minimal separating set in E.

Here, “{ei, ej} is a minimal separating set” means that S{ei,ej} is disconnected,
but both S{ei} and S{ej} are connected. There are three types of ∼–equivalence
classes:

(i) Singleton classes {a1}, {a2}, . . . , {ap} consisting of the separating curves
a1, a2, . . . , ap in E. Such a curve wil be called an a–type curve.

(ii) Classes {b11, . . . , b1q1}, {b21, . . . , b2q2}, . . . , {br1, . . . , brqr} of cardinality
at least 2. Each such class {bi1, . . . , bini} is characterized by the fol-
lowing three properties:

(a) No curve bij is separating.
(b) bij is homologous to bij′ for every pair bij , bij′ .
(c) Maximal with respect to (a) and (b).

A curve in such a class will be called a b–type curve.

(iii) Singleton classes {c1}, {c2}, . . . , {cs} where each ci is non-separating and
is homologous to no other curve in E. Such a curve will be called a c–type
curve.

According to (i), (ii), and (iii) above, we write

E = {a1, . . . , ap, b11, . . . , b1q1 , . . . , br1, . . . , brqr , c1, . . . , cs}.

We use E to define a graph GE , which we call the reduction system graph of
E, as follows:

• The vertices of GE correspond to the components of SE .

• The edges of GE correspond to the curves in the reduction system E,
with:
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– (Links) Two distinct vertices are connected by the edge ei if and
only if the curve ei in E is a common boundary curve of the two
components of SE which correspond to the vertices in question.

– (Loops) A vertex has a loop ei if and only if the curve ei in E
represents two boundary curves of the component of SE which cor-
responds to the vertex in question.

Note that GE is connected, and that any connected graph G is GE for some
surface S and some reduction system E on S. However, the genus of S is
not determined by G, any two possible S’s differing by the genera of their
complementary components. But, unless G is the graph consisting of a single
vertex and either no edges or a single loop, then genus(S) ≥ rank(π1(G)) +
(number of vertices of degree ≤ 2).

Since S and E will be fixed, we will denote GE simply by G.

The ∼–equivalence relation on the curves in E induces a ∼–equivalence relation
on the edge set E(G) = {e1, e2, ..., en} of G. It is generated by

ei ∼ ej if


ei = ej
or
{ei, ej} is a bond.

(Again, it should be noted that this equivalence relation may be defined for
any graph G.) The three types of equivalence classes described above become,
for G,

(i) Singleton classes {a1}, . . . , {ap} consisting of the cut edges a1, . . . , ap of
G. Such an edge will be called an a-type edge.

(ii) Classes {b11, . . . , b1q1}, {b21, . . . , b2q2}, . . . , {br1, . . . , brqr} of cardinality at
least 2. Each such class is characterized by the following three properties:

(a) No edge bij is a cut edge.
(b) {bij , bij′} is a bond for every pair bij , bij′ .
(c) Maximal with respect to (a) and (b).

An edge in such a class will be called a b-type edge.

(iii) Singleton classes {c1}, . . . , {cs} where each ci is not a cut edge, and forms
a 2–edge bond with no other edge of G. Such an edge will be called a
c-type edge.

According to (i), (ii), and (iii) above, we write

E(G) = {a1, . . . , ap, b11, . . . , b1q1 , b21, . . . , b2q2 , . . . , br1, . . . , brqr , c1, . . . , cs}.
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A typical example is shown above.

Now let h be a simple closed curve on S that intersects each element of E
transversely at most once. Starting at any point on h and travelling in either
direction gives a cyclic ordering of the reduction curves which h intersects, thus
defining a closed trail H in G. Note that H is a cycle in G if and only if h∩Si
is either empty or is a single (that is, connected) arc, for every component Si of
SE . Likewise, given a closed trail H in G, there is such a curve h on S defining
H . The fact that the isotopy class of h is never unique is not important for our
purposes.

The following figure shows a typical example. Note that h1 and h2 are noniso-
topic curves which both define the cycle H = b11c2b12 .
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The remainder of this section presents some purely graph-theoretic results, con-
cluding with Theorem 2.1, which is used in the following section. So for the
remainder of this section, let G denote an arbitrary connected graph. We ex-
plain here the notation and terminology we use. Given a subgraph H of G,
we let G • H denote the graph obtained by deleting every edge e of H and
identifying the ends of e. Equivalently, thinking of G as a CW–complex and
H as a subcomplex, G •H is the complex obtained from G by crushing each
component of H to a point. Thus, we have a quotient (“contraction”) map
p : G→ G•H . Next, by a cut vertex of G, we mean a vertex v of G such that
when v , and only v , is removed from the topological space G, the resulting
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space is disconnected. (This is not the definition used by graph theorists, but
is an equivalent topological one.) A block is a connected graph without cut
vertices, and a block of a graph is a subgraph that is a block and is maximal
with repsect to that property. Any graph is the union of its blocks. We leave
the proofs of the first two lemmas to the reader.

Lemma 2.1 If G has no cut edges, then any two vertices of G are connected
by two edge-disjoint paths.

Lemma 2.2 Let b1 and b2 be edges of G such that {b1, b2} is a bond. If C
is a cycle in G, and b1 is an edge of C , then so is b2 .

Lemma 2.3 Let c be a c–type edge in G that is not a loop. Then c is
contained in two cycles, the intersection of whose edge sets is precisely c.

Proof Assume that G is a block. If G has exactly two vertices, then each
edge of G is a link, and G must have at least three edges, since c is a c–type
edge. The result is clear in this case. Otherwise, G has at least three vertices
and no cut edges. Consider the graph G − c. If G − c has a cut edge e, then
G− {c, e} is not connected, so {c, e} is a bond of G. This contradicts the fact
that c is a c–type edge. So G − c has no cut edges. By Lemma 2.1, there are
two edge-disjoint paths P and P ′ in G− c connecting the ends of c. Then the
cycles C = P + c and C ′ = P ′ + c have exactly the edge c in common. In the
case that G is not a block, we let B be the block of G containing c. It is easy
to see that c is a c–type edge of B , so we apply the first case to B and find
two such cycles within B .

Theorem 2.1 Let G have edge set

E(G) = {a1, . . . , ap, b11, . . . , b1q1 , . . . , br1, . . . , brqr , c1, . . . , cs},

notated according to a– , b–, and c–type equivalence classes. Let w : E(G)→
Z be a weighting of G. Then w(H) = 0 for every cycle H in G if and only if

(i) w(ci) = 0, 1 ≤ i ≤ s, and

(ii) w(bj1) + w(bj2) + · · · + w(bjqj) = 0, 1 ≤ j ≤ r .

Proof ⇒ Assume that w(H) = 0 for every cycle H in G.
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(i) Let c be a c–type edge with ends u and v . If c is a loop, then w(c) = 0,
by hypothesis. Otherwise, there are two edge-disjoint (u, v)–paths, P and P ′ ,
in G− c. We have three cycles: P + c, P ′ + c, and P + P ′ . Thus:

w(P ) + w(c) = w(P + c) = 0
w(P ′) + w(c) = w(P ′ + c) = 0

w(P ) +w(P ′) = w(P + P ′) = 0

 =⇒ w(c) = 0

(ii) Let B be the equivalence class of the b–type edge b, and B = B�{b}. Let
p : G→ G •B be the contraction map. Suppose that b is a cut edge of G •B ,
separating it into two components G1 and G2 . Then the restriction of p to
G− b maps onto the disconnected space G1∪G2 , and so G− b is disconnected.
This is a contradiction to the hypothesis that b is a b–type edge of G. We
obtain a similar contradiction if we suppose {b, e} is a bond in G • B . Thus
b is a c–type edge in G • B . If b is a loop in G • B , then p−1(b) = B , which
therefore forms a cycle in G. So equation (ii) holds for the equivalence class of
b.

If b is not a loop in G • B , then by Lemma 2.3 there are two cycles H and
H ′ in G • B , the intersection of whose edge sets is {b}. Lemma 2.2 implies
that p−1(H) and p−1(H ′) are cycles H and H ′ , respectively, the intersection
of whose edge sets is precisely B . Thus we have

0 = w(H) = w(B) + w(H −B)
0 = w(H ′) = w(B) + w(H ′ −B)

}
=⇒ 0 = 2w(B) + w(H∆H ′) = 2w(B).

And so, w(B) = 0. Here we have used the fact that the symmetric difference
H∆H ′ of the cycles H and H ′ is a disjoint union of cycles (regarded as sets of
edges).

⇐ Assume that

(i) w(ci) = 0, 1 ≤ i ≤ s, and
(ii) w(bj1) + w(bj2) + · · · + w(bjqj) = 0, 1 ≤ j ≤ r .

Let H be a cycle in G. H contains no a–type edges, since they are cut edges,
and by Lemma 2.2, if H contains one edge of a b–type class, then it contains
the whole class. So the assumptions imply that w(H) = 0.

3 Abelian Subgroups in the Torelli Group

We at first consider a specific type of Abelian subgroup of the Torelli group
T (S), namely one consisting of multitwists — that is, compositions of left and
right Dehn twists about a fixed reduction system on S.
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Theorem 3.1 Let S be a closed, connected, oriented surface, and let

E = {a1, . . . , ap, b11, . . . , b1q1 , . . . , br1, . . . , brqr , c1, . . . , cs}

be a reduction system on S, notated by a–, b–, and c–type ∼–equivalence
classes as in section 2. Let DE be the multitwist group on E, and let

f = Dα1
a1
· · ·Dαp

apD
β11

b11
· · ·Dβ1q1

b1q1
· · ·Dβr1

br1
· · ·Dβrqr

brqr
Dγ1
c1
· · ·Dγs

cs

be an element of DE . Then f is an element of DE ∩T ≡ TE , which we call the
Torelli multitwist group of E, if and only if

(i) γi = 0, 1 ≤ i ≤ s, and

(ii) βj1 + βj2 + · · ·+ βjqj = 0, 1 ≤ j ≤ r .

Consequently, TE is a free Abelian group of rank

p+ (q1 − 1) + (q2 − 1) + · · ·+ (qr − 1) = p+ q1 + q2 + · · ·+ qr − r.

Remark A set of ∼–equivalence class representatives of the curves in E is
in general not linearly independent in H1(S), so the nondegeneracy of the
algebraic intersection 〈 , 〉 is not sufficient to prove the theorem.

Proof ⇒ Assume that f ∈ TE .

Let G be the reduction system graph of E with edge set E(G). We weight each
edge of G according to the exponent in f of the twist about its corresponding
curve in E, giving w : E(G)→ Z.

Let H = e1e2, . . . , en be a cycle in G. Then, as in section 2, H is defined by
any simple closed curve h on S that intersects each of the corresponding curves
e1, e2, . . . , en of E exactly once, and does not intersect any of the other curves
of E. Orient h. Then orient the curves e1, e2, . . . , en so that 〈ei, h〉 = 1. So we
have

0 = 〈h, h〉 = 〈h, f(h)〉 = 〈h, h+ ε1e1 + ε2e2 + · · ·+ εnen〉 = ε1 + ε2 + · · ·+ εn,

where εi = w(ei). Hence the weight of every cycle in G is zero. The conclusion
follows from Theorem 2.1.

⇐ Assume that

(i) γi = 0, 1 ≤ i ≤ s, and

(ii) βj1 + βj2 + · · ·+ βjqj = 0, 1 ≤ j ≤ r .
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Since H1(S) has a basis consisting of simple closed curves, in order to prove
that f ∈ T , it suffices to show that in H1(S), we have f(h) = h for any simple
closed curve h on S. Note that for any such h, we have 〈ai, h〉 = 0, 1 ≤ i ≤ p,
and after orienting h and then each bij so that 〈bij, h〉 = 〈bi1, h〉, we have
bij = bi1 , 2 ≤ j ≤ qi , 1 ≤ i ≤ r . Let δi = 〈bi1, h〉. Then in H1(S) we have:

f(h) = Dα1
a1
· · ·Dαp

apD
β11

b11
· · ·Dβ1q1

b1q1
· · ·Dβr1

br1
· · ·Dβrqr

brqr
Dγ1
c1
· · ·Dγs

cs
(h)

= h+ β11〈b11, h〉b11 + · · ·+ β1q1〈b1q1 , h〉b1q1 + · · ·
+ βr1〈br1, h〉br1 + · · · + βrqr〈brqr , h〉brqr

= h+ δ1(β11 + · · ·+ β1q1)b11 + · · ·+ δr(βr1 + · · · + βrqr)br1
= h

Theorem 3.2 Let S be a closed connected oriented surface, and let E =
{e1, e2, . . . , en} be a reduction system on S. Let f = Dε1

e1
Dε2
e2
· · ·Dεn

en
be a

multitwist on E. Let G be the reduction system graph of E, and define a
weighting w : E(G)→ Z of G by w(ei) = εi . Then f is in the Torelli multitwist
group TE if and only if the weight of every cycle in G is zero.

Proof Partition E into ∼–equivalence classes, so

E = {a1, . . . , ap, b11, . . . , b1q1 , . . . , br1, . . . , brqr , c1, . . . , cs}.

Theorems 2.1 and 3.1 show the conditions to be equivalent.

Given a pair, e1 and e2 , of disjoint, non-separating, but homologous simple
closed curves on S, we call De1D

−1
e2

a bounding-pair map or BP map. Powell
[5] has shown that the Torelli group T is generated by BP maps and Dehn
twists about separating simple closed curves.

Corollary 3.1 Let S, E, DE , and TE be as in Theorem 3.1. Let D′ be the
subgroup of M(S) generated by

(i) BP maps about bounding pairs in E, and

(ii) Dehn twists about separating curves in E.

Then D′ = DE ∩ T = TE .

Proof By the definition of DE , it is clear that every generator of D′ is in
DE . By Powell’s result noted above, every generator of D′ is in T . Thus
D′ ⊆ DE ∩ T . We must show that DE ∩ T ⊆ D′ .
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Let f ∈ DE ∩ T . By Theorem 3.1, we know that

f = Dα1
a1
· · ·Dαp

apD
β11

b11
· · ·Dβ1q1

b1q1
Dβ21

b21
· · ·Dβ2q2

b2q2
· · ·Dβr1

br1
· · ·Dβrqr

brqr
,

where βi1 + βi2 + · · · + βiqi = 0, 1 ≤ i ≤ r . Since each Dαi
ai is a product of

type–(ii) generators of D′ , we will be done if we write Dβi1
bi1
Dβi2
bi2
· · ·Dβiqi

biqi
as a

product of BP maps. We do this:

Dβi1
bi1
Dβi2
bi2
· · ·Dβiqi

biqi
= (Dbi2D

−1
bi1

)βi2(Dbi3D
−1
bi1

)βi3 · · · (Dbiq1D
−1
bi1

)βiqi ,

where we note that −βi2 − βi3 − · · · − βiqi = βi1.

Corollary 3.2 Let S be a closed, connected, oriented surface, and let

E = {a1, . . . , ap, b11, . . . , b1q1 , . . . , br1, . . . , brqr , c1, . . . , cs}

be a reduction system on S, notated by a–, b–, and c–type ∼–equivalence
classes as in section 2. Let DE be the multitwist group on E, and let

f = Dα1
a1
· · ·Dαp

apD
β11

b11
· · ·Dβ1q1

b1q1
· · ·Dβr1

br1
· · ·Dβrqr

brqr
Dγ1
c1
· · ·Dγs

cs

be an element of DE . Let m ≥ 2 be an integer.

Then f ∈ ΓS(m) ≡ {g ∈M(S) : g acts trivially on H1(S;Zm)} if and only if

(i) γi ≡ 0 (mod m), 1 ≤ i ≤ s, and

(ii) βj1 + βj2 + · · ·+ βjqj ≡ 0 (mod m), 1 ≤ j ≤ r .

Let S be the surface of genus g ≥ 2 and E the reduction system on S shown
below. Since E consists of 2g − 3 a–type curves, rank(TE) = 2g − 3. This
example, along with Theorem 4.1 below, shows that the maximal rank of an
Abelian subgroup of the Torelli group is attained by a multitwist group.

a a a a a

a a a
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Remark One particular naively-expected symplectic analogue of Theorem 3.1
is not true:

“Conjecture” Let (V, 〈, 〉) be a symplectic lattice of rank 2g , where g ≥
2. Let {v1, v2, . . . , vn} be a set of primitive vectors in V that are pairwise
linearly independent and symplectically orthogonal. Let Ti be the transvection
corresponding to the vector vi . Thus Ti(w) = w + 〈vi, w〉 for any w ∈ V . Let
m1,m2, . . . ,mn be integers. Then the “multitransvection” T =Tm1

1 Tm2
2 · · ·Tmnn

is the identity on V if and only if mi = 0, 1 ≤ i ≤ n.

But now let {a1, b1, a2, b2, . . . , ag, bg} be the standard symplectic basis for V ,
and for i = 1, 2, 3, and 4, let vi = a1 + ia2 . Let m1 = 1, m2 = −3, m3 = 3,
and m4 = −1. One can verify that T = Tm1

1 Tm2
2 Tm3

3 Tm4
4 = idV . This shows

the conjecture to be false.

Now we prove that for any closed oriented surface of genus g ≥ 2, the general
Abelian subgoup of its Torelli group has rank ≤ 2g − 3. We first give two
lemmas.

Lemma 3.1 Let S be a closed, connected, oriented surface, and E a reduction
system on S with reduction system graph G. Let TE be the Torelli multitwist
group on E, as in Theorem 3.1. Then rank(TE) ≤ ν−1, where ν is the number
of vertices of G, or, equivalently, the number of components of SE .

Proof Let G have edge setl

E(G) = {a1, . . . , ap, b11, . . . , b1q1 , b21, . . . , b2q2 , . . . , br1, . . . , brqr , c1, . . . , cs}.

Let E′ = {b11, . . . , b1(q1−1), b21, . . . , b2(q2−1), . . . , br1, . . . , br(qr−1)} ⊆ E(G), and
let G′ = G[E′]. Then G′ contains no cycles, since any cycle containing one
edge of a b–type class contains the whole class. Therefore, G′ is contained in a
spanning tree T of G. Since each ai is a cut edge, T contains ai , 1 ≤ i ≤ p.

So T contains the set of edges E′ ∪ {a1, a2, . . . , ap}. But by Theorem 3.1, the
cardinality of this set is equal to the rank of TE . This gives us

ν − 1 = card(E(T )) ≥ p+ (q1 − 1) + · · ·+ (qr − 1) = rank(TE).

Lemma 3.2 Let S be a closed, connected, oriented surface of genus g ≥ 2,
and let E be a reduction system on S. Let Ω denote the number of components
of SE not homeomorphic to a pair of pants or a one-holed torus. Let TE be the
Torelli multitwist group on E. Then rank(TE) + Ω ≤ 2g − 3.
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Proof Let G be the reduction system graph of E. We use the following
notation:

• Γ is the maximum genus of any component of SE .

• ∆ is the maximum degree of any vertex of G, or, equivalently, the max-
imum number of boundary curves of any component of SE .

• νb is the number of vertices of G of degree b, or, equivalently, the number
of components of SE with b boundary curves.

• νγb (ν≥γb ) is the number of components of SE of genus γ (≥ γ ) having b
boundary curves, or, equivalently, the number of vertices of G of degree
b corresponding to a component of SE of genus γ (≥ γ ).

So we have:

νb =
Γ∑
γ=0

νγb and ν =
∆∑
b=1

νb

But the assumption that each element of E is homotopically nontrivial means
ν0

1 = 0, and the assumption that the elements of E are pairwise nonisotopic
means ν0

2 = 0. So, in fact, ν = ν≥1
1 + ν≥1

2 + ν3 + ν4 + · · · + ν∆ . Now, ν1
1 is

the number of one-holed tori, and ν0
3 is the number of pairs of pants, so by the

definition of Ω, we have Ω = ν≥2
1 + ν≥1

2 + ν≥1
3 + ν4 + · · ·+ ν∆ . Hence

2g − 2 = −χ(S)

=
∑

components V of SE

−χ(V)

=
Γ∑
γ=1

(2γ − 1)νγ1 +
Γ∑
γ=1

(2γ)νγ2 +
∆∑
b=3

Γ∑
γ=0

(2γ + b− 2)νγb

By Lemma 3.1, rank(TE) ≤ ν − 1, so we have

rank(TE) + Ω ≤ ν + Ω− 1

= (ν≥1
1 + ν≥2

1 + · · ·+ ν∆) + (ν≥2
1 + ν≥1

2 + ν≥1
3 + ν4 + · · ·+ ν∆)− 1

= [(ν1
1 + 2ν≥2

1 ) + 2ν≥1
2 + (ν0

3 + 2ν≥1
3 ) + 2ν4 + 2ν5 + · · · + 2ν∆]− 1

≤
[ Γ∑
γ=1

(2γ − 1)νγ1 +
Γ∑
γ=1

(2γ)νγ2 +
∆∑
b=3

Γ∑
γ=0

(2γ + b− 2)νγb
]
− 1

= −χ(S)− 1
= 2g − 3
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Theorem 3.3 Let S be a closed, connected, oriented surface of genus g ≥
2, and let A be an Abelian subgroup of T , the Torelli group of S. Then
rank(A) ≤ 2g − 3.

Proof This proof is an adaptation of a analogous proof in [1]. That paper also
introduces the reduction homomorphism and essential reduction system which
we refer to here.

Let f ∈ A, f 6= 0. By Thurston’s classification, f is either reducible, pseudo-
Anosov, or of finite order. Since T is torsion-free, f cannot be of finite order.
We consider the other two possibilities.

Case 1 f is pseudo-Anosov.

Let 〈f〉denote the cyclic subgroup of A generated by f , and let C=CM(S)(〈f〉),
the centralizer of 〈f〉 inM(S). Then A ⊆ C and A is torsion-free. We conclude
by a theorem of McCarthy ([4], Corollary 3) that A is infinite cyclic. Hence
rank(A) = 1 ≤ 2g − 3.

Case 2 f is reducible.

Given h ∈ A, let Eh denote the essential reduction system of h, and let

E =
⋃
h∈A
Eh

Then E is an adequate reduction system for A ([1], Lemma 3.1(1)), and f
reducible implies E 6= ∅, so every element of A is reducible.

Let ME(S) denote the stabilizer of E in M(S), and let Λ: ME(S)→M(SE)
be the reduction homomorphism. Then ker(Λ) = DE , the multitwist group on
E, and thus

ker(Λ|A) = ker(Λ) ∩ A = DE ∩A = DE ∩ T ∩ A = TE ∩ A.

We now have a short exact sequence

0 −→ TE ∩ A −→ A
Λ|A−→ Λ(A) −→ 0

of free Abelian groups, which shows that

rank(A) = rank(TE ∩ A) + rank(Λ(A)) ≤ rank(TE) + rank(Λ(A)).

We will be done, by applying Lemma 3.2, once we show that rank(Λ(A)) ≤ Ω,
the number of components of SE not homeomorphic to a pair of pants or a
one-holed torus.
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A theorem of Ivanov ([3], Theorem 1.2) implies that Λ(f) restricts to each
component S1,S2, . . . ,Sν of SE , giving “projections” pi : Λ(A) −→ M(Si)
induced by restricting representatives. Set Ai = pi(Λ(A)) ⊆ M(Si). Then
Λ(A) ⊆

⊕
Ai , so rank(Λ(A)) ≤

∑
rank(Ai). We make the following observa-

tions:

(i) If Si is a pair of pants, then M(Si) is finite, so rank(Ai) = 0.

(ii) If Si is a one-holed torus, then the homomorphism H1(Si) → H1(S) in-
duced by inclusion is injective. Any homeomorphism f representing an element
of A maps a circle c in Si to a circle c′ in Si , so Ai lies within the Torelli
group of Si , which is trivial in this case.

(iii) If Si is neither a pair of pants nor a one-holed torus, then Ai is either
trivial or is an adequately reduced torsion-free Abelian subgroup of M(Si). So
again by McCarthy’s theorem, rank(Ai) ≤ 1.

These observations tell us that

rank(Λ(A)) ≤
ν∑
i=1

rank(Ai) ≤ Ω.
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