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Abstract The working mathematician fears complicated words but loves
pictures and diagrams. We thus give a no-fancy-anything picture rich
glimpse into Khovanov’s novel construction of \the categori�cation of the
Jones polynomial". For the same low cost we also provide some computa-
tions, including one that shows that Khovanov’s invariant is strictly stronger
than the Jones polynomial and including a table of the values of Khovanov’s
invariant for all prime knots with up to 11 crossings.
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1 Introduction

In the summer of 2001 the author of this note spent a week at Harvard Univer-
sity visiting David Kazhdan and Dylan Thurston. Our hope for the week was
to understand and improve Khovanov’s seminal work on the categori�cation
of the Jones polynomial [Kh1, Kh2]. We’ve hardly achieved the �rst goal and
certainly not the second; but we did convince ourselves that there is something
very new and novel in Khovanov’s work both on the deep conceptual level (not
discussed here) and on the shallower surface level. For on the surface level
Khovanov presents invariants of links which contain and generalize the Jones
polynomial but whose construction is like nothing ever seen in knot theory
before. Not being able to really digest it we decided to just chew some, and
then provide our output as a note containing a description of his construction,
complete and consistent and accompanied by computer code and examples but
stripped of all philosophy and of all the linguistic gymnastics that is necessary
for the philosophy but isn’t necessary for the mere purpose of having a working
construction. Such a note may be more accessible than the original papers. It
may lead more people to read Khovanov at the source, and maybe somebody
reading such a note will �gure out what the Khovanov invariants really are.
Congratulations! You are reading this note right now.
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338 Dror Bar-Natan

1.1 Executive summary In very brief words, Khovanov’s idea is to replace
the Kau�man bracket hLi of a link projection L by what we call \the Khovanov
bracket" JLK, which is a chain complex of graded vector spaces whose graded
Euler characteristic is hLi. The Kau�man bracket is de�ned by the axioms

h;i = 1; h©Li = (q + q−1)hLi; h0i = h1i − qhHi:

Likewise, the de�nition of the Khovanov bracket can be summarized by the
axioms

J;K = 0! Z! 0; J©LK = V ⊗ JLK; J0K = F
�

0! J1K d! JHKf1g ! 0
�
:

Here V is a vector space of graded dimension q + q−1 , the operator f1g is the
\degree shift by 1" operation, which is the appropriate replacement of \multi-
plication by q", F is the \flatten" operation which takes a double complex to
a single complex by taking direct sums along diagonals, and a key ingredient,
the di�erential d, is yet to be de�ned.

The (unnormalized) Jones polynomial is a minor renormalization of the Kau�-
man bracket, Ĵ(L) = (−1)n−qn+−2n−hLi. The Khovanov invariant H(L) is the
homology of a similar renormalization JLK[−n−]fn+ − 2n−g of the Khovanov
bracket. The \main theorem" states that the Khovanov invariant is indeed a
link invariant and that its graded Euler characteristic is Ĵ(L). Anything in
H(L) beyond its Euler characteristic appears to be new, and direct computa-
tions show that there really is more in H(L) than in its Euler characteristic.

1.2 Acknowledgements I wish to thank David Kazhdan and Dylan Thurston
for the week at Harvard that led to writing of this note and for their help since
then. I also wish to thank G. Bergman, S. Garoufalidis, J. Hoste, V. Jones,
M. Khovanov, A. Kricker, G. Kuperberg, A. Stoimenow and M. Thistlethwaite
for further assistance, comments and suggestions.

2 The Jones polynomial
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All of our links are oriented links in an oriented Euclidean
space. We will present links using their projections to the
plane as shown in the example on the right. Let L be a
link projection, let X be the set of crossings of L, let n =
jX j, let us number the elements of X from 1 to n in some
arbitrary way and let us write n = n+ +n− where n+ (n−)
is the number of right-handed (left-handed) crossings in X .
(again, look to the right).
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Recall that the Kau�man bracket [Ka] of L is de�ned by the formulas1 h;i = 1,
h©Li = (q + q−1)hLi and h0i = h1i − qhHi, that the unnormalized Jones
polynomial is de�ned by Ĵ(L) = (−1)n−qn+−2n−hLi, and that the Jones poly-
nomial of L is simply J(L) := Ĵ(L)=(q + q−1). We name 1 and H the 0-
and 1-smoothing of 0, respectively. With this naming convention each vertex
� 2 f0; 1gX of the n-dimensional cube f0; 1gX corresponds in a natural way
to a \complete smoothing" S� of L where all the crossings are smoothed and
the result is just a union of planar cycles. To compute the unnormalized Jones
polynomial, we replace each such union S� of (say) k cycles with a term of the
form (−1)rqr(q + q−1)k , where r is the \height" of a smoothing, the number
of 1-smoothings used in it. We then sum all these terms over all � 2 f0; 1gX
and multiply by the �nal normalization term, (−1)n−qn+−2n− . Thus the whole
procedure (in the case of the trefoil knot) can be depicted as in the diagram
below. Notice that in this diagram we have split the summation over the ver-
tices of f0; 1gX to a summation over vertices of a given height followed by a
summation over the possible heights. This allows us to factor out the (−1)r

factor and turn the �nal summation into an alternating summation:

1

3

2 q(q+q−1)

100

CC
CC

CC
C

CC
CC

CC
C+

q2(q+q−1)2

110

DD
DD

DD
DD

DD
DD

DD
D

+

(q+q−1)2

000

||||||||||||||

DD
DD

DD
DD

DD
DD

D

��

q(q+q−1)

010

{{{{{{{{{{{{{{{

EE
EE

EE
EE

EE
EE

E

+

q2(q+q−1)2

101

+

q3(q+q−1)3

111

��

q(q+q−1)

001

yyyyyy

yyyyyy

��

q2(q+q−1)2

011

xxxxxxxxxxxxxx

��
(q + q−1)2 − 3q(q + q−1) + 3q2(q + q−1)2 − q3(q + q−1)3

(1)

= q−2 + 1 + q2 − q6 �(−1)n− qn+−2n−
−−−−−−−−−−−−−−!
(with (n+; n−) = (3; 0))

q + q3 + q5 − q9 �(q+q−1)−1

−−−−−−−! J(&) = q2 + q6 − q8:

1Our slightly unorthodox conventions follow [Kh1]. At some minor regrading and
renaming cost, we could have used more standard conventions just as well.
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3 Categori�cation

3.1 Spaces

Khovanov’s \categori�cation" idea is to replace polynomials by graded vector
spaces2 of the appropriate \graded dimension", so as to turn the Jones polyno-
mial into a homological object. With the diagram (1) as the starting point the
process is straight forward and essentially unique. Let us start with a brief on
some necessary generalities:

De�nition 3.1 Let W =
L

mWm be a graded vector space with homogeneous
components fWmg. The graded dimension of W is the power series qdimW :=P

m q
m dimWm .

De�nition 3.2 Let �flg be the \degree shift" operation on graded vector
spaces. That is, if W =

L
mWm is a graded vector space, we set Wflgm :=

Wm−l , so that qdimWflg = ql qdimW .

De�nition 3.3 Likewise, let �[s] be the \height shift" operation on chain com-
plexes. That is, if �C is a chain complex : : : ! �Cr dr! �Cr+1 : : : of (possibly
graded) vector spaces (we call r the \height" of a piece �Cr of that complex),
and if C = �C[s], then Cr = �Cr−s (with all di�erentials shifted accordingly).

Armed with these three notions, we can proceed with ease. Let L, X , n and n�
be as in the previous section. Let V be the graded vector space with two basis
elements v� whose degrees are �1 respectively, so that qdimV = q+q−1 . With
every vertex � 2 f0; 1gX of the cube f0; 1gX we associate the graded vector
space V�(L) := V ⊗kfrg, where k is the number of cycles in the smoothing of L
corresponding to � and r is the height j�j =

P
i �i of � (so that qdimV�(L)

is the polynomial that appears at the vertex � in the cube at (1)). We then set
the rth chain group JLKr (for 0 � r � n) to be the direct sum of all the vector
spaces at height r : JLKr :=

L
�:r=j�j V�(L). Finally (for this long paragraph),

we gracefully ignore the fact that JLK is not yet a complex, for we have not yet
endowed it with a di�erential, and we set C(L) := JLK[−n−]fn+ − 2n−g. Thus
the diagram (1) (in the case of the trefoil knot) becomes:

2Everything that we do works just as well (with some linguistic di�erences) over Z.
In fact, in [Kh1] Khovanov works over the even more general ground ring Z[c] where
deg c = 2.
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V ⊗2
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�
�
�
�
�
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�
�

??
??

??
??
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V f1g

010

��������������

AA
AA

AA
AA

AA
AA

�

V ⊗2f2g

101

�

V ⊗3f3g

111

��

V f1g

001

}}}}}}

}}}}}

��

V ⊗2f2g

011

|||||||||||||

���
J&K0 ; J&K1 ; J&K2 ; J&K3

�
= J&K �[−n−]fn+−2n−g−−−−−−−−−−−−−−!

(with (n+; n−) = (3; 0))
C(&): (2)

The graded Euler characteristic �q(C) of a chain complex C is de�ned to be the
alternating sum of the graded dimensions of its homology groups, and, if the
degree of the di�erential d is 0 and all chain groups are �nite dimensional, it is
also equal to the alternating sum of the graded dimensions of the chain groups.
A few paragraphs down we will endow C(L) with a degree 0 di�erential. This
granted and given that the chains of C(L) are already de�ned, we can state and
prove the following theorem:

Theorem 1 The graded Euler characteristic of C(L) is the unnormalized
Jones polynomial of L:

�q(C(L)) = Ĵ(L):

Proof The theorem is trivial by design; just compare diagrams (1) and (2)
and all the relevant de�nitions. Thus rather than a proof we comment on the
statement and the construction preceding it: If one wishes our theorem to hold,
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everything in the construction of diagram (2) is forced, except the height shift
[−n−]. The parity of this shift is determined by the (−1)n− factor in the
de�nition of Ĵ(L). The given choice of magnitude is dictated within the proof
of Theorem 2.

3.2 Maps

Next, we wish to turn the sequence of spaces C(L) into a chain complex. Let
us flash the answer upfront, and only then go through the traditional ceremony
of formal declarations:

1

3

2 V f1g

100

�
d1?0

//

�

EE
EE

EE
EE

d10?

""E
EE

EE
EE

E�

V ⊗2f2g

110

d11?

""F
FF

FF
FF

FF
FF

FF
FF

FF
F

�

V ⊗2

000

d?00

==zzzzzzzzzzzzzzzzzz

d0?0

//

d00?

""F
FF

FF
FF

FF
FF

FF
FF

F

��

V f1g

010

d?10

<<yyyyyyyyyyyyyyyyyy

�

d01?
##G

GG
GG

GG
GG

GG
GG

GG
G

�

V ⊗2f2g

101

�
d1?1

//

�

V ⊗3f3g

111

��

V f1g

001

wwwwwwww

d?01

;;wwwwwwww

d0?1

//

��

V ⊗2f2g

011

d?11

;;vvvvvvvvvvvvvvvvv

��
J&K0 d0

// J&K1 d1
// J&K2 d2

// J&K3

∑
j�j=0

(−1)�d�

��

∑
j�j=1

(−1)�d�

��

∑
j�j=2

(−1)�d�

��

= J&K �[−n−]fn+−2n−g−−−−−−−−−−−−−−!
(with (n+; n−) = (3; 0))

C(&): (3)

This diagram certainly looks threatening, but in fact, it’s quite harmless. Just
hold on tight for about a page! The chain groups JLKr are, as we have already
seen, direct sums of the vector spaces that appear in the vertices of the cube
along the columns above each one of the JLKr spaces. We do the same for the
arrows dr | we turn each edge � of the cube to map between the vector spaces
at its ends, and then we add up these maps along columns as shown above.
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The edges of the cube f0; 1gX can be labeled by sequences in f0; 1; ?gX with
just one ? (so the tail of such an edge is found by setting ?! 0 and the head
by setting ?! 1). The height j�j of an edge � is de�ned to be the height of its
tail, and hence if the maps on the edges are called d� (as in the diagram), then
the vertical collapse of the cube to a complex becomes dr :=

P
j�j=r(−1)�d� .

It remains to explain the signs (−1)� and to de�ne the per-edge maps d� . The
former is easy. To get the di�erential d to satisfy d � d = 0, it is enough that
all square faces of the cube would anti-commute. But it is easier to arrange the
d� ’s so that these faces would (positively) commute; so we do that and then
sprinkle signs to make the faces anti-commutative. One may verify that this
can be done by multiplying d� by (−1)� := (−1)

∑
i<j �i , where j is the location

of the ? in � . In diagram (3) we’ve indicated the edges � for which (−1)� = −1
with little circles at their tails. The reader is welcome to verify that there is an
odd number of such circles around each face of the cube shown.

It remains to �nd maps d� that make the cube commutative (when taken with
no signs) and that are of degree 0 so as not to undermine Theorem 1. The
space V� on each vertex � has as many tensor factors as there are cycles in
the smoothing S� . Thus we put these tensor factors in V� and cycles in S� in
bijective correspondence once and for all. Now for any edge � , the smoothing at
the tail of � di�ers from the smoothing at the head of � by just a little: either
two of the cycles merge into one (see say � = 0?0 above) or one of the cycles
splits in two (see say � = 1?1 above). So for any � , we set d� to be the identity
on the tensor factors corresponding to the cycles that don’t participate, and
then we complete the de�nition of � using two linear maps m : V ⊗ V ! V
and � : V ! V ⊗ V as follows:( �

−!
(
V ⊗ V m! V

�
m :

(
v+ ⊗ v− 7! v− v+ ⊗ v+ 7! v+

v− ⊗ v+ 7! v− v− ⊗ v− 7! 0
(4)( �

−!
(
V

�! V ⊗ V
�

� :

(
v+ 7! v+ ⊗ v− + v− ⊗ v+

v− 7! v− ⊗ v−
(5)

We note that because of the degree shifts in the de�nition of the V� ’s and
because we want the d� ’s to be of degree 0, the maps m and � must be of
degree −1. Also, as there is no canonical order on the cycles in S� (and hence on
the tensor factors of V� ), m and � must be commutative and co-commutative
respectively. These requirements force the equality m(v+ ⊗ v−) = m(v− ⊗ v+)
and force the values of m and � to be as shown above up to scalars.
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Remark 3.4 It is worthwhile to note, though not strictly necessary to the
understanding of this note, that the cube in diagram (3) is related to a certain
(1 + 1)-dimensional topological quantum �eld theory (TQFT). Indeed, given
any (1 + 1)-dimensional TQFT one may assign vector spaces to the vertices of
f0; 1gX and maps to the edges | on each vertex we have a union of cycles which
is a 1-manifold that gets mapped to a vector space via the TQFT, and on each
edge we can place the obvious 2-dimensional saddle-like cobordism between the
1-manifolds on its ends, and then get a map between vector spaces using the
TQFT. The cube in diagram (3) comes from this construction if one starts from
the TQFT corresponding to the Frobenius algebra de�ned by V , m, �, the
unit v+ and the co-unit � 2 V ? de�ned by �(v+) = 0, �(v−) = 1. See more
in [Kh1].

Exercise 3.5 Verify that the de�nitions given in this section agree with the
\executive summary" (Section 1).

3.3 A notational digression

For notational and computational reasons3 it is convenient to also label the
edges of L. Our convention is to reserve separate interval of integers for
each component, and then to label the edges within this component in an
ascending order (except for one jump down) | see Figure 3 in Section 4.
Given � 2 f0; 1gX , we label every cycle in the smoothing S� by the mini-
mal edge that appears in it, and then we label the tensor factor in V� ac-
cordingly. So for example (with L = & labeled as in Figure 3), the big and

small components of S011 = would be labeled 1 and 3 respectively, and

thus V011 would be V1 ⊗ V3f2g. The indices in the latter space have only
a notational meaning that allows us easier access to its tensor factors. Thus
V1⊗V3

�= V ⊗V , yet the standard basis elements of V1⊗V3 have nice standard
names: fv1

+v
3
+; v

1
+v

3
−; v

1
−v

3
+; v

1
−v

3
−g.

With this notation, we can make the cube of Equation (3) a little more explicit.
We denote by �ij the map which acts on a tensor product of labeled copies
of V as the identity on all factors except the one labeled Vmin(i;j) which gets
mapped by � of Equation (5) to Vi ⊗ Vj . Likewise mij denotes the natural
extension by identity maps of m : Vi ⊗ Vj ! Vmin(i;j) . All said, the cube in
diagram (3) becomes:

3You may skip this section if the previous section was clear enough and you don’t
intend to read the computational Section 4.
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� �12
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�
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�12
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!!C
CC

CC
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C

V1⊗V2f2g

110

�13

d11?

##F
FF

FF
FF

FF
FF

FF
FF

FF
FF

V1⊗V2

000

m12

d?00

>>}}}}}}}}}}}}}}}}}

m12

d0?0

//

m12

d00?

!!D
DD

DD
DD

DD
DD

DD
DD

V1f1g

010

�12

d?10

=={{{{{{{{{{{{{{{{{{

�
�13

d01?
""E

EE
EE

EE
EE

EE
EE

EE
E

V1⊗V2f2g

101

� �23

d1?1

//
V1⊗V2⊗V3f3g

111

V1f1g

001

yyyyyyy

�12

d?01

<<yyyyyyy

�13

d0?1

//
V1⊗V3f2g

011

�12

d?11

::vvvvvvvvvvvvvvvvv

(6)

3.4 The main theorem

Claim 3.6 The n-dimensional cube as in Equation (3) (just as well, (6)) is
commutative (for any L, and provided all maps are taken with no signs) and
hence the sequences JLK and C(L) are chain complexes.

Proof A routine veri�cation.

Let Hr(L) denote the rth cohomology of the complex C(L). It is a graded
vector space depending on the link projection L. Let Kh(L) denote the graded
Poincar�e polynomial of the complex C(L) in the variable t; i.e., let

Kh(L) :=
X
r

tr qdimHr(L):

(When we wish to emphasize the ground �eld F, we write KhF(L).)

Theorem 2 (Khovanov [Kh1]) The graded dimensions of the homology groups
Hr(L) are link invariants, and hence Kh(L), a polynomial in the variables t
and q , is a link invariant that specializes to the unnormalized Jones polynomial
at t = −1.

Algebraic & Geometric Topology, Volume 2 (2002)



346 Dror Bar-Natan

3.5 Proof of the main theorem

To prove Theorem 2, we need to study the behavior of JLK under the three
Reidemeister moves4 (R1): $ , (R2): $ and (R3):

$ . In the case of the Kau�man bracket/Jones polynomial,

this is done by reducing the Kau�man bracket of the \complicated side" of each
of these moves using the rules h0i = h1i− qhHi and h©Li = (q+ q−1)hLi and
then by canceling terms until the \easy side" is reached. (Example:

〈 �
=〈 �

− q
〈 �

= (q+ q−1)
〈 �

− q
〈 �

= q−1
〈 �

). We do nearly
the same in the case of the Khovanov bracket. We �rst need to introduce a
\cancellation principle" for chain complexes:

Lemma 3.7 Let C be a chain complex and let C0 � C be a sub chain complex.

� If C0 is acyclic (has no homology), then it can be \canceled". That is, in
that case the homology H(C) of C is equal to the homology H(C=C0) of
C=C0 .

� Likewise, if C=C0 is acyclic then H(C) = H(C0).

Proof Both assertions follow easily from the long exact sequence

: : : −! Hr(C0) −! Hr(C) −! Hr(C=C0) −! Hr+1(C0) −! : : :

associated with the short exact sequence 0 −! C0 −! C −! C=C0 −! 0.

3.5.1 Invariance under (R1).

In computing H( ) we encounter the complex

C =
q y

=
�q y m−!

q y
f1g
�
: (7)

(Each of the terms in this complex is itself a complex, coming from a whole
cube of spaces and maps. We implicitly \flatten" such complexes of complexes
to single complexes as in Section 3.2 without further comment). The complex
in Equation (7) has a natural subcomplex

C0 =
�q y

v+

m−!
q y

f1g
�

4We leave it to the reader to con�rm that no further variants of these moves need
to be considered. For example, we check only the \right twist" version of (R1). The
left twist version follows from it and from (R2).
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We need to pause to explain the notation. Recall that JLK is a direct sum over
the smoothings of L of tensor powers of V , with one tensor factor corresponding
to each cycle in any given smoothing. Such tensor powers can be viewed as
spaces of linear combinations of marked smoothings of L, where each cycle
in any smoothing of L is marked by an element of V . For L = all
smoothings have one special cycle, the one appearing within the icon .
The subscript v+ in

q y
v+

means \the subspace of
q y

in which the
special cycle is always marked v+".

It is easy to check that C0 is indeed a subcomplex of C , and as v+ is a unit for
the product m (see (4)), C0 is acyclic. Thus by Lemma 3.7 we are reduced to
studying the quotient complex

C=C0 =
�q y

=v+=0
! 0

�
where the subscript \=v+ = 0" means \mod out (within the tensor factor corre-
sponding to the special cycle) by v+ = 0". But V=(v+ = 0) is one dimensional
and generated by v− , and hence apart from a shift in degrees,

q y
=v+=0

is isomorphic to
q y

. The reader may verify that this shift precisely gets
canceled by the shifts [−n−]fn+−2n−g in the de�nition of C(L) from JLK.

3.5.2 Invariance under (R2), �rst proof.

In computing H( ) we encounter the complex C of Figure 1. This com-
plex has a subcomplex C0 (see Figure 1), which is clearly acyclic. The quotient
complex C=C0 (see Figure 1) has a subcomplex C00 (see Figure 1), and the quo-
tient (C=C0)=C00 (see Figure 1) is acyclic because modulo v+ = 0, the map
� is an isomorphism. Hence using both parts of Lemma 3.7 we �nd that
H(C) = H(C=C0) = H(C00). But up to shifts in degree and height, C00 is justq y

. Again, these shifts get canceled by the shifts [−n−]fn+ − 2n−g in
the de�nition of C(L) from JLK.

3.5.3 Invariance under (R3), unsuccessful attempt.

For the Kau�man bracket, invariance under (R3) follows from invariance under
(R2). Indeed, assuming relations of the form h©Li = dhLi and h0i = Ah1i+
BhHi the move (R3) follows from (R2) without imposing any constraints on
A, B and d (beyond those that are necessary for (R2) to hold):� �

= A

� �
+B

� �
(R2)
= A

� �
+B

� �
=
� �
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q y
f1g m //

C
(start)

q y
f2g

q y
�

OO

//
q y

f1g

OO

�

q y
v+
f1g m //

C0
(acyclic)

q y
f2g

0

OO

// 0

OO

q y
=v+=0

f1g //

C=C0
(middle)

0

q y
�

OO

//
q y

f1g

OO

�

0 //

C00
(�nish)

0

0

OO

//
q y

f1g

OO

Figure 1: A picture-only proof of invariance under
(R2). The (largely unnecessary) words are in the
main text.

q y
=v+=0

f1g //

(C=C0)=C00
(acyclic)

0

q y
�

OO

// 0

OO

The case of the Khovanov bracket is unfortunately not as lucky. Invariance
under (R2) does play a key role, but more is needed. Let us see how it works.

If we fully smooth the two sides of (R3), we get the following two cubes of
complexes (to save space we suppress the Khovanov bracket notation J�K and
the degree shifts f�g):

1

2 3

m //

OO OO�
@@
�����

//

OO

AA
����

OO

//

//

@@
�����

AA
����

1

32
//

OO OO@@
�����

� //

OO

m
AA
����

OO

//

//

@@
�����

AA
����

(8)

The bottom layers of these two cubes correspond to the partial smoothings

and and are therefore isomorphic. The top layers correspond to

and and it is tempting to use (R2) on both to reduce to
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0 //
OO 0OO

0

=={{{{{{{{ //
OO

=={{{{{{

OO

//

//

AA
����

AA
����

//

OO
0OO

0

=={{{{{{ //
OO 0

=={{{{{{{{
OO

//

//

AA
����

AA
����

But this fails for two reasons. These cubes aren’t isomorphic (their bottom
layers are isomorphic and their top layers are isomorphic, but the maps between
them are di�erent), and the (R2)-style reduction used to get here is invalid, for
in the presence of the bottom layers what would be the analog of C00 simply
isn’t a subcomplex. Fortunately, there is a somewhat more complicated proof
of invariance under (R2) that does lead to a correct argument for invariance
under (R3).

3.5.4 Invariance under (R2), second proof.

We start in the same way as in the �rst proof and reduce to the complex C=C0
which is displayed once again in Figure 2 (except this time we suppress the J�K
brackets and the degree shift f�g symbols). In C=C0 the vertical arrow � is a
bijection so we can invert it and compose with the horizontal arrow d?0 to get
a map � : =v+=0 ! . We now let C000 be the subcomplex of C=C0
containing all � 2 and all pairs of the form (�; ��) 2 =v+=0 �

(see Figure 2). The map � is bijective in C000 and hence C000 is acyclic
and thus it is enough to study (C=C0)=C000 .

What is (C=C0)=C000? Well, the freedom in the choice of � kills the lower left
corner of C=C0 , and the freedom in the choice of � identi�es everything in
the upper left corner with some things in the lower right corner (this is the
relation � = �� appearing in Figure 2; in more detail it is (�; 0) = (0; ��)
in =v+=0 � ). What remains is just the arbitrary choice of γ in
the lower right corner and hence the complex (C=C0)=C000 is isomorphic to the
complex C00 of Figure 1 and this, as there, is what we wanted to prove.
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=v+=0
// 0

�

OO

d?0 //

OO

C=C0

�

� //

�=d?0�−1

))SSS
SSS

SSS
SSS

SS
0

�

�

OO

d?0 // ��

OO

C000

Figure 2: A second proof of in-
variance under (R2).

� //

�=��

))SSS
SSS

SSS
SSS

SS
0

0

OO

// γ

OO

(C=C0)=C000

3.5.5 Invariance under (R3).

We can now turn back to the proof of invariance under (R3). Repeat the
de�nitions of the acyclic subcomplexes C0 and C000 as above but within the top
layers of each of the cubes in Equation (8), and then mod out each cube by
its C0 and C000 (without changing the homology, by Lemma 3.7). The resulting
cubes are

�1 2 =v+=0
//

OO

d1;?01

�1=�1�1

&&LL
LL

L

0OO

0

::uuuuuuuu //
OO γ1 2

=={{{{{{{

OO

d1;?10

//

//

::uuuuuuuuu

=={{{{{{

γ2 2 //

OO

d2;?01

0OO

0

=={{{{{{{{ //
OO �2 2 =v+=0

::uuuuuuuuu

OO

d2;?10

�2�2=�2

ffLLLLLL

//

//

=={{{{{{{

::uuuuuuuuu

Now these two complexes really are isomorphic, via the map � that keeps the
bottom layers in place and \transposes" the top layers by mapping the pair
(�1; γ1) to the pair (�2; γ2). The fact that � is an isomorphism on spaces level
is obvious. To see that � is an isomorphism of complexes we need to know that
it commutes with the edge maps, and only the vertical edges require a proof.
We leave the (easy) proofs that �1 � d1;?01 = d2;?01 and d1;?10 = �2 � d2;?10 as
exercises for our readers.
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3.6 Some phenomenological conjectures

The following conjectures were formulated in parts by the author and by M. Kho-
vanov and S. Garoufalidis based on computations using the program described
in the next section:

Conjecture 1 For any prime knot L there exists an even integer s = s(L)
and a polynomial Kh0(L) in t�1 and q�1 with only non-negative coe�cients so
that

KhQ(L) = qs−1
(
1 + q2 + (1 + tq4)Kh0(L)

�
(9)

KhF2(L) = qs−1(1 + q2)
(
1 + (1 + tq2)Kh0(L)

�
: (10)

(F2 denotes the �eld of two elements.)

Conjecture 2 For prime alternating L the integer s(L) is equal to the signa-
ture of L and the polynomial Kh0(L) contains only powers of tq2 .

We have computed KhQ(L) for all prime knots with up to 11 crossings and
KhF2(L) for all knots with up to 7 crossings and the results are in complete
agreement with these two conjectures5.

We note that these conjectures imply that for alternating knots Kh0 (and hence
KhQ and KhF2 ) are determined by the Jones polynomial. As we shall see in
the next section, this is not true for non-alternating knots.

m
r

-7 -6 -5 -4 -3 -2 -1 0 1 2 3

3 1
1 2
-1 3 1
-3 (4+1) 2
-5 5 (3+1)
-7 6 4
-9 4 5
-11 4 6
-13 2 4
-15 1 4
-17 2
-19 1

As a graphical illustration of
Conjectures 1 and 2 the ta-
ble on the right contains the
dimensions of the homology
groups Hrm(10100) (the co-
e�cients of trqm in the in-
variant Kh(10100)) for all r
and m in the relevant range.
Conjecture 1 is the fact that
if we subtract 1 from two of
the entries in the column r =
0 (a \pawn move"), the remaining entries are arranged in \knight move" pairs

5Except that for 11 crossing prime alternating knots only the absolute values of �
and s were compared.
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m
r

-7 -6 -5 -4 -3 -2 -1 0 1 2 3

3 1/1
1 0/1 0/5 2/10 0/4
-1 0/2 0/13 0/36 0/59 3/60 1/30 0/6
-3 0/1 0/10 0/45 0/120 0/220 0/304 0/318 5/237 2/110 0/30 0/4
-5 0/8 0/70 0/270 0/600 0/862 0/847 5/564 4/237 0/60 0/10 0/1
-7 0/28 0/210 0/675 0/1200 0/1288 6/847 4/318 0/59 0/5
-9 0/56 0/350 0/900 0/1200 4/862 5/304 0/36 0/1
-11 0/70 0/350 0/675 4/600 6/220 0/13
-13 0/56 0/210 2/270 4/120 0/2
-15 0/28 1/70 4/45
-17 0/8 2/10
-19 1/1

Table 1: dimHrm(10100)= dim Crm(10100) for all values of r and m for which
Crm(10100) 6= ; .

of the form
a

a
with a > 0. Conjecture 2 is the fact that furthermore

all nontrivial entries in the table occur on just two diagonals that cross the
column r = 0 at m = � � 1 where � = −4 is the signature of 10100 . Thus af-
ter the �x at the r = 0 column, the two nontrivial diagonals are just shifts
of each other and are thus determined by a single list of entries (1 2 4 4
6 5 4 3 2 1, in our case). This list of entries is the list of coe�cients of
Kh0(10100) = u−7 + 2u−6 + 4u−5 + 4u−4 + 6u−3 + 5u−2 + 4u−1 + 3 + 2u + u2

(with u = tq4 ).

As an aside we note that typically dimHrm(L) is much smaller than dim Crm(L),
as illustrated in Table 1. We don’t know why this is so.

A further phenomenological conjecture is presented in [Ga]. This paper’s web
page [1] will follow further phenomenological developments as they will be an-
nounced.

4 And now in computer talk

In computer talk (Mathematica [Wo] dialect) we represent every link projection
by a list of edges numbered 1; : : : ; n with increasing numbers as we go around
each component and by a list crossings presented as symbols Xijkl where i; : : : ; l
are the edges around that crossing, starting from the incoming lower thread and
proceeding counterclockwise (see Figure 3).
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i

l
1 2

3

4 5

6

1

4

7
3

6

1

4

9
1112

3

k

j

2

5

2

3 5

6

8

10

12

Figure 3: The crossing Xijkl , the right handed trefoil knot X1524X5362X3146 and the
Miller Institute knot (aka �62 ) X3;10;4;11X9;4;10;5X5;3;6;2X11;7;12;6X1;9;2;8X7;1;8;12 (we’ve
used a smaller font and underlining to separate the edge labeling from the vertex
labeling).

4.1 A demo run

We �rst start up Mathematica [Wo] and load our categori�cation package,
Categorification‘ (available from [1]):

Mathematica 4.1 for Linux
Copyright 1988-2000 Wolfram Research, Inc.
-- Motif graphics initialized --

In[1]:= << Categorification‘

Loading Categorification‘...

Next, we type in the trefoil knot:

In[2]:= L = Link[X[1,5,2,4], X[5,3,6,2], X[3,1,4,6]];

Let us now view the edge 0?1 of the cube of smoothings of the trefoil knot (as
seen in Section 3.3, this edge begins with a single cycle labeled 1 and ends with
two cycles labeled 1 and 3):

In[3]:= fS[L, "001"], S[L, "0*1"], S[L, "011"]g

Out[3]= {c[1], c[1] -> c[1]*c[3], c[1]*c[3]}

Next, here’s a basis of the space V011 (again, compare with Section 3.3):
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In[4]:= V[L, "011"]

Out[4]= {vm[1]*vm[3], vm[3]*vp[1], vm[1]*vp[3], vp[1]*vp[3]}

And here’s a basis of the degree 2 elements of V111 (remember the shift in
degrees in the de�nition of V� !):

In[5]:= V[L, "111", 2]

Out[5]= {vm[2]*vm[3]*vp[1], vm[1]*vm[3]*vp[2], vm[1]*vm[2]*vp[3]}

The per-edge map d� is a list of simple replacement rules, sometimes replacing
the tensor product of two basis vectors by a single basis vector, as in the case
of d00? = m12 , and sometimes the opposite, as in the case of d0?1 = �13 :

In[6]:= d[L, "00*"]

Out[6]= {vp[1]*vp[2] -> vp[1], vm[2]*vp[1] -> vm[1], vm[1]*vp[2] -> vm[1],

vm[1]*vm[2] -> 0}

In[7]:= d[L, "0*1"]

Out[7]= {vp[1] -> vm[3]*vp[1] + vm[1]*vp[3], vm[1] -> vm[1]*vm[3]}

Here’s a simple example. Let us compute d1?1 applied to V101 :

In[8]:= V[L, "101"] /. d[L, "1*1"]

Out[8]= {vm[1]*vm[2]*vm[3], vm[2]*vm[3]*vp[1],

vm[1]*(vm[3]*vp[2] + vm[2]*vp[3]), vp[1]*(vm[3]*vp[2] + vm[2]*vp[3])}

And now a more complicated example. First, we compute the degree 0 part of
J&K1 . Then we apply d1 to it, and then d2 to the result. The end result better
be a list of zeros, or else we are in trouble! Notice that each basis vector in
J&K1;2 is tagged with a symbol of the form v[...] that indicates the component
of J&K1;2 to which it belongs.

In[9]:= chains = KhBracket[L, 1, 0]

Out[9]= {v[0, 0, 1]*vm[1], v[0, 1, 0]*vm[1], v[1, 0, 0]*vm[1]}
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In[10]:= boundaries = d[L][chains]

Out[10]= {v[1, 0, 1]*vm[1]*vm[2] + v[0, 1, 1]*vm[1]*vm[3],

v[1, 1, 0]*vm[1]*vm[2] - v[0, 1, 1]*vm[1]*vm[3],

-(v[1, 0, 1]*vm[1]*vm[2]) - v[1, 1, 0]*vm[1]*vm[2]}

In[11]:= d[L][boundaries]

Out[11]= {0, 0, 0}

Because of degree shifts, the degree 3 part of C1(&) is equal to the degree 0
part of J&K1 :

In[12]:= CC[L, 1, 3] == KhBracket[L, 1, 0]

Out[12]= True

It seems that H2(&) is one dimensional, and that the non trivial class in H2(&)
lies in degree 5 (our program defaults to computations over the rational num-
bers if no other modulus is speci�ed):

In[13]:= qBetti[L, 2]

Out[13]= q^5

Here’s Khovanov’s invariant of the right handed trefoil along if its evaluation
at t = −1, the unnormalized Jones polynomial Ĵ(&):

In[14]:= kh1 = Kh[L]

Out[14]= q + q^3 + q^5*t^2 + q^9*t^3

In[15]:= kh1 /. t -> -1

Out[15]= q + q^3 + q^5 - q^9

We can also compute KhF2(&) and use it to compute Ĵ(&) again (we leave it
to the reader to verify Conjecture 1 in the case of L = &):

In[16]:= kh2 = Kh[L, Modulus -> 2]
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Out[16]= q + q^3 + q^5*t^2 + q^7*t^2 + q^7*t^3 + q^9*t^3

In[17]:= kh2 /. t -> -1

Out[17]= q + q^3 + q^5 - q^9

1

2

4

5

8 9

20

36

7

1011
12

13

14

15
17

18

19

16

The package Links‘ (available from [1]) contains the
de�nitions of many interesting knot and link projec-
tions including Millett’s 10 crossing hard-to-simplify
unknot (shown on the right) and the knots 51 and
10132 (knot numbering as in Rolfsen’s [Ro]):

In[18]:= << Links‘

Loading Links‘...

In[19]:= MillettUnknot

Out[19]= Link[X[1, 10, 2, 11], X[9, 2, 10, 3], X[3, 7, 4, 6], X[15, 5, 16, 4],

X[5, 17, 6, 16], X[7, 14, 8, 15], X[8, 18, 9, 17],

X[11, 18, 12, 19], X[19, 12, 20, 13], X[13, 20, 14, 1]]

In[20]:= Kh[MillettUnknot]

Out[20]= q^(-1) + q

In[21]:= kh3 = Kh[Knot[5, 1]]

Out[21]= q^(-5) + q^(-3) + 1/(q^15*t^5) + 1/(q^11*t^4) + 1/(q^11*t^3) +

1/(q^7*t^2)

In[22]:= kh4 = Kh[Knot[10, 132]]

Out[22]= q^(-3) + q^(-1) + 1/(q^15*t^7) + 1/(q^11*t^6) + 1/(q^11*t^5) +

1/(q^9*t^4) + 1/(q^7*t^4) + 1/(q^9*t^3) + 1/(q^5*t^3) +

2/(q^5*t^2) + 1/(q*t)

In[23]:= (kh3 /. t -> -1) == (kh4 /. t -> -1)

Out[23]= True
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These are excellent news! We have just learned that our program is not confused
by complicated mess, and even better, we have just learned that Khovanov’s
invariant is strictly stronger than the Jones polynomial, for J(51) = J(10132)
whereas Kh(51) 6= Kh(10132).

Here are two further pieces of good news:

In[24]:= diff1 = Together[Kh[Knot[9, 42]] - Kh[Mirror[Knot[9, 42]]]]

Out[24]= (1 + q^4*t - t^2 + q^4*t^2 - q^4*t^3 + q^6*t^3 + q^8*t^3 - q^4*t^4 +

q^10*t^4 - q^6*t^5 - q^8*t^5 + q^10*t^5 - q^10*t^6 + q^14*t^6 -

q^10*t^7 - q^14*t^8)/(q^7*t^4)

In[25]:= diff2 = Expand[q^9*t^5*(Kh[Knot[10, 125]]-Kh[Mirror[Knot[10, 125]]])]

Out[25]= 1 + q^4*t - t^2 + q^4*t^2 - q^4*t^3 + q^6*t^3 + q^8*t^3 - q^4*t^4 +

q^10*t^4 - q^6*t^5 - 2*q^8*t^5 + 2*q^10*t^5 + q^12*t^5 - q^8*t^6 +

q^14*t^6 - q^10*t^7 - q^12*t^7 + q^14*t^7 - q^14*t^8 + q^18*t^8 -

q^14*t^9 - q^18*t^10

In[26]:= fdiff1, diff2g /. t -> -1

Out[26]= {0, 0}

Thus we see that Kh detects the facts that 942 6= 942 and 10125 6= 10125 whereas
the Jones polynomial doesn’t detect that. See also Section 4.5.

4.2 The program

The program Categorification.m and the data �les Data.m and Links.m
demonstrated in this article are available at

http://www.maths.warwick.ac.uk/agt/ftp/aux/agt-2-16/

(with a link from the home page of this paper) and also from the arXiv at at [1].
A complete listing of the package Categorification.m takes up less than 70
lines of code, demonstrating that categori�cation must be quite simple.
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4.3 Kh0(L) for prime knots with up to 10 crossings

Conjecture 1 on page 351 introduces an integer s = s(L) and a polynomial
Kh0(L). By direct computation using our program we veri�ed that these quan-
tities are determined by KhQ(L) for all knots with up to 11 crossings. These
quantities easily determine KhQ(L) (and also KhF2(L), at least up to knots
with 7 crossings), as in the statement of Conjecture 1.

There are many fewer terms in Kh0(L) as there are in KhQ(L) or in KhF2(L) and
thus with the rain forests in our minds, we’ve tabulated s and Kh0(L) rather
than KhQ(L) and/or KhF2(L). To save further space, we’ve underlined negative
numbers (1 := −1), used the notation arm to denote the monomial atrqm and
suppressed all \+" signs. Thus Kh0(77) = 1

q6t3
+ 2
q4t2

+ 1
q2t

+2+2q2t+q4t2 +q6t3

is printed as 13
622

411
220

021
212

413
6 .

Staring at the tables below it is di�cult not to notice that s(L) is often equal to
the signature � = �(L) of L, and that most monomials in most Kh0(L)0s are of
the form trq2r for some r . We’ve marked the exceptions to the �rst observation
by the flag | and the knots where exceptions to the second observation occur
by the flag ♠. All exceptions occur at non-alternating knots. (And for your
convenience, these are marked by the flag }).

Acknowledgement and Warning. The combinatorial data on which I based
the computations was provided to me by A. Stoimenow (see [St]), who himself
borrowed it from J. Hoste and M. Thistlethwaite [HT], and was translated to
our format by a program written by D. Thurston. The knot pictures below were
generated using R. Scharein’s program KnotPlot [Sc]. The assembly of all this
information involved some further programming and manual work. I hope that
no errors crept through, but until everything is independently veri�ed, I cannot
be sure of that. I feel that perhaps other than orientation issues (some knots
may have been swapped with the mirrors) the data below is reliable. Finally,
note that we number knots as in Rolfsen’s [Ro], except that we have removed
10162 which is equal to 10161 (this is the famed \Perko pair"). Hence Rolfsen’s
10163;::: ;166 are ours 10162;::: ;165 .

All data shown here is available in computer readable format at [1, the �le
Data.m].
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L
nk; �; s; flags
Kh0(L)

L
nk; �; s; flags
Kh0(L)

31; 2; 2
13

6

41; 0; 0
12

411
2

51; 4; 4
15

1013
6

52; 2; 2
15

1013
612

4

61; 0; 0
14

812
411

211
2

62; 2; 2
14

813
612

411
211

2

63; 0; 0
13

612
411

210
011

212
4

71; 6; 6
17

1415
1013

6

72; 2; 2
17

1415
1014

813
612

4

73; 4; 4
11

212
413

624
816

12

74; 2; 2
21

212
413

624
816

12

75; 4; 4
17

1416
1225

1014
823

612
4

76; 2; 2
15

1014
823

622
411

210
011

2

77; 0; 0
13

622
411

220
021

212
413

6

81; 0; 0
16

1214
813

612
411

211
2

82; 4; 4
16

1215
1014

823
612

411
211

2

83; 0; 0
14

822
411

210
021

213
6

84; 2; 2
14

813
622

411
210

021
213

6

85; 4; 4
12

420
011

222
423

614
815

10

86; 2; 2
16

1215
1024

823
622

421
211

2

87; 2; 2
13

612
411

220
021

222
413

614
8

88; 0; 0
13

612
421

220
021

222
413

614
8

89; 0; 0
14

813
622

421
220

021
212

413
6

810; 2; 2
13

612
421

220
021

232
413

614
8

811; 2; 2
16

1215
1024

833
622

421
210

011
2

812; 0; 0
14

813
632

421
220

031
212

413
6
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L
nk; �; s; flags
Kh0(L)

L
nk; �; s; flags
Kh0(L)

813; 0; 0
13

622
421

220
031

222
413

614
8

814; 2; 2
16

1225
1024

833
632

421
210

011
2

815; 4; 4
18

1627
1426

1245
1024

833
622

4

816; 2; 2
15

1024
833

632
431

220
021

212
4

817; 0; 0
14

823
632

431
230

031
222

413
6

818; 0; 0
14

833
632

441
240

031
232

413
6

819; 6; 6; }♠
12

414
614

8

820; 0; 0; }
15

1013
612

410
0

821; 2; 2; }
16

1215
1014

823
612

411
2

91; 8; 8
19

1817
1415

1013
6

92; 2; 2
19

1817
1416

1215
1014

813
612

4

93; 6; 6
11

212
413

624
815

1026
1218

16

94; 4; 4
19

1827
1416

1225
1024

813
612

4

95; 2; 2
21

212
423

624
815

1026
1218

16

96; 6; 6
19

1818
1627

1426
1235

1014
823

612
4

97; 4; 4
19

1818
1627

1426
1235

1024
823

612
4

98; 2; 2
15

1014
823

632
421

220
021

212
413

6

99; 6; 6
19

1818
1637

1426
1235

1024
823

612
4

910; 4; 4
21

222
433

634
825

1036
1218

16

911; 4; 4
12

411
210

031
232

423
634

815
1016

12

912; 2; 2
17

1416
1225

1034
833

632
421

210
011

2

913; 4; 4
21

222
433

644
825

1036
1217

1418
16

914; 0; 0
13

622
421

230
031

232
423

614
815

10

915; 2; 2
12

411
220

041
232

433
634

815
1016

12

916; 6; 6
11

232
423

644
835

1036
1227

1418
16

917; 2; 2
15

1024
823

642
431

220
031

212
413

6

918; 4; 4
19

1818
1637

1436
1245

1034
833

622
4

919; 0; 0
15

1024
823

642
431

230
031

212
413

6

920; 4; 4
17

1426
1235

1034
843

632
421

210
011

2
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L
nk; �; s; flags
Kh0(L)

L
nk; �; s; flags
Kh0(L)

921; 2; 2
12

421
220

041
242

433
634

815
1016

12

922; 2; 2
14

813
632

431
230

041
232

423
614

8

923; 4; 4
19

1828
1637

1436
1255

1034
833

622
4

924; 0; 0
15

1014
833

642
431

240
031

222
413

6

925; 2; 2
17

1426
1235

1044
843

642
431

210
011

2

926; 2; 2
13

622
421

240
041

242
433

624
815

10

927; 0; 0
15

1024
833

642
441

240
031

222
413

6

928; 2; 2
16

1225
1034

853
642

441
230

021
212

4

929; 2; 2
15

1024
843

642
441

240
031

222
413

6

930; 0; 0
15

1024
833

652
441

240
041

222
413

6

931; 2; 2
16

1235
1034

853
652

441
230

021
212

4

932; 2; 2
13

632
431

250
051

252
443

624
815

10

933; 0; 0
15

1024
843

652
451

250
041

232
413

6

934; 0; 0
15

1034
843

662
461

250
051

232
413

6

935; 2; 2
19

1837
1416

1225
1034

813
622

4

936; 4; 4
12

411
220

031
232

433
634

815
1016

12

937; 0; 0
15

1024
823

652
431

230
041

212
413

6

938; 4; 4
19

1828
1647

1446
1265

1044
843

632
4

939; 2; 2
12

421
230

051
252

443
644

825
1016

12

940; 2; 2
16

1235
1054

863
672

461
240

041
212

4

941; 0; 0
16

1225
1034

843
642

441
230

021
212

4

942; 2; 0; }|♠
14

612
211

011
4

943; 4; 4; }
12

410
011

212
413

614
8

944; 0; 0; }
15

1014
813

622
411

210
011

2

945; 2; 2; }
17

1416
1225

1024
823

622
411

2

946; 0; 0; }
16

1214
813

611
2

947; 2; 2; }
13

622
411

230
021

222
423

6

948; 2; 2; }
12

421
210

031
232

413
624

8
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L
nk; �; s; flags
Kh0(L)

L
nk; �; s; flags
Kh0(L)

949; 4; 4; }
21

222
423

634
815

1026
12

101; 0; 0
18

1616
1215

1014
813

612
411

211
2

102; 6; 6
18

1617
1416

1225
1014

823
612

411
211

2

103; 0; 0
16

1224
813

622
421

210
021

213
6

104; 2; 2
16

1224
813

622
421

210
021

212
413

6

105; 4; 4
13

612
411

220
021

232
423

624
815

1016
12

106; 4; 4
18

1617
1426

1235
1034

833
622

421
211

2

107; 2; 2
18

1617
1426

1235
1034

843
632

421
210

011
2

108; 4; 4
16

1215
1024

823
622

421
210

021
213

6

109; 2; 2
14

813
622

421
230

031
232

423
614

815
10

1010; 0; 0
13

622
421

230
041

232
433

624
815

1016
12

1011; 2; 2
16

1215
1034

833
642

431
220

031
213

6

1012; 2; 2
13

612
421

230
041

242
433

634
815

1016
12

1013; 0; 0
16

1215
1034

833
652

441
230

041
212

413
6

1014; 4; 4
18

1627
1436

1255
1044

853
642

421
210

011
2

1015; 2; 2
15

1014
823

632
431

230
031

232
413

614
8

1016; 2; 2
14

813
632

421
240

041
232

433
614

815
10

1017; 0; 0
15

1014
823

632
431

230
031

222
413

614
8

1018; 2; 2
16

1225
1034

843
652

441
230

031
212

413
6

1019; 2; 2
15

1024
833

642
441

230
041

222
413

614
8

1020; 2; 2
18

1617
1426

1225
1034

833
622

421
211

2

1021; 4; 4
18

1617
1426

1245
1034

843
632

421
210

011
2

1022; 0; 0
14

813
632

431
240

041
232

433
614

815
10

1023; 2; 2
13

622
431

240
051

252
443

634
815

1016
12

1024; 2; 2
18

1617
1436

1245
1044

853
642

431
210

011
2

1025; 4; 4
18

1627
1446

1255
1054

863
642

431
210

011
2

1026; 0; 0
14

823
642

441
250

051
242

433
614

815
10

Algebraic & Geometric Topology, Volume 2 (2002)



On Khovanov’s categori�cation of the Jones polynomial 363

L
nk; �; s; flags
Kh0(L)

L
nk; �; s; flags
Kh0(L)

1027; 2; 2
17

1426
1245

1054
863

662
451

230
021

212
4

1028; 0; 0
13

622
431

230
051

242
433

634
815

1016
12

1029; 2; 2
16

1225
1044

843
662

451
230

041
212

413
6

1030; 2; 2
18

1627
1436

1255
1054

863
652

431
220

011
2

1031; 0; 0
15

1024
833

642
451

240
041

232
413

614
8

1032; 0; 0
16

1225
1034

853
662

451
250

041
222

413
6

1033; 0; 0
15

1024
833

652
451

250
051

232
423

614
8

1034; 0; 0
13

612
421

220
031

232
423

624
815

1016
12

1035; 0; 0
14

813
632

431
240

041
232

433
614

815
10

1036; 2; 2
18

1627
1426

1245
1044

843
642

421
210

011
2

1037; 0; 0
15

1014
833

642
441

240
041

232
413

614
8

1038; 2; 2
18

1627
1436

1245
1054

853
642

431
210

011
2

1039; 4; 4
18

1627
1436

1255
1054

853
642

431
210

011
2

1040; 2; 2
13

622
441

250
061

272
453

644
825

1016
12

1041; 2; 2
16

1225
1044

853
662

461
240

041
222

413
6

1042; 0; 0
15

1034
843

662
471

260
061

242
423

614
8

1043; 0; 0
15

1024
843

652
461

260
051

242
423

614
8

1044; 2; 2
16

1235
1044

863
672

461
250

041
222

413
6

1045; 0; 0
15

1034
843

672
471

270
071

242
433

614
8

1046; 6; 6
12

420
011

232
423

624
825

1016
1217

14

1047; 4; 4
13

612
421

220
031

242
423

634
815

1016
12

1048; 0; 0
15

1014
833

632
441

240
031

232
413

614
8

1049; 6; 6
110

2029
1838

1657
1446

1265
1034

833
622

4

1050; 4; 4
12

411
230

031
252

443
644

835
1016

1217
14

1051; 2; 2
13

622
441

240
061

262
443

644
815

1016
12

1052; 2; 2
15

1014
833

642
441

250
041

242
423

614
8

1053; 4; 4
110

2029
1838

1667
1456

1275
1054

843
632

4

1054; 2; 2
15

1014
833

632
431

240
031

232
413

614
8
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L
nk; �; s; flags
Kh0(L)

L
nk; �; s; flags
Kh0(L)

1055; 4; 4
110

2029
1838

1657
1446

1265
1044

833
622

4

1056; 4; 4
12

411
230

041
262

453
654

845
1026

1217
14

1057; 2; 2
13

622
441

250
071

272
453

654
825

1016
12

1058; 0; 0
16

1225
1044

843
662

451
240

041
212

413
6

1059; 2; 2
14

823
642

451
260

061
262

443
624

815
10

1060; 0; 0
16

1225
1044

863
672

471
260

051
232

413
6

1061; 4; 4
14

832
411

220
031

222
423

614
815

10

1062; 4; 4
13

612
421

230
031

242
433

634
815

1016
12

1063; 4; 4
110

2029
1828

1657
1446

1255
1044

833
622

4

1064; 2; 2
14

813
632

431
240

041
242

433
614

815
10

1065; 2; 2
13

622
431

240
061

252
443

644
815

1016
12

1066; 6; 6
110

2039
1848

1667
1466

1275
1044

843
622

4

1067; 2; 2
18

1627
1436

1255
1054

853
652

431
210

011
2

1068; 0; 0
17

1416
1235

1044
843

652
441

230
021

212
4

1069; 2; 2
13

632
441

260
081

272
463

654
825

1016
12

1070; 2; 2
14

813
642

441
250

061
252

443
624

815
10

1071; 0; 0
15

1024
843

662
461

260
061

242
423

614
8

1072; 4; 4
12

411
230

051
262

463
664

845
1036

1217
14

1073; 2; 2
17

1426
1245

1064
873

672
461

240
031

212
4

1074; 2; 2
18

1617
1436

1255
1044

863
652

431
220

011
2

1075; 0; 0
14

833
642

461
270

061
262

443
624

815
10

1076; 4; 4
12

430
031

252
453

644
845

1026
1217

14

1077; 2; 2
13

612
431

240
051

262
443

644
825

1016
12

1078; 4; 4
18

1627
1436

1265
1054

863
652

431
220

011
2

1079; 0; 0
15

1014
843

642
451

250
041

242
413

614
8

1080; 6; 6
110

2029
1848

1667
1456

1275
1044

843
622

4

1081; 0; 0
15

1024
853

662
471

270
061

252
423

614
8

1082; 2; 2
16

1225
1034

853
652

451
240

031
222

413
6

1083; 2; 2
13

632
441

260
071

272
463

644
825

1016
12

1084; 2; 2
13

622
441

260
071

282
463

654
835

1016
12
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L
nk; �; s; flags
Kh0(L)

L
nk; �; s; flags
Kh0(L)

1085; 4; 4
17

1426
1235

1044
853

642
441

220
021

212
4

1086; 0; 0
14

833
652

461
270

071
262

443
624

815
10

1087; 0; 0
14

823
642

461
260

071
262

443
634

815
10

1088; 0; 0
15

1034
853

682
481

280
081

252
433

614
8

1089; 2; 2
17

1426
1255

1074
883

692
471

250
041

212
4

1090; 0; 0
14

823
652

451
260

071
252

443
624

815
10

1091; 0; 0
15

1024
843

652
461

260
051

242
423

614
8

1092; 4; 4
12

421
240

061
282

473
674

855
1036

1217
14

1093; 2; 2
15

1024
843

652
451

250
051

232
423

614
8

1094; 2; 2
14

823
642

441
260

061
252

443
624

815
10

1095; 2; 2
13

632
451

260
081

282
463

654
825

1016
12

1096; 0; 0
14

833
662

461
280

081
262

453
624

815
10

1097; 2; 2
12

421
240

071
272

473
674

845
1036

1217
14

1098; 4; 4
18

1627
1456

1265
1064

883
652

441
220

011
2

1099; 0; 0
15

1024
853

652
471

270
051

252
423

614
8

10100; 4; 4
17

1426
1245

1044
863

652
441

230
021

212
4

10101; 4; 4
31

242
463

684
865

1076
1247

1438
1619

18

10102; 0; 0
14

823
642

451
260

061
252

443
624

815
10

10103; 2; 2
17

1426
1245

1054
873

662
451

240
021

212
4

10104; 0; 0
15

1024
843

662
461

260
061

242
423

614
8

10105; 2; 2
14

823
652

461
270

081
272

453
634

815
10

10106; 2; 2
14

823
642

451
260

061
262

443
624

815
10

10107; 0; 0
15

1034
853

672
481

270
071

252
423

614
8

10108; 2; 2
15

1024
833

652
441

250
051

232
423

614
8

10109; 0; 0
15

1024
853

662
471

270
061

252
423

614
8

10110; 2; 2
16

1225
1054

863
672

471
250

051
222

413
6

10111; 4; 4
12

421
240

051
272

463
664

845
1026

1217
14

10112; 2; 2
16

1235
1044

873
672

471
260

041
232

413
6

10113; 2; 2
13

632
451

280
091

2102
483

664
845

1016
12

10114; 0; 0
16

1235
1044

873
682

471
270

051
232

413
6
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L
nk; �; s; flags
Kh0(L)

L
nk; �; s; flags
Kh0(L)

10115; 0; 0
15

1034
863

682
491

290
081

262
433

614
8

10116; 2; 2
16

1235
1054

873
682

481
260

051
232

413
6

10117; 2; 2
13

632
451

270
091

292
473

664
835

1016
12

10118; 0; 0
15

1034
853

672
481

280
071

252
433

614
8

10119; 0; 0
14

833
662

471
280

091
272

453
634

815
10

10120; 4; 4
110

2039
1858

1687
1486

12105
1074

863
642

4

10121; 2; 2
17

1436
1265

1084
8103

6102
481

260
041

212
4

10122; 0; 0
14

833
652

481
280

091
282

453
644

815
10

10123; 0; 0
15

1044
863

692
4101

2100
091

262
443

614
8

10124; 8; 8; }♠
12

414
614

816
10

10125; 2; 2; }
15

1013
612

410
012

4

10126; 2; 2; }
17

1425
1014

823
622

410
0

10127; 4; 4; }
18

1617
1426

1235
1024

833
612

411
2

10128; 6; 6; }♠
11

212
413

614
624

816
12

10129; 0; 0; }
15

1014
823

622
421

220
011

212
4

10130; 0; 0; }
17

1425
1014

813
622

410
0

10131; 2; 2; }
18

1617
1426

1235
1024

833
622

411
2

10132; 0; 2; }|♠
17

1215
814

613
612

2

10133; 2; 2; }
18

1617
1416

1225
1014

823
612

4

10134; 6; 6; }
11

222
413

634
815

1026
1217

14

10135; 0; 0; }
15

1014
833

632
431

230
021

222
4

10136; 2; 0; }|♠
14

613
412

221
010

211
412

6

10137; 0; 0; }
16

1215
1024

823
622

421
210

011
2

10138; 2; 2; }
14

813
632

421
230

031
222

423
6

10139; 6; 8; }|♠
12

414
614

815
816

1018
14

10140; 0; 0; }
17

1415
1014

812
4

10141; 0; 0; }
16

1215
1014

823
622

411
210

011
2

10142; 6; 6; }
11

212
413

624
826

12
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L
nk; �; s; flags
Kh0(L)

L
nk; �; s; flags
Kh0(L)

10143; 2; 2; }
17

1416
1225

1024
833

622
411

210
0

10144; 2; 2; }
16

1225
1034

833
642

431
210

021
2

10145; 2; 4; }|♠
19

1617
1216

1015
1014

613
6

10146; 0; 0; }
15

1024
823

632
431

220
021

212
4

10147; 2; 2; }
14

813
622

421
220

021
222

413
6

10148; 2; 2; }
17

1416
1235

1024
833

632
411

210
0

10149; 4; 4; }
18

1627
1436

1245
1034

843
622

411
2

10150; 4; 4; }
12

411
220

021
232

423
624

815
10

10151; 2; 2; }
13

622
431

230
041

242
423

624
8

10152; 6; 8; }|♠
110

1819
1618

1427
1216

1015
1025

813
6

10153; 0; 0; }♠
15

1013
612

411
410

011
012

214
6

10154; 4; 6; }|♠
12

413
424

614
815

826
1017

1218
1419

16

10155; 0; 0; }
12

411
220

021
222

423
614

815
10

10156; 2; 2; }
15

1024
833

632
431

220
021

212
4

10157; 4; 4; }
10

031
242

443
654

835
1036

1217
14

10158; 0; 0; }
14

823
642

431
240

041
222

423
6

10159; 2; 2; }
17

1426
1235

1034
843

632
421

210
0

10160; 4; 4; }
12

411
210

021
222

413
624

8

10161; 4; 6; }|♠
19

1617
1216

1015
1015

814
613

6

10162; 2; 2; }
16

1215
1034

833
632

431
210

021
2

10163; 2; 2; }
13

632
431

240
051

242
433

624
8

10164; 0; 0; }
15

1024
833

642
441

230
031

222
4

10165; 2; 2; }
10

031
232

433
644

825
1026

1217
14
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4.4 Kh0(L) for prime knots with 11 crossings

This data is available as a 20-page appendix to this paper (titled \Khovanov’s
invariant for 11 crossing prime knots") and in computer readable format from [1].

4.5 New separation results

Following is the complete list of pairs of prime knots with up to 11 crossings
whose Jones polynomials are equal but whose rational Khovanov invariants
are di�erent: (41; 11n19), (51; 10132), (52; 11n57), (72; 11n88), (81; 11n70), (92; 11n13),
(942; 942), (943; 11n12), (10125; 10125), (10130; 11n61), (10133; 11n27), (10136; 11n92),
(11n24; 11n24), (11n28; 11n64), (11n50; 11n133), (11n79; 11n138), (11n82; 11n82), (11n132; 11n133).

4.6 Kh(L) for links with up to 11 crossings

For links with more than one components, we have computed Kh(L) (not
Kh0(L), which does not make sense) for L with up to 11 crossings. The re-
sults are available as a 16 page appendix to this paper (up to 10 crossings) and
as a 26 page appendix (11 crossings) and in computer readable format from [1].
Below we only display the results for links with up to 6 crossings. The same
acknowledgement and warning of the previous section still applies:

nck L Kh(L) nck L Kh(L)

22
1 10

010
212

412
6 42

1 1
4
121

4
101

3
101

2
610

410
2

52
1 1

3
81

2
61

2
41

1
220

220
011

012
4 62

1 1
6
181

6
161

5
161

4
121

3
121

2
810

610
4

62
2 10

210
411

412
612

813
813

1014
1014

1215
1416

1416
16 62

3 1
6
161

5
141

5
121

4
122

4
102

3
101

2
82

2
61

1
410

410
2

63
1 1

6
151

5
113

4
113

4
91

3
92

2
71

2
52

1
310

310
1 63

2 1
3
72

2
51

2
32

1
140

140
121

112
322

513
7

63
3 10

310
512

713
1114

934
1124
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370 Dror Bar-Natan

A Quick Reference Guide to Khovanov’s Categori�cation of the Jones Polynomial
Dror Bar-Natan, 9 May 2002

The Kau�man Bracket: h;i = 1; h©Li = (q + q−1)hLi; h0i = h 1
0−smoothing

i − qh H
1−smoothing

i.

The Jones Polynomial: Ĵ(L) = (−1)n−qn+−2n−hLi, where (n+; n−) count (!;") crossings.
Khovanov’s construction: JLK | a chain complex of graded Z-modules;

J;K = 0! Z
height 0

! 0; J©LK = V ⊗ JLK; J0K = Flatten

 
0! J1K

height 0

! JHKf1g
height 1

! 0

!
;

H(L) = H (C(L) = JLK[−n−]fn+ − 2n−g)

V = spanhv+; v−i; deg v� = �1; qdimV = q + q−1 with qdimO :=
X
m

qm dimOm;

Oflgm := Om−l so qdimOflg = ql qdimO; �[s] : height shift by s;

� �
−!

(
V ⊗ V m! V

�
m :

(
v+ ⊗ v− 7! v− v+ ⊗ v+ 7! v+

v− ⊗ v+ 7! v− v− ⊗ v− 7! 0� �
−!

(
V

�! V ⊗ V
�

� :

(
v+ 7! v+ ⊗ v− + v− ⊗ v+

v− 7! v− ⊗ v−

T
h
a
t’s

a
F

ro
b

en
iu

s
A

lg
eb

ra
!

A
n
d

a
(1

+
1
)-d

im
en

sio
n
a
l

T
Q

F
T

!

Example: � q−2 + 1 + q2 − q6 �(−1)n− qn+−2n−
−−−−−−−−−−−−−−!
(with (n+; n−) = (3; 0))

q + q3 + q5 − q9:

(q + q−1)2 −

1

3

2

3q(q + q−1) + 3q2(q + q−1)2 − q3(q + q−1)3

q(q+q−1)

V f1g
100

�
d1?0

//

�

HH
HH

HH
HH

d10? ##H
HH

HH
HH

H

OO

+ �

q2(q+q−1)2

V ⊗2f2g
110 that’s a

cobordism!

d11?

$$I
II

II
II

II
II

II
II

II

OO

+ �

(q+q−1)2

V ⊗2

000

d?00

;;wwwwwwwwwwwwwwwww

d0?0

//

d00?

##G
GG

GG
GG

GG
GG

GG
GG

GG

g
o

u
p

fo
r

K
a
u
�

m
a
n
/
J
o
n
es

OO

g
o

d
ow

n
fo

r
K

h
ov

a
n
ov

��

q(q+q−1)

V f1g
010

d?10

;;vvvvvvvvvvvvvvvvv

�

d01? ##H
HH

HH
HH

HH
HH

HH
HH

HH

+ �

q2(q+q−1)2

V ⊗2f2g
101

�
d1?1

//

+ �

q3(q+q−1)3

V ⊗3f3g
111

OO

��

q(q+q−1)

V f1g
001

vvvvvvvv

d?01

;;vvvvvvvv

d0?1

//

��

q2(q+q−1)2

V ⊗2f2g
011

d?11

::vvvvvvvvvvvvvvvvv

��
J&K0 d0

// J&K1 d1
// J&K2 d2

// J&K3

∑
j�j=0

(−1)�d�

��

∑
j�j=1

(−1)�d�

��

∑
j�j=2

(−1)�d�

��

(here (−1)� := (−1)
∑
i<j �i if �j = ?) = J&K �[−n−]fn+−2n−g−−−−−−−−−−−−−!

(with (n+;n−)=(3;0))
C(&):

Theorem 1. The graded Euler characteristic of C(L) is Ĵ(L).
Theorem 2. The homology H(L) is a link invariant and thus so is KhF(L) :=

P
r t
r qdimHrF(C(L)) over

any �eld F.
Theorem 3. H(C(L)) is strictly stronger than Ĵ(L): H(C(�51)) 6= H(C(10132)) whereas Ĵ(�51) = Ĵ(10132).
Conjecture 1. KhQ(L) = qs−1

(
1 + q2 + (1 + tq4)Kh0

�
and KhF2(L) = qs−1(1 + q2)

(
1 + (1 + tq2)Kh0

�
for

even s = s(L) and non-negative-coe�cients laurent polynomial Kh0 = Kh0(L).
Conjecture 2. For alternating knots s is the signature and Kh0 depends only on tq2 .
References. Khovanov’s arXiv:math.QA/9908171 and arXiv:math.QA/0103190 and DBN’s

http://www.ma.huji.ac.il/~drorbn/papers/Categorification/.

Figure 4: A quick reference guide { cut, fold neatly and place in your wallet.
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