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Bihomogeneity of solenoids
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Abstract Solenoids are inverse limit spaces over regular covering maps of
closed manifolds. M.C. McCord has shown that solenoids are topologically
homogeneous and that they are principal bundles with a pro�nite structure
group. We show that if a solenoid is bihomogeneous, then its structure
group contains an open abelian subgroup. This leads to new examples of
homogeneous continua that are not bihomogeneous.
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A topological space X is homogeneous if for every pair of points x; y 2 X there
is a homeomorphism h : X ! X satisfying h (x) = y . The space is bihomo-
geneous if for each such pair there is a homeomorphism satisfying h (x) = y
and h (y) = x: A compact and connected space is called a continuum. Knaster
and Van Dantzig asked whether a homogeneous continuum is necessarily bi-
homogeneous. This was settled in the negative by Krystyna Kuperberg [5].
Subsequent counterexamples were given by Minc, Kawamura and Greg Kuper-
berg [8, 2, 4]. The counterexamples in [5, 4] are locally connected. Ungar [15]
has studied stronger types of homogeneity conditions and showed that these
conditions imply local connectivity.

A solenoid M1 is an inverse limit space over closed connected manifolds with
bonding maps that are covering maps. We shall silently assume that the bond-
ing maps are not 1 − 1, so that M1 is not locally connected. McCord [7]
has shown that solenoids are homogeneous provided that compositions of the
bonding covering maps are regular. Minc [8] presented an example of a ho-
mogeneous but not bihomogeneous in�nite-dimensional continuum similar to
a solenoid, and Krystyna Kuperberg [6] observed that a similar construction
could be used to construct a �nite-dimensional solenoid which is homogeneous
but not bihomogeneous. We shall show that M1 is bihomogeneous only if
a certain condition related to commutativity (or lack thereof) of �1 (Mi) is
met. In case the solenoid is 2-dimensional, the condition is both necessary and
su�cient.
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1 Path-components of solenoids as left-cosets of the
structure group

A (strong) solenoid M1 is an inverse-limit space of closed manifolds Mi with
bonding maps pi : Mi+1 ! Mi for i 2 N which are covering maps, such that
any composition pi+k � : : : � pi is regular. Solenoids are homogeneous spaces
and they have dense path-components.

A G-bundle (E;B; p; F ) is principal if the structure group G acts e�ectively
on the �bers. As a consequence, the �ber F is homeomorphic to G, and G is
naturally equivalent to the group of deck-transformations.

Theorem 1 (McCord, [7]) Suppose that M1 = lim (Mi; pi) is a solenoid.
Let �0 : M1 ! M0 be the projection onto the �rst coordinate and let Γ0 =
�−1

0 (m0) be a �ber. Then (M1;M0; �0;Γ0) is a principal-bundle.

The projection �0 is not to be confused with a homotopy group. Note that a
solenoid lim (Mi; fi) is a principal bundle over any Mi and we have singled out
M0 . The spaces Mi are called the factor spaces of the solenoid. We think of the
fundamental groups �1(Mi) as (normal) subgroups of �1(M0). The structure
group Γ0 is isomorphic to the pro�nite group lim �1(M0)=�1(Mi).

Choose base-points mi 2 Mi such that pi(mi) = mi−1 , so m1 = (mi) is an
element of M1 . We identify the structure group Γ0 with the �ber of m0 and
we identify m1 with the unit element of Γ0 . The fundamental group �1(M0)
acts on the base-point �ber Γ0 by path lifting: for g 2 Γ0 and γ 2 �1(M0;m0),
de�ne g�γ as the end-point of the lifted path ~γ starting from the initial-point g .
One veri�es that this right action of �1(M0) commutes with left multiplication
of Γ0 . More precisely, suppose that h is a deck-transformation and that ~γ is a
lifted path with initial-point g . Then h(~γ) has initial point h(g) and end-point
h(g � γ). Identify the structure group with the group of deck-transformations,
so we get that (hg) � γ = h(g � γ).

De�nition 2 Suppose that (M1;M0; �0;Γ0) is a solenoid. We shall call the
�1(M0)-orbit of e 2 Γ0 the characteristic group and we shall denote it by γ0 .
Let K1 � �1(M0) be the intersection of all �1(Mi). Then γ0 is isomorphic to
�1(M0)=K1 and we shall refer to K1 as the kernel of �1(M0).

Our de�nition deviates from the common terminology, as in [14], where the
equivalence class of γ0 under inner automorphisms of Γ0 is called the charac-
teristic class. Note that γ0 inherits a topology from Γ0 .
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Lemma 3 The path components of a solenoid are naturally equivalent to the
left cosets Γ0=γ0 .

Proof Suppose that x; y 2 Γ0 are elements of the base-point �ber. Then
x � γ = y for some γ 2 �1(M0) if and only if there exists a path ~γ �M1 that
connects x to y .

If we replace the base space M0 by Mi for some index i, then we get a principal
bundle (M1;Mi; �i;Γi), where Γi � Γ0 is the subgroup of transformations that
leave Mi invariant. The topology of Γ0 is induced by taking the Γi as an open
neighborhood base of the identity. One veri�es that the charateristic group of
the bundle, denoted γi , is equal to γ0 \ Γi . Hence the γi are open subgroups
of γ0 .

Lemma 4 For j > i the inclusion Γj � Γi induces a natural isomorphism
between Γj=γj and Γi=γi:

Since path components are dense in M1; the characteristic subgroups γi are
dense in Γi .

2 The permutation of path-components by self-
homeomorphisms

A solenoid M1 can be represented as a subspace of
Q
Mi , the Cartesian prod-

uct of its factor spaces. We identify Mi with the subspace of
Q
Mi de�ned

by:
Mi = f(xj) : xj 2Mj; xj = pij(xi) if j � i; xj = mj if j > ig

where pij : Mi !Mj is a composition of bonding maps. In this representation,
the factor spaces Mi and M1 all have the same base-point.

A morphism between �ber bundles can be represented by a commutative dia-
gram:

E1
h−! E2

p1 # # p2

B1
f−! B2
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We shall say that h is the lifted map and that f is the base-map. We say
that morphisms are homotopic if their base-maps are. By the unique path-
lifting property, a morphism between bundles with a totally disconnected �ber
is determined by the base-map f : B1 ! B2 and the image under h of a single
element of E1 . For pointed spaces, therefore, a bundle-morphism is determined
by the base-map only. This implies that, for principal bundles with a totally
disconnected �ber, bundle-morphisms commute with deck-transformations; i.e.,
for a lifted map h and a deck-transformation ’ : E1 ! E1 , we have that h�’ =
 � h for some deck-transformation  : E2 ! E2 .

Lemma 5 Suppose that (Ei; Bi; pi;Γi) are principal Γi -bundles with a to-
tally disconnected �ber (for i = 1; 2). Then a base-point preserving bundle-
morphism induces a homomorphism of the structure group. Furthermore, ho-
motopic morphisms induce the same homomorphism.

Proof First note that the lifted map h maps Γ1 to Γ2 . Deck-transformations
are (left) translations x ! ax of the base-point �ber Γi (i = 1; 2). Since a
bundle-morphism commutes with deck-transformations, h : Γ1 ! Γ2 satis�es
h(ax) = f(a)h(x) for some f : Γ1 ! Γ2 . Substitute x = e to �nd that h(ax) =
h(a)h(x). Now homotopic bundle-morphisms give homotopic homomorphisms
h : Γ1 ! Γ2 . Since the groups are totally disconnected, the homomorphisms
are necessarily the same.

We shall say that a bundle morphism of a solenoid is an automorphism if the
commutative diagram can be extended on the right-hand side

M1
h1−! M1

h2−! M1
�j # # �i # �k
Mj

f1−! Mi
f2−! Mk

such that f2 � f1 is homotopic to pjk . We shall say that h1 is the inverse of
h2 . For instance, the covering projection pji : Mj ! Mi with lifted map idM1
yields an automorphism. We show that for every self-homeomorphism of a
solenoid, there is an automorphism that acts in the same way on the space of
path-components.

Theorem 6 Suppose that h is a base-point preserving self-homeomorphism
of a solenoid M1 . Then h is homotopic to the lifted map of an automorphism
of M1 .
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Proof Since M0 is an ANR, the composition �0 � h : M1 ! M0 extends
to H : U ! M0 for a neighborhood of M1 � U in

Q
Mi . The restriction

H : Mi ! M0 is well-de�ned for su�ciently large i. Note that H preserves
the base-point of Mi . For su�ciently large i, the maps H � �i and �0 � h are
homotopic. By the homotopy lifting property, H � �i can then be lifted to
~H : M1 !M1 , which is homotopic to h.

Now apply the same argument to �i � h−1 to �nd a map G : Mj ! Mi for
su�ciently large j which can be lifted to ~G : M1 ! M1 . By choosing j and
i su�ciently large, the composition H �G : Mj ! M0 gets arbitrarily close to
and hence homotopic to the covering map pj0 .

Theorem 6 and Lemma 5 describe how a self-homeomorphism acts on path-
components of a solenoid (provided that it preserves the base-point).

Lemma 7 Suppose that h is the lifted map of an automorphism of a solenoid
M1 . For some index i, h induces a monomorphism ĥ : Γi ! Γ0 such that
ĥ−1(γ0) = γi and ĥ(Γi) is an open subgroup of Γ0 .

Proof By Lemma 5 we know that h induces a homomorphism ĥ : Γi ! Γ0 .
Since homeomorphisms preserve path-components, Lemma 3 implies that h
induces a homomorphism Γi=γi ! Γ0=γ0 . Since h is the lifted map of an
automorphism, it has an inverse g which induces a homomorphism ĝ : Γj ! Γ0 .
The composition ĝ � ĥ, which is de�ned on an open subgroup, is equal to the
identity. By Lemma 5, ĝ � ĥ is equal to the homomorphism induced by pji ,
which is the identity.

3 An algebraic condition for bihomogeneity

De�nition 8 Suppose that Γ0 is the structure group of a solenoid with char-
acteristic group γ0 . We de�ne Mon(Γ0; γ0) as the set of monomorphisms
f : Γi ! Γ0 , such that f(γi) = γ0 \ f(Γi).

We say that an element of Mon(Γ0; γ0) is a characteristic automorphism. A self-
homeomorphism H of M1 need not preserve the base-point. It can however be
represented as a composition of a homeomorphism h that preserves the path-
component of the base-point and a deck-transformation. Since h is homotopic
to a base-point preserving homeomorphism, H permutes the path-components
in the same way as a composition of a base-point preserving homeomorphism
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and a deck-transformation. In terms of Γ0=γ0 , this is a composition of a char-
acteristic automorphism ’ and a left translation z ! wz of Γ0 .

De�nition 9 We say that a solenoid is algebraically bihomogeneous if it satis-
�es the following condition. For every x; y 2 Γ0 there are elements w 2 Γ0 and
’ 2 Mon(Γ0; γ0) such that z ! w’(z) switches the residue classes xmod γ0

and ymod γ0 .

Obviously, bihomogeneity implies algebraic bihomogeneity. The condition of
algebraic bihomogeneity may seem awkward, but fortunately there is a simpler
characterization as we shall see below. We denote x � y if x; y are in the same
residue class of γ0 .

Lemma 10 A solenoid M1 is algebraically bihomogeneous if and if only for
every z 2 Γ0 there is a characteristic automorphism ’ such that ’(z) � z−1 .

Proof Suppose that M1 is algebraically bihomogeneous. For every z 2 Γ0 ,
we can switch the cosets of z and e. More precisely, there exists a w 2 Γ0

and a ’ 2 Mon(Γ0; γ0) such that zg = w’(e) and eg0 = w’(z) for g; g0 2 γ0 .
Since ’(e) = e; it follows that w = zg and ’(z) = g−1z−1g0 . Compose ’
with the inner automorphism x! gxg−1 to obtain  2 Mon(Γ0; γ0) satisfying
 (z) � z−1:

If ’(z) = z−1g for some g 2 γ0 , then compose ’ with the inner automorphism
x ! gxg−1 to get  2 Mon(Γ0; γ0) satisfying  (z) = gz−1 . Then x !
zg−1 (x) switches the cosets of e and z . This implies algebraic bihomogeneity.

Since z ! z−1 is a homomorphism if and only if the group is abelian, we have
the following corollary.

Corollary 11 A solenoid with an abelian structure group Γi is algebraically
bihomogeneous.

This condition is automatically met if �1 (Mi) is abelian.

Lemma 12 Suppose that γ0 is a characteristic group. Then Mon(Γ0; γ0) is
countable.
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Proof There are only countably many subgroups γi and each of these is �nitely
generated. Hence, there are only �nitely many homomorphisms f : γi ! γ0 .
Since characteristic automorphisms are determined by their action on some γi ,
the result follows.

Theorem 13 Let M1 be a bihomogeneous solenoid with structure group Γ0 .
Then Γ0 contains an open abelian subgroup.

Proof Suppose that ’ : Γj ! Γ0 is a characteristic automorphism. For g 2 γ0

de�ne the subset V (’; g) = fz 2 Γj : z’(z) = gg � Γ0: As ’ ranges over
Mon(Γ0; γ0) and g ranges over γ0 , the countable family of all V (’; g) covers
Γ0 by Lemma 10. Hence one of these sets, say V (’0; g0), is of second category
in Γ0 . It follows that K = fz 2 Γ0 : z’0(z) = g0g is closed with non-empty
interior in Γ0: Since K has non-empty interior, there exist a z0 2 K and a
neighborhood V of e such that ’(z0�) = �−1z−1

0 g0 for all � 2 V . It follows
that ’(�) = g−1

0 z0�
−1z−1

0 g0 . By composition with the inner automorphism
x! z−1

0 g0xg
−1
0 z0; we get a homomorphism  such that  (�) = �−1 for � 2 V .

The group generated by V is an open abelian subgroup of Γ0 .

For any neighborhood V of the identity, γj � V for large enough j . Hence
there exists an open abelian subgroup of Γ0 if and only if γj is abelian for some
j:

Corollary 14 Let M1 be a solenoid and let K1 be the kernel of �1(M0).
Then M1 is algebraically bihomogeneous if and only if �1(Mj)=K1 is abelian
for su�ciently large index j , or, equivalently, Γj is abelian for su�ciently large
index j .

4 An application

Our algebraic condition for (topological) bihomogeneity in Corollary 14 is neces-
sary but not su�cient. For this, there should exist a homeomorphism h : Mi !
Mi which induces an isomorphism h� : �1(Mi)! �1(Mi) such that h�(x) = x−1

(modulo K1 ). The problem whether homomorphisms between fundamental
groups are realized by continuous maps is known as the geometric realization
problem. It is a classical result of Nielsen [9] that closed surfaces admit geo-
metric realizations. This can be extended to certain three-dimensional mani-
folds [16]. The following result now follows from Nielsen’s theorem.
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Theorem 15 A two-dimensional solenoid S1 with kernel K1 � �1(S0) is
bihomogeneous if and only if �1(Si)=K1 is abelian for su�ciently large index
i.

One easily constructs two-dimensional solenoids that are not bihomogeneous,
using results from geometric group theory. The fundamental group �1(S) of a
closed surface is subgroup separable, see [13]; i.e., for every subgroup H � �1(S)
there is a descending chain of subgroups of �nite index with kernel H . Hence,
there exists a solenoid with base-space S and kernel H . For a closed surface S
of genus greater than 1, the fundamental group contains no abelian subgroup
of �nite index. Therefore, a solenoid with base-space S and kernel feg is a
(simply-connected) continuum which is not bihomogeneous.

5 Final remarks

One-dimensional solenoids are indecomposable continua. It is not di�cult
to show that higher-dimensional solenoids are not. Rogers [10] has shown
that a homogeneous, hereditarily indecomposable continuum is at most one-
dimensional. His question whether there exists a homogeneous, indecomposable
continuum of dimension greater than one remains open.

Our example of a non-bihomogeneous space is based on obstructions of the
fundamental group, which seems to be characteristic for all examples so far. So
it is natural to ask whether there exists a simply-connected Peano continuum
that is homogeneous but not bihomogeneous. More generally, it is natural to
ask whether there exists a continuum with trivial �rst �Cech cohomology that
is homogeneous but not bihomogeneous.
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