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Abstract Let MapT (K;X) denote the mapping space of continuous based
functions between two based spaces K and X . If K is a �xed �nite
complex, Greg Arone has recently given an explicit model for the Good-
willie tower of the functor sending a space X to the suspension spectrum
�1MapT (K;X).

Applying a generalized homology theory h� to this tower yields a spectral
sequence, and this will converge strongly to h�(MapT (K;X)) under suit-
able conditions, e.g. if h� is connective and X is at least dim K connected.
Even when the convergence is more problematic, it appears the spectral
sequence can still shed considerable light on h�(MapT (K;X)). Similar
comments hold when a cohomology theory is applied.

In this paper we study how various important natural constructions on
mapping spaces induce extra structure on the towers. This leads to useful
interesting additional structure in the associated spectral sequences. For
example, the diagonal on MapT (K;X) induces a ‘diagonal’ on the associ-
ated tower. After applying any cohomology theory with products h� , the
resulting spectral sequence is then a spectral sequence of di�erential graded
algebras. The product on the E1{term corresponds to the cup product
in h�(MapT (K;X)) in the usual way, and the product on the E1 {term is
described in terms of group theoretic transfers.

We use explicit equivariant S{duality maps to show that, when K is the
sphere Sn , our constructions at the �ber level have descriptions in terms
of the Boardman{Vogt little n{cubes spaces. We are then able to identify,
in a computationally useful way, the Goodwillie tower of the functor from
spectra to spectra sending a spectrum X to �1Ω1X .
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592 Stephen T. Ahearn and Nicholas J. Kuhn

1 Introduction

Let MapT (K;X) denote the mapping space of continuous based maps between
two based spaces K and X . To compute its homology or cohomology with
respect to any generalized theory, it su�ces to consider the suspension spectrum
�1MapT (K;X)+ , where Z+ denotes the union of a space Z with a disjoint
basepoint.

If one �xes K and lets X vary, one gets a functor from spaces to spectra.
Assuming, as we will also do from now on, that K is a �nite CW complex,
G. Arone [Ar] has recently studied this functor from the point of T. Goodwillie’s
calculus of functors [G1, G2, G3]. He de�nes a very explicit natural tower
PK(X) of �brations of spectra under �1MapT (K;X)+ ,

...

��
PK2 (X)

��
PK1 (X)

��
�1MapT (K;X)+

//

33hhhhhhhhhhhhhhhhhhhhhh

88qqqqqqqqqqqqqqqqqqqqqqqqqqqq
PK0 (X);

and shows that the connectivity of the maps

eKk (X) : �1MapT (K;X)+ ! PKk (X)

increases linearly with k as long as the dimension of K is no more than the
connectivity of X . The kth �ber FKk (X) of the tower is shown to be naturally
weakly equivalent to a homotopy orbit spectrum:

FKk (X) ’ MapS(K(k);X^k)h�k : (1.1)

Here K(k) = K^k=�k(K), the quotient of the k{fold smash product K^k by
the fat diagonal �k(K), and MapS(K(k);X^k) denotes the spectrum of stable
maps from K(k) to X^k , a spectrum with an action of the kth symmetric group
�k . Since this is a homogeneous polynomial functor of degree k , Arone has
identi�ed the Goodwillie tower of �1MapT (K;X)+ .

Applying a generalized homology theory h� to this tower yields a (left half
plane) spectral sequence, and this will converge strongly to h�(MapT (K;X))
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Structure in resolutions of mapping spaces 593

under suitable conditions, e.g. if h� is connective and X is at least dim K
connected. Even when the convergence is more problematic, it appears the
spectral sequence can still shed considerable light on h�(MapT (K;X)). Similar
comments hold when a cohomology theory is applied.

When K is the circle S1 , and the homology theory is ordinary, one can show
that the resulting spectral sequence is the classical Eilenberg{Moore spectral se-
quence. For other K , it appears that the Arone spectral sequences are organized
more usefully than the older Anderson spectral sequence [An] for computing the
homology and cohomology of MapT (K;X).1

For the deepest applications of essentially any interesting spectral sequence,
one uses additional structure that the spectral sequences carries. It is the
purpose of this paper to study various geometric properties of the towers PK(X)
which lead to such interesting additional structure in their associated spectral
sequences. For example, we construct a ‘diagonal’ on PK(X). After applying
any cohomology theory with products h� , the resulting spectral sequence will
then be a spectral sequence of di�erential graded algebras. The product on
the E1{term will correspond to the cup product in h�(MapT (K;X)) in the
usual way, and the product on the E1{term will be described in terms of group
theoretic transfers.

Perhaps the towers of greatest interest are those when K = Sn , the n{sphere.
We combine (1.1) with an explicit unstable �k{equivariant S{duality map

�(n; k) : C(n; k)+ ^ Sn(k) ! Snk;

to construct an explicit natural weak homotopy equivalence

FS
n

k (X) ’ (C(n; k)+ ^MapS(Snk;X^k))h�k : (1.2)

Here C(n; k) is the Boardman{Vogt space of k disjoint little n{cubes in a big
n{cube [M].

In terms of the extended power constructions of [LMMS], this last equivalence
yields a weak equivalence

FS
n

k (X) ’ C(n; k)+ ^�k (�−nX)^k: (1.3)

Here �−nX denotes the nth desuspension of the suspension spectrum of X .

Using either (1.2) or (1.3), our general structure theorems for PK(X) simplify in
nice ways when specialized to PS

n
(X). This leads to the spectral sequences for

computing h�(ΩnX) having lots of extra algebraic structure that can be related

1We note that [BG] suggests that the two spectral sequences are related.
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594 Stephen T. Ahearn and Nicholas J. Kuhn

to classical calculations, together with statements about how these spectral
sequences are related as n varies.

We will not give applications in this paper. However, in work that will appear
elsewhere, the second author has used just a small part of the structure in
the spectral sequences for computing H�(ΩnX;Z=2) to simplify the proof of
some topological nonrealization results of L.Schwartz [Sc]. This structure also
appears to be a reflection of structure in spectral sequences for calculating
versions of higher Topological Hochschild Homology (see [K3]).

1.1 The Smashing Theorem

Our �rst result is our simplest and most expected. It arises from the natural
map between function spaces

� : MapT (L;X)! MapT (K ^ L;K ^X)

that one gets by smashing with the identity map of K .

Theorem 1.1 There are natural maps of towers

� : PL(X)! PK^L(K ^X)

with the following properties.

(1) There is a commutative diagram of spectra:

�1MapT (L;X)+

�1�+

��

eL(X) // PL(X)

�

��
�1MapT (K ^ L;K ^X)+

eK^L(K^X) // PK^L(K ^X):

(2) The induced map on kth �bers

FLk (X)! FK^Lk (K ^X)

is naturally equivalent to the composite

MapS(L(k);X^k)h�k

�−!MapS(K^k ^ L(k);K^k ^X^k)h�k

p�−! MapS((K ^ L)(k); (K ^X)^k)h�k ;

where p : (K ^ L)(k) ! K^k ^ L(k) is the �k{equivariant projection.

Algebraic & Geometric Topology, Volume 2 (2002)
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Corollary 1.2 There is a natural map of towers

� : PS
m

(X)! PS
m+n

(�nX)

under

�1�+ : �1(ΩmX)+ ! �1(Ωm+n�nX)+;

such that the associated map on kth �bers is equivalent to the map

C(m;k)+ ^�k (�−mX)^k ! C(m+ n; k)+ ^�k (�−mX)^k

induced by the �k{equivariant inclusion C(m;k) ,! C(m + n; k).

We have listed this theorem and corollary �rst because it allows us to extend the
de�nition of our towers for �1ΩnX , with X a space, to towers for �1Ω1X ,
with X a spectrum. Let the spaces fXng, n � 0, be the spaces in the spectrum
X , so that ΩnXn = Ω1X for all n. Then de�ne PS

1
(X) to be the hocolimit

over n of the maps of towers

PS
n
(Xn)! PS

n+1
(�Xn)! PS

n+1
(Xn+1)

where the �rst map is given by the theorem and the second by the spectrum
structure maps. Recalling that hocolim

n
�−n�1Xn is naturally equivalent to

X , the maps �1ΩnXn+ ! PS
n
(Xn) induce maps

�1Ω1X+ ! PS
1

(X):

We deduce the following.

Corollary 1.3 The kth �ber of the tower PS
1

(X) is naturally equivalent to
the kth extended power

C(1; k)+ ^�k X
^k ’ (X^k)h�k :

If X is 0{connected, then the connectivity of the maps �1Ω1X+ ! PS
1

k (X)
increases linearly with k .

This identi�cation of both the �bers and convergence of the Goodwillie tower
of �1Ω1 : Spectra ! Spectra has been observed previously by other people,
e.g. Goodwillie, Arone, and R.McCarthy (see the comments at the beginning of
[McC]). However, by constructing it in this way, our later structure theorems
for PS

n
(X) will immediately imply analogous results about PS

1
(X), and thus

results about spectral sequences for computing h�(Ω1X).
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1.2 The Product and Diagonal Theorems

Our next results are consequences of our study of the map of towers associated
to the natural homeomorphisms of function spaces

MapT (K _ L;X) = MapT (K;X) �MapT (L;X):

To state these, we need to introduce a bit of the language one would use in
de�ning the homotopy category of functors, and also describe an appropriate
sort of completed smash product of towers of spectra.

For the former, given two functors F and G from pointed spaces to spectra,
a weak natural transformation h : F ! G will be a triple (H; f; g), with H
a functor from spaces to spectra, g : H ! G a natural transformation, and
f : H ! F a natural transformation such that f(X) : H(X) ! F (X) is
a weak homotopy equivalence for all X . If g(X) is also a weak homotopy
equivalence for all X , then we say that h is a weak natural equivalence. Note
that, if F and G are homotopy functors, then a weak natural transformation
h : F ! G induces a well de�ned natural transformation in the homotopy cat-
egory: h(X) = g(X) � f(X)−1 2 [F (X); G(X)]. Furthermore, using homotopy
pullbacks, one can de�ne the composition of weak natural transformations.

Now we need to de�ne the smash product of two towers of spectra. If P and
Q are two towers of spectra, let P ^Q be the tower with

(P ^Q)k = holim
i+j�k

Pi ^Qj:

Let Fk(P ) denote the homotopy �ber of Pk ! Pk−1 . As will be noted in x5.2,
there is a weak natural equivalence

Fk(P ^Q) ’
Y
i+j=k

Fi(P ) ^ Fj(Q):

Theorem 1.4 There are natural weak homotopy equivalences of towers

� : PK_L(X) �−! PK(X) ^ PL(X)

with the following properties.

(1) There is a commutative diagram of weak natural transformations:

�1MapT (K _ L;X)+
eK_L(X) // PK_L(X)

� o
��

�1MapT (K;X)+ ^MapT (L;X)+
eK(X)^eL(X)// PK(X) ^ PL(X):
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(2) The induced weak equivalence on kth �bers

FK_Lk (X) �−!
Y
i+j=k

FKi (X) ^ FLj (X)

is naturally equivalent to the product, over i + j = k , of the weak natural
transformations

MapS((K _ L)(k);X^k)h�k
Tr−! MapS((K _ L)(k);X^k)h(�i��j)

��−! MapS(K(i) ^ L(j);X^k)h(�i��j)

� − MapS(K(i);X^i)h�i ^MapS(L(j);X^j)h�j ;

where Tr is the transfer associated to �i � �j � �k , and

� : K(i) ^ L(j) ,! (K _ L)(k)

is the �i � �j {equivariant inclusion.

Let r : K _ K ! K be the fold map. Since the diagonal map � is the
composite

MapT (K;X) r
�
−−! MapT (K _K;X) = MapT (K;X) �MapT (K;X);

our Product Theorem has consequences for �.

Let Ψ : PK(X)! PK(X) ^ PK(X) be the weak natural transformation

PK(X) r
�
−−! PK_K(X)

�−! PK(X) ^ PK(X):

Theorem 1.5 The weak natural transformation Ψ has the following proper-
ties.

(1) There is a commutative diagram of weak natural transformations:

�1MapT (K;X)+

�1�+

��

eK(X) // PK(X)

Ψ
��

�1MapT (K;X)+ ^MapT (K;X)+
eK(X)^eK (X)// PK(X) ^ PK(X):

(2) The induced weak natural transformation on kth �bers

FKk (X)!
Y
i+j=k

FKi (X) ^ FKj (X)
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is naturally equivalent to the product, over i+ j = k , of the composites of the
weak natural transformations

MapS(K(k);X^k)h�k
Tr−! MapS(K(k);X^k)h(�i��j)

��−! MapS(K(i) ^K(j);X^k)h(�i��j)

� − MapS(K(i);X^i)h�i ^MapS(K(j);X^j)h�j ;

where � : K(i) ^K(j) ! K(k) is the projection.

A typical computational consequence of this would be the following.

Corollary 1.6 Let h� be a generalized cohomology theory with products.
Then the associated spectral sequence for computing h�(MapT (K;X)) is a
spectral sequence of bigraded di�erential graded h�{algebras. The product on
E�;�1 corresponds to the cup product in h�(MapT (K;X)) in the usual way, and

the product E−i;�1 ⊗E−j;�1 ! E
−(i+j);�
1 is induced by the maps on �bers as given

in the theorem.

Specializing to K = Sn , we have some simpli�cation.

Corollary 1.7 There is a natural map of towers

Ψ : PS
n
(X)! PS

n
(X) ^ PSn(X)

under
�1�+ : �1(ΩnX)+ ! �1(ΩnX � ΩnX)+;

such that the associated map on kth �bers is equivalent to the product, over
i+ j = k , of the composites

C(n; k)+ ^�k (�−nX)^k Tr−! C(n; k)+ ^�i��j (�−nX)^k

! (C(n; i) � C(n; j))+ ^�i��j (�−nX)^k;

where the second map is induced by the �i � �j {equivariant inclusion

C(n; k) ,! C(n; i)� C(n; j):

In this corollary, the second map is an equivalence if n =1. When n = 1, the
(i; j)th component of the map on kth �bers is easily seen to be homotopic to
the ‘shu�e coproduct’

X^k ! X^i ^X^j ;
the sum of the k!=i!j! permutations that preserve the order of the �rst i and
last j terms. Note that this induces the usual product on E1 in the classic
Eilenberg{Moore spectral sequence.
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1.3 The Evaluation Theorem

Our next theorem is a consequence of our study of the map of towers associated
to the evaluation maps

� : K ^MapT (K ^ L;X)! MapT (L;X):

It is convenient to use reduced towers. Let ~PK(X) be the �ber of the projec-
tion PK(X) ! PK(�). Then, for all k , PKk (X) is isomorphic to the product
of ~PKk (X) with the sphere spectrum S , and eK(X) induces a natural transfor-
mation

~eK(X) : �1MapT (K;X)! ~PK(X):

Theorem 1.8 There are natural maps of towers

� : K ^ ~PK^L(X)! ~PL(X)

with the following properties.

(1) There is a commutative diagram of spectra:

�1K ^MapT (K ^ L;X)

�1�
��

1K^~eK^L(X) // K ^ ~PK^L(X)

�

��
�1MapT (L;X)

~eL(X) // ~PL(X):

(2) The induced map on kth �bers is naturally equivalent to the composite

K ^MapS((K ^ L)(k);X^k)h�k
d�−! K ^MapS(K ^ L(k);X^k)h�k
�−!MapS(L(k);X^k)h�k ;

where the �rst map is induced by the �k{equivariant map of spaces

d : K ^ L(k) ! (K ^ L)(k)

which arises by embedding K diagonally in K^k .

In the 1982 paper [K1], which studied how the Snaith stable decomposition
of Ωn�nY interacted with evaluation maps, the second author made use of
certain Thom{Pontryagin collapse maps essentially introduced in [M]. These
are explicit �k{equivariant maps of spaces

�(m;n; k) : Sm ^ C(m+ n; k)+ ! Smk ^ C(n; k)+:

Algebraic & Geometric Topology, Volume 2 (2002)
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Corollary 1.9 There is a natural map of towers � : �m ~PS
m+n

(X)! ~PS
n
(X)

under the evaluation �1�+ : �1(�mΩm+nX)+ ! �1(ΩnX)+ , such that the
associated map on kth �bers is equivalent to the map

Sm ^ C(m+ n; k)+ ^�k (�−m−nX)^k ! C(n; k)+ ^�k (�−nX)^k

induced by �(m;n; k).

We note that the e�ect in mod p homology of this map on �bers is known, so
this theorem can be used computationally.

1.4 The C(n) operad stucture on P Sn(X).

Our �nal theorem shows that the little n{cubes operad action on ΩnX induces
an action on our towers in the expected way.

Recall [M] that this action is given by suitably compatible maps

�(r) : C(n; r)��r (ΩnX)r ! ΩnX:

Note that (ΩnX)r = MapT (
W
r S

n;X). We have the following theorem, which
will be made more precise in x8.

Theorem 1.10 For all n and r , there is a natural map of towers

�(r) : C(n; r)+ ^�r P
∨
r S

n
(X)! PS

n
(X)

with the following properties.

(1) There is a commutative diagram of spectra:

�1((C(n; r)��r (ΩnX)r)+)

�1�(r)+

��

1^e
∨
r S

n
(X) // C(n; r)+ ^�r P

∨
r S

n
(X)

�(r)

��
�1(ΩnX)+

eS
n

(X) // PS
n
(X):

(2) The associated map on kth �bers is induced by the operad structure maps

C(n; r)� C(n; k1)� � � � � C(n; kr)! C(n; k);

with k1 + � � �+ kr = k .

Computationally, this implies that the associated spectral sequences for com-
puting mod p homology admit Dyer{Lashof operations.2

2Exactly what this statement means is still a matter of investigation by the authors.
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1.5 Organization of the paper.

The organization of the paper is as follows. In section 2, we discuss the cate-
gories of spectra we work in, and various ‘naive’ constructions including versions
of transfer and norm maps. In section 3, we recall the construction of the Arone
tower for �1MapT (K;X)+ , and its homotopical analysis. We use this in sec-
tion 4 to prove our Smashing and Evaluation Theorems. The Product and
Diagonal Theorems are proved section 5, after a brief analysis of the smash
product of towers. In section 6 we describe the compatibility among the var-
ious transformations of towers de�ned in our main theorems. In section 7, we
deduce our various corollaries for the towers PS

n
, using our explicit equivariant

S{duality maps. Using related constructions with little cubes, Theorem 1.10 is
proved in section 8, and, in an appendix, a simpli�ed proof of Arone’s conver-
gence theorem is given in the case when K = Sn .

This paper includes results from the �rst author’s Ph.D. thesis [Ah]. The au-
thors wish to thank Greg Arone, Bill Dwyer, and Gaunce Lewis for enlightening
mathematical discussions on aspects of this project.

This research was partially supported by the National Science Foundation.

2 Background material on spectra

Here we de�ne and discuss various general constructions with spectra that we
will later need. By introducing a small amount of fussiness concerning di�erent
universes, all constructions are of a ‘naive’ nature. The material is essentially
background, and certainly variations of everything we prove here are already
known.

2.1 Spectra and universes

Firstly, we need to specify what we mean by spectra. We �nd it easiest to
work with coordinate free spectra (as in the �rst pages of [LMMS]). We briefly
review the de�nitions that we need.

Let T denote the category of compactly generated based spaces. Fixing an in�-
nite dimensional real inner product space U , one de�nes an associated category
of spectra SU .

An object X 2 SU assigns a space X(V ) to every �nite dimensional subspace
V � U , and assigns a structure map X(V ) ! ΩW−VX(W ) to every inclusion
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V � W . Here W − V is the orthogonal complement of V in W , and ΩUK =
MapT (SU ;K) where SU is the one point compacti�cation of U . The structure
maps are required to be homeomorphisms.

A map of spectra f : X ! Y is a collection of maps f(V ) : X(V ) ! Y (V )
compatible with the structure maps in the usual way. This makes SU into a
topological category.

If one deletes the requirement that the structure maps be homeomorphisms,
one obtains the category of prespectra PSU , and there is a ‘spectri�cation’
functor l : PSU ! SU , left adjoint to the inclusion of SU in PSU . The
category SU has limits and colimits, with limits being formed in PSU , and
colimits being formed by applying l to the colimit in PSU . When the universe
U is understood and the meaning is clear, we will abbreviate SU to S .

With the elementary constructions to be reviewed later in this section, one
does homotopy in the usual way. The stable category hSU is then the category
obtained from SU by inverting the weak homotopy equivalences. A key obser-
vation in this approach to spectra is that any linear isometry U ! U 0 induces
the same equivalence hSU ’ hSU 0 on passage to homotopy. We note also
that these canonical equivalences are compatible with the various constructions
given below. See [LMMS, chapter II] for more detail.

2.2 Suspension spectra

There is an adjoint pair

T
�1 −
−!
Ω1

SU

de�ned by Ω1X = X(0) and (�1K)(V ) = colimW ΩW�W+VK . Here �UK
denotes SU ^K , as usual. We let Q = Ω1�1 : T ! T , and S = �1S0 .

When it is necessary to remember U , we will use the notation �1U , etc. (This
follows our general rule with all constructions involving spectra: we will be
notationally pedantic when it seems prudent.)

2.3 Stablization, elementary smash products and function spec-
tra

Given K 2 T and X 2 SU , we de�ne spectra K ^ X and MapSU(K;X) in
SU as follows: K ^X is the spectri�cation of the prespectrum with V th space

Algebraic & Geometric Topology, Volume 2 (2002)
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K ^X(V ), and MapSU(K;X)(V ) = MapT (K;X(V )). These constructions are
adjoint to each other,

HomSU(K ^X;Y ) = HomSU(X;MapSU(K;Y ));

and one can deduce various useful isomorphisms in SU [LMMS, p.17, p.20]:

MapSU(K ^ L;X) = MapSU(K;MapSU(L;X));

(K ^ L) ^X = K ^ (L ^X);

and
K ^ �1L = �1(K ^ L):

When clear from context, we will write MapSU(K;X) as MapS(K;X), and
then MapS(K;�1L) as MapS(K;L).

A ‘stabilization’ map

s : �1MapT (K;L)! MapS(K;L)

can now be de�ned as the adjoint to

MapT (K;L)
MapT (K;�)−−−−−−−! MapT (K;QL) = Ω1MapS(K;L)

where � : L ! QL is adjoint to the identity on �1L. Also arising from
adjunctions are evaluation maps

�T : K ^MapT (K;L)! L

and
�S : K ^MapS(K;X)! X:

The next lemma is proved with formal categorical arguments.

Lemma 2.1 For any spaces K and X , there is a commutative diagram

K ^ �1MapT (K;X) 1^s // K ^MapS(K;X)

�S

��
�1(K ^MapT (K;X))

�1�T // �1X:

A variation on these constructions goes as follows. (Compare with [LMMS,
pp.68,69].) Given two universes U and U 0 , there is an external smash product

^ : SU � SU 0 ! S(U � U 0)

Algebraic & Geometric Topology, Volume 2 (2002)
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de�ned by letting X ^ Y be the spectri�cation of the prespectrum with (V �
W )th space X(V ) ^ Y (W ).3 Dually, there is an external mapping spectrum
functor:

MapSU : SUop � S(U � U 0)! SU 0

de�ned by MapSU (X;Z)(W ) = HomSU (X;ZW ), where ZW (V ) = Z(V �W ).

Again these constructions are adjoint:

HomS(U�U 0)(X ^ Y;Z) = HomSU(X;MapSU 0(Y;Z)):

Again one can formally deduce useful properties, e.g. there are isomorphisms
in S(U � U 0):

�1U K ^ �1U 0L = �1U�U 0(K ^ L):

Another useful property, which follows by a check of the de�nitions, is that, for
all K 2 T and Z 2 S(U � U 0), there are isomorphisms in S(U 0):

MapSU (�1U K;Z) = MapSU 0(K; i
�Z);

where i : U 0 ! U � U 0 is the inclusion.

Given X 2 SU and Z 2 S(U � U 0), there is an evaluation map

� : X ^MapSU(X;Z)! Z:

Precomposing this with � : K^MapSU (K;X)! X and then adjointing de�nes
a composition map

� : MapSU(K;X) ^MapSU(X;Z)! MapS(U�U 0)(K;Z)

for all K 2 T . We will use this construction when de�ning norm maps in x2.5
below.

Given spaces K , L, and spectra X 2 SU , Y 2 SU 0 , we de�ne

^ : MapSU(K;X) ^MapSU 0(L; Y )! MapS(U�U 0)(K ^ L;X ^ Y )

to be adjoint to the composite of the natural isomorphism

(K ^L)^MapSU (K;X)^MapSU 0(L; Y ) = (K ^MapSU (K;X))^ (L^MapSU 0(L; Y ))

with eS ^ eS : (K ^MapSU (K;X)) ^ (L ^MapSU 0(L; Y ))! X ^ Y:

This is analogous to the usual pairing between mapping spaces

^ : MapT (K;X) ^MapT (L; Y )! MapT (K ^ L;X ^ Y );

and the next lemma records that these constructions are compatible under
stabilization.

3This formula su�ces because subspaces of U � U 0 of the form V �W are co�nal
among all �nite dimensional subspaces.
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Lemma 2.2 For any spaces K , L, X , Y , and universes U , U 0 , there is a
commutative diagram in S(U � U 0)

�1U MapT (K;X) ^ �1U 0 MapT (L; Y )

s^s
��

�1U�U 0(MapT (K;X) ^MapT (L; Y ))

�1^
��

MapSU(K;�1U X) ^MapSU 0(L;�1U 0Y )

^
��

�1U�U 0 MapT (K ^ L;X ^ Y )

s

��
MapS(U�U 0)(K ^ L;�1U X ^�1U 0Y ) MapS(U�U 0)(K ^ L;�1U�U 0(X ^ Y ))

Once again, this is proved with formal categorical arguments.

The next lemma is standard.

Lemma 2.3 If K and L are �nite CW complexes, then

^ : MapSU(K;X) ^MapSU 0(L; Y )! MapS(U�U 0)(K ^ L;X ^ Y )

is a weak homotopy equivalence.

2.4 Spaces and spectra of natural transformations

If J is a small category, and K : J ! T and X : J ! S are two functors of
the same variance, we will write MapJS (K;X) for the spectrum constructed as
the categorical equalizer in S of the two evident mapsY

j2Ob(J )

MapS(K(j);X(j))
−!
−!

Y
�:j0!j002Mor(J )

MapS(K(j0);X(j00)):

Similarly, if K;X : J ! T are two functors of the same variance, one gets a
space MapJT (K;X), which can be interpreted as the space of natural transfor-
mations from K to X . The stable and unstable constructions are related by
MapJS (K;X)(V ) = MapJT (K;X(V )), for any V 2 U .

It is useful to observe that if J = G, a �nite group viewed as a category with
one object, then MapGS (K;X) is the categorical �xed point spectrum of the
naive G{spectrum MapS(K;X) with conjugation G{action. In this case, we
also write X=G for the categorical orbit spectrum.
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2.5 Norm maps, transfers, and Adams isomorphisms

In this subsection, we give quick de�nitions of transfer and norm maps suit-
able for our later homotopical identi�cation of natural transformations between
�bers in the Arone towers. These de�nitions are adapted to our setting, but
are intended to agree in the homotopy category with anyone else’s transfer
and norm maps. As far as the authors can tell, constructions of norm maps
using only \naive" constructions �rst appeared in the literature in the 1989
paper of Weiss and Williams [WW, x2]. (Those authors credit Dwyer with
some of these ideas, and, of course, Adams’ paper [Ad] was influential.) Our
de�nitions are small perturbations of those in the recent preprint of John Klein
[Kl]. Proposition 2.9, which relates transfer and norm maps, appears to be new
in the literature, and a desire for a transparent proof of this has guided our
constructions.

Let G be a �nite group, and call a spectrum with G{action a G{spectrum.
Fix two universes U and U 0 , and let i : U 0 ! U � U 0 be the inclusion.

De�nitions 2.4 Given a subgroup H � G, and a G{spectrum X 2 S(U�U 0),
we de�ne the homotopy �xed point and homotopy orbit spectra as follows.

(1) XhH = MapHS(U�U 0)(EG+;X):

(2) XhH = (EG+ ^MapHSU(EG+;�1U G+) ^ i�X)=G.

The �rst de�nition is, we trust, expected. The corollary of the next lemma says
that the second has the correct homotopy type.

Lemma 2.5 There is a weak equivalence of G{spectra in SU

�1G=H+ ’ MapHS (EG+; G+):

Proof There are weak equivalences and isomorphisms of G{spectra:

�1G=H+
�−! MapS(G=H+; S)

= MapHS (G+; S)
�−! MapHS (EG+ ^G+; S)

= MapHS (EG+;MapS(G+; S))
� − MapHS (EG+; G+):
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Here the �rst and last maps arise in the same manner. If K < G is any
subgroup, there is a commutative diagram of G{spectraW

gK2G=K S

’
��

�1G=K+

��Q
gK2G=K S MapS(G=K+; S)

where the left vertical map is the inclusion of the wedge into the product, a
weak homotopy equivalence.

Corollary 2.6 There is a weak natural equivalence in S(U � U 0)

XhH ’ (EG+ ^X)=H:

Proof There are weak natural equivalences

XhH ’ (EG+^�1U G=H+^i�X)=G �−! (EG+^G=H+^X)=G = (EG+^X)=H:

Here the �rst equivalence is a consequence of the lemma, and the second follows
from the fact that, very generally, there is a natural weak equivalence �1U K ^
i�X ! K ^X .

Our transfer maps are de�ned as follows.

De�nitions 2.7 Let K � H � G, and let X be a G{spectrum in S(U �U 0).

(1) Let trHK : MapHSU (EG+; G+) ! MapKSU (EG+; G+) be the inclusion of
�xed point spectra.

(2) Let TrHK(X) : XhH ! XhK be the natural map induced by trHK .

We sketch a proof that TrHK(X), viewed as a natural transformation of functors
on the homotopy category of spectra with G{action, agrees with other standard
constructions of the transfer, in particular, the transfer arising from [LMMS].
Both of these transfers behave well with respect to pushouts and weak equiv-
alences in the X variable, and with respect to forgetful functors arising from
subgroup inclusions. Using these facts one can reduce to just needing to show
that the two de�nitions of TrGH(G+) agree up to weak equivariant homotopy.
For us, this map is equivalent to the map

S
�−! MapS(G=G+; S)! MapS(G=H+; S)
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induced by the projection � : G=H+ ! G=G+ . Now one checks that this agrees
with the composite

S
�−! �1G=H+

�−! MapS(G=H+; S)

where � is the pretransfer of [LMMS, p.181].

We now de�ne our norm maps.

De�nition 2.8 Given H � G, and a G{spectrum X in S(U � U 0), let

�H(X) : XhH ! XhH

be de�ned as follows. First note that

i�X = MapGSU 0(G+; i
�X) = MapGSU(�1U G+;X):

Now consider composition

� : MapSU(EG+;�1U G+) ^MapGSU(�1U G+;X)! MapS(U�U 0)(EG+;X):

This is G{equivariant with respect to the usual conjugation G{action on the
two terms MapSU(EG+;�1U G+) and MapS(U�U 0)(EG+;X). Taking H �xed
points then yields a map of spectra

MapHSU (EG+;�1SUG+) ^ i�X ! XhH :

Now one notes that this map is invariant with respect to the diagonal G{action
on the domain, where G acts on (MapHSU(EG+;�1SUG+) by acting on the right
on G+ . Thus one has an induced map

(MapHSU(EG+;�1SUG+) ^ i�X)=G! XhH :

�H(X) is then obtained by precomposing this map with the map

XhH ! (MapHSU(EG+;�1SUG+) ^ i�X)=G

induced by EG+ ! S0 .

By construction, the following proposition is self evident.

Proposition 2.9 Given K � H � G, and X 2 S(U �U 0), there is a commu-
tative diagram of spectra

XhH

TrHK (X)
��

�H(X)// XhH

��
XhK

�K(X)// XhK

where the unlabelled vertical arrow is the inclusion of �xed point spectra.
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Norm maps should be equivalences under suitable freeness and �niteness condi-
tions. In homotopy, such equivalences have been termed ‘Adams isomorphisms’
[LMMS]. The version we need goes as follows.

Proposition 2.10 If X = MapS(K;Y ), where Y is any G{spectrum and K
is any �nite free G{CW complex, then the norm map

�H(X) : XhH ! XhH

is a weak homotopy equivalence for all H < G.

Proof We show that �H(X) is an equivalence in various cases. When X =
�1U�U 0G+ , via the weak equivalences of Lemma 2.5, �H(X) corresponds to the
isomorphism

(�1U G=H+ ^ �1U 0G+)=G = �1U�U 0G=H+:

Now we note that both the domain and range of �H(X) preserve equivariant
weak homotopy equivalences and homotopy co�ber sequences. Thus, by induc-
tion on cells, �H(X) is an equivalence if Y is any G{spectrum equivalent to a
�nite G{CW spectrum, and K is any �nite free G{CW complex. Now we note
that, if K is a �nite free G{CW complex, then both the domain and range
of �H(MapS(K;Y )) commute with homotopy colimits in the Y variable. The
proposition follows.

An application of this that we will need later goes as follows.

Corollary 2.11 Let G and H be two �nite groups. If X is a G{spectrum,
K a �nite free G{CW complex, Y an H {spectrum, and L a �nite free H {CW
spectrum, then

^ : MapGSU(K;X) ^MapHSU 0(L; Y )! MapG�HS(U�U 0)(K ^ L;X ^ Y )

is a weak homotopy equivalence.

Proof Let A = MapS(K;X), B = MapS(L; Y ), and C = MapS(K ^ L;X ^
Y ). We wish to show that the G�H {equivariant weak equivalence A ^ B !
C induces an equivalence AG ^ BH ! CG�H . Since there are equivalences
AG

�−! AhG
� − AhG , and similarly for B and C , it su�ces to show that

AhG ^ BhH ! Ch(G�H) is an equivalence. But this is clear, as easy formal
arguments show that AhG ^BhH = (A ^B)h(G�H) .

Finally we note:
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Corollary 2.12 Let G be a �nite group. If K is a �nite free G{CW complex,
then for all G{spectra Y 2 S(U � U 0), there is a weak natural equivalence

(MapSU (K;S) ^ i�Y )hG ’ MapGS(U�U 0)(K;Y )

Proof This arises from the equivalences

(MapS(K;S) ^ Y )hG
�−! MapS(K;Y )hG � −MapGS (K;Y ) :

3 The Arone model

In this section we review the Greg Arone’s explicit construction of the tower
PK(X) of �brations of spectra under �1MapT (K;X)+ , tweaked a bit to lend
itself to the homotopical analysis we are interested in.4

3.1 De�nition of the tower

We introduce a small category central to our work.

De�nition 3.1 Let E denote the category with objects the �nite sets 0 = ;
and n = f1; 2; : : : ; ng, n � 1, and morphisms the surjective functions. This
has full subcategories ~E whose objects are n with n � 1, Ek , whose objects are
n with n � k , and ~Ek = ~E \ Ek .5

Fundamental E {spaces are the following.

De�nition 3.2 If X is a pointed space, let X^ : Eop ! T be the following
functor. On objects, it assigns to n, X^n , the n{fold smash product of X
with itself, where we use the convention that X^0 = S0 . On morphisms, it
assigns to a surjective function � : n ! m, the associated ‘diagonal’ map
�� : X^m ! X^n sending x1 ^ : : :^ xm to x�(1) ^ : : :^ x�(n) . Note that this is
well de�ned precisely because � is surjective.

Armed with these E {spaces, we can de�ne Arone’s towers in our setting.
4For example, Arone works with the functors from (based) spaces to spaces which

send a space X to QMapT (K;X). It seems more natural to regard the basic functors
as going from spaces to a suitable category of spectra.

5This category E of epimorphisms was called M by Arone in [Ar] and Mop by
McCarthy in [McC]. The senior author objects.
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De�nitions 3.3 Given two spaces K and X in T , de�ne spectra PK1 (X),
PKk (X), ~PK1 (X), and ~PKk (X), by the formulae

PK1(X) = MapES(K^;X^);

PKk (X) = MapEkS (K^;X^);

~PK1(X) = Map ~E
S(K^;X^);

~PKk (X) = Map
~Ek
S (K^;X^):

There are evident restriction maps

pk : PKk (X)! PKk−1(X);

de�ning a tower PK(X), compatible with restrictions maps

qk : PK1 (X)! PKk (X);

and PK1 (X) = limk P
K
k (X): As we will discuss below, the maps pk are �brations

in S ; thus PK1 (X) is also equivalent to the homotopy limit of the tower.

Notation 3.4 Let FKk (X) be the �ber of pk : PKk (X)! PKk−1(X).

The reduced functors are related to the unreduced functors by

PKk (X) = ~PKk (X)� S;

(with the product in S ), and they similarly form a tower with limit (and holimit)
~PK1(X).

Now we de�ne natural transformations �1MapT (K;X)+ ! PK(X):

For n � 0, let

eK(X;n) : �1MapT (K;X)+ ! MapS(K^n;X^n)

be the composite

�1MapT (K;X)+
�1�n−−−! �1MapT (K^n;X^n) s−!MapS(K^n;X^n);

where
�n : MapT (K;X)+ ! MapT (K^n;X^n)

sends a function f to f^n . (When n = 0, this means the evident projection
MapT (K;X)+ ! S0 .)
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Lemma 3.5 Let � : n!m be a surjective function. Then, for all K and X
there is a commutative diagram in S

�1MapT (K;X)+

eK(X;m)
��

eK(X;n)// MapS(K^n;X^n)

��
��

MapS(K^m;X^m) �� // MapS(K^m;X^n):

Proof The analogous diagram in T ,

MapT (K;X)+

�m
��

�n // MapT (K^n;X^n)

��
��

MapT (K^m;X^m) �� // MapT (K^m;X^n);

clearly commutes, and the lemma follows, using the naturality of s.

This lemma says that the mapsY
n

eK(X;n) : �1MapT (K;X)+ !
Y
n

MapS(K^n;X^n)

are equalized by the maps de�ning PK1(X) = MapES(K^;X^). Thus they de�ne

eK1(X) : �1MapT (K;X)+ ! PK1(X);

and then

eKk (X) = qk � eK1(X) : �1MapT (K;X)+ ! PKk (X):

The main theorem of [Ar] is a convergence result. In our context, it reads as
follows.

Theorem 3.6 Let K be a �nite CW complex and X a space with connec-
tivity at least as large as the dimension of K . Then eKk (X) is (1 + conn X −
dim K)(1 + k)− 1 connected. In particular, eK1(X) is a weak homotopy equiv-
alence and the tower is strongly convergent.

In Appendix A, we will outline how the proof of this theorem goes in the case
when K is a sphere. Needed �rst in any proof, however, is an analysis of
the homotopical behavior of the tower PK� (X). We now proceed to make this
analysis, as these results are also needed to prove our main theorems.
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3.2 Homotopical analysis of the tower

The key to understanding PK(X) homotopically is to take advantage of two
observations. Firstly, the �ltration of E by the subcategories Ek induces a
natural �ltration on contravariant functors from E to T or S . Secondly, this
�ltration on the particular functors K^ is particularly nice, and essentially
exhibits them as co�brant Eop{objects in the functor categories.

We should say immediately that these sorts of observations have been made
before. See, for example, [McC, Appendix A], [L, x3], as well as Arone’s own
paper [Ar]. These are all modern references, but, slightly disguised, these ideas
are certainly much older.

With C either T or S , let CE denote the category of contravariant functors
X : Eop ! C . The inclusion ik : Ek ,! E induces the restriction i�k : CE ! CEk
with left adjoint ik� : CEk ! CE , and we let Xk = ik�i

�
kX . Formally, one sees

that, for all X 2 T E and Y 2 CE , there are natural isomorphisms in C

MapEC(Xk; Y ) = MapEkC (X;Y ):

Explicitly,
Xk(n) = colim

n#Ek
~X;

where n # Ek denotes the usual category under n with objects n! j in E with
j � k , and ~X(n! j) = X(j).

The Xk assemble into a �ltration of X ,

X0 ! X1 ! X2 ! : : : ;

and, noting that Xk(n) = X(n) for all k � n, one sees that X is realized as
the colimit.

In the next lemma, �k denotes the symmetric group on k letters, viewed as
the morphisms k! k in E .

Lemma 3.7 For all X 2 T E , there is a pushout in T E

E( ;k)+ ^�k Xk−1(k)

��

// Xk−1

��
E( ;k)+ ^�k Xk(k) // Xk:
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Proof It is very easy to check that the diagram of small categories

E(n;k)��k (k # Ek−1)

��

// (n # Ek−1)

��
E(n;k) ��k (k # Ek) // (n # Ek)

specializes to a pushout diagram of �nite sets on both objects and morphisms.

It follows that there is a pushout diagram in T

colimE(n;k)��k
(k#Ek−1)

~X

��

// colim(n#Ek−1)
~X

��
colimE(n;k)��k

(k#Ek)
~X // colim(n#Ek)

~X:

This last diagram rewrites as the diagram of the lemma, evaluated at n.

Corollary 3.8 For all X 2 T E and Y 2 CE there is a pullback diagram in C

MapEC(Xk; Y )

��

// Map�k
C (Xk(k); Y (k))

��

MapEC(Xk−1; Y ) // Map�k
C (Xk−1(k); Y (k)):

Now suppose that X = K^ . Observe that K^k (k) = K^k , and that K^k−1(k)
is the fat diagonal �k(K) inside K^k . If K is a CW complex, then K^k

can be obtained from �k(K) by attaching only free �k{cells. The fact that
(K^k;�k(K)) is an equivariant CW pair implies that the inclusion �k(K) !
K^k is an equivariant co�bration. Recalling that K(k) denotes K^k=�k(K)
(as in [Ar]), we conclude:

Proposition 3.9 Map�k
S (K^k;X^k) ! Map�k

S (�k(K);X^k) is a �bration

with �ber Map�k
S (K(k);X^k). Thus pk : PKk (X) ! PKk−1(X) is a �bration

with �ber FKk (X) = Map�k
S (K(k);X^k). Furthermore, there are natural weak

equivalences

FKk (X) �−! MapS(K(k);X^k)h�k � − (MapS(K(k); S) ^X^k)h�k :

The last statement here makes it clear that the Arone tower has the form of a
Goodwillie tower. In the language of [G3], we conclude:

Corollary 3.10 The kth Taylor coe�cient of the functor sending a space X
to the spectrum �1MapT (K;X) is the �k{spectrum MapS(K(k); S).
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4 The Smashing and Evaluation Theorems

4.1 The Smashing Theorem

The �rst of our general theorems studying additional structure in the Arone
tower involves smashing with a constant space K .

There is an unstable map

� : MapT (L;X)! MapT (K ^ L;K ^X)

which sends a function f : L! X to 1K ^ f : K ^L! K ^X . Note that this
map can be written as the composite

MapT (L;X)! MapT (K ^ L;K ^ L ^MapT (L;X))! MapT (K ^ L;K ^X)

where the �rst map is a unit of an adjunction, and the second map is induced by
�T : L^MapT (L;X)! X . Replacing T by S in this composite then similarly
de�nes

� : MapS(L;X)! MapS(K ^ L;K ^X);

and the unstable and stable maps will be compatible under stabilization in the
evident way.

Theorem 4.1 There are natural maps of towers

� : PL(X)! PK^L(K ^X)

with the following properties.

(1) There is a commutative diagram in S :

�1MapT (L;X)+

�

��

eL(X) // PL(X)

�

��
�1MapT (K ^ L;K ^X)+

eK^L(K^X) // PK^L(K ^X):

(2) The induced map on kth �bers is the composite

Map�k
S (L(k);X^k)

�−!Map�k
S (K^k ^ L(k);K^k ^X^k)

p�−! Map�k
S ((K ^ L)(k); (K ^X)^k);

where p : (K ^ L)(k) ! K^k ^ L(k) is the �k{equivariant projection.
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Corollary 4.2 The natural transformation of functors of X ,

�1� : �1MapT (L;X)! �1MapT (K ^ L;K ^X)

induces, on kth Taylor coe�cients, the �k{equivariant map of spectra

MapS(L(k); S)
�−!MapS(K^k ^ L(k);K^k)

p�−! MapS((K ^ L)(k);K^k):

Proof of Theorem 4.1 Given a surjection � : n!m, we de�ne

�� : MapS(L^m;X^n)! MapS((K ^ L)^m; (K ^X)^n)

to be the composite

MapS(L^m;X^n)
�−!MapS(K^m ^ L^m;K^m ^X^n)
��−! MapS(K^m ^ L^m;K^n ^X^n):

Note that �� is natural in all variables.

Given surjections n
�−! m �−! l, one easily veri�es that there is a commutative

diagram

MapS(L^m;X^n)
�� //

��
��

MapS((K ^ L)^m; (K ^X)^n)

��
��

MapS(L^l;X^n)
���� // MapS((K ^ L)^l; (K ^X)^n)

MapS(L^l;X^m)
�� //

��

OO

MapS((K ^ L)^l; (K ^X)^m):

��

OO

(4.1)

Recall that PL1(X) is de�ned as an equalizer. A �rst consequence of (4.1) is
that there is a commutative diagram

Y
n

MapS(L^n;X^n)

∏
n �

��

//
// Y
m

�−!l

MapS(L^l;X^m)

∏
� ��

��Y
n

MapS((K ^ L)^n; (K ^X)^n) //
// Y
m

�−!l

MapS((K ^ L)^l; (K ^X)^m):
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By taking equalizers, this then induces a �ltration preserving natural map

� : PL1(X)! PK^L1 (K ^X);

and thus a map on the associated towers.

To identify the induced map on �bers, we �rst note that

�� : MapS(L^m;X^n)! MapS((K ^ L)^m; (K ^X)^n)

also equals the composite

MapS(L^m;X^n)
�−!MapS(K^n ^ L^m;K^n ^X^n)
��−! MapS(K^m ^ L^m;K^n ^X^n):

This makes it clear that the �k{equivariant map

lim
�2(k#Ek−1)

�� : MapS(�k(L);X^k)! MapS(�k(K ^ L); (K ^X)^k)

can be identi�ed as the composite

MapS(�k(L);X^k)
�−!MapS(K^k ^�k(L);K^k ^X^k)
! MapS(�k(K ^ L); (K ^X)^k);

and the last part of the theorem follows.

Finally, statement (1) of the theorem is a consequence of the following commu-
tative diagram:

�1MapT (L;X)

�1�k
��

� // �1MapT (K ^ L;K ^X)

�1�k
��

�1MapT (L^k;X^k)

s

��

� // �1MapT ((K ^ L)^k; (K ^X)^k)

s

��
MapS(L^k;X^k)

� // MapS((K ^ L)^k; (K ^X)^k):

4.2 The evaluation theorem

The next of our general theorems concerns the compatiblity of the Arone tower
with generalized evaluation maps.

We have maps

� : K ^MapT (K ^ L;X)! MapT (L;X)
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de�ned as the adjoint to the evaluation map

�T : K ^ L ^MapT (K ^ L;X)! X

already discussed in x2.3.

Using the stable evaluation �S , we similarly have maps

� : K ^MapS(K ^ L;X)! MapS(L;X):

These unstable and stable generalized evaluation maps are compatible under
stablization, courtesy of Lemma 2.1.

Theorem 4.3 There are natural maps of towers

� : K ^ ~PK^L(X)! ~PL(X)

with the following properties.

(1) There is a commutative diagram in S :

�1K ^MapT (K ^ L;X)

�

��

1K^~eK^L(X) // K ^ ~PK^L(X)

�

��
�1MapT (L;X)

~eL(X) // ~PL(X):

(2) The induced map on kth �bers is the composite

K ^Map�k
S ((K ^ L)(k);X^k) d�−! K ^Map�k

S (K ^ L(k);X^k)
�−!Map�k

S (L(k);X^k);

where the �rst map is induced by the �k{equivariant map of spaces

d : K ^ L(k) ! (K ^ L)(k)

which arises by embedding K diagonally in K^k .

Corollary 4.4 The natural transformation of functors of X ,

�1� : �1K ^MapT (K ^ L;X)! �1MapT (L;X)

induces, on kth Taylor coe�cients, the �k{equivariant map of spectra

K ^MapS((K ^ L)(k); S) d�−! K ^MapS(K ^ L(k); S) �−!MapS(L(k); S):

Algebraic & Geometric Topology, Volume 2 (2002)



Structure in resolutions of mapping spaces 619

Proof of Theorem 4.3 Given a surjection � : n!m, we de�ne

�� : K ^MapS((K ^ L)^m;X^n)! MapS(L^m;X^n)

to be the composite

K ^MapS(K^m ^ L^m;X^n) d�−! K ^MapS(K ^ L^m;X^n)
�−!MapS(L^m;X^n);

where the �rst map is induced by the diagonal d : K ! K^m . Note that �� is
natural in all variables.

Given surjections n
�−! m �−! l, one easily veri�es that there is a commutative

diagram

K ^MapS((K ^ L)^m;X^n)
�� //

��
��

MapS(L^m;X^n)

��
��

K ^MapS((K ^ L)^l;X^n)
���� // MapS(L^l;X^n)

K ^MapS((K ^ L)^l;X^m)
�� //

��

OO

MapS(L^l;X^m):

��

OO

As in the proof of Theorem 4.1, there is thus an induced natural map of towers

� : K ^ ~PK^L(X)! ~PL(X):

The induced map on �bers is easy to identify. Note that the �k{equivariant
map

lim
�2(k#Ek−1)

�� : K ^MapS(�k(K ^ L);X^k)! MapS(�k(L);X^k)

can be identi�ed as the composite

K ^MapS(�k(K ^ L);X^k)! K ^MapS(K ^�k(L);X^k)
�−!MapS(�k(L);X^k);

where the �rst map is induced by the equivariant inclusion

K ^�k(L)! �k(K ^ L):

The last part of the theorem follows.

Statement (1) of the theorem follows by juxtaposing the two commutative dia-
grams
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�1K ^MapT (K ^ L;X)
1^�k //

�^�k

++WWWW
WWW

WWW
WWW

WWW
WWW

WW

�

��

�1K ^MapT ((K ^ L)^k;X^k)

�^1
��

�1K^k ^MapT ((K ^ L)^k;X^k)

�

��
�1MapT (L;X)

�k // �1MapT ((K ^ L)^k; (K ^X)^k);

and

�1K ^MapT ((K ^ L)^k;X^k) 1^s //

�^1
��

K ^MapS((K ^ L)^k;X^k)

�^1
��

�1K^k ^MapT ((K ^ L)^k;X^k)

�

��

1^s // K^k ^MapS((K ^ L)^k;X^k)

�

��
�1MapT ((K ^ L)^k; (K ^X)^k) s // MapS((K ^ L)^k; (K ^X)^k):

5 The Product and Diagonal Theorems

The goal of this section is to prove a general result about how the unstable
homeomorphisms

MapT (K _ L;X) = MapT (K;X) �MapT (L;X)

lead to pairings among the associated Arone towers. One thus gets pairings
among the spectral sequences which arise after applying any multiplicative co-
homology theory to the towers.

In discussing and proving our result, it seems necessary to �rst say a little
about the general theory of the smash product of towers. The results here are
unsurprising and presumably known, but we have been unable to �nd them
explicitly in the literature.
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5.1 Homotopy limits of spectra

If J is a small category, EJ+ : J ! T is de�ned by letting

EJ (j)+ = B(J # j)+:

Given a functor Y : J ! S , its homotopy limit is the spectrum de�ned by the
formula

holim
J

Y = MapJS (EJ+; Y ):

This construction is natural with respect to both the functor and the category.

We will make use of the following construction. Given X 2 S and Y : J ! S
there is a natural map

X ^ holim
J

Y ! holim
J

(X ^ Y ) (5.1)

de�ned as the adjoint to the composite

MapJS (EJ+; Y )! MapJS (X ^EJ+;X ^ Y ) = MapS(X;MapJS (EJ+;X ^ Y )):

Similarly, there is a natural map

(holim
J

Y ) ^X ! holim
J

(Y ^X) (5.2)

The notation X �Z Y will denote the homotopy pullback holim

 
Y

��
X // Z

!
:

The homotopy �ber of a map Y ! Z is then de�ned as � �Z Y .

5.2 Smash products of towers of spectra

If we let N denote the poset 0 < 1 < 2 < : : : , then a tower of spectra can
be regarded as a functor P : Nop ! S . Given towers P and Q, respectively
taking values in SU and SU 0 , the external smash product yields a bi{tower
P ^ Q : (N � N)op ! S(U � U 0). When the context is clear, we will repress
explicit notation for universes, and thus just write P ^Q : (N� N)op ! S .

Now suppose given a general bi{tower C : (N � N)op ! S . One then has an
associated tower (which we still call C ) with kth term given by

Ck = holim
i+j�k

Ci;j:

This tower can be understood homotopically via the next lemma.
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Lemma 5.1 Given a bi{tower C : (N� N)op ! S , the diagram

Ck

��

//
Q
i+j=k Ci;j

��
Ck−1

//
Q
i+j=k Ci−1;j �Ci−1;j−1 Ci;j−1

naturally homotopy commutes, and induces a natural homotopy equivalence on
homotopy �bers.

Sketch proof Let Ni � N be the poset 0 < 1 < � � � < i, and let (N � N)k �
N� N be the poset f(i; j) j i+ j � kg. There is a pushout of posets:‘

i+j=k Ni � Nj − f(i; j)g

��

// (N � N)k−1

��‘
i+j=k Ni � Nj // (N� N)k:

This induces a pullback of spectra

Ck

��

//
Q
i+j=k holimNi�Nj C

��
Ck−1

//
Q
i+j=k holimNi�Nj−f(i;j)gC

in which the two vertical maps are �brations. Now note that

holim
Ni�Nj

C ! C(i; j)

is an equivalence, as (i; j) is the terminal object in Ni � Nj , and

holim
Ni�Nj−(i;j)

C ! Ci−1;j �Ci−1;j−1 Ci;j−1

is an equivalence, as

8<: (i−1;j)

(i−1;j−1) //

OO

(i;j−1)

9=; is co�nal in Ni �Nj − f(i; j)g.

As in the introduction, if P is a tower, we let Fk(P ) denote the homotopy
�ber of Pk ! Pk−1 . Similarly, if C is a bi{tower, we let Fi;j(C) denote the
homotopy �ber of Ci;j ! Ci−1;j �Ci−1;j−1 Ci;j−1 . This is the same thing as the
iterated homotopy �ber of the square

Ci;j

��

// Ci;j−1

��
Ci−1;j // Ci−1;j−1:
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(See [G2, 1.1b].) Specializing to the case when C = P ^Q, use of construction
(5.2), and then (5.1), thus yields the composite

Fi(P ) ^ Fj(Q)! Fi(P ^ Fj(Q))! Fi;j(P ^Q): (5.3)

Lemma 5.2 Fi(P ) ^ Fj(Q) ! Fi;j(P ^ Q) is a natural weak equivalence of
spectra.

Sketch proof As a �bration sequence in spectra is homotopy equivalent to a
co�bration sequence, smashing a �bration sequence with a spectrum yields a
sequence equivalent to a �bration sequence. Applying this principle to each of
the two maps in (5.3) shows each to be an equivalence.

The two lemmas together have the following corollary.

Corollary 5.3 If P and Q are towers of spectra, the natural maps

Fk(P ^Q)!
Y
i+j=k

Fi;j(P ^Q) 
Y
i+j=k

Fi(P ) ^ Fj(Q)

are weak equivalences.

We now turn to a discussion of spectral sequences. Suppose h is a spectrum.
Applying h� and h� to a tower P yields left half plane homology and cohomol-
ogy spectral sequences fEr�;�(P )g and fE�;�r (P )g with

E1
−k;�(P ) = h�−k(Fk(P ))

and
E−k;�1 (P ) = h�−k(Fk(P )):

Now suppose h is a ring spectrum. Then the last corollary implies that, given
towers P and Q, there are natural pairings

E1
−i;m(P )⊗ E1

−j;n(Q)! E1
−(i+j);m+n(P ^Q)

and
E−i;m1 (P )⊗ E−j;n1 (Q)! E

−(i+j);m+n
1 (P ^Q):

One then has:

Theorem 5.4 The pairings extend to pairings of spectral sequences.
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The pairings have the expected properties. For example, in the cohomology
spectral sequence, the pairings are related to the pairing of �ltered groups

colim
i

h�(Pi)⊗ colim
j

h�(Qj)! colim
k

h�((P ^Q)k)

at the level of E1 .

A careful proof of this theorem seems to not appear in the literature. However, a
proof can be constructed in a straightforward manner by carefully mimicking the
discussion on pages 660{668 of G.W.Whitehead’s book [Wh] where he discusses
pairings in spectral sequences associated to products of �ltered spaces. The
translation into our setting involves arguments of the sort given in the proofs
of our two lemmas, but no other new ideas.

5.3 The Product Theorem

The homeomorphism

MapT (K _ L;X)+ = MapT (K;X)+ ^MapT (L;X)+

suggests that there should be a compatible weak equivalence between the two
towers PK_L(X) and PK(X) ^ PL(X). We will shortly see that this is the
case.

To be computationally useful, we will need to also identify the induced weak
equivalence on �bers. By Corollary 5.3, we have homotopy equivalences

Fk(PK(X) ^ PL(X)) �−!
Y
i+j=k

Fi;j(PK(X) ^ PL(X))

� −
Y
i+j=k

Map�i
S (K(i);X^i) ^Map�j

S (L(i);X^j):

Meanwhile, the �k{equivariant homeomorphism_
i+j=k

�k+ ^�i��j (K(i) ^ L(j)) = (K _ L)(k)

induces an isomorphism

FK_Lk (X) =
Y
i+j=k

Map�i��j
S (K(i) ^ L(j);X^k):

To state our main product theorem it is convenient to de�ne a bi{tower PK;L(X)
by the formula

PK;Li;j (X) = MapEi�EjS (K^ ^ L^;a�X^):

Here a�X^ : (E � E)op ! T is de�ned by a�X^(i; j) = X^(i+j) .
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Theorem 5.5 There are natural homotopy equivalences of towers

PK_L(X) �−! PK;L(X) � − PK(X) ^ PL(X)

with the following properties.

(1) There is a commutative diagram in S :

�1MapT (K _ L;X)+
eK_L(X) // PK_L(X)

o
��

PK;L(X)

�1MapT (K;X)+ ^MapT (L;X)+
eK(X)^eL(X) // PK(X) ^ PL(X):

o

OO

(2) The induced equivalences on kth �bers

FK_Lk (X) �−! Fk(PK;L(X)) � − Fk(PK(X) ^ PL(X))
�ts into a commutative diagram for each i+ j = k :

FK_Lk (X)

��

� // Fk(PK;L(X))

��

Fk(PK(X) ^ PL(X))
�oo

��
Map

�i��j
S (K(i) ^ L(j);X^k)

� // Fi;j(PK;L(X)) Fi;j(P
K(X) ^ PL(X))

�oo

Map
�i��j
S (K(i) ^ L(j);X^k)

Map�i
S (K(i); X^i)

^Map
�j
S (L(j);X^j),

�oo

o

OO

where the bottom map is the evident smash product map.

We will use the notation � : PK_L(X) �−! PK(X)^PL(X) to denote the weak
natural equivalence of the theorem.

Remark 5.6 In stating this theorem, we have continued to repress notation
for universes. However, we hope it is understood that, if PK(X) is a tower in
SU , and PL(X) is a tower in SU 0 , then the maps and objects in the theorem
are living in S(U � U 0).

The key to our product theorem is the following observation, hinted at in (5.3)
above. Let a : E � E ! E be the functor de�ned by a(i; j) = (i + j). This
induces a functor

a� : T E ! T E�E
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by pullback. This has a left adjoint a� : T E�E ! T E explicitly given by

a�X(k) = colim
k#E�E

X

where k # E �E is the category with objects all triples (i; j; �) where � : k!
(i + j) is a surjection. Then one has

Lemma 5.7 The inclusions K^m^L^n � (K_L)^m+n induce an isomorphism
in T E ,

a�(K^ ^ L^) = (K _ L)^;

and this restricts to give isomorphisms for all k

a�(colim
i+j�k

(K^i ^ L^j )) = (K _ L)^k :

We also record the following fact.

Lemma 5.8 hocolim
i+j�k

(K^i ^L^j )! colim
i+j�k

(K^i ^L^j ) is an equivalence in T E�E .

Proof Let (N�N)k denote the full subcategory of N�N with objects all (i; j)
such that i + j � k . It is easy to see that, for all n, K , and L, the functor
on N � N sending (i; j) to the space K^i (n) ^ L^j (n) is a co�brant object in
the model category structure on T (N�N)k described in [DS, x10.13]. The lemma
follows.

The maps in the theorem are now easy to de�ne. A natural equivalence

PK_Lk (X)! PK;Lk (X)

is de�ned by

PK_Lk (X) = MapES((K _ L)^k ;X
^)

= MapES(a�(colim
i+j�k

(K^i ^ L^j ));X^)

= MapE�ES (colim
i+j�k

(K^i ^ L^j );a�X^)

�−! MapE�ES (hocolim
i+j�k

(K^i ^ L^j );a�X^)

= holim
i+j�k

MapE�ES (K^i ^ L^j ;a�X^)

= holim
i+j�k

PK;Li;j (X) = PK;Lk (X):
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The map of towers PK(X) ^ PL(X) ! PK;L(X) is even more evident. It is
the map on towers induced by the map of bi{towers

^ : MapEiS (K^;X^) ^MapEjS (L^;X^)! MapEi�EjS (K^ ^ L^;a�X^):

(This is not so evidently a homotopy equivalence, but, we will learn that it is.)

The theorem is now easily proved.

First, we check that the diagram in (1) commutes. This will follow if we verify
that, for all i+ j = k , the diagram

�1MapT (K _ L;X)+

eK_L(k) // MapS((K _ L)^k;X^k)

��
MapS(K^i ^ L^j ;X^k)

�1MapT (K;X)+ ^MapT (L;X)+

eK (i)^eL(j) // MapS(K^i;X^i) ^MapS(L^j ; X^j)

OO

commutes, where we have written eK(i) for eK(X; i), etc. But this diagram
commutes, as one easily checks that the diagram of spaces

MapT (K _ L;X)
�k // MapT ((K _ L)^k; X^k)

��
MapT (K^i ^ L^j ; X^k)

MapT (K;X)�MapT (L;X)
�i��j // MapT (K^i; X^i)�MapT (L^j; X^j)

OO

commutes, and then Lemma 2.2 implies that the diagram

�1MapT ((K _ L)^k; X^k)

��

s // MapS((K _ L)^k; X^k)

��
�1MapT (K^i ^ L^j; X^k) s // MapS(K^i ^ L^j; X^k)

�1MapT (K^i; X^i) ^MapT (L^j; X^j) s^s //

OO

MapS(K^i; X^i) ^MapS(L^j ; X^j)

OO

commutes.
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The lower rectangle in (2) commutes by inspection, the top left square commutes
by de�nition, and the top right square commutes by naturality. In this diagram,
the two downward arrows are equivalences arising from Lemma 5.1, the top
rightward arrow is an equivalence as it is induced by an equivalence of towers,
and the lower leftward arrow is an equivalence by Corollary 2.11. It follows
that all the other arrows here are equivalences, as asserted. In particular, the
map of towers PK(X) ^ PL(X)! PK;L(X) induces equivalences on all �bers,
thus (inducting up the tower) is itself a homotopy equivalence.

5.4 The Diagonal Theorem

Let r : K _K ! K be the fold map. Since the diagonal on MapT (K;X) has
a factorization

MapT (K;X)
r�

))RRR
RR

RR
RR

RR
RR

R

� // MapT (K;X) �MapT (K;X);

MapT (K _K;X)

hhhhhhhhhhhhhhhhhh

hhhhhhhhhhhhhhhhhh

our Product Theorem has consequences for the diagonal map.

Let Ψ : PK(X)! PK(X) ^ PK(X) be the weak natural transformation

PK(X) r
�
−−! PK_K(X)

�−! PK(X) ^ PK(X):

Theorem 5.9 The weak natural transformation Ψ has the following proper-
ties.

(1) There is a commutative diagram of weak natural transformations:

�1MapT (K;X)+

�
��

eK(X) // PK(X)

Ψ
��

�1MapT (K;X)+ ^MapT (K;X)+
eK(X)^eK (X)// PK(X) ^ PK(X):

(2) Via the natural weak equivalences FKk (X) ’ MapS(K(k);X^k)h�k and

Fk(PK(X)^PK(X)) ’
Y
i+j=k

MapS(K(i);X^i)h�i^MapS(K(j);X^j)h�j ;
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the map induced by Ψ on kth �bers is the product, over i+ j = k , of the
composites of the weak natural transformations

MapS(K(k);X^k)h�k

Tr
�k
�i��j−−−−−! MapS(K(k);X^k)h(�i��j)

��−! MapS(K(i) ^K(j);X^k)h(�i��j)

� −MapS(K(i);X^i)h�i ^MapS(K(j);X^j)h�j ;

where � : K(i) ^K(j) ! K(k) is the projection.

Property (1) follows immediately from property (1) of Theorem 5.5. To see that
(2) follows from Theorem 5.5(2), we �rst observe that there is a factorization

K(i) ^K(j) � //

''OO
OO

OO
OO

OO
O

K(k);

(K _K)(k)

r(k)
99ssssssssss

and thus a commutative diagram

Map�k
S (K(k);X^k)

r�
��

// Map�i��j
S (K(k);X^k)

��

��

Map�k
S ((K _K)(k);X^k) // Map�i��j

S (K(i) ^K(j);X^k):

Thus Theorem 5.5(2) implies that the map on �bers can be identi�ed with the
product, over i + j = k , of the right vertical composites in the commutative
diagrams of weak natural transformations

MapS(K(k);X^k)h�k

Tr
��

�
�

// Map�k
S (K(k);X^k)

��

MapS(K(k);X^k)h(�i��j)
�
�

//

��

��

Map�i��j
S (K(k);X^k)

��

��

MapS(K(i) ^K(j);X^k)h(�i��j)
�
�

// Map�i��j
S (K(i) ^K(j);X^k)

MapS(K(i);X^i)h�i

^MapS(K(j);X^j)h�j

�^�
�

//

o

OO

Map�i
S (K(i);X^i)

^Map�j
S (K(j);X^j):

o

OO
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6 Compatibility results

The following propositions and corollaries state that our various natural trans-
formations are compatible in the expected ways. The three propositions are
easily veri�ed by directly checking their de�nitions.

Proposition 6.1 For all J , K , and L, the diagram of natural transformations
of towers

K ^ ~PK^L(X)

�

��

1^� // K ^ ~P J^K^L(J ^X)
�
�

// K ^ ~PK^J^L(J ^X)

�

��
~PL(X)

� // ~P J^L(J ^X)

commutes, where � is the isomorphism induced by the twist map J^K ! K^J .

Proposition 6.2 For all J , K , and L, the diagram of weak natural transfor-
mations of towers

PK_L(X)

�o
��

� // P J^(K_L)(J ^X) P (J^K)_(J^L)(J ^X)

�o
��

PK(X) ^ PL(X)
�^� // P J^K(J ^X) ^ P J^L(J ^X)

commutes.

Corollary 6.3 For all J and K , the diagram of weak natural transformations
of towers

PK(X)

Ψ
��

� // P J^K(J ^X)

Ψ
��

PK(X) ^ PK(X)
�^� // P J^K(J ^X) ^ P J^K(J ^X)

commutes.

Example 6.4 A consequence of this corollary is that the truth of Corol-
lary 1.7, for all n <1, implies that Corollary 1.7 is true when n =1.

Algebraic & Geometric Topology, Volume 2 (2002)



Structure in resolutions of mapping spaces 631

Proposition 6.5 For all J , K , and L, the diagram of weak natural transfor-
mations of towers

J ^ ~P J^(K_L)(X)

�^1
��

� // ~PK_L(X)

�o

��

J ^ J ^ ~P (J^K)_(J^L)

1^�o
��

J ^ J ^ ~P J^K ^ P J^L
1^�^1
�

// J ^ ~P J^K ^ J ^ ~P J^L
�^� // ~PK(X) ^ ~PL(X)

commutes, where � is the diagonal and � is the twist isomorphism.

Corollary 6.6 For all J and K , the diagram of weak natural transformations
of towers

J ^ ~P J^K(X)

�^Ψ

��

� // ~PK(X)

Ψ
��

J ^ J ^ ~P J^K ^ ~P J^K
1^�^1
�

// J ^ ~P J^K ^ J ^ ~P J^K
�^� // ~PK(X) ^ ~PK(X)

commutes, where � is the diagonal and � is the twist isomorphism.

Example 6.7 With J = S1 , a typical consequence of this would be the fol-
lowing. Let fE�;�r (K;X)g be the spectral sequence obtained from PK(X) by
applying a cohomology theory with products. Then, because the reduced diag-
onal � : S1 ! S1 ^ S1 is null, one deduces that

Er(�) : E�;�+1
r (K;X) ! E�;�r (�K;X)

is zero on the algebra decomposables in E�;�r (K;X). If the cohomology theory
satis�es a Kunneth theorem (e.g. it is ordinary cohomology with �eld coe�-
cients), the pinch map on S1 shows that E�;�r (�K;X) is a Hopf algebra, and
formal manipulations then also imply that the image of Er(�) is contained in
the primitives.

7 Little cubes and an explicit S{duality map

7.1 Basic constructions with little cubes

Let I be the interval [−1; 1], and let C(n; 1) be the space of ‘little n{cubes’,
the space of embeddings In ! In which are products of n a�ne orientation
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preserving maps from I to itself. Then C(n; k) is de�ned to be the subspace
of C(n; 1)k consisting of k{tuples of little n{cubes whose images have disjoint

interiors. Thus a point c 2 C(n; k) can be viewed an embedding c :
‘k
i=1

�
In!

�
In

of a special form.

Given a space Z , let F (Z; k) � Zk denote the con�guration space of k distinct
points in Z :

F (Z; k) = f(z1; : : : ; zk) j zi 6= zj if i 6= jg:

It is well known and easy to prove that the map

C(n; k)! F (
�
In; k);

sending a k{tuple of little n{cubes,

(c1; : : : ; ck);

to their centers,
(c1(0); : : : ; ck(0));

is a �k{equivariant homotopy equivalence.

A point in C(n; k) provides a tubular neighborhood around the 0-dimensional

submanifold of
�
In , consisting of the k center points. This suggests the following

construction. Given a point in C(n; k), c :
‘k
i=1

�
In−!

�
In , let

c� : Sn −!
k_
i=1

Sn

be the associated Thom{Pontryagin collapse map. Then de�ne

�(n; k) : C(n; k)+ ! MapT (Sn;
k_
i=1

Sn)

by �(n; k)(c) = c� . Note that this is �k{equivariant.

The maps �(n; k) are the starting points for two other families of maps.

Let �(n; 1) : C(n; 1)+ ^ Sn ! Sn be the adjoint of �(n; 1). Then notice that
the subspace C(n; k)+ ^ �k(Sn) � C(n; k)+ ^ Snk is sent to the basepoint by
the map

�(n; 1)^k : C(n; k)+ ^ Snk � C(n; 1)k+ ^ Snk ! Snk:

Thus �(n; 1)^k induces a �k{equivariant map

�(n; k) : C(n; k)+ ^ Sn(k) ! Snk:
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A second family of �k{equivariant maps

�(m;n; k) : Sm ^ C(m + n; k)+ ! Smk ^ C(n; k)+

is then de�ned by the following diagram:

Sm ^ C(m+ n; k)+�
_

�^i
��

�(m;n;k) // Smk ^ C(n; k)+�
_

��
Smk ^ C(m; 1)k+ ^ C(n; 1)k+

(�(m;1)^k��)^1// Smk ^ C(n; 1)k+;

where � : Smk ^ C(m; 1)k+ ’ C(m; 1)k+ ^Smk is the switch map, � : Sm ,! Smk

is the diagonal, and i : C(m + n; k) ,! C(m; 1)k � C(n; 1)k is the map which
regards each little (m+n){cube as the product of a little m{cube with a little
n{cube.

7.2 The duality theorem and consequences

The following duality theorem will be proved in x7.3.

Theorem 7.1 The map �(n; k) : C(n; k)+ ^ Sn(k) ! Snk is an equivariant
S{duality pairing.

In other words, the stable adjoint
~�(n; k) : �1C(n; k)+ ! MapS(Sn(k); Snk)

is a homotopy equivalence of �k{spectra.

Given a space X , the map �(n; k) induces a natural map

MapS(Snk;X^k)! MapS(C(n; k)+ ^ Sn(k);X^k):

A consequence of the duality theorem is that the adjoint of this,

C(n; k)+ ^MapS(Snk;X^k)! MapS(Sn(k);X^k); (7.1)

is a weak equivalence of �k{spectra. Passing to homotopy orbits, we have
constructed the natural weak equivalence (1.2) of the introduction:

FS
n

k (X) ’ (C(n; k)+ ^MapS(Snk;X^k))h�k :

Using [LMMS, Thm.I.7.9 and Prop.VI.5.3], we then deduce (1.3):

FS
n

k (X) ’ C(n; k)+ ^�k (�−nX)^k:

Assuming the duality theorem, we now deduce the corollaries of the introduction
from the corresponding theorems.
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Proof of Corollary 1.2 We specialize the Smashing Theorem to the case
when K = Sn and L = Sm . We need to show that, under the equivalence
(7.1), the description of the map on �bers given in the theorem, corresponds to
the description given in the corollary.

By formal manipulation of adjunctions, we are asserting that there is a com-
mutative diagram of �k{spectra:

C(m;k)+

~�(m;k)

�
//

i

��

MapS(Sm(k); Smk)

�

��
MapS(Sm(k) ^ Snk; Smk ^ Snk)

p�

��
C(m + n; k)+

~�(m+n;k)

�
// MapS((Sm+n)(k); (Sm+n)^k):

Here i is the inclusion induced by multiplying all little m{cubes by the identity
n{cube.

Again adjointing, we just need to check that there is a commutative diagram
of �k{spaces:

C(m;k)+ ^ (Sm+n)(k)

1^p

��

i^1 // C(m + n; k)+ ^ (Sm+n)(k):

�(m+n;k)

��
C(m;k)+ ^ Sm(k) ^ Snk

�(m;k)^1 // Smk ^ Snk = (Sm+n)^k

This diagram, in turn, is a quotient of smash products of the diagram in the
case when k = 1. This is the diagram

C(m; 1)+ ^ Sm+n

i

((RR
RR

RR
RR

RR
RR

R

�(m;1)^1 // Sm+n

C(m + n)+;

�(m+n;1)

OO

which is easily veri�ed to be commutative.

Proof of Corollary 1.7 The corollary follows from the Diagonal Theorem,
once we verify that, for all i + j = k , there is a commutative diagram of
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�i � �j {spectra:

C(n; k)+

~�(n;k)

�
//

i

��

MapS(Sn(k); Snk)

��

��
MapS(Sn(i) ^ Sn(j); Snk)

(C(n; i) � C(n; j))+

~�(n;i)^~�(n;i)

�
// MapS(Sn(i); Sni) ^MapS(Sn(j); Snj)

�
OO

Here i is the inclusion which sends a k{tuple of little cubes to the �rst i cubes
and the last j cubes.

This diagram of spectra commutes because there is a commutative diagram of
�i � �j {spaces:

C(n; k)+ ^ Sn(i) ^ Sm(j)

1^�

��

i^1 // C(n; i)+ ^ C(n; j)+ ^ Sn(i) ^ Sn(j)

1^�^1
��

C(n; i)+ ^ Sn(i) ^ C(n; j)+ ^ Sn(j)

�(n;i)^�(n;j)
��

C(n; k)+ ^ Sn(k)
�(n;k) // Snk = Sni ^ Snj:

Here � is the twist map.

Proof of Corollary 1.9 The corollary follows from the Evaluation Theorem,
once we verify that there is a commutative diagram of �k{spectra:

Sm ^ C(m+ n; k)+
1^~�(m+n;k)

�
//

�(m;n;k)

��

Sm ^MapS((Sm+n)(k); (Sm+n)^k)

1^d�
��

Sm ^MapS(Sm ^ Sn(k); (Sm+n)^k)

�

��
Smk ^ C(n; j))+;

� // MapS(Sn(k); Smk ^ Snk)

where the unlabelled horizontal arrow is adjoint to

1 ^ �(n; k) : Smk ^ C(n; k)+ ^ Sn(k) ! Smk ^ Snk:
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This diagram of spectra commutes because there is a diagram of �k{spaces:

C(m + n; k)+ ^ (Sm+n)(k)
�(m+n;k) // (Sm+n)^k = Smk ^ Snk

C(m + n; k)+ ^ Sm ^ Sn(k)

1^d

OO

Sm ^ C(m+ n; k)+ ^ Sn(k)

�^1

OO

�(m;n;k)^1 // Smk ^ C(n; k)+ ^ Sn(k);

1^�(n;k)

OO

easily checked to be commutative.

7.3 Proof of the duality theorem

Our strategy in proving Theorem 7.1 is to show our map is equivariantly ho-
motopic to a duality map constructed in a standard way.

We begin with a general equivariant duality construction. Let V be a real repre-
sentation of a �nite group G, and let SV denote the one point compacti�cation
V [ f1g, regarded as a based G{space with basepoint 1.

Let � : V+ ^ SV ! SV be de�ned by

�(x; y) =

(
x− y if x; y 2 V
1 otherwise.

This is a well{de�ned continuous G{map.

Let K � SV be a based G{subspace such that (SV ;K) is an equivariant NDR
pair. (Equivalently, the inclusion of K into SV is an equivariant co�bration.)
The map � induces a map of pairs:

� : (SV −K)+ ^ (SV ;K)! (SV ; SV − 0):

The following is presumably well known.

Proposition 7.2 � is an S{duality map, in the sense that

(SV −K)+ ^ (SV ;K)
�−! (SV ; SV − 0) � − (SV ;1)

induces a duality map �� : (SV −K)+ ^ SV =K ! SV .
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Sketch Proof In the nonequivariant case, this can be read o� of Spanier’s
original paper [Sp]. For the equivariant case, apply [LMMS, Construction
III.4.5] to the following situation: let N � SV be a G{neighborhood of K such
that K � N is an equivariant homotopy equivalence, then let X = SV −N and
A = ;. Via the equivalences C(V; V −X) ’ SV =K and C(X; ;) ’ (SV −K)+ ,
the map this construction yields corresponds to ��.

Example 7.3 This construction gives us �k { duality maps

�(n; k) : F (Rn; k)+ ^ (Snk;�k(Sn))! (Snk; Snk − 0):

Now consider the following situation. Suppose given

� : Rn+ ^ Sn ! Sn

satisfying the condition

�(x; y) = 0 only if x = y: (7.2)

Then �^k : Rnk+ ^ Snk ! Snk restricts to de�ne a �k{equivariant map

�(k) : F (Rn; k)+ ^ (Snk;�k(Sn))! (Snk; Snk − 0):

Example 7.4 If �(n) : Rn+ ^ Sn ! Sn is de�ned by

�(n)(x; y) =

(
x− y if x; y 2 Rn

1 otherwise,

the resulting map

�(n; k) : F (Rn; k)+ ^ (Snk;�k(Sn))! (Snk; Snk − 0)

is precisely the duality map of Example 7.3.

A little variation on this last construction goes as follows. Suppose given

� : C(n; 1)+ ^ Sn ! Sn

satisfying the condition

�(c; y) = 0 only if c(0) = y: (7.3)

(Recall that c(0) is the center of the little cube c.) Then

�^k : C(n; 1)k+ ^ Snk ! Snk

restricts to de�ne a �k{equivariant map

�(k) : C(n; k)+ ^ (Snk;�k(Sn))! (Snk; Snk − 0):
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Example 7.5 Choose a homeomorphism h :
�
In
�−! Rn . Then de�ne

d(n) : C(n; 1)+ ^ Sn ! Sn

to be the composite

C(n; 1)+ ^ Sn !
�
In+ ^Sn h^1−−! Rn+ ^ Sn

�(n)−−! Sn;

where the �rst map sends a little cube to its center, and �(n) is as in Exam-
ple 7.4. The resulting family of maps,

d(n; k) : C(n; k)+ ^ (Snk;�k(Sn))! (Snk; Snk − 0);

will be duality maps, as the maps �(n; k) were.

Example 7.6 Let �(n) : C(n; 1)+^Sn ! Sn be de�ned by �(n)(c; y) = c�(y).
Then (7.3) holds, and the resulting maps

�(n; k) : C(n; k)+ ^ (Snk;�k(Sn))! (Snk;1) ,! (Snk; Snk − 0)

are the maps of x7.1.

Let id 2 C(n; 1) denote the identity cube.

Lemma 7.7 Suppose � : C(n; 1)+ ^ Sn ! Sn satis�es (7.3) and also

�(id; y) = y for all y in Sn. (7.4)

Then �(k) is equivariantly homotopic to the map d(n; k) of Example 7.5.

Momentarily assuming this, Theorem 7.1 follows: since the map �(n) of the
Example 7.6 satis�es the hypotheses of the lemma, we conclude that �(n; k) is
homotopic to the known duality map d(n; k).

Proof of Lemma 7.7 A map � satisfying (7.3) can be regarded as a map of
pairs

(C(n; 1)+ ^ Sn; C(n; 1)+ ^ Sn − f(c; y) j c(0) = yg) �−! (Sn; Sn − 0):

Now we observe that the inclusion Sn ,! C(n; 1)+ ^ Sn sending y to (id; y)
induces a homotopy equivalence of pairs

i : (Sn; Sn − 0) �−! (C(n; 1)+ ^ Sn; C(n; 1)+ ^ Sn − f(c; y) j c(0) = yg):
Thus maps � satisfying (7.3) are classi�ed up to homotopy by the homotopy
class of � � i : (Sn; Sn − 0) ! (Sn; Sn − 0). But condition (7.4) precisely says
that ��i is the identity map, as is d(n)�i. Thus � is homotopic to d(n) through
maps satisfying (7.3), and so �(k) is homotopic to d(n; k) for all k .
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8 The operad action theorem

In this section we use some of the ideas from the previous section to state and
prove a more precise version of Theorem 1.10.

Firstly, the structure map

�(r) : C(n; r)��r (ΩnX)r ! ΩnX;

is easy to de�ne. Since (ΩnX)r = MapT (
_
r

Sn;X), �(r) is the map induced

by
�(n; r) : C(n; r)+ ! MapT (Sn;

_
r

Sn):

Next we observe that contravariant functor from spaces to towers of spectra
sending K to PK(X) is continuous, and that eK(X) is a natural transformation
of continuous functors. Thus one gets maps

MapT (K;L)! MapS(PL(X); PK(X));

natural in all variables, and compatible with

MapT (K;L)! MapT (MapT (L;X);MapT (K;X)):

Adjointing the �r{equivariant composite

C(n; r)+
�(n;r)−−−−! MapT (Sn;

_
r

Sn)! MapS(P
∨
r S

n
(X); PS

n
(X))

yields a natural maps of towers

�(r) : C(n; r)+ ^�r P
∨
r S

n
(X)! PS

n
(X):

This is the map of Theorem 1.10, and property (1) listed there clearly holds.

It remains to identify the map on kth �bers in terms of the little n{cubes operad
structure.

One approach to the operad structure is as follows. Let C(n; r; k) be the space
of all embeddings

c :
ka
i=1

�
In!

ra
j=1

�
In

such that each nontrivial component is a little n{cube. This is a �r��k{space.
Then the operad structure is given by the �k{equivariant maps

�r;k : C(n; r)��r C(n; r; k)! C(n; k)
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sending (c; d) to the composition c � d.

To see that this agrees with the de�nition given in [M], note that C(n; r; k)
decomposes as the product, over all maps � : k! r, of the spaces

C(n; k1)� � � � � C(n; kr);
where kj = j�−1(j)j, and the corresponding component of �r;k is the usual
structure map.

The kth �ber of P
∨
r S

n
(X) is naturally equivalent to

MapS((
_
r

Sn)(k);X^k)h�k ;

and, by construction, the map �(r; k) induced by �(r) on kth �bers is induced
in the apparent way by �(n; r).

Generalizing de�nitions in x7, let

�(n; r; 1) : C(n; r; 1)+ ^ (
_
r

Sn)! Sn

be the map sending (c; t) to c�(t), where c� :
W
r S

n ! Sn is the Thom{
Pontryagin collapse map associated to c. As before, �(n; r; 1)^k induces maps

�(n; r; k) : C(n; r; k)+ ^ (
_
r

Sn)(k) ! Snk:

Using Theorem 7.1, one can deduce that the stable adjoint of �(n; r; k),
~�(n; r; k) : �1C(n; r; k)+ ! MapS((

_
r

Sn)(k); Snk)

is an equivalence. There results a natural weak equivalence of �r{spectra:

C(n; r; k)+ ^�k (�−nX)^k ’ MapS((
_
r

Sn)(k);X^k)h�k :

We note that it is easy to see that this equivalence is compatible with the
decomposition of MapS((

W
r S

n)(k);X^k)h�k arising in our product theorems.

Property (2) of Theorem 1.10 can now be more precisely stated.

Proposition 8.1 There is a commutative diagram of weak natural transfor-
mations:

C(n; r)+ ^�r C(n; r; k)+ ^�k (�−nX)^k
�r;k^1

//

o
��

C(n; k)+ ^�k (�−nX)^k

o
��

C(n; r)+ ^�r MapS((
W
r S

n)(k);X^k)h�k

�(r;k)(X) // MapS(Sn(k);X^k)h�k :
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Proof It su�ces to show that there is a commutative diagram of �k{spaces

C(n; r)��r C(n; r; k)
�r;k //

1�~�(n;r;k)
��

C(n; k)

~�(n;k)
��

C(n; r)��r MapT ((
W
r S

n)(k); Snk) � // MapT (Sn(k); Snk)

where � is induced by �(n; r). That this diagram commutes is easily checked:
given c 2 C(n; r) and d = (d1; : : : ; dk) 2 C(n; r; k), we have that

(� � (1� ~�(n; r; k)))(c; d) = (d�1 � c�) ^ : : : ^ (d�k � c�);

while
(~�(n; k) � (�r;k))(c; d) = (c � d1)� ^ : : : ^ (c � dk)�:

These agree because the Thom{Pontryagin collapse is a contravariant functor:

(c � d)� = d� � c�:

A A proof of Arone’s theorem when K is a sphere

In this appendix, we give a proof of Theorem 3.6 in the case when K is a
sphere. The �rst reductions follow along the lines of Arone’s proof in [Ar], but
we use Theorem 7.1 to simplify the proof of the last key step: proving that a
certain ‘cross e�ect’ map is an equivalence. It seems likely that some variant of
our proof can be used to prove the theorem in general. As does Arone, we use
ideas from Goodwillie calculus at a couple of points.

The theorem we are trying to prove says that

eS
n

1 (X) : �1MapT (Sn;X)+ ! PS
n

1 (X)

is a weak homotopy equivalence if the connectivity of X is greater than n.

To explain why this is equivalent to Theorem 3.6, and to e�ect our �rst reduc-
tion, let F (X) and G(X) respectively denote the domain and range of eS

n

1 (X).
[G2, Example 4.5] says that F (X) is n{analytic: this means that F behaves
well (in a precise sense de�ned in [G2]) on n-connected spaces. Consideration
of the �bers of the Arone tower, identi�ed in Proposition 3.9, shows that the
projection maps

qk : G(X) = PS
n

1 (X)! PS
n

k (X)

are (1 + conn X − n)(1 + k)− 1 connected, and then that G(X) is n-analytic.
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Goodwillie’s argument proving [G2, Prop.5.1] then shows that eS
n

1 (X) will be
a weak equivalence for all n{connected X if it is an equivalence for all X of
the form �nY , with Y connected.

At this point, we use the classical model Cn(Y ) for MapT (Sn;�nY ) built from
the spaces C(n; k).

For a space Y with basepoint �, let

Cn(Y ) = (
1a
k=1

C(n; k)��k Y
k)=(�);

where (c1; : : : ; ck; y1; : : : ; yk−1; �) � (c1; : : : ; ck−1; y1; : : : ; yk−1) generates the
equivalence relation. Cn(Y ) is �ltered, with

FkCn(Y ) = (
ka
j=1

C(n; j)��j Y
j)=(�);

and there are co�bration sequences

Fk−1Cn(Y )! FkCn(Y )! C(n; k)+ ^�k Y
^k:

A natural map �n(Y ) : Cn(Y ) ! MapT (Sn;�nY ) is de�ned to be the map
induced by the composites

C(n; k)� Y k �(n;k)��−−−−−−! MapT (Sn;
_
k

Sn)�MapT (
_
k

Sn;�nY ) �−!MapT (Sn;�nY ):

Explicitly, if we regard c 2 C(n; k) as an embedding c :
‘
k

�
In−!

�
In , and

y 2 Y k as a based map y :
W
k S

0 ! Y , then

�n(Y )([c; y]) = (�ny) � c�:

The classical theorem, [M, Thm.2.7], then states that �n(Y ) is a weak homo-
topy equivalence if Y is connected.

It follows that, to show eS
n

1 (�nY ) is an equivalence, it su�ces to show that

�(n; k; Y ) : �1FkCn(Y )+ ! PS
n

k (�nY )

is an equivalence, where �(n; k; Y ) is the composite

�1FkCn(Y )+ ,! �1Cn(Y )+
�n(Y )−−−−! �1MapT (Sn;�nY )+

eS
n

k (�nY )
−−−−−−! PS

n

k (�nY ):
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This we proceed to show by induction on k , using ideas from [G3]. If G : T ! S
is a functor, we let pkG : T ! S be its universal k{excisive quotient, and
�kG : T k ! S its kth cross e�ect.

It is quite easy to see that pk preserves �bration sequences of functors, and,
since our functors take values in spectra, also co�bration sequences. Also, the
functor C(n; k)+ ^�k Y

^k is an example of a homogeneous functor of degree k ,
i.e. a functor G with G ’ pkG and pk−1G ’ �.

Such considerations show that both �1FkCn and PS
n

k are k{excisive, and both
i : Fk−1Cn ,! FkCn and p : PS

n

k ! PS
n

k−1 induce equivalences after applying
pk−1 . Then the inductive hypothesis, combined with the commutativity of the
diagram

�1FkCn(Y )+
�(n;k;Y ) // PS

n

k (�nY )

p

��
�1Fk−1Cn(Y )+

�(n;k−1;Y ) //

i

OO

PS
n

k−1(�nY )

shows that pk−1�(n; k; Y ) is an equivalence for all Y .

[G3, Proposition 3.4] implies that a natural map � between k{excisive functors
will be an equivalence if both pk−1� and �k� are equivalences. Thus, our
inductive proof that �(n; k; Y ) is an equivalence will be complete if we establish
that

�k�(n; k)(Y1; : : : ; Yk) : �k�1FkCn(Y1; : : : ; Yk)! �kP
Sn

k (�nY1; : : : ;�nYk)

is an equivalence.

Cross e�ects are de�ned as iterated �bers of certain cubical diagrams. But if
a functor G takes values in spectra (where �nite coproducts are equivalent to
�nite products), �kG(Y1; : : : ; Yk) is naturally equivalent to the iterated co�ber
of the k{dimensional cube with entries G(Z1 _ � � �_Zk) with Zj 2 f�; Yjg, and
the canonical map G(Y1 _ � � � _ Yk)! �kG(Y1; : : : ; Yk) is a retraction.

It is immediate from the de�nitions that, when G = �1FkCn , this retraction
is the map

�1FkCn(Y1 _ � � � _ Yk)+ ! �1C(n; k)+ ^ (Y1 ^ : : : Yk)

induced by the evident map

C(n; k)+ ��k (Y1 _ � � � _ Yk)k ! C(n; k)+ ^ (Y1 ^ : : : ^ Yk):
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Now note that the functor � : SEk ! S�k , which sends a functor X to the
�k{spectrum Xk=Xk−1(k), induces a natural map

� : MapEkS (K^;X^)! Map�k
S (K(k);X(k))

such that

Map�n
T (K(k);X^k) i−!MapEkS (K^;X^)

�−!Map S�k(K(k);X(k))

is induced by � : X^k ! X(k) . It follows that, when G = PS
n

k � �n , the
retraction is equivalent to the composite

MapEkS (S^; (�nY1 _ � � � _ �nYk)^)
�−!Map�k

S (Sn(k); (�nY1 _ � � � _ �nYk)(k))

! MapS(Sn(k);�nY1 ^ : : :�nYk):

If Y is a space, let ~�(n; k; Y ) : C(n; k)+^Y ! MapS(Sn(k); Snk^Y ) be the map
adjoint to �(n; k)^ 1Y . By Theorem 7.1, ~�(n; k; Y ) will be a weak equivalence.

Lemma A.1 The diagram

�1C(n; k)+ ��k (Y1 _ � � � _ Yk)k

��

�(n;k)(Y1_���_Yk) // MapEkS (S^; (�nY1 _ � � � _ �nYk)^)

��
�1C(n; k)+ ^ (Y1 ^ : : : ^ Yk)

~�(n;k;Y1^:::^Yk) // MapS(Sn(k);�nY1 ^ : : : ^ �nYk)

commutes.

Assuming this, our proof of Theorem 3.6 is done, as we can identify the map
�k�(n; k)(Y1; : : : ; Yk) with the weak equivalence ~�(n; k; Y1 ^ : : : ^ Yk).

The functor T ! T sending Y to Y (k) is continuous. Thus it induces natural
maps �(k) : MapT (K;Y ) ! MapT (K(k); Y (k)). Recalling the de�nition of the
maps eKk (X), one sees that the commutativity of the diagram in the lemma
will follow from the commutativity of the following diagram of spaces, when
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Y = Y1 _ � � � _ Yk :

C(n; k)+ � Y k

��

�(n;k)�� // MapT (Sn;
W
k S

n)�MapT (
W
k S

n;�nY )

�
��

MapT (Sn;�nY )

�(k)

��
MapT (Sn(k); (�nY )(k))

��
C(n; k)+ ^ (Y1 ^ : : : ^ Yk)

~�(n;k;Y1^:::^Yk) // MapT (Sn(k);�nY1 ^ : : :�nYk):

The commutativity of this diagram is veri�ed easily. That the two maps agree
on an element (c1; : : : ; ck; y1; : : : ; yk), with ci 2 C(n; 1) and yi 2 Yi (viewed as
a map yi : S0 ! Yi), amounts to the observation that the diagram

Snk

c�1^:::^c�k
��

c^k // (
W
k S

n)^k
(�n(y1_���_yk))^k // (�nY1 _ � � � _ �nYk)^k

��
Snk

�ny1^:::^�nyk // �nY1 ^ : : : ^ �nYk

commutes.

Remark A.2 The argument here shows that the natural transformations

eS
n

k (�nY ) : �1(Ωn�nY )+ ! PS
n

k (�nY )

and
pS

n

k (�nY ) : PS
n

k (�nY )! PS
n

k−1(�nY )

admit compatible natural weak right inverses

sk : PS
n

k (�nY )! �1(Ωn�nY )+

and
tk : PS

n

k−1(�nY )! PS
n

k (�nY ):

This is a form of the Snaith splitting theorem, and the splitting obtained this
way is equivalent to other classical constructions [K2, Appendix B].
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