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Abstract Let Vo and Vi be complex vector bundles over a space X.
We use the theory of divisors on formal groups to give obstructions in
generalised cohomology that vanish when Vp and V; can be embedded in a
bundle U in such a way that Vo \'V; has dimension at least k everywhere.
We study various algebraic universal examples related to this question, and
show that they arise from the generalised cohomology of corresponding
topological universal examples. This extends and reinterprets earlier work
on degeneracy classes in ordinary cohomology or intersection theory.
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1 Introduction

There are a number of di erent motivations for the theory developed here, but
perhaps the most obvious is as follows. Suppose we have a space X with vector
bundles Vg and V;. (Throughout this paper, the term \vector space™ refers to

nite-dimensional complex vector spaces equipped with Hermitian inner prod-
ucts, and similarly for \vector bundle™.) We de ne the intersection index of Vj
and V; to be the largest k such that Vy and Vi1 can be embedded isometrically
in some bundle U in such a way that dim(Vox \ Vix) Kk for all x 2 X. We
write int(Vo; V1) for this intersection index. Our aim is to use invariants from
generalised cohomology theory to estimate int(Vo; V1), and to investigate the
topology of certain universal examples related to this question.

We will show in Proposition 5.3 that int(Vop; V1) is also the largest k such that
there is a linear map Vo * V; of rank at least k everywhere. This creates a
link with the theory of degeneracy loci and the corresponding classes in the
cohomology of manifolds or Chow rings of varieties, which are given by the
determinantal formula of Thom and Porteous. The paper [9] by Pragacz is a
convenient reference for comparison with the present work. The relevant theory
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1062 N. P. Strickland

is based strongly on Schubert calculus, and could presumably be transferred
to complex cobordism (and thus to other complex-orientable theories) by the
methods of Bressler and Evens [1].

However, our approach will be di erent in a number of ways. Firstly, we use
the language of formal groups, as discussed in [10] (for example). We X an
even periodic cohomology theory E with a complex orientation x 2 E°CP 1.
For any space X we have a formal scheme Xg = spf(E®X), the basic examples
being S := (point)e and G := CPZ = spf(E°[x]), which is a formal group
over S. If V is a complex vector bundle over X, we write PV for the associated
bundle of projeciye spaces. It is standard that EO(PV) = ESX)[x]=Fv (X),
where v (X) = jij=dimqv)CiX}, Where ¢; is the i'th Chern class of V. In
geometric terms, this means that the formal scheme D(V) := (PV )g is natu-
rally embedded as a divisor in G g Xg. Most of our algebraic constructions
will have a very natural interpretation in terms of such divisors. We will also
consider the bundle U(V) = 5« U(Vx) of unitary groups associated to V .
A key point is that E U(V) is the exterior algebra over E X generated by
E ~PV. This provides a very natural link with exterior algebra, and could
be regarded as the \real reason" for the appearance of determinantal formulae,
which seem rather accidental in other approaches. Our divisorial approach also
leads to descriptions of various cohomology rings that are manifestly indepen-
dent of the choice of complex orientation, and depend functorially on G. This
functorality implicitly encodes the action of stable cohomology operations and
thus gives a tighter link with the underlying homotopy theory.

We were also influenced by work of Kitchloo [5], in which he investigates the
cohomological e ect of Miller’s stable splitting of U(n), and draws a link with
the theory of Schur functions.

In Section 3 we use the theory of Fitting ideals to de ne an intersection index
int(Dg; D1), where Dg and Dy are divisors on G. In Section 4 we identify
E U(V) with the exterior algebra generated by E ~*PV, and show that this
identi cation is an isomorphism of Hopf algebras. In Section 5 we use this to
prove our rst main theorem, that int(Vo; V1) int(D(Vo); D(V1)); this implic-
itly gives all the relations among Chern classes that are universally satis ed
when int(Vo; V1)  k for some given integer k. Next, in Section 6 we study the
universal examples of our various algebraic questions, focusing on the scheme
Int,(dg; d1) which classi es pairs (Dg; D1) of divisors of degrees do and d; such
that int(Dg; D1) k. Our next task is to construct spaces whose associated
schemes are these algebraic universal examples. In Section 7 we warm up by
giving a divisorial account of the generalised cohomology of Grassmannians and
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Common subbundles and intersections of divisors 1063

flag spaces, and then in Section 8 we show that the space
12(do; d1) := F(Vo; V1) 2 Ggo (CL)  Gg, (C1) j dim(Vo\ Vi) kg

satis es 1%(do; d1)e = Inty(do;d;). (The origin of the present work is that the
author needed to compute the cohomology of certain spaces similar to 11(do; d)
as input to another project; it would take us too far a eld to discuss the back-
ground.) This completes the main work of the paper, but we have added three
more sections exploring the isomorphism E U(V) = E ~'PV in more detail.
Section 9 treats some purely algebraic questions related to this situation, and
in Sections 10 and 11 we translate all the algebra into homotopy theory. In
particular, this gives a divisorial interpretation of the work of Mitchell, Richter
and others on Itrations of QU (n): the scheme associated to the k’th stage in
the Itration of QxU (V) is D(V )= , and the scheme associated to Qx U (V)
is the free formal group over Xg generated by D(V).

Appendix A gives a brief treatment of the functional calculus for normal oper-
ators, which is used in a number of places in the text.

Remark 1.1 There is a theory of degeneracy loci for morphisms with sym-
metries, where the formulae involve Pfa ans instead of determinants. It would
clearly be a natural project to reexamine this theory from the point of view of
the present paper, but so far we have nothing to say about this.

2 Notation and conventions

2.1 Spheres

We take R" [ f1g as our de nition of S", with 1 as the basepoint; we
distinguish S* from the homeomorphic space U(1) := fz 2 C j jzj = 1g.
Where necessary, we use the homeomorphism y: U(1) # S given by

V(@) =@+ 1)@z-1) =i
vy () = (it + D)=(it — 1):

One checks that y(e' ) = cot(— =2), which is a strictly increasing function of
for0< <2 .
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1064 N. P. Strickland

2.2 Fibrewise spaces

We will use various elementary concepts from brewise topology; the book of

Crabb and James [3] is a convenient reference. Very few topological technicali-

ties arise, as our brewise spaces are all bre bundles, and the bres are usually
nite complexes.

In particular, given spaces U and V over a space X, we write U x V for the

bre product, and Uy for the bre power U x::: x U. If U is pointed (in
other words, it has a speci ed section s: X # U) and E is any cohomology
theory we write E,U = E (U;sX). We also write xU for the brewise
suspension of U, which is the quotient of S U inwhich f1g U[S! sX
is collapsed to a copy of X. This satis es B, xU = Ex—lu. We also write
QxU for the brewise loop space of U, which is the space of maps !: S' % U
such that the composite S* # U # X is constant and 1(1) 2 sX. If V
is another pointed space over X, we write U ~x V for the brewise smash
product. If W is an unpointed space over X then we write Wox = W q X,
which is a pointed space over X in an obvious way.

2.3 Tensor products over schemes

If T isascheme and M, N are modules over the ring O, we will write M [N
- - - k k 3 -

for M [o N . Similarly, we write M for OTM , the k’th exterior power of

M over O7.

2.4 Free modules

Given a ring R and a set T, we write RfTg for the free R-module generated
by T.

3 Intersections of divisors

Let G be a commutative, one-dimensional formal group over a scheme S.
Choose a coordinate x so that Og = Og[x]. Let Dg and D; be divisors
on G de ned over S, with degrees dop and d; respectively. This means that
Op, = Og=Fi = Os[x]=fi(x) for some monic polynomial f;(x) of degree d;
such that f;(x) = x4 modulo nilpotents. It follows that Op, is a free module
of rank d; over Os, with basis fxJ j0 j < dig.
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Common subbundles and intersections of divisors 1065

As Dg and D; are closed subschemes of G we can form their intersection, so
that

Opo\p; = Og=(fo; f1) = Os[X]=(fo(X); F1(x)):

Typically this will not be a projective module over Os, so some thought is
required to give a useful notion of its size. We will use a measure coming from
the theory of Fitting ideals, which we now recall briefly.

Let R be a commutative Noetherian ring, and let M be a nitely generated

R-module. We can then nd a presentation P; —¥ Py, —¥ M, where Py
and Py are nitely generated projective modules of ranks pp and p; say, and
M = cok( 1). The exterior powers JP; are again nitely generated projective
modules. We de ne Ij( 1) to be the smallest ideal in R modulo which we
have J( 1) = 0. More concretely, if Pqg and Py are free then 1 can be
represented by a matrix A and 1;( 1) is generated by the determinants of all
J ] submatrices of A. We then de ne 1;(M) = Ip,—j( 1); this is called the
J 'th Fitting ideal of M. It is a fundamental fact that this is well-de ned; this
was already known to Fitting (see [8, Chapter 3], for example), but we give a
proof for the convenience of the reader.

Proposition 3.1 The ideal 1;(M) is independent of the choice of presentation
of M.

Proof We temporarily write 1;(M;P ; ) for the ideal called 1;(M) above.

Put N = ker( o) and let : N ® Py be the inclusion. Then ; factors as

P, - N X Py, where is surjective. For any ideal J R we see that
K is surjective mod J,so K 1 iszeromod J i K iszero mod J. This
condition depends only on the map o: Pp # M, so we can legitimately de ne
1;(M;Po; o) == 1;(M;P ;).

Now suppose we have another presentation Q1 —# Qu —¥ M, where Q; has
rank gi. De ne o: Po Qo ® M by (u;v) @ o(u)+ o(Vv). It will su ce to
prove that

15(M;Po; 0) =1j(M;Po Qo; o) =1;(M;Qo; o)

and by symmetry we need only check the rst of these. By projectivity we can
chooseamap : Qo ®* Powith ¢ = (,andde ne 1: P; Qo ® Py Qg by
(u;v) @ ( 1(W)— (v);v). Itiseasy to check that this gives another presentation

Pl Qo —! Po Qo —g M:
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1066 N. P. Strickland

If kK qo then K 1 is certainly nonzero, because the composite

k
KQo® K(P1 Qo) —T K(Po Qo) * KQo
is the identity, and KQq & 0. If k >qo and K ; =0 then (by restricting to
k=Gop; [—®Qg) we see that k=% , =0.

For the converse, notice that N is a graded ring for any module N, and that

is a ring map for any homomorphism  of R-modules. One can check that

i*%(P;  Qp) is contained in the ideal in  (P; Qo) generated by JIP;. It
follows that if § ;=0 then %% ; =0.

This shows that 1r( 1) = lr+q( 1), and thus that 1,(M;Pg; o) = I,(M;Pg
Qo; o), as required. 5

It is clear that
Ih(M) 0 IhZ(M)=R;

and we de ne
rank(M) = rankr(M) = minfr j I, (M) & 0g:

We call rank(M) the Fitting rank of M. For example, if R is a principal ideal
domain with fraction eld K, one can check that rank(M) = dimk (K LgW) for
all M. However, we will mostly be interested in rings R with many nilpotents,
for which there is no such simple formula.

The following lemma is easily checked from the de nitions.

Lemma 3.2 (@) The Fitting rank is the same as the ordinary rank for pro-
jective modules.

(b) If N is a quotient of M then rank(N) rank(M).

(c) If there is a presentation P 2 Q *# M then rank(Q) — rank(P)
rank(M) rank(Q). O

(It is not true, however, that rank(M N) = rank(M) + rank(N); indeed, if

a & 0 and a? = 0 then rank(R=a) = 0 but rank(R=a R=a) =1.)

De nition 3.3 The intersection multiplicity of Dy and D1 is the integer
int(Do; D1) := rankos (Opo\D; ):

We also put
Int;(Do; D1) = spec(Os=lr—1(Op,\b,));
which is the largest subscheme of S over which we have int(Dg; D1) r.

Algebraic & Geometric Topology, Volume 2 (2002)



Common subbundles and intersections of divisors 1067

Remark 3.4 Let S! be a scheme over S, so that G! := G ¢ S is a formal
group over S’. We refer to divisors on G’ as divisors on G over S°. Given two
such divisors Dg and D, we get a closed subscheme Int,(Dg;D1) S'. We
will use this kind of base-change construction throughout the paper without
explicit comment.

To make the above de nitions more explicit, we will describe several di erent
presentations of Op,\p, that can be used to determine its rank.

Construction 3.5 First, recall that we can form the divisor

Do + D1 = spec(Og=Fof1) = spec(Os[X]=Fo(x)f1(x)):

This contains Dg and Dj, so we have a pullback square of closed inclusions as
shown on the left below. This gives a pushout square of Og-algebras as shown
on the right.

DO \ D]_ DO ODo\Dl K ODO
D1 Do + Dy Op, «— Opy+Ds;

which gives a presentation
OD0+D1 2 ODo OD1 . ODo\Dl:
Explicitly, this is just the presentation
Og=(fof1) ¥ Og=fy Og=Ff; X Og=(fo; 1)
given by

(g mod ff1) = (g mod fp; —g mod 1)
(9o mod fo; g1 mod f1) = go + g1 mod (fo; F1):

Although this is probably the most natural presentation, it is not easy to write
down the e ect of on the obvious bases of Og=(fpf1) and Og=Fj. To remedy
this, we give an alternate presentation.

Construction 3.6 Let J; be the ideegl generated by f; and put J = JgJ;.
Then J;i=J is free over Os with basis ! fj(x) jO0 J < di—jg and the inclusion
maps J; -*# Og give rise to a presentation

Jo=Jd J1=J ® Og=J = OD0+D1 . O(G,:(Jo + Jl) = ODO\D1:
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st cij be the coe cient of x%i=1 in fj(x), so that cijp = 1 and fj(x) =
di=j+k CiiX. Then

Cdfo(x);0) = Codg+j—kX" for0 j<d;
k=j

(0; X3 F1(x)) = C1udy +j —kX® for 0 j <do;
k=j
and this tells us the matrix for in terms of the obvious bases of Jg=J J;=J

and Og=J. For example, if dp = 2 and d; = 3 the matrix is

o 1
Coz O 0 |ciz O

Cor Co2 0 |cCio cC13
1 cCo1 Coz|C1u1 Ci2
0 1 Co1 1 C11
0 0 1 0 1

In general, we have a square matrix with do + d; rows and columns. The left
hand block consists of d; columns, each of which contains d;—1 zeros. The right
hand block consists of dg columns, each of which contains do —1 zeros. Clearly
Int,(Do; D1) is the closed subscheme de ned by the vanishing of the minors of
this matrix of size do +d; —r+ 1. In particular, Int;(Dg; D1) is de ned by the
vanishing of the determinant of the Whae matrix, which is clas§ié:ally known as
the resultant of fy ara T If fo(X) = “;(x—a;) and fi(x) = j(x —bj) then
the resultant is just B (ai —bj). We do not know of any similar formula for
the other minors.

Construction 3.7 For a smaller but less symmetrical presentation, we can
just use the sequence J1=J * Og=Jo # Og=(Jo +J;) induced by the inclusion
of J; in Og. This is isomorphic to the presentation Og=Jy; —¥ Og=J, ¥
Og=(Jp + J1), where 1(g) = f1g. However, the isomorphism depends on
a choice of coordinate on G (because the element T, does), so the previous
presentation is sometimes preferable. There is of course a similar presentation
Og=J; —¥ Og=J; * Og=(Jo + J1).

Finally, we give a presentation that depends only on the formal Laurent series
fo=Ff; and thus makes direct contact with the classical Thom-Porteous formula.

Construction 3.8 Write Mg = R((X)) = Og[x~1]. Note that f1(x)=x% is a
polynomial in x~* whose constant term is 1 and whose other coe cients are
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nilpotent, so it is a unit in R[x"1]. It follows that f; is a unit in R(X)). Put
Q = xR[x1] R(X)), so that R(x)) = R[x] Q. Multiplication by the
series x%1fy=f; induces a map
_ RIX] _ R
1= 4 Pp=——=:
1R[] x“R[x] Q
We claim that the cokernel of is isomorphic to R[x]=(fo; f1) = Op,\D,, SO
we have yet another presentation of this ring. Indeed, the cokernel of s
clearly given by R(x)=(x%fof; *R[x] + x®R[x] + Q). The element f;=x% is
invertible in R[x™!] so it is invertible in R((x)) and satis es (f;=x%1)Q = Q.
Thus, multiplication by this element gives an isomorphism
R(x) . R(x) .
xdifof IR[x] + x1R[x] + Q  FoR[X] + fiR[X] +Q°
As R(X)) = R[x] Q, we see that the right hand side is just R[Xx]=(fo; f1) as
claimed.

elements of  with respect to these bases are just the coe cients of fp=F;
(suitably indexed). More precisely, we have

do—d1 CiX_i'

i 0

fo=f1 =X

where ¢cg = 1 and ¢; is nilpotent for i > 0. We take ¢; = 0 for i < 0 by
convention. The matrix elements j; of are then given by jj = Cgy+i—j for
0 i;J <d;. For example, if dg =3 and d; =5 then the matrix is

o

1
C3 C4 Cs; Cg Cy

Co C3 C4 Cs Cg
= Cp C C3 Cgq Cs :
1 ¢ © C3 C

0 1 ¢ ¢co c3

Now suppose that our divisors Dj arise in the usual way from vector bundles V;
over a stably complex manifold X, and we have a generic linear map g: Vo *
V1. Let Z, be the locus where the rank of g is at most r, and let i: Z, # X
be the inclusion. Generically, this will be a smooth stably complex submanifold
of X, so we have a class z, =i [Z;] 2 E®X. The Thom-Porteous formula says
that z, = det(W¥,), where W, is the square block of size d; — r taken from the
bottom left of . More explicitly, the matrix elements are (Wr)ij = Cdy—k+i—j
for 0 i;)j <dg—r. Clearly det(,) 2 lg;—r( ) = I+(Opp\p,). If Z
is empty then z, = 0. On the other hand, Proposition 5.3 will tell us that
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int(Dg; D1) > r and so 1,(Op,\p,) = 0, so det(¥,) = 0, which is consistent
with the Thom-Porteous formula. It is doubtless possible to prove the formula
using the methods of this paper, but we have not yet done so.

Proposition 3.9 We always have int(Dg; D1) min(dg;d;) (unless the base
scheme S isempty). If int(Dg; D1) = dgp then Dy D1, and if int(Dg; D1) = ds
then D Do.

Proof The presentation Op, -5 Op, # Opy\p, shows that
int(Do; D1) = rank(Opp\p,)  rank(Op,) = di:

If this is actually an equality we must have 91791%+1( ) =0 or in other words
0 =20, s0 fp =0 (mod fy), so D; Do. The remaining claims follow by
symmetry. O

Proposition 3.10 If there is a divisor D of degree k such that D Dg and
D Dj, then int(Dg; D1) k.

Proof Clearly Op is a quotient of the ring Op,\p,, and it is free of rank k,
so int(Dg; D1) = rank(Op,\p,) K. O

De nition 3.11 Given two divisors Dg; D1, we write Sub,(Dg; D1) for the
scheme of divisors D of degree r such that D Dy and D D;. The
proposition shows that the projection : Sub.(Dg; D) -# S factors through
the closed subscheme Int.(Dg; D1).

Remark 3.12 Proposition 3.9 implies that Intg,(Do; D1) is just the largest
closed subscheme of S over which we have Dg  Dj;. From this it is easy to
see that Subg,(Do; D1) = Inty,(Dg; D1).

It is natural to expect that the map : Sub,(Dg;D;) #* Int.(Dg; D;) should
be surjective in some suitable sense. Unfortunately this does not work as well
as one might hope: the map is not faithfully flat or even dominant, so the
corresponding ring map need not be injective. However, it is injective in a
certain universal case, as we shall show in Section 6.

We conclude this section with an example where is not injective. Let G
be the additive formal group over the scheme S = spec(Z[a]=a?). Let Dq
and D; be the divisors with equations x?> — a and x?, respectively. Then
Opy\D; = Os[X]=(x? — a; x?) = Os[x]=(a; x?), which is the cokernel of the map
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a o

0 a
which is clearly nonzero, but ?( ) = a? = 0. It follows that int(Do; D) = 1,
so Inty(Dg; D1) = S. However, Subi(Dg; D7) is just the scheme Dg \ D; =
spec(Os[x]=(a; x?)), so  (a) = 0.

: Os[x]=x?> # Os[x]=x? given by (t) = at. The matrix of is

For a topological interpretation, let Vo be the tautological bundle over HP! =
S4, and let V; be the trivial rank two complex bundle. If we use the cohomology
theory E Y = (H Y)[u;u™!] (with juj = 2) and let a be the second Chern
class of Vg we nd that E®X = Z[a]=a?, and the equations of D(Vg) and D(V)
are x2 —a and x?. Using the theory to be developed in Section 5 and the
calculations of the previous paragraph, we deduce that Vo and V; cannot have
a common subbundle of rank one, but there is no cohomological obstruction
to nding a map f: Vo -# V; with rank at least 1 everywhere. To see that
such a map does in fact exist, choose a subspace W < H? which is a complex
vector space of dimension 2, but not an H-submodule. We can then take the
constant bundle with bre H2=W as a model for V1. The bundle Vg is by
de nition a subbundle of the constant bundle with bre H?, so there is an
evident projection map f: Vo ® V1. As W is not an H-submodule, we see
that f is nowhere zero and thus has rank at least one everywhere, as claimed.

4 Unitary bundles

In order to compare the constructions of the previous section with phenomena
in topology, we need a topological interpretation of the exterior powers KOp
when D is the divisor associated to a vector bundle.

Let V be a complex vector bundle of dimension d over a space X. We can
thus form a bundle U(V) of unitary groups in the evident way (so U(V) =
f(x;0) j x 2 Xandg 2 U(Vx)g). The key point is that E U(V) can be
naturally identi ed with ¢ E ~1PV (the exterior algebra over the ring E X
generated by the module E PV ). Moreover, we can use the group structure
on U(V) to make E U(V) into a Hopf algebra over E X, and we can make

e xE ~1PV into a Hopf algebra by declaring E PV to be primitive. We
will need to know that our isomorphism respects these structures. All this is of
course well-known when X is a point and E represents ordinary cohomology.
Kitchloo [5] has shown that if one chooses the right proof then the restriction
on E can be removed. With just a few more words, we will be able to remove
the restriction on X as well.
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We start by comparing U (V) with a suitable classifying space. First let V be a
vector space rather than a bundle. We let EU (V) denote the geometric realisa-
tion of the simplicial space U (V)"*1g, o and we put BU(V) = EU(V)=U(V),
which is the usual simplicial model for the classifying space of U(V). There
is a well-known map : U(V) ® QBU(V), which is a weak equivalence of
H -spaces. By adjunction we have amap : U(V) ® BU(V), which gives a
map
B BUNV)EE UWV)=E TuWV):

The fact that is an H-map means that is primitive, or in other words that
= (o+ 1)2[ UV)%BUNV)I
We can also construct a tautological bundle T = EU(V) y)V over BU(V).

We now revert to the case where V is a vector bundle over a space X, and
perform all the above constructions brewise. Firstly, we construct the bundle
BU(V) =Tf(x;e) jx2 X and e 2 BU(Vx)g. Note that each space BU (V) has
a canonical basepoint, and using these we get an inclusion X # BU(V).

A slightly surprising point is that there is a canonical homotopy equivalence
BU(V) # X BU(d). Indeed, we can certainly perform the de nition of
T brewise to get a tautological bundle over BU(V ), which is classi ed by a
map q: BU(V) ® BU(d), which is unique up to homotopy. We can combine
this with the projection p: BU(V) ® X togetamap f = (p;q): BU(V) #
X BU(d). The map p is a bre bundle projection, and the restriction of
q to each bre of p is easily seen to be an equivalence. It is now an easy
exercise with the homotopy long exact sequence of p to see that f is a weak
equivalence. (Nothing untoward happens with o and ; because BU(d) is
simply connected.)

Remark 4.1 Let go: X -# BU(d) be the restriction of q. Then go classi es
the bundle Tjx ~ V, so in general it will be an essential map. Thus, if we just
use the basepoint of BU(d) to make X BU(d) into a based space over X,
then our equivalence f: BU(V) = X BU(d) does not preserve basepoints,
and cannot be deformed to do so. If it did preserve basepoints we could apply
the brewise loop functor Qx and deduce that U(V) > X U(d), but this is
false in general.

It follows from the above that E BU (V) is a formal power series algebra over
E X, generated by the Chern classes of T. It will be convenient for us to
modify this description slightly by considering the virtual bundle T —V (where
V is implicitly pulled back to BU(V) by the map p: BU(V) ¥ X). We
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have fr(t) = t¢ P at™ and fy (t) = td P bt™* for sqme coe cients
T k=0 9k \Y k=0 "k

ax 2 E°BU(V) and by 2 E®X so fr_y (t) = Fr()=Fy (t) = | ookt for
some cx 2 ECBU(V). For k d we have ¢, = ax (mod by;:::;bg) and it
follows easily that

Note that the restriction of T —V to X BU(V) is trivial, so the classes ¢y
restrict to zero on X.

Next, consider the brewise suspension xU(V). By dividing each bre into
two cones we obtain a decomposition xU (V) = Co [ C1 where the inclusion of
X in each C; is a homotopy equivalence, and Co\C; = U (V). Using a Mayer-
Vietoris sequence we deduce that B, xU(V) = E ~1U(V) and that this can
be regarded as an ideal in E xU(V) whose square is zero. Moreover, the
construction of can be carried out brewise togetamap xU(V)-® BU(V)
which is again primitive. It follows that induces a map

. Ind(E BU(V)) * Prim(E ~tU(V)):

(Here Ind and Prim denote indecomposables and primitives over E X.) Note

To prove that is injective, we need to consider the complex reflection map
xPVix # U(V), which we de ne as follows. For t 2 S! = R [ flg

and x 2 X and L 2 PV, the map (t;x;L) is the endomorphism of Vy that

has eigenvalue y~1(t) on the line L, and eigenvalue 1 on L?. Here y~1(t) =

(it+ 1)=(it—1) 2 U(1), as in Section 2.1. Using this we obtain a map =
x  %PV.x ¥ BU(V).

Our next problem is to identify the virtual bundle (T —V) over 2%PV.ix.
For this it is convenient to identify S? with CP! and thus 2PV.x with a
quotient of CP! PV . We have tautological bundles H and L over CP! and
PV, whose Euler classes we denote by y and X.

Lemma 4.2 We have (T —V) ” (H —1) L1 Moreover, there is a power
series g(s) 2 E°[s] with g(0) = 1 such that ¢, = —yxK 1g(x) for k =

Proof In the proof it will be convenient to write Ty and Ly instead of T and
L, to display the dependence on V .

First consider the case where X is a pointand V =C. Then : S!' % U(1) =
U(C) is a homeomorphism and BU(C) ~ CP1. It is a standard fact that
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: S2 8 BU(C) can be identi ed with the inclusion CP! # CP?1, and thus
that Tec=H.

In the general case, note that we have a map : CP! PL # BU(L) of
spaces over PV . The projection PL # PV is a homeomorphism which we
regard as the identity. If we let : PV -® X be the projection, we have a
splitting V =L ( V L[LJ. The inclusion L # V gives an inclusion
U(L) ®# U(V) and thus an inclusion BU(L) 2 BU(V), or equivalently a
map : BU(L) # BU(V) covering . As Ty =V yw)EU(V) and U(L)
acts trivially on V [Ldweseethat Ty =T, ( V L[LJ.

Next, we note that tensoring with L gives an isomorphism : U(C) PV %
U(L) and thus an isomorphism B : BU(C) PV ® BU(L) with (B ) T =
Te L1

One can check that the following diagram commutes:

cP! pv —— cp! pv —— cp! PV
c 1 L v

BU(C) PV B—> BU(L) —— BU(V):

It follows that Ty ” (¢ 1) (B ) Ty, and the previous discussion identi-
es thiswith (H L) (Vv ). It follows that , (Ty —V) 7 (H [D—-L =
(H —1) L] as claimed.

Now let g(s) be the partial derivative of t +¢ s with respect to t evaluated
at t = 0. This is characterised by the equation t +¢ s = tg(s) +s (mod t?);
it is clear that g(0) = 1, and by applying loge we see that g(s) = 1=logk (s)
in the torsion-free case. As y? = 0 we see that the Euler class of H [Llis
X+ y =X +yg(x). Thus, we have

o= () = (t—x—yg(X)=(t — x)
=1- g%x)t_lz(l — x=t)

=1—  yg()x* 7t
k>0
The k’th Chern class of (H—1) [I_Js the coe cient of t=K in this series, which
is —yg(x)xk~1 as claimed. O
Corollary 4.3 The induced map : Ind(E BU(V)) ® E ( §<PV+X;X) =
E ~2PV is an isomorphism. 0
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Theorem 4.4 There is a natural isomorphism E ~'PV # E U(V) of Hopf
algebras over E X.

Proof Put aj = ¢ 2 Prim(E U(V)) for i = 1,4 :;d. Given a sequence
I =(iy;::0ip)withl iy <:::<i, d,puta = j &ij - We rst claim that
the elements a; form a basis for E U(V) over E X. This is very well-known
in the case where X is a point (so U(V) * U(d)) and E represents ordinary
cohomology; it can proved using the Serre spectral sequence of the bration
U(d—1) * U(d) ® S29=1. For a more general theory E we still have an Atiyah-
Hirzebruch-Serre spectral sequence HP(S24~1: EdU(d — 1)) =) EP*YIU(). It
follows easily that the elements a; form a basis whenever X is a point. A
standard argument now shows that they form a basis for any X. Indeed, it
follows easily from the above that they form a basis whenever V is trivialisable.
We can give X a cell structure such that V is trivialisable over each cell, and
then use Mayer-Vietoris sequences to check that the elements a, form a basis
whenever X is a nite complex. Finally, we can use the Milnor exact sequence
to show that the elements a; form a basis for all X.

The ring E U(V) is graded-commutative so we certainly have aja; = —a;ai;

and in particular Zai2 =0 for all i. Suppose we can show that ai2 = 0. Then
extends to give amap g 5 Ind(E BU(V)) ® E ~1U(V) of Hopf algebras,

and from the previous paragraph we see that this is an isomorphism. Combin-

ing this with the isomorphism of Corollary 4.3 gives the required isomorphism
E 1PV % E U(V).

All that is left is to check that a?> = 0. For this we consider the case of
the tautological bundle T over BU(d), and take E = MP = MU[u;u™1].
(We use this 2-periodic version of MU simply to comply with our standing
assumptions on E; we could equally well use MU itself.) Here it is standard
that MP BU(d) is a formal power series algebra over MP and thus is torsion-
free. The ring MP U(T) is a free module over MP BU(d) and thus is also
torsion-free. As 2a? = 0 we must have a? = 0 as required. More generally, for
an arbitrary bundle V over a space X we have a classifying map X -# BU(d)
giving rise to a map U(V) * U(T). Moreover, for any E we can choose an
orientation in degree zero and thus a ring map MP % E. Together these
give a ring map MP U(T) ® E U(V), which carries aj to aj. As a2 =0 in
MP U(T), the same must hold in E U(V). O

We will need to extend the above result slightly to give a topological interpre-
tation of the quotient rings

'E “lpv = E “lpv= 7'E “lpv:
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For this we recall Miller’s Itration of U(V):
FU(V)=Tfg2U(V)j codim(ker(g—1)) kg
=fg2U(V)jrank(g—1) kg
More precisely, this is supposed to be interpreted brewise, so
FUWV) =T(x;0) jx2 X and g 2 U(Vx) and rank(g —1) Kkg:
It is not hard to see that gives a homeomorphism xPVix ® F,U(V). It
is known from work of Miller [6] that when X is a point, the Itration is stably

split. Crabb showed in [2] that the splitting works brewise; our outline of
related material essentially follows his account.

We will need to recall the basic facts about the quotients in Miller’s Itration.
Consider the space

Gk(V)=Ff(x;W)jx2X; W Vy; dim(W) =kg:
For each point (x; W) 2 Gk(V) we have a Lie group U(W) and its associated

Lie algebra wu(W) = f 2 End(W) j + = 0g. These t together to
form a bundle over Gg(V) which we denote by u. Given a point (X;W; )
in the total space of this bundle one checks that — 1 is invertible and that

g:=( +1)( —1)7! isa unitary automorphism of W without xed points, so
g 1wz 2 FkU(Vx) nFr—1U(Vyx). It is not hard to show that this construction
gives a homeomorphism of the total space of u with FU(V)nFc—,U(V) and
thus a homeomorphism of the Thom space Gy (V )* with FU(V)=Fc_, U(V).

If g 2 FjU(Vx) and h 2 F U (V) then ker(g — 1) \ ker(h — 1) has codimension
at most j + Kk, so gh 2 Fj4+xU(V), so the Itration is multiplicative. A less
obvious argument shows that it is also comultiplicative, up to homotopy:

Lemma 4.5 The diagonal map : U(V) ® U(V) x U(V) is homotopic to
a lItration-preserving map.

Proof For notational convenience, we will give the proof for a vector space; it
can clearly be done brewise for vector bundles.

We regard U (1) as the set of unit complex numbers and de ne po;p1: U(1) -
U (1) as follows: C
z2 iflm@z) 0
Z) =
Po(2) 1  otherwise
z2 iflm@z) 0

Z) =
P(2) 1 otherwise.
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Thus (po;p1): U(L) ®* U@) U(1) is just the usual pinch map U(1) ®# U(1) _
u@ld U@ uQ.

Note that if g 2 U(V) and r 2 f0;1g then the eigenvalues of g lie in U(1)
so we can interpret p,(g) as an endomorphism of V as in Appendix A. As
pr(U(1)) U(1) we see that p,(z) = pr(z)~* for all z 2 U(1) and thus that
pr(@) =pr(g)~L, so pr gives a map from U (V) to itself.

We now de ne ': U(V)® UV) U(N) by °%g) = (po(9); p1(g)). It is clear

that the Itration of pg(g) is the number of eigenvalues of g (counted with

multiplicity) lying in the open upper half-circle, and the Itration of p1(g) is

the number in the open lower half-circle. Thus, the Itration of °(g) is the

number of eigenvalues not equal to 1, which is less than or equal to the
Itration of g.

On the other hand, each map pr: U(1) *# U(1) has degree 1 and thus is
homotopic to the identity, so ' is homotopic to . O

Theorem 4.6 There is a natural isomorphism E"XE “lIpv # E FrqU(V).

; i k — k -1 i L«
Proof Forbrevity we write * = g JE,""PV. We also write =

k — j <k — - k —
and = jkland = = = j<kJ.

Because the Itration of U(V) is stably split, the restriction map E ~IPV =
E UV)® E Fk—1U(V) is a split surjection, with kernel Jx say. Note that
=Jy and Ji are both projective over E X. We need to show that J, = .

First, we have FoU (V) = X and it follows easily that J; = 1.

We next claim that JjJx  Jj+k for all j;k. Indeed, Jj is the image in coho-
mology of the map U(V) -# U(V)=Fj-1, and so JjJi is contained in the image
in cohomology of the map

=UN)BUNV) xUN)E UN)=Fj—1 ™ UV )=Fr-1):

Note that is homotopic to the map ¢, which sends Fj+k—1 into Fj—1 x
UNV)LU®V) x Fk—1. Itfollows that the restriction of to Fj+x—1 is null,
and thus that JjJx  Jj+k as claimed. It follows inductively that ko gy for
all k. This gives us a natural surjective map <K % E F_1U(V).

We previously gave a natural basis fa;g for , and it is clear that the subset
fa; j jlj < kg is a basis for <. It will be enough to prove that the images
of these form a basis for E Fx—1U(V). The argument of Theorem 4.4 allows
us to reduce to the case where X is a point, V = CY, and E represents
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ordinary cohomology. A proof in this case has been given by Kitchloo [5] (and
possibly by others) but we will sketch an alternate proof for completeness. As
the map =K # H F_,U(d) is surjective, it will su ce to show that the
source and target have the same rank as free Abelian groups. For this, it will
su ce to show that JH CPY"! has the same rank as B (FjU (d)=Fj—1U(d))
for0 j d. As H CPY! has rank d, it is clear that JH CPY"! has rank

(.1 . On the other hand FjU (d)=Fj-1U(d) is the Thom space G; (CH*. Note

that although u is not a complex bundle, it is necessarily orientable because
G;j (CY) is simply connected. Thus, the Thom isomorphism theorem tells us
that the rank of B G;(C%)" is the same as that of H G;(C%). By counting

Schubert cells we see that this is again jl , as required. (This will also

follow from Proposition 7.3.) ]

5 Intersections of bundles

Let X be a space, and let Vy and V; be complex vector bundles over X. In
Section 3 we de ned divisors D(V;) = (PVi)e on G over Xg, and we also
de ned the intersection index int(Vo; V1).

Theorem 5.1 We have int(Vp; V1) int(D(Vo); D(V1)).

Proof Suppose we have isometric linear embeddings Vg 38 w L v, such that
dim((JoVox)\(J1Vix)) r for all x. We must show that rank(Og=(fv,; fv,))

r. Put di = dim(V;) and e = dim(W). Recall that E°PV; = Og=fy; and
that E°CPW = Og=fy . As each V; embeds in W we see that fy, divides fy
and there is a natural surjection E°PW # E°PV;. By combining these maps
we getamap : E°PW # EOPV, ECPVy, whose cokernel is Og=(fy,; fy,).
From the de nition of the Fitting rank, we must prove that do+di—r+1 —g,

For this, we rst note that an isometric embedding j: V - W of vector spaces
gives rise to a homomorphism j : U(V) ® U(W) by

j@=igi™ Lyerw=jv jviaw

The alternative description j () = jgj +1—]JJ makes it clear that j (g)
depends continuously on j and g.
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We now extend this de nition brewise,andde ney: U(Vg) xU(V1) ® UW)
by v(90;91) = (o 90)(J1 91). We have E U(W)= E ~'PW and

E UMo) xU(V1)=E U(Vo) Le k E U(V1)
= E'PVo[ek E PV
= (E 7PV, E “PVy):

Using the fact that E ~1PW is primitive in E U(W), we nd thaty =
Next, observe that if g; 2 U(Vix) for i =0;1 we have

Y(90;91) 2U(JoVox +Jj1Vix) U(W)
and dim(joVox + j1Vix)  do +d1 — 1 0 Y(90:91) 2 Fap+d;—rU(W). Thus

y factors through Fg,+q,—rU(W), and it follows that do+d—r+1g —lpw js
mapped to zero by y , as required. O

As an addendum, we show that some natural variations of the de nition of
intersection index do not actually make a di erence.

Lemma 5.2 LetV and W be vector bundles over a space X, and let j: V %
W Dbe a linear embedding. Then j is an isometric embedding if and only if
jJ = 1 (where j is the adjoint of j). In any case, there is a canonical
isometric embedding {: V -# W with the same image as j.

Proof If j j =1 then kjvk? = hjv;jvi = hv;j jvi = hv;vi = kvk?, so j is
an isometry. Conversely, if j is an isometry then it preserves inner products so
v § jvi = hjv'; jvi = hv%vi for all v;v? which means that j jv =v.

Even if j is not an isometry we have hv;j jvi = kjvk? which implies that j j
is injective. It is thus a strictly positive self-adjoint operator on V, so we can
de ne (j j)~'7 by functional calculus (as in Appendix A). We then de ne
f=17j @ j)"¥?. This is the composite of j with an automorphism of V,
so it has the same image as j. It also satis es {{= 1, so it is an isometric
embedding. O

Proposition 5.3 Let Vo and V; be bundles over a space X. Consider the
following statements:
@) There exigts a bundle V of dimension k and linear isometric embeddings
Vo TV iy,
@" Th(_ere exists a bundle V of dimension k and linear embeddings Vg o
= RV
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(b) There exist a bundle W and isometric linear embeddings Vg g w1 V1
such that dim((joVox) \ (j1Vix)) k for all x 2 X.

(b%) There exist a bundle W and linear embeddings Vg g ow V1 such
that dim((joVox) \ (J1Vix)) k forall x 2 X.

(¢) Thereis a linear map f: Vo # Vi such that rank(fy) k forall x 2 X.
Then (a) » (@)D (b) - (") 5 ().

Proof It follows immediately from Lemma 5.2 that (a) , (a') and (b) , (b?).
(@) (b): De ne W, jo and j1 by the following pushout square:

V>I—O>Vo

V]_ — W:
J1

Equivalently, we can write V{ for the orthogonal complement of iV in V¢ and
then w =v VvJ v/

(b)D> (c): Put f = j;jo: Vo # V1. By hypothesis, for each x we can choose

elements vy, 2 Vox and wp 2 Vix such that u, = jovp = jiwp. We nd
that hfvp; wgi = hjoVp; jaWgl = hup; Ugi = pq. This implies that the elements
fvy;:::; Fyg are linearly independent, so rank(f) k as required.

() D> (b): Note that f,fyx: Vox # Vox is a nonnegative self-adjoint operator
with the same kernel as fy, and thus the same rank as fyx. Similarly, fxf, is a
nonnegative self-adjoint operator on Vi, with the same rank as fyx. More basic
facts about these operators are recorded in Proposition A.2.

As in De nition A3 we let j = ej(f fx) be the j’th eigenvalue of f, Ty
(listed in descending order and repeated according to multiplicity). We see
from Proposition A.4 that j is a continuous function of x. Moreover, as f, fx
has rank at least k we see that > 0. Now de ne : [0;1) * [0;1)
by x(t) = max( g;t), and de ne x = x(ffx) and x = (fxf,). (Here
we are using functional calculus as in Appendix A again.) One checks that
fx x= xfxand yf, =T, x. We now have maps

=2 Vo # Vo
f: Vo2 V;
( +F F)72 v 2 v,
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which we combine to get a map

jo=(¥%f) ( +FH 2 vpE vy Vi
Similarly, we de ne

=@ ) (+FF)YTPivi ey, Vi

It is easy to check that jyjo = 1 and j;j1 = 1, so jo and ji are isometric
embeddings.

Now choose an orthonormal sequence vi;.::; Vi of eigenvectors of f, fy, with
eigenvalues 1;:::; k. Put v? = fy(vi)= i 2 Vi; these vectors form an or-
thonormal sequence of eigenvectors of fyf,, with the same eigenvalues.

Fori kwehage i «>0s0 x( )= is0( +FF)20)=v="2;
and F2(vi) =" Vi so jo(vi) = (vi;v])=" 2. This is the same as j; (), so it
lies in (JoVox) \ (J1Vix). Thus, this intersection has dimension at least k, as
required. O

We conclude this section with a topological interpretation of the scheme D(Vg)\
D(V1) itself.

Proposition 5.4 Let Vo and V; be vector bundles over a space X, and let
Lo and L; be the tautological bundles of the two factors in PVy x PVj.
Then there is a natural map S(Hom(Lo; L1))e * D(Vg) \ D(V1), which is an
isomorphism if the map E P(Vo Vi) ® E PVy E PV is injective.

Proof We divide the sphere bundle S(Vy Vi) into two pieces, which are
preserved by the evident action of U(1):
Co =TF(vo;v1) 2S(Vo V1) j kvok  kvikg
C= f(VO; V]_) 2 S(Vo V]_)j kvik kV0ng
The inclusions Vi ® Vo Vi give inclusions S(V;) * C; which are easily seen
to be homotopy equivalences. It follows that Ci=U (1) * PV;. We also have
Co \ C1 = f(vo; V1) j kvgk = kvik = 2729 = S(Vo)  S(V1):

Given a point in this space we have a map : Cvo * Cv; sending vp to vi.
This has norm 1 and is unchanged if we multiply (vo;vi1) by an element of
U(1). Using this we see that (Co \ C1)=U(1) = S(Hom(Lo; L1)). Of course,
we also have (Co [ C1)=U(1) = P(Mo V1). We therefore have a homotopy
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pushout square as shown on the left below, giving rise to a commutative square
of formal schemes as shown on the right.

S(Hom(Lo; L1)) —*— PV; S(Hom(Lo; L1))e —— D(Vo)
e T
PV, — P(Mo Vi) D(V1) D(Vo Vi):

This evidently gives us a map S(Hom(Lo; L1))e * D(Vo) \ D(V1).

To be more precise, we use the Mayer-Vietoris sequence associated to our
pushout square. This gives a short exact sequence

cok(F°) ¥ EOS(Hom(Lo;L1)) ¥ ker(f1);

where
= (jo:j1): EXP(Vo Vi) ¥ EXPVy E*PVy:

We have seen that cok(f%) = Op(vo)\D(v1): and the map p just corresponds to
our map
S(Hom(Lo;L1))e # D(Vo) \ D(V1):

This map will thus be an isomorphism if ¥ is injective, as claimed. O

6 Algebraic universal examples

Let G be a formal group over a formal scheme S. Later we will work with
bundles over a space X, and we will take S = Xg and G = (CP1  X)g. We

Fix integers dg;dy;r 0. We write Int,(dg; d1) for the scheme of pairs (Dg; D1)
where Dy and D; are divisors of degrees do and d; on G, and int(Dg; D;) r.
In other words, if Dj is the evident tautological divisor over Divé“o Div:{l then
Int,(dg;d1) = Int,(Dg; D1). We will assume that r min(dg;d;) (otherwise
we would have Int.(dp;d1) =3;.)

For a more concrete description, put
R=Opivy  pivy, = OslCj 13 < dollcy; J§ < dal

Let A be the matrix of over R as in Section 3, and let 1 be the ideal in
R generated by the minors of A of size do +d; —r + 1. Then Int.(dp;d1) =
spf(R=1).
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We will also consider a \semi-universal case. Suppose we have a divisor D1 on
G over S, with degree di. Let Dg be the tautological divisor over Div:,“o. We

can regard Do and D; as divisors on G over Divj0 and thus form the closed
subscheme Int,(Dg; D7) Diva“o. We denote this scheme by Int.(dg; D1).

We can also de ne schemes Sub,(dp;d1) and Sub,(dg; D1) in a parallel way.
Remark 6.1 Sub(do;d1) is just the scheme of triples (D; Dg; D1) for which

D Dpand D Dj. Thisisisomorphic to the scheme of triples (D; D}; D}) 2
Divy, Divg _, Divy _,, by the map (D;Dy;D}) @ (D;D + D{; D + D).
0 1

De nition 6.2 We write Sub,(D) for the scheme of divisors D of degree r
such that D' D. Using Remark 3.12 we see that Sub,(D) = Sub,(r;D) =
Int.(r; D).
Theorem 6.3 The ring Oy, (d:0,) IS freely generated over

Osfcoi jO<i do—rllcyj jO<j di]
by the monomials

Y o
Co = Coi
P i=do—r+1
forwhich ~; ; di—r. Moreover, if we let : Sub,(dg;d;) -# Int,(dp;d1) be

the usual projection, then the corresponding ring map is a split monomor-
phism of modules over Op;,~ (so itself is dominant).
1

The proof will be given after a number of intermediate results. It seems likely
that the injectivity of  could be extracted from work of Pragacz [9, Section
3]. He works with Chow groups of varieties rather than generalised cohomology
rings of spaces, and his methods and language are rather di erent; we have not
attempted a detailed comparison.

We start by setting up some streamlined notation. We put n = dg — r and
m = di; — r. We use the following names for the coordinate rings of various
schemes of divisors, and the standard generators of these rings:

Co = Opjyy = Osfu; =25 Unar]
A = Op;y+ = Oslfa;:::;an]
B = Opjy+ = Os[bs;:::;bm]
C = Opjy+ = Osleg; ¢
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(In particular, we have renamed cp; and c1; as u; and vj.) We put ug =vg =
ag=hbp=cp=1. Wede neuj=0fori<O0ori=>n+r,andsimilarly for vj,
aj, bj and cj. The equations of the various tautological divisors are as follows:

x )
fo(x) = uix"" 2 Co[X]

fi(x) = vix™" 2 Cy[x]
X
f(x)= aix"' 2 Al
X
g(x) = bix™' 2 B[x]
X
h(x)= cx™' 2 C[x]:
i
We write Tp for the set of monomials of weight at most m in Up+1;:::; Un+r,
and T for the set of monomials of weight at most m in cq;:::;¢.. We also

Co=0Os[us;:::;un]  Co
C¥=0s[us;::;un—1]  CS:

We note that the ring Q := Ojnt,(do;d,) has the form (Co PC)=1 for a certain

ideal 1. The theorem claims that Q is freely generated as a module over C}IiCyl
by To.

The map
. Colbcg® ADBICT]

sends Tp(x) to F(X)h(xX) and f1(x) to g(x)h(x). Thisinducesamap : Q%
APBWT ] and the theorem also claims that this is a split injection.

We will need to approximate certain determinants by calculating their lowest
terms with respec&to a certain ordering. More precisely, we consider monomials
— n+r i - . .
oftheformu = ";Z; u;', and we order these by u < u if there exists i such
that ;> jand j= jforj>i. Themnemonicisthatu; ::: Unp+r, SO

any di erence in the exponent of u; overwhelms any di erence in the exponents

Lemma 6.4 Suppose we have integers y; satisfying 0  yo < :i: < ym <
m +r, and we put Mjj = Up+r+i—y; for 0 i;j m, where uy is interpreted
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as 0 if k<0 or k=n+r. Then the lowest term in det(M) is the product of
the diagonal entries, so

det(M) = Up+r+i—y; + higher terms :
i=0

Remark 6.5 Determinants of this type are known as Schur functions.

_ Cm

Proof Put = Tl Un+r+i—y;.- Let M! be obtained from M by removing
the 0’th row and i’th column. The ma(tjix M{ has the same general form as
M so by induction we have det(M{) = i1, Un+r+i—y, + higher terms . If we
expand det(M) along the top row then the 0’th term is Up+r—y, det(M{) =
+ higher terms . As 0  yp < ::: < ym We have y; i +yo and so
only involves variables u; with j  n+r —yp. The remaining terms in the
row expansion of det(M) have the form (—1)‘un+r_yo+i det(M/) for i >0, and
Un+r—yo+i IS either zero (if i > yg) or a variable strictly higher than all those
appearing in . The lemma follows easily. O

Lemma 6.6 The ring Q is generated by To as a module over C§PCyl.

As J is topologically nilpotent, it will su ce to prove the result modulo J. We
will thus work modulo J throughout the proof, so that f; = x™*", and we
must show that Q=J is generated over Os by Tp.

Let : CJ[x]=x"*" # CY[x]=x™*" be de ned by (t) = fot, and let M be
the matrix of  with respect to the obvious bases. It is then easy to see that
Q=J = CJ=I, where 1 is generated by the minors of M of size m+ 1. The
entries in M are Mjj = Un+r+i—j-

We next claim that all the generi.}grs uk are nilpotent mod 1, or equivalently
that ux = 0 in the ring R = C¥="1 for all k. By downward induction we may
assume that uy =0 in R for k <| n+r. We consider the submatrix M! of
M given by Mioj = Min+r—k+j = Uj+k—j for 0 i;J ~m. By the de nition
of 1 we have det(M?% 2 I and thus det(M') =0 in R. On thecsther hand, we
have uy =0 for I >k so M’ is lower triangular so det(M?) = ~; M} = u"**.
Thus uy is nilpotent in R but clearly Nil(R) =0 so ux =0 in R as required.
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Now let W be the submodule of Q=J spanned over Og by Tg; we must prove
that this is all of Q=J. As 12 W, it will su ce to show that W is an ideal.
In the light of the previous paragraph, it will su ce to show that W is closed

We thus let = ( n+1;:::; n+r) be a multiindex of weight m + 1. There is
then bunique sequence ( o;:::; m) wWith n+r o i m => n and
u = u,.Putyi=n+r+i— j,sothat 0 yp<:::<ym<m+r. Let
M be the submatrix of M consisting of the rst m + 1 columns of the rows
of indices yo;:::;Ym, so the (i;j)’th entry of M is Un+r+i—y; . Note that the

elements r :=det(M ) liein I.
Q

Lemma 6.4 tells us that the lowest term in r is Qi Un+r+ioy; = jU; =U .
It is clear that the weight of the remaining terms is at most the size of M ,
which is m + 1. By an evident induction, we may assume that their images in
Cl=1 liein W. As r 21 we deduce that u 2 W as well. O

Corollary 6.7 Let D; be a divisor of degree d; on G over S’, for some

the monomials ¢, = “;2; _ .1 Coi for which j j di—r.

Proof The previous lemma is the universal case. ]

We next treat the special case of Theorem 6.3 where n =0 and so r = dy. As
remarked in De nition 6.2, the map : Sub,(d1) = Sub,(r;d;) ® Int.(r;dy) is
an isomorphism in this case.

Lemma 6.8 Let D be a divisor of degree d on G over S. Forany r d we let
Pr(D) denote the scheme of tuples (us;:::;ur) 2 G" such that  {_,[u,] D.
Then Op, (py is free of rank d!=(d —r)! over Os.

Proof There is an evident projection P.(D) ®* P,_1(D), which identi es
Pr(D) with the divisor D — [ui] — ::: — [ur—1] on G over P,—_1(D). This
divisor has degree d—r +1, so Op, (p) is free of rank d—r +1 over Op,_, (p)-
It follows by an evident induction that Op p) is free over Os, with rank
dd—1):::(d—r+1)=dl=(d—r). O

Lemma 6.9 Let D be a divisor of degree d on G over S,Iggt D’ be_the
tautological divisor of degree r over Subr(D), and let f(x) = [_,cix"™' be
the equation of D. Then the set T of monomials of degree at most d —r in
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Proof Put K = |Tj; by elementary combinatorics we nd that K = (:
Put R = Ogyp,(py- Using T we obtain an Os-linear map : O'S< 1 R, which
is surjective by Lemma 6.6; we must prove that it is actually an isomorphism.

Now consider the scheme P,(D); Lemma 6.8 tells us that the ring R’ := Op, (D)
is a free module over Os of rank d!=(d —r)! = r!K. On the other hand, P,(D)

and D" = [uq]+:::+[u,]. In other words, if we change base to Sub,(D) we can
regard P,(D) as Pr(D"), and now Lemma 6.8 tells us that R’ is free of rank r!
over R.

to get a map y: Os™X # R!. This is a direct sum of copies of , so it is
surjective. Both source and target of y are free of rank r!K over Os. Any
epimorphism between free modules of the same nite rank is an isomorphism
(choose a splitting and then take determinants). Thus y is an isomorphism,
and it follows that is an isomorphism as required. ]

Corollary 6.10 The set T is a basis for B fCover C;.

Proof This is the universal case of the lemma. D

Corollary 6.11 The set T is a basis for ARB®Clover C} Tyl

uj = ajCk = aj + ¢j mod decomposables,
i=j+k

where ¢; may be zero, but a; is nonzero. It follows that our ring APBIC]

claim now follows easily from the previous corollary. O

Now let T; be the set of monomials of the form ulc,*:::c,n for which 0 i<
j j m. These monomials can be regarded as elements of APBIC]giving a

map (CYWCTI)FT,g # APBWC] The map : ColfCi1# APBWCTalso gives
us a map (C{PT)FfTog # APBWCT land by combining these we get a map

. (CIBT)FTog  (CYPTFTg # ABBCT (CIRTHFTg

of modules over CJ 1. Our main task will be to prove that this is an isomor-
phism. The proof will use the following lemma.
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Lemma 6.12 Let R bearing, and let : M ® N be a homomorphism of
modules over R[X]. Suppose that M can be written as a product of copies
of R[x], and similarly for N. Suppose also that the induced map M=xM &
N=xN is an isomorphism. Then is also an isomorphism.

Proof We have diagrams as shown below, in which the rows are easily seen to
be exact:
M=xKM —— M=xk*IM —— M=xM

L

N=x*N —— N=x**'N —— N=xN

We see by induction that the maps M=xM # N=xXN are all isomorphisms,
and the claim follows by taking inverse limits. O

Our map is a map of modules over the ring
CYWCl= Osus; 25 Un1;Ve; 01 Vimarl:
Moreover, we have C}ICil= (C¥Ti)[u,] ~ Q%:O CIWTI. Now let J be the

Os and induces a map
1 Os[unlfTog OsfTig ¥ Os[un]fTg:

Note also that OsfT g is the image of C in (ABWC)J and is thus a subring
of Os[un]fTg. By an evident inductive extension of the lemma, it will su ce
to show that is an isomorphism.

Lemma 6.13 We have up+j = UnCj +w; (mod J) for some polynomial w; in

Proof |J_E,or any monic ponnorr]'@I p(x) of degree d we write p(y) = y9p(1=y). If
p(x) = ;rixd7" then p(y) = ;riy'. Note that fig = p¢, and that p(0) = 1.
As we work mod (uj j i < n) we have f; = 1 (mod y"). As we work mod
vjil m + r) we have fi = 1. We also have fh = f; and gh = £,
so fi = fy = 1 (mody") and g = f1 = 1. It follows easily that f = ¢
(mod y™), so aj = b; for i <n.

We now have to distinguish between the case m < n and the case m n. First
suppose that m < n. Then for i > n we have a; = b; =0, and also b, =0, and
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ai = b; for i < n by the previous paragraph. This implies that f — ¢ = any".
We also have (f—@)A =5 — 1, and by comparing coe cients we deduce that

Now suppose instead that m n. As a; =0 for i > n we have
> .
f—g—@—b)y"=— by 2Cpl:

i=n+1

We now multiply this by A and use the fact that (f — §)h = fo — 1. By
comparing coe cients of y" we nd that u, = a, —b,. In view of this, our
equation reads

X .
fo-1-uy"i=—(C by 2Cpyl:
i=n+1
P .
The right hand side has the form = ;_, wjy" ) with wj 2 C, and by comparing
coe cients we see that Up+j = UnCj +Wj as claimed. ]

Proof of Theorem 6.3 Lemma 6.13 tells us that (u ) is uh’'c plus terms
involving lower powers of u,. It follows easily that if we Iter the source
and target of by powers of uy, then the resulting map of associated graded
modules is a isomorphism. It follows that is an isomorphism, and thus that

is an isomorphism. It follows that the map (CJPT)fTog # APBICTIis a
split monomorphism of modules over C¥WTyl (and thus certainly of modules
over C;). We have seen that this map factors as

(COIT)FTog 21 Q —¥ ADBWC]

where is surjective by Lemma 6.6. It follows that is an isomorphism and
that is a split monomorphism, as required. ]

7 Flag spaces

In the next section we will (in good cases) construct spaces whose associated
formal schemes are the schemes Sub.(D(Vp); D(V1)) and Int.(D(Vo); D(V1))
considered previously. As a warm-up, and also as technical input, we will rst
consider the schemes associated to Grassmannian bundles and flag bundles.
The results discussed are essentially due to Grothendieck [4]; we have merely
adjusted the language and technical framework.
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Let V be a bundle of dimension d over a space X. We write P.(V) for the

[usl+:::+ur ] D(V).
Proposition 7.1 There is a natural isomorphism P.(V)e = P(D(V)).
Proof For each i we have a line bundle over P,(V) whose bre over the

gives rise to a map u;: Pr(V)e * G. The direct sum of these line bundles
corresponds to the divisor [ui] +::: + [u,]. This direct sum is a subbundle of
V,s0 [u]+:::+[u] D(V). This construction therefore gives us a map
Pr(V)e £ Pr(D(V)).

In the case r = 1 we have P,(V) =PV and P1(D(V)) = D(V) so the claim
is that (PV)e = D(V), which is true by de nition. In general, suppose we
know that Pr—1(V)e = Pr—1(D(V)). We can regard P.(V) as the projective

the space Vi (M1 ::: Ly—1). It follows that P,(V)g is just the divisor
D(V) — ([u1] + ::: + [ur—1]) over Pr_1(D(V)), which is easily identi ed with
Pr(D(V)). The proposition follows by induction. O

Remark 7.2 One can easily recover the following more concrete statement.

The ring E°P(V) = Op, (p(vy) is the largest qlé)tient ring of (E°X)[x1;:: ;%]

in which the polynomial fy (t) is divisible by 'i‘zl(t — X;j). It is a free module

over E9X with rank d!=(d — r)!, and the monomials x with 0 i d—i

are given in Section 9.
We next consider the Grassmannian bundle
G (V)=Ff(X;W) jx2X; W Vygand dim(W) =rg:

Proposition 7.3 There is a natural isomorphism G(V ) = Sub,(D(V)).

Proof Let T denote the tautological bundle over G,(V). This is a rank r
subbundle of the pullback of V so we have a degree r subdivisor D(T) of the
pullback of D(V) over G(V )e. Thisgives rise toamap G,(V) # Sub.(D(V)).

Next, consider the space P,(V). There is a map P.(V) ® G,(V) given by
(x;Lg;ii;Ly) ™ (x;Ly ::i Ly). This lifts in an evident way to give a
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homeomorphism P(V) * P,(T). Of course, this is exactly parallel to the proof

of Lemma 6.9. Over P.(D(T)) we have points a;;:::;a, of G with coordinate
values Xi;:::;Xr 2 Op, (p(Ty) Say. Let B be the set of monomials x with
0 i r—ifori=21:::;r. From our earlier analysis of Sub,(D(V)) and

Pr(D(T)) we see that B is a basis for Op, p(ry) 0ver Ogyp, (p(vy)- Ve also
see from Remark 7.2 (applied to the bundle T) that B is a basis for E°P,(T)
over E®G,(V). This means that our isomorphism f: Op_pvy) * E°P (V) is
a direct sum (indexed by B) of copies of our map g: Osyp, (D(v)) * EOG (V).
It follows that g must also be an isomorphism. ]

Remark 7.4 Lemma 6.9 now gives us an explicit basis for E°G,(V) over
E®X, consisting of monomials in the Chern classes of the tautological bundle
T.

8 Topological universal examples

In this section we construct spaces whose associated formal schemes are the
algebraic universal examples considered in Section 6.

We rst consider the easy case of the schemes Sub,(Dg; D1).

De nition 8.1 Given vector bundles Vg and Vi over X, we de ne G,(Vo; V1)
to be the space of quadruples (x; Wg;W1;g) such that

(@ x2X;
(b) Wi; is an r-dimensional subspace of Vix for i =0;1; and
(c) g is an isometric isomorphism Wy # Wy,

(We would obtain a homotopy equivalent space if we dropped the requirement
that g be an isometry.)

If V; is the evident tautological bundle over BU(d;) we write G,(dg;d;) for
Gr(Vo;V1). More generally, if V is a bundle over X and do 0 we can let
V1 be the pullback of V to BU(dg) X, and let Vo be the pullback of of
the tautological bundle over BU(dp); in this context we write G(dg;V) for
Gr(Vo; V1).

Theorem 8.2 Thereis a natural map p: G¢(Vo;Vi)e ® Sub,(D(Vp); D(V1)).
In the universal case this is an isomorphism, so

Gr(do; d1)e = Suby(do; d1):

Algebraic & Geometric Topology, Volume 2 (2002)



1092 N. P. Strickland

More generally, there is a spectral sequence

Tore gu(e) BUE)(E X E Gr(do;d1)) =D E Gr(Vo; V1);

whose edge map in degree zero is the map

P 1 Osub,(D(Vo):D(v1)) ¥ E°Gr(Vo; V1):

The spectral sequence collapses in the universal case. (We do not address the
question of convergence in the general case.)

Proof First, we can pull back the bundles V; from X to G,(Vo; V1) (with-
out change of notation). We also have a bundle over G,(Vp;V1) whose -
bre over a point (x;Wp;W1;9) is Wp; we denote this bundle by W, and
note that there are natural inclusions Vg Lw s V1. We then have di-
visors D(W) and D(V;) on G over Gy(Vp;V1)e with D(W) D(Vy) and
D(W) D(V1), so the triple (D(Vo);D(V1); D(W)) is classi ed by a map
Gr(Vo;V1)e * Subr(D(Vo); D(V1)).

We next consider the universal case. As our model of EU (d) we use the space of
orthonormal d-frames in C1, so BU(d) is just the Grassmannian of d-planes
in C1. Given a point

(&) Vo is the span of ug;:::;ug,

(b) Vi is the span of vi;:::;vg,

(©) Wp is the span of ug;:::;ur

(d) Wi is the span of vq;:::;vy

(e) g is the map Wy # W; that sends uj to v;.
This givesamap f: EU(dy) EU(d1) #* Gy(dp;d1). Next, the group U(dp)
U(dy) has a subgroup U(r) U(dg—r) U(r) U(dy—r), inside which we
have the smaller subgroup I consisting of elements of the form (h;ko; h;kj).
Itisnothardtoseethat ' > U(r) U(do—r) U(di—r), and that f gives
a homeomorphism (EU(dg) EU(dy))=I" * G,(do;d1). Moreover, EU(dg)
EU(d;) is contractible and I" acts freely so Gy (do;d1) » Bl =BU(r) BU(dp—
r) BU(dy—r), so G¢(do;d1)e = Divy Divjo_r Diva“l_Ir = Suby(dp; d1) as
claimed.
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In the general case we can choose maps fj: X ® BU(d;) classifying Vj, and
this gives rise to a pullback square as follows:

Gr(Vo;V1) —— Gy(do;d1)

X —— BU(®do) BU(dy):

The vertical maps are bre bundle projections so this is actually a homotopy
pullback square. This give an Eilenberg-Moore spectral sequence as in the
statement of the theorem. On the edge we have

E X Ceku() BU@) E Gr(do;d1);

which is the same as

E X Leokuo) Budy) E Gr(do;di):
We can now identify this as the tensor product of E X with Ogyp, (dq:d,) OVEr
ODiVJO Divy, - The part in degree zero is easily seen to be Ogyp, (D(vo);D(v1)) @S
claimed. ]

We next show that our map G,(Vo;Vi)e * Sub(D(Vo); D(V1)) is an isomor-
phism in the semiuniversal case as well as the universal case. We start by
analysing the semiuniversal spaces Gr(do;V) in more familiar terms.

Proposition 8.3 There are natural homotopy equivalences
(and in particular G,(r;V) * G¢(V)).

Proof A point of G,(do; V) is a tuple (Vo; X; Wo; W1;g) where Vo 2 Gg,(C1),
X2 X, Wy 2Gr(Vg), W1 2G(Vx) and g: Wy * W;. We can de ne a map
f: Ge(do;V) 2 Gr(V) BU(do—r) by F(Vo;x; Wo; W1;9) = (x; W1; Vo [WD).
It is not hard to see that this is a bre bundle projection, and that the bre
over a point (x;W;V?!) is the space of linear isometric embeddings from W
to C1 [Vi. This space is homeomorphic to the space of linear isometric
embeddings of C" in C1, which is well-known to be contractible. Thus f is a

bration with contractible bres and thus is a weak equivalence. ]

Corollary 8.4 The map G,(dg;V)e * Sub(dg; D(V)) is an isomorphism.
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Proof Recall that Sub,(dg; D(V)) is the scheme of pairs (D1; D) where Dq
is a divisor of degree d;, D is a divisor of degree r and D  Dj; \ D(V).
There is an evident isomorphism Sub(D(V)) s Diva’o_Ir 2 Sub,(dg; D(V))
sending (D% D) to (D + D% D). The proposition tells us that G,(do;V) =
Gr(V) BU(dg —r). We already know that BU(dgp — r)g = Divjo_r, and
Proposition 7.3 tells us that G,(V)e = Sub.(D(V)). We therefore have an
isomorphism G,(dg;V)e = Sub(D(V)) s Div;,“o_Ir = Suby(do; D(V)). (This
involves an implicit Kiinneth isomorphism, which is valid because BU (dy — r)
has only even-dimensional cells.) We leave it to the reader to check that this
isomorphism is the same as the map considered previously. O

We now turn to parallel results for the schemes Int.(D(Vp); D(V1)).

De nition 8.5 Given vector bundles Vg and Vi over a space X, we de ne
I:(Vo; V1) to be the space of pairs (x;f) where f: Vox ®# Vi is a linear map
of rank at least r. We de ne the universal and semiuniversal spaces I(do;d1)
and 1.(dp; V) by the evident analogue of De nition 8.1.

Remark 8.6 There is a natural map
Gr(Vo; V1) ® 1+(Vo; Va);
sending (X; Wg;W3;9) to (x; ), where T is the composite
Vo 24 w, ¥ w, 1 v
This gives a homeomorphism of G,(Vg;V1) with the subspace of I,.(Vg; V1)

consisting of pairs (x; f) for which £ f and ff are idempotent.

De nition 8.7 We de ne a natural map q: 1,(Vo; V1) * Int,(D(Vo); D(V1))
as follows. If we let  denote the projection 1.(Vo;V1) ® X then we have
a tautological map f: Vo #  V; which has rank at least r everywhere.
Proposition 5.3 now tells us that int( Vp; Vi) r. We can therefore apply
Theorem 5.1 and deduce that the map I,(Vo;V1)e * Xg factors through a
map q: 1, (Vo; V1) ® Int,(D(Vp); D(V1)) Xg as required.

Later we will show that the map g is an isomorphism in the universal case. For
this, it will be convenient to have an alternative model for the universal space
I (do; d1).
Proposition 8.8 Put

18(do; d1) = F(Vo; V1) 2 Ggo(CY)  Gg,(CL)j dim(Vo\ V1) kgt
Then 1%(do; d1) is homotopy equivalent to 1,(do;d1).
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Proof The basic idea is to re ne the proof of Proposition 5.3. We will take
G4(C?1) as our model for BU(d). We write | = I,(do;d;) and 1" = 1}(do; d1)
for brevity.

We will need various isometries between in lBte-dimensional vector spaces. We
dene :CLt2Ct Clby (v)=(v;v)= 2,andwede ne : C1 Cc1 &
Ct by (v;w) = (Vo;Wo;V1;Ws;:::). Next, it is well-known that the space of
linear isometric embeddings of C1 in itself is contractible, so we can choose a
continuous family of isometries ¢ with g= and 1 = 1. Similarly, we can
choose continuous families of isometric embeddings §; i: ct # c1t c?
with 8(v) = (v;0) and J(v) = (O;v) and }(v)= }(v)=v.

We now de neamap : I'® I by (Vo;Vi) = (Vo;Va;T), where T is the
orthogonal projection map from Vg to V1. This acts as the identity on Vo \'Vq
and thus has rank at least k. If we choose n large enough that Vo +V; C"
and let Vo -¥ C" -V, be the inclusions, then f = i, .

Next, we need to de neamap : |1 #* 1", Given (Vo;Vi;f) 2 1 we can
construct maps

<
o
e

Vo
SV, BV,
jo: Vo ® Vg Vi<clt c?
ji:Vi®Vy Vi<Ct c?t

as in the proof of the implication (c) ) (b) in Proposition 5.3, so dim(joVo \
jiVi) k. Wecanthusde ne : 12 1'by (Vo;Vi;F)=( joVo; j1Vi).

Suppose we start with (Vo; Vi) 2 1°, de ne f: Vo # V; to be the orthogonal
projection, and then de ne jo;j1 as above so that  (Vo; V1) = ( joVo; J1Vi).
Observe that £ f: Vo ® V, decreases distances, and acts as the identity on
V :=Vo\Vi. Ifwelet q;:::; 4, be the eigenvalues of £ T (listed in the usual
way) we deducethat 1 =::: = x=1andthat 0 i 1 foralli. It follows
from this that and are the respective identity maps, so

jo=(Lf) Q+f 7T

ji=(F ;1) (Q+Fff) 172
In particular, we have jo(v) = ji(v) = (v;v)=p§ for v2V, so jojv = Jijv =
v -
Next,for0 t 1 wede nej§: Vo®# Ct CT by

o = (iptio + (1 —0f) L+ + (A —t)f )=
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One can check that this is an isometric embedding, with j§ = jo and ji = jy,
and jijy = jv for all t. Similarly, if we put

Ji=(ntio+Q—0f ) Q+E+Q-t)Ff )7

we nd that this is an isometric embedding of V; in Ct C% with j? = j;
and ji = jy, and jijy = jv for all t. It follows that ( j§Vo; jivi) 2 1° for
all t, and this gives a path from  (Vo;V1) = ( joVo; J1Vi1) to ( Vo; Vi).
Recall that we chose a path f (g from to 1. The pairs ( ¢Vo; V1) nhow
give a path from ( Vo; Vi) to (Vo;V1) in 1°. Both of the paths considered
above are easily seen to depend continuously on the point (Vo; V1) 2 1° that we
started with, so we have constructed a homotopy 7 1.

Now suppose instead that we start with a point (Vo;V1;f) 2 I; we need a
path from  (Vo;Va;F) to (Vo;V; F). We have  (Vo;Va;F) = ( JoVo; JaVa),
so  (Vo;Vi;F) = ( joVo; jiVi;TY, where ' joVo # j1Vq is the orthog-
onal projection. One can check that this is characterised by f( jo(v)) =
J1(1do(v)). Next,for 0 t 1 wede nek§: Vo ® Vo V; by
P _

Ki=( 1-t2+12 ;tf) A—-t2+t® +2F f) 12
This is an isometric embedding with kj = jo and k3(v) = (v;0). Similarly, we
de ne k}_ Vi® Vg V4 by

p— _

Ki=(f; 1—-22+t2) (1—t2+t2 +t2FfF ) 172

and we de ne fl: kfvo® kiv; by
O K5(V) = KiG1o(v));
so ) = f%. The points (k§Vo; kiV1; f}) give a path from  (Vo;V1; F) to ( (Vo
0); (0 Vi)f})inl.
Next, we de ne f: §Vo # 1vy by fC §(v)) = 1(@1Jo(v)). The points
( 6Vo; §Vi;f{) give a path from ( (Vo 0); (0 Vi);fg) to (Vo;Vi;iqjo) in
I. Using Proposition A.2 one can check that
. _ p_
juo=( +FF) (P +T ) (+F 1)
=f @ ¥ +f )Y

Themap :=2 ¥2( +f f)!isa strictly positive self-adjoint automorphism
of Vo, so the same is true of t+ (1 —t) for 0 t 1. The points (Vo;V1;T
(t+ (@1 —1t))) form a path from (Vo;V1;J1Jo) to (Vo;V1; ). All the paths

considered depend continuously on the point (Vp;Vy; ) that we started with,
so we have de ned a homotopy 7 1. ]
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Theorem 8.9 The map q: I+(do;d1)e ® Int.(dp;dy) is an isomorphism.

Proof We rstreplace I(do;d;) by the homotopy-equivalent space 1%(do;d1).
We write I, = IE(do;dl) and G, = G(dp; d1) for brevity, and similarly for Int,
and Sub,. We rst claim that there is a commutative diagram as follows.

oIntr [o— OSubr

E°l, — E°G,:
Indeed, the isomorphism

P: Osuby (do:ds) ¥ E°Gr(do; di)

comes from Theorem 8.2, and the map g comes from De nition 8.7. It was
proved in Theorem 6.3 that the top horizontal map is a split monomorphism of
Os -modules, and it follows that the same is true of the map q: O, * E°I,.

We now specialise to the case where E is H[u; u™1], the two-periogjc version of
the integer Eilenberg-MacLane spectrum. We then have EOX = = HZX for
all spaces X. This splits each of the rings on the bottom row of our diagram
as a product of homogeneous pieces, and it is not hard to check that there is a
unique compatible way to split the rings on the top row. We know that ¢ is a
split monomorphism; if we can show that the source and target have the same
Poincare series, it will follow that q is an isomorphism. If r = min(dg; d1) then
Int, = Sub, so the claim is certainly true. To work downwards from here by
induction, it will su ce to show that

PS(H Ir+1) =PS(H I,) = PS(Oint,.,) = PS(Oint,)
for all r.
To evaluate the left hand side, we consider the space
Ir 0 leag = F(Vo; V1) 2 Gy (CL) Gy, (C1) j dim(Vo \ V1) = Kg:

Let Gl be the space of triples (V;V{; V) of mutually orthogonal subspaces
of C1 such that dim(V) = r and dim(V;) = di —r. This is well-known
to be a model of BU(r) BU(dg —r) BU(d; —r) and thus homotopy-
equivalent to G ; the argument uses frames much as in the proof of Theorem 8.2.
Let W be the bundle over G} whose bre over (V;V{;V)) is Hom(V};VJ). If

2 Hom(V¢;V{) and we put Vo =V V) and V; =V  graph( ) then
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Vo\Vy =V and so (Vo;V1) 2 I. Itis not hard to see that this construction
gives a homeomorphism of the total space of W with I .nl;;. Thisin turn gives
a homeomorphism of the Thom space (GL)W with the quotient space I=l+;.
By induction we may assume that H I, is concentrated in even degrees,
and it is clear from the Thom isomorphism theorem that the same is true of
B (GHW. This implies that H I, is in even degrees and that PS(H I,) —
PS(H I+1) =PS(8 (GHW). As W has dimension (do — r)(d; —r), we see
that PS(8 (GL)W) = t2(@=Nd—Nps(H G!). We also know that H Gl ~
Osupb, - The conclusion is that

PSH 1) —=PS(H lp41) = t2 0 D0"Dp 5O p ):

We next evaluate PS(Ojnt,,,) — PS(Oint,). Put

Ry = Z[co1; 175 Co:do—rs C115 575 Caiay ]
We know fr&n Theorem 6.3 that O.Iﬂ,r is freely generated over R, by the
- r = - r
monomials ~j—; Coq,r+j fOr whichs j_, i di —r. It follows that the
monomials ~_, Coido—r+i fOF Whieh 1 i di—r form a basis for Ojnt, over

R,+1. Similarly, those for which 'ir:o i < di —r form a basis for Oy, , over
Ry.+1plhus, if we let NI, be the module generated over R, by the monomials
with [ i di—r 6 i,we ndthat PS(Oint,,,)—PS(Oint,) =PS(M ).

P
It is not hard to check that the monomials for which 5 i=di—r forrba basis

for M ovgsR,. Next, let N be generated over Z by the monomials ~_,¢;

for which 5 i = d1 — r; note that this involves the variables 1 = cg;:::;

deg(ci) + 2(dp — r) we have
Y Y >
deg(  Cq—r+j) =deg(  ¢;') +2(do—r) i

1 | 1
Using this, we see that PS(M ) = t2d~Ni=Npg(N )PS(R,). However,
Corollary 6.11 essentially says that Osyp, ” R, NI as graded Abelian groups,
so PS(N )PS(R,) = PS(Osup,), so

PS(Oint,.,) — PS(Oint,) = 20 DE@IP 5(Og p, )
= PS(H Ir) — PS(H Ir+1):

As explained previously, this implies that g is an isomorphism in the case
E = H[u;u™1]. We next consider the case E = MUJ[u;u™]. Let | be the
kernel of the usual map MU ® 7Z. Because H I, is free of nite type and
concentrated in even degrees, we see that the Atiyah-Hirzebruch spectral se-
quence collapses and that the associated graded ring gryMU | is isomorphic
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to gr, (MU )IPHII,. Using this it is not hard to check that g is an isomorphism
in the case E = MU[u;u™!] also. Finally, given an arbitrary even periodic ring
spectrum E we can choose a complex orientation in E°CP 1 and thus a ring
map MU[u;u"!] # E. Using this, we deduce that q is an isomorphism for all
E. O

Corollary 8.10 Let Vo and Vi be bundles of dimensions dy and d; over a
space X. Then there is a spectral sequence

Tore gy, BuU@)(E X E Ir(do;d1)) =D E 1+(Vo; Va);

whose edge map in degree zero is the map

0 : Ount, Vo)D) ¥ E%1r(Vo; Va):

The spectral sequence collapses in the semiuniversal and universal cases. (We
do not address the question of convergence in the general case.)

Proof This is another Eilenberg-Moore spectral sequence. O

9 The schemes PD
Let D be a divisor of degree d on G over S, with equation

> .
f)=fo)= cx¥' 20s[t];
i=0

say. In this section we assemble some useful facts about the scheme PyD.

ideal J@our main task will be to nd systems of generators for Jx. We put
pi(t) = j<i(t_Xj), and we let gj(t) and rj(t) be the quotient and remainder
when £(t) is divided by pi(t). Thus f(t) = qi(t)pi(t) + ri(t) and ri(t) has the
form J'_:%) aijtj for some ajo;:::;aii—1 2 Os. From the de nitions it is clear
that Ji is the smallest ideal modulo which f(t) becomes divisible by pk(t), or
in other words the smallest ideal modulo which ry(t) = 0, so Ji is generated
by ako;:::;akk—1. Now put bj = aj+1;i for 0 i <Kk; we will show that these
elements also generate Jy.

Lemma 9.1 We have b; = gij(X;j) and rj+1 = bjpj + rj for all i.
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Proof The polynomial q;i(t) —gi(X;) is evidently divisible by t—x;, say gj(t) —
0i(xi) = (t—xi)ai,y (t). If we put ri,;(t) = qi(xi)pi(t) + ri(t) we nd that r{,,
is a polynomial of degree at most i and that f(t) = qf,,(Dpi+1(t) + i, (1),
so we must have gj+1 = q?+1 and rjy; = r9+1. Thus b; is the coe cient of t'
in r?+1(t). As rj has degree less than i1 and p; is monic of degree 1 we deduce
that b; = gi(Xi). D

from the lemma that rg = r—1 = ::: = rg = 0; this shows that Jy JP(.
Conversely, if we work modulo Ji then F is divisible by px and hence by p; for
alli k,sorp=:::=r¢=0. It follows from the lemma that bjp; = 0 for all
i, and p; is monic so bj =0. Thus J}  Jk. 0

We now give a determinantal formula for the relators bj. Consider the Vander-
monde determinant

Vi = det(x})o ij<k = (Xj — Xxi):
0 i<j<k

We also de ne a matrix By by
x] ifo j<k—1

B = £y ifj=k-1

Proposition 9.3 We have b; = det(Bj)=v; for all j. (More precisely, we have

Proof De ne : Os! # Og[t]=p;j(t) by
>x< >x<
(uo;::t;uj—z;w) = ut'+wf(t) (modpj) = uit'+wrj(t) (mod pj):
i i
tify Os[t]=p; (t) with Og! using the basis ft' jO i< jg. Itis easy to see that
det( ) =vj and det( ) = det(Bj). Moreover, the matrix of  has the form

Lo’b—_ so det( ) = bj. It follows immediately that vjb; = det(B;). It is
j

easy to see that none of the polynomials xj —X; (where i < j) are zero-divisors,
S0 vj is not a zero-divisor. m]
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We next need to relate the schemes PyD to the exterior powers XOp.

Lemma 9.4 The ideal Jx maps to zero under the natural projection Opk =
o ls kOp.

Proof It is enough to prove the corresponding result in the universal case,
where D is the tautological divisor over Div}. As the map G # G9%= 4 =
Divy is faithfully flat, it is enough to prove the result after pulling back along
this map. In other words, we need only consider thbdivisor over the ring
R := Oga = Oslyi j i < d] with equation é(t) = “;(t—vyi). Let w be
the discriminant of this polynomial, so w = “jg;(yi —yj) 2 R. Put N =

with pointwise operations. We can de ne : Op ®* F(N;R) by (g)(i) =
g(vi), and the Chinese Remainder Theorem tells us that the resulting map
wlOp ® F(N;w™!R) is an isomorphism, and it follows that w™1Opk =
F(N*;w™!R). We also have Opx = RIXj j J < KI=(fpo(Xj) ] J < k); the
element x; corresponds to the function n @ yy, .

Now put

@d Ng = NKn Ng. Let r(t) be the re@ainder when the polynomial fp(t) ;=

i<q(t — Vi) is divided by fpo(t) := j<k(t — X;j). This correspongj to the
function n @ rp(t), where ry(t) is the remainder of fp(t) modulo j<k(t—
Yn;)- As the discriminant is invertible in w IR we see that ) =01 n2 N,
and otherwise some coe cient of rp(t) is invertible. Using this, we deduce that

be the evident basis of F (N;R) over R, this means that w—1Jy is spanned over
wIR by the elements en, (1 &g _, for which nj = n; for some i & j, and
these elements satisfy en, :::”en, , = 0 so the map w™1J, # w™! KOp is
zero. As w is not a zero-divisor we deduce that the map Jx # KOp is zero,
as claimed. ]

Next note that the symmetric group | acts on DX and 5D and thus on the
corresponding rings. In either case we de ne altx(a) = 2 .sgn( ) :a. We

also let : ODE'C'-! KOp be the usual projection, or equivalently the restric-
tion of the product map : ( Op)™® Op. Dually, we let : *Op *
ODE'C'be the component of the coproduct map «: Op ¥ ( Op)™! We
also let p : O,'DZD: Opx # Op,p denote the usual projection, corresponding

to the closed inclusion Py D ¥ DX.
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Proposition 9.5 There is a natural commutative diagram as follows.

It
Op,D T Op,D
\ /
k k
p KOpb p
7\
oL oS!

alty,

Proof The main point to check is that | | = alt,: OS'# OJ* Consider
an element a=ap [t Cad, 2 %:'C' Let al denote the eBmlgpt 1'1@ -

10371 2 0ffso that w(a) = |Sgal and k(@) = ; ;al. Weare
interested in the component of this in ODDC' ( Op) ™ !which is easily seen
to be P & @ Moreover, one checks that

Y ) — — a
a; " =sgn( )a —1p) L1 Catagqy =sgn( ) &
! P
so the relevant component of ¢ (@) is sgn( ) :a = altk(a), as claimed.

Let A be the set of multiindices = ( ¢;:::; k—=1) with 0 i < d for
all 1, and let Ag be the subset of those for which ¢ > ::: > (1. Put
x = x0 [k [xi~t 2 OLK! Then fx j 2 Ag is a basis for OL<
and T (X )] 2 Aog is algasis for KOp. Moreover, if 2 Ay and we
write ¢ k(X ) = alty(x ) = 2aC X weseethatc =1landc =0if

2Apand & . It follows that | is surjective and  is a split injection
of Os-modules, as indicated in the diagram.

Lemma 9.4 tells us that | factor as |p for some !: Op,p # XOp, and
a diagram chase shows that E< is surjective. This gives the right hand triangle
of the diagram. We simply de ne ! =p  to get the left hand triangle. As
p is g-equivariant we have

altyp =p alty=p Kk k= | kP :
As p is surjective, this proves that E( E( = alty, so the top triangle commutes.
O

We next study certain orbit schemes for actions of . Recall that Ogk =
Oslxi j i < k] has a topological basis consisting of monomials in the variables
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Xj. This basis is permuted by i, and the sums of the orbits form a topological
basis for the invariant subring Ogi = Ogk= , = Op;+. It is clear from this
analysis that our quotient construction commutes with base change, in other
words (S! sG*)= | =8" 5 (GK= |) for any scheme S° over S. Similarly,
the set fx j ; <d for all ig is a basis for Opk that is permuted by g, so
the orbit sums give a basis for O and we have a quotient scheme Dk= =

spf(Opk) whose formation commutes with base change. By comparing our
bases we see that the projection Og # Op = Og=fp induces a surjective map
Ogk= , ® Opk- . In other words, we have a commutative square of schemes
as shown, in which j and j' are closed inclusions, and g, is a faithfully flat
map of degree d!.

DK GX

01 gz

k— k— — PDiv*
D"= k>j—0>Gr— k—DIVk

One might hope to show that P(D)= x = Suby(D) in a similar sense, but this

is not quite correct. For example if D = 3[0] (so fp(t) = t3) and k = 2 then
Op,p = Os[x;y]=(x3;x% + xy + y?). If we de ne a basis of this ring by

we nd that the generator of , has the e ect
eoPBey;e1PBe; e3PHes; es P —es:

If Os has no 2-torsion we nd that Oy’ is spanned by f1;x+y;Xxyg and thus
is equal to Ogyp,(py. However, if 2 =0 in Os we have an additional generator

X2y, S0 Op2p s strictly larger than Ogyp,py. This example also shows that
the formation of Op2, is not compatible with base change.

The following proposition provides a substitute for the hope described above.

Proposition 9.6 There is a commutative diagram as follows, in which 1,
i’, j and j' are closed inclusions, and qq and q, are faithfully flat of degree
k!. Moreover, the outer rectangle is a pullback, and if Jyx := ker(i ) then
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ker((i") ) = J, .

PxD DK Gk
o a1 02
SUbk(D) 0 Dk: T GkZ kK — DiV_kF

JO
Proof We have already produced the right hand square. The map i is just

[ak—1] 2 Subk(D); it was observed in the proof of Lemma 6.9 that this makes
Op,p into a free module of rank k! over Ogyp, Dy, SO Qo is faithfully flat of
degree k!.

The points of Suby (D) are the divisors of degree k contained in D, so Suby(D)
is a closed subscheme of Div, ; we write m’: Suby(D) # Div, for the inclu-
sion, and note that m'gy = qpji. As qqg is faithfully flat and m’qy factors
through DK= | we see that m' factors through DK= |, so there is a unique
map i’: Subk(D) # DX= | such that m’ = j%i’. As m' is a closed inclu-
sion, the same is true of i’. A point of the pullback of m ang, g, is a list
a = (aog;:::;ax—1) of points gG such that the divisor gz2(a) =  [a] lies in
Subk(D), and thus satis es [a] D. It follows from the de nitions that
this pullback is just PyD as claimed.

As qo is faithfully flat we have ker((i’) ) = ker(qy(i") ) = ker(i q;). By con-
struction, g, is just the inclusion of the -invariants in Opk, so ker(i q;) =
ker(i ) x=J,* as claimed. O

Corollary 9.7 KOp is naturally a module over Osuby (D) -

Proof We can certainly regard Opx as a module over the subring Opk- |, =

Opk, and the map altc: Opk # Opk respects this structure. This makes
KOp = image(alty) into a module over Opk- Ifa2J, % and b 2 Opk then
aalt(b) = alt(ab) but ab 2 Ji so alt(ab) = 0. This shows that KOp is

annihilated by J, , so it is a module over O=J, * = Ogyp, (D), as claimed. D

We next identify XOp as a module over Osuby (D) - Let D' be the tautological
divisor of degree k over Suby(D). Then O is naturally a quotient of the ring
Op [sOgyp, by, Which contains the subring Op = Op [LI This gives us a
map Op ¥ Ops, which extends to giveamap : §Op * ¥, ) Ops.
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Proposition 9.8 The map : §OD 2 Igubk(D)ODO is an isomorphism of
free rank-one modules over Ogp, (Dy-

Proof Put T = Subk(D) for brevity. Note that
Op = Osfx'ji<dg
KOp = Ogfxlo N i A1 jd > g > ::: > ik_10
Ope = Orfx' ji <kg
KOpr = O XK1~ A x0g:
d
K over Og, and
-I|(-OD0 is free of rank one over Ot . We also know from Lemma 6.9 that Ot is
free of rank K over Og, so #ODo is also free of rank K over Og.

In particular, we see that '§OD is free of rank K =

Suppose for the moment that is a homomorphism of Ot -modules. It is clear
that

KA Ax0) = kA AD,
and this element generates #ODU, S0 is surjective. As the source and target
are free of the same nite rank over Ogs, we deduce that is an isomorphism

as claimed.

We still need to prove that s linear over Ot . By the argt@ent of Lemma 9.4
we reduce to the case where D is the divisor with equation ?;Ol(t—yi) de ned
over the ring
R = Oga = Oslyo;:::;Yda-1l;

and we can invert the discriminant w = Qi&j (Vi —yj). We reuse the no-
tation in the proof of that lemma, so w1Op = F(N;w™!R) and w1Op«k =
F(NK;w™'R) and w10p,p = F (Nx; w™*R). We see from Proposition 9.6 that
w™tOr is the image of w™*O_ in w™Op,p, which is the ring F (Ni; w™*R) &
of symmetric functions from Ny to w™IR. If we write N.” = fn 2 N j ng >
ii>ngig then N = ¢ N as  g-sets so w1O0p, p = F(N. ;W IR). On
the other hand, O~ is also a quotient of R I[ogw: , Which is the ring of symmet-
ric power series in k variables over R; a symmetric power series p corresponds

If n 2 NX we put en = e, 1 [C&d,_,, so these elements form a basis
for w0 over w~IR. Similarly, the set  y(en) j n 2 N.Jg is a basis for
w~! KOp. Using the previous paragraph we see that p: k(en) = p(Yn) «k(en),
which tells us the Ot -module structure on w—1 KOp.
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We next analyse w—1Opo. This is a quotient of the ring

Y
wlOr [Ob =F(N, ;W 'Op) = wiRfej ji < dg:
n2N.~

It is not hard to check that the relevant ideal is a product of terms I, where

I, is spanned by the elements e; that do not lie in the list en,;:::;en,_,. Thus
Y
wlOp =  w'Rfepn; jj <kg
Y
wlKop = wlRen, Miiien

n

Let e°n be the element of this module whose n’th component is en, ™::: " en,_,,
and whose other components are zero. Clearly fel, j n 2 Nljg is a basis
for w! #ODo over wlR. As a symmetric power series p corresponds to
the function n @ p(y,) and e, is concentrated in the n’th factor we have
p:el, = p(yn)el,. It is also easy to see that ( k(en)) = €%, and it follows that

is Ot -linear as claimed. a |

We next give a formula for  in terms of suitable bases of £Op and §,, Ops.
(This could be used to give an alternative proof that is an isomorphism.)

Proposition 9.9 Suppose we have an element x 0/ :\X k-1 2 '§OD, where
0 0 <::i< g—k—1. Let yp;:::;Yk—1 be the elements of f0;:::;d —1gn

1) — k—1. .
(XOoN N X 1) = XN Ay .det(ck+i_yj)0 iij<d—k>

where the elements c; are the usual parameters of the divisor D'.

Proof For any increasing sequence o < ::: < p—1 We write X( ) =x o~/
(i Ax n—1 \We also write € =x(0;1;:::;k—1) and e = x(0;1;:::;d—1), and
we put T = Suby(D).

We certainly have (x( )) = b €’ for some b 2 Ot. To analyse these ele-
ments, put J¥ = ker(O1 COb * Opo, which is freely generated over Ot by
X'fpo(X) j i <d—kg. Consider the element

a=fp Axfo N xK g 2 K9 oF Cd*Op:

This clearly annihilates J° O1 [30p, so multiplication by a induces a map
KOp: # O [C40p. As fpo is monic of degree k, we see that e’a = e. It
follows that x( )a=b ela=bh e.
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On the other hand, we can expand a in the form a = Py ayX(y), where y runs
over sequences 0 Yo <:::<Vg—k—1 <d. We have x( )x(y) = eif andy
are related as in the statement of the proposition, and x( )x(y) = 0 otherwise.
It follows that x( )a= aye, and thus that b = a,.

Let Ay be the matrix whose (i; j)'th entry is the coe cient of xYi in _x‘fDo(x);
{bis then clear that a, = det(Ay). On the other hand, we have x'fpi(x) =
m CmXKH=M 50 (Ay)ij = Ck+i—y; » and the proposition follows. ]

10 Thom spectra of adjoint bundles

The following proposition is an immediate consequence of Theorem 4.6 and its
proof (the rst statement is just the case k = d of the second statement).

Proposition 10.1 Let V be a d-dimensional bundle over a space X. Then
there are natural isomorphisms

0 ~dxvV) = 4, E%PV
B “KG "= Ko E'PV for0 k d. O
Remark 10.2 Note that the proposition gives two di erent descriptions of
the module B® ~KG,V': the rst statement with X replaced by Gi (V) and
V by T gives
E° KGW'= Ko EPT;
whereas the second statement gives
Eo _ka(V)u = IEOXEOPV:
We leave it to the reader to check that these two descriptions are related by the
isomorphism : XOp & Igubk(D)ODO of Proposition 9.8.

In the present section we examine the isomorphisms of Proposition 10.1 more
carefully. We will construct a diagram as follows, whose e ect in cohomology
will be identi ed with the diagram in Proposition 9.5.

KPy Ve > KPyVa
\qO‘ y

P Gk(V )" P
PN

KV ; PV

S
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Here PV X means the bre product
PVK=PV x::: xPV =f(X;Lo;:::;Lk—1) X2 X ; Lo;:ii:;Lk—1 2 PVya:

Write QU (V) = FcU(V)=Fx—1U(V), so that QU(V) = GkV*. As the I-
tration of U(V) is multiplicative, the multiplication U (V)X % U(V) induces a
map (Q:U (V)X # QU (V), or equivalently KPV, ® Gy(V)*. This is the
map q in the diagram.

L; are mutually orthogonal. The map p: P,V ¥ PVKX is_just the inclusion.
We alsq_have a map Pky_—! GV sending (x;L) to (x; ;Lj), and we note
that u( ;L) contains ;u(L;). Moreover, Wheln_ L is one-dimensional there
is a canonical isomorphism u(L) = iR * R, so  ;u(L;) ~ RK, so we get an
inclusion P, Vi ® GiV*, which we call g°. It is not hard to see that this is
the same as qgp, so the left hand triangle commutes on the nose.

We next de ne the map r’: G,V* # KPV. by a Pontrjagin-Thom con-
struction. Let N§ RK be the set of sequences (to;:::;tx—1) such that
to < ::: < tx_1, and let N’ be the space of triples (x;W; ) where W 2 GyVy
and 2 uw(W) and has k distinct eigenvalues. This is easily seen to be
an open subspace of the total space of the bundle u over GkV . Given such a
triple, we note that the eigenvalues of  are purely imaginary, so we can write

the spaces L; are one-dimensional and mutually orthogonal, and their direct
sum is W. Using this we see that the map qp: KPyV+ ® GV induces a
homeomorphism N{ PxV ® N', and this gives a collapse map

GV N [f1g ” (Ny PeV)[flg ” (NS Ff1Lg) ™ PyVa:

On the other hand, the inclusion N§ # RX gives a collapse map Sk # NJ[flg
which is a homotopy equivalence; after composing with the inverse of this, we
obtain a map G V" # KP. V., which we denote by r'.

We now de neamap r: G,V* # PVX. We rst mimic Lemma 4.5 and de ne
maps m;: U(1) 2 U@) (for 0 j <Kk) by

ek ifjsk =2 (j+1)=k

m;j(e' ) =
i) 1 otherwise

(where is assumed to be in the interval [0;2 ]). We then de ne Ok: uw) s

and preserves Itrations so it induces a map GV = QU (V) ¥ Q(U(V)X).
The target of this map is the wedge of all the spaces Q;,U(V)"™:::~Qy _,U(V)
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P
for which ;I = k. We can thus project down to the factor QiU(V) ™ :::

Q:U(V)= KPVX togetamap GV*# XPVX, which we call r.

It is not hard to recover the following more explicit description of r. Recall
that we have a homeomorphism

y: U(l)®* R[f1lg

given by y(2) = (z + 1)(z — 1) %=i and y~}(t) = (it + 1)=(it — 1). One
checks that y(e' ) = —cot( =2), which is a strictly increasing function of for
0< <2 . Let Aj denote the arc fel jj=k < =2 < (j + 1)=kg, so YA
is the interval (—cot( j=k); —cot( (j + 1)=k)). We also de ne m; =ym;y1,
which can be regarded as a homeomorphism yA; [ f1g # R [ f1g, homotopy
Bverse to the evident collapse map in the opposite direction. If we put Ng =

i YA N§ RK then the maps m; combine to give a homeomorphism
m: Ng [ f1g #* RX [ f1g, which is again homotopy inverse to the evident
collapse map in the opposite direction. Now let N N be the space of triples
(X;W; ) such that =i has precisely one eigenvalue in yA; for each j. If
(x;W; ) 2 N and t; is the eigenvalue in yA; and L; = ker( —itj) then
we nd that t 2 Ng and L 2 PcVx and r(x;W; ) = (m(t);x;L). On the
other hand, if (x;W; ) N we nd that r(x;W; ) = 1. It follows that
r is constructed in the same way as r’, except that N’ and NJ are replaced
by the smaller sets N and Ng. The projections N' [ f1g # N [ f1g and
NS [f1lg ® No [ f1g are homotopy equivalences, and it follows that r is
homotopic to pr’. This shows that the right hand triangle in our diagram
commutes up to homotopy.

We now consider the composite s = r'g":  kP,V. ® KP,V., which is essen-
tially obtained by collapsing out the complement of (g")"Y(N". There is an
evident action of the symmetric group  on the space Py V., given by

One checks that (gq")~*(N?%) = gENG  PxV), and using this one can see

that s is just the trace map tr , =,

Finally, we de ne
s'=rq: Kpvke kpvk

We can also de ne tr .. KPVK ® kpvk: we suspect that this is not the
same as s’, although we will see shortly that it induces the same map in coho-
mology.
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We now apply the functor BX(—) = B® —¥(—) to our diagram of spaces and
write D = D(V) to get the following diagram:

S

Op.D Op,.D
(¢\ A

p kKOp p
A

o5 o

"
The map p : ODEE': Opx * Op,p is the same as considered previously; this
is the de nition of our identi cation of (PxV)e with PcD. It follows from the

Hopf algebra isomorphism of Theorem 4.4 thatr = g and q = , and thus
that (") =  k = altx. As | factors uniquely through p we must have
() = L. Asg"=pgand | =p kwehave (¢) = !. Finally, we know

that s = tr , and any permutation 2 | acts on the sphere Sk with degree
equal to its signature so it follows that s = alt,: E°P,V ¥ E°P,V.

11 Fibrewise loop groups

We conclude the main part of this paper by studying the brewise loop space
QxU(V) and thereby providing a topological realisation of the diagram in
Proposition 9.6.

First, the group structure on U(V) gives a group structure on QxU(V). We
also have QxU(V) ~ Q%BU(V), and there is a canonical homotopy showing
that a double loop space is homotopy-commutative, so the proof goes through
to show that Qx U (V) is brewise homotopy commutative.

We next recall certain subspaces of QxU (V) which have been considered by a
number of previous authors | we will mostly refer to Crabb’s exposition [2],
which cites on Mitchell’s paper [7] and (apparently unpublished) work of Ma-
howald and Richter.

P i
Let V be a vector space. Any nite Laurent series f(z) = !\'Z_N ajz' with

coe cients a; 2 End(V) can be regarded as a map U(1) # End(V) which
we can compose with the standard homeomorphism y~1: S % U(1) to get
amap f: S' # End(V). We write QU (V) for the space of based loops

Algebraic & Geometric Topology, Volume 2 (2002)



Common subbundles and intersections of divisors 1111

u: S # U(V) that have the form u = f for some nite Laurent series f, and
call this the space of Laurent loops. Similarly, we write QP°'U (V) for the space
of loops that have the form £ for some polynomial f.

If u="fis a Laurent loop we have f(2)™1 =f(z) = Pi aiz_i which is again
a nite Laurent series. Using this we see that that Q'2U (V) is a subgroup of
QU (V) (but QP'U(V) is merely a submonoid). We also nd that the function
d(z) = det(f(z)) is a nite Laurent series in C[z;z™!] satisfying d(z)d(z) = 1
and d(1) = 1; it follows easily that d(z) = z" for some integer n, called the
degree of u.

De nition 11.1 (a) We write SV for the space of polynomial loops of
degree k on U(V).

(b) The product structure on QU (V) induces maps SV S|V * SV,
which we call .

(c) Given W 2 GkV and z 2 U(1) we have a polynomial z w + (1 — w) 2
End(V )[z] giving rise to a based loop in U(V) which we call (W). This
de nesamap : GV ® S V. Itis not hard to show that ;: PV ¥
S1V is a homeomorphism.

(d) By combining 1 with the product map we get a map : PV>'§ 2 SV.

If V is a bundle rather than a vector space, we make all these de nitions
brewise in the obvious way.

Note that  induces a map E SV # (E PV)™!where the tensor product
is taken over E X. We write SymK(E PV) for the submodule invariant under
the action of .

Proposition 11.2 | induces an isomorphism E SV = SymX(E PV), and
thus an isomorphism D(V)*= , ¥ (SkV)E.

Proof Put d = dim(V) and let A be the set of lists = ( jj i < k) with
0 i <d. We have
E PVE =(E PV)™EE [xiji<Kk]=(fv(xi)ji<Kk);

and theset fx j 2 Agisa baslii for this ring over E X. Put A, =f 2
Aj o it xagand My = L, E X,andlet : E PV ® M, be
the obvious projection. This clearly induces an isomorphism SymE PV &
M.
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We take as our basic input (proved by Mitchell [7]) the fact that when X
is a point, the map  induces an isomorphism (H PV)E"(C'-! HSWV. In
particular, this means that H SiV is a nitely generated free Abelian group,
concentrated in even degrees. By dualityﬂve see that H SV = SymKH PV,
and thus that the map |, : H SV #  , H Xisan isomorphiiﬂm Using
an Atiyah-Hirzebruch spectral sequence we see that | : E Syv # , E X
is an isomorphism for any E.

Now let X be arbitrary. If V is trivialisable with bre Vg then SV = X
SkVo and it follows from the above that | is an isomorphism. If V is not
trivialisable, we can still give X a cell structure such that the restriction to
any closed cell is trivialisable, and then use Mayer-Vietoris sequences, the ve
lemma, and the Milnor sequence to see that | is an isomorphism.

We next claim that the maps
Kl - E Sk+V * E SV [k E SV
give rise to a cocommutative coproduct. To see this, let C(V) denote the

following diagram:
Sk SV —% SiV

S|V SV —Ik> Sk+1V:

The claim is that the diagram E C(V) commutes. Let ig;iy: V * V?2 be the
two inclusions. The map iy induces amap E C(V2) # E C(V), and it follows
easily from our previous discussion that this is surjective. It will thus be enough
to show that the two ways round E C(V?2) become the same when composed
with the map

(Sk(io) Si(i0)) : E (Sk(V®) xSi(V2)® E (SkV xSIV):

It is standard that ip is homotopic to i1 through linear isometries, so Si(ig) is

bre-homotopic to S;(i1). Similarly, the identity map of Sy (V ?) is homotopic
to Si+(twist). It is thus enough to check that the two composites SV S|V #
Sk+1(V 2) in the following diagram are the same:

Sk(io) Sk(i1)

Sk(V)  SIVY ——55(V3) Si(VD) —— Sn(V?)
twist Sk-+1(twist)

SIVZ)  Sk(V?) ——— Skn(V2):
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This is easy to see directly.
We now see that the map
<. E SV ¥ (E Pv)E]

factors through SymK(E PV). As the map : SymK(E PV) # M., and
its composite with |, are both isomorphisms, we deduce that | : E SV ¥
SymK(E PV) is an isomorphism as claimed. O

Corollary 11.3 The formal scheme (QxU (V))g is the free commutative for-
mal group over Xg generated by the divisor DV .

Proof We refer to [10, Section 6.2] for background on free commutative formal
groups; the results there mostly state that the obvious methods for constructing
such objects work as expected under some mild hypotheses. Given a formal
scheme T over a formal scheme S, we use the following notation:

(@ M™T is the free commutative monoid over S generated by T. This is
characterised by the fact that monoid homomorphisms from M*T to any
monoid H over S biject with maps T # H of schemes over S. It is clear
that if there exists an M™T with this property, then it is unique up to
canonical isomorphism. Similar remarks apply to our other de nitions. In
reasonable cases we can construct the colimit |, T&=  and this works
as M*T; see [10, Proposition 6.8] for technicalities.

(b) MT is the free commutative group over S generated by T.

(c) If T hasaspeci edsection z: S -# T, then N*T is the free commutative
monoid scheme generated by the based scheme T, so homomorphisms
from N*T to H biject with maps T # H such that the composite
S % T # H is zero. In reasonable cases N*T can be constructed as
|Il'p Té(Z K-

—Ty

(d) If T has a speci ed section we also write NT for the free commutative
group over S generated by the based scheme T.

The one surprise in the theory is that often NT = N™T; this is analogous to
the fact that a graded connected Hopf algebra automatically has an antipode.
It is easy to check that MT =7 NT, where Z is regarded as a discrete group
scheme in an obvious way.

We rst suppose that V has a one-dimensional summand, so V. =L W
for some bundles L and W with dim(L) = 1. Note that for each x 2 X
there is a canonical isomorphism C # End(L) giving U(1) X ~ U(L). This
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gives an evident inclusion : U(1) X ® U(V) with det = 1. We de ne
: U(V) ® SU(V) by (g) = (det(g))"*g, and note that ( (2)g) = (9)
for all z.

We also have an evidentmap z: X * PL -® PV ~ S;V splitting the projection
PV B X. Left multiplication by z gives a map ix: SV ® Sk+1V. We also
de ne ix: SV ® QxSU(V) to be the restriction of Qx to SV QxU(V).
Using the fact that ( (z)g) = (g) we see that jx+1ik = jk. Thus, if we de ne
S1V to be the homotopy colimit of the spaces SV, wegetamap j1: S1V *
QxSU(V) of spaces over X . Using the usual bases for E SV = SymK(E PV)
we nd that the maps i,: Sym<*(E PV) # SymX(E PV) are surjective. It
follows using the Milnor sequence that E S1V = Iimk SymK(E PV) and thus

that (S1V)e = I_ir.nk DVK= . We claim that this is the same as N*DV ;

this is clear modulo some categorical technicalities, which are covered in [10,
Section 6.2]. In the case where X is a point, it is well-known and easy to check
(by calculation in ordinary homology) that the map S,V ® QxSU(V) is a
weak equivalence. In the general case we have a map between bre bundles
that is a weak equivalence on each bre; it follows easily that the map is itself
a weak equivalence, and thus that QxSU(V)e = N* DV . On the other hand,
as QxSU(V) is actually a group bundle, we see that QxSU(V )g is a formal
group scheme, so N*DV = NDV .

We now turn to the groups QxU (V). Wede ne Zx = Z X, viewed as a bundle
of groups over X in the obvious way. This can be identi ed with Qx (U (1)

X) so the determinant map gives rise to a homomorphism : QxU(V) *
Zx . Given (n;X) 2 Zx we have a homomorphism U(1) *# U(Vx) given by
z ™ (zM). This construction gives us a map : Zx ® QxU(V) with =
1 and thus a splitting QxU(V) = Z QxSU(V) and thus an isomorphism
QxU(V)e =Z NDV =MDV . One can check that the various uses of the
map  cancel out and that the standard inclusion DV ®# MDYV is implicitly
identi ed with the map coming from the inclusion PV = S;V % QxU(V).
This proves the corollary in the case where V has a one-dimensional summand.

Now suppose that V does not have such a summand. We have an evident
coequaliser diagram PV x PV = PV ® X, giving rise to a coequaliser
diagram DV x. DV # DV # Xg of schemes over Xg, in which the map
DV ® Xg is faithfully flat. The pullback of V to PV has a tautological one-
dimensional summand, which implies that (PV x QxU(V))e has the required
universal property in the category of formal group schemes over PVg. Similar
remarks apply to PV xPV xQxU(V). Itfollows by a descent argument that
Qx U (V) itself has the required universal property, as one sees easily from [10,
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Proposition 2.76 and Remark 4.52]. O

We next recall the standard line bundle over S,V , which we will call T ; see [2, 7]
for more details. Write A = C[z] and K = C[z;z71]. A point of SV has the
form (x;f) for some f 2 Endc(Vx)[z]  Enda(A [M]). Multiplication by f
de nes a surjective endomorphism m(f) of (K=A) V1 and we de ne T.f)
to be the kernel of this endomorphism. One can check that this always has
dimension k over C and that we get a vector bundle. This is classi ed by
amap : SV ® BU(k) X of spaces over X. It is easy to see that the
restriction of T to GV SkV s just the tautological bundle.

There are evident short exact sequences
ker(m(g)) —> ker(m(fg)) ™2 ker(m(f));

which can be split using the inner products to give isomorphisms T * 4T
1T over SV x S|V. Thismeans thatthemap : | SV * ( (BU(k))
X is a homomorphism of H-spaces over X.

We now have a diagram of spaces as follows:

p k

PV PVE —— (CPT)k X
GV SV —— BUK) X:

k

It is easy to identify the corresponding diagram of schemes with the diagram
of Proposition 9.6.

A Appendix : Functional calculus

In this appendix we briefly recall some basic facts about functional calculus
for normal operators. An endomorphism  of a vector space V is normal
if it commutes with its adjoint. For us the relevant examples are Hermitian
operators (with = ), anti-Hermitian operators (with = — ) and unitary
operators (with = ~1).

For any operator and any 2 C we have

ker( — )7 =image(( — ))=image( — ):
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If is normal we deduce that ker( — )7 is preserved by , and it follows
easily that V is the orthogonal direct sum of the eigenspaces of . It follows in
turn that the operator norm of (de ned by k k = supfk (v)k : kvk = 1g)
is just the same as the spectral radius (de ned as the maximum absolute value
of the eigenvalues of ).

Now let X be a subset of C containing the eigenvalues of ,andlet f: X * C
be a continuous function. We de ne f( ) to be the endomorphism of V that
has eigenvalue f( ) on the space ker( — ). From this de nition it is clear
that the following equations are valid whenever they make sense:

c( ) =c:ly if cis constant

id( )=

Re( )=( + )=2

Im()=( — )=(2i)
(F+o)()=F(C)+9()

(Fo)( ) =*()a()

f()="F()

(F 9 )=F@())

kf( )k supjf(x)j:
x2X

The continuity properties of T( ) are less clear from our de nition. However,
they are provided by the following result.

Proposition A.1 Let X be a closed subset of C, and V a vector space. Let
N (X; V) be the set of normal operators on V whose eigenvalues lie in X, and
let C(X; C) be the set of continuous functions from X to C (with the topology
of uniform convergence on compact sets). De ne a function E: C(X;C)
N(CX;V)® End(V) by E(F; ) =f( ). Then E is continuous.

Proof Let A be the set of functions ¥ 2 C(X;C) for which the function
A f( ) is continuous. Using the above algebraic properties, we see that A is
a subalgebra of C(X;C) containing the functions z @ Re(z) and z ® Im(z).
By the Stone-Weierstrass theorem, it is dense in C(X;C). Now suppose we
have f 2 C(X;C), 2N(CX;V)and =>0.PutY =fx2 X jjxj k k+1g,
which is compact. As A is dense we can choose p 2 A with jf—pj< =4on Y.
As p 2 A can choose such that kp( ) —p( )k < =4 whenever k — k<
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We may also assume that < 1, which means that when k — k< we have
2Y. Nowif jf—gj< =4onY and k — k< then

kfF( ) —g( )k kF()—p( )k+kp( ) —p( )k+

kp( ) —f( )k+kf( ) —g( )k
< =4+ =4+ =4+ =4 = -

as required. O

The following proposition is an elementary exercise in linear algebra.

Proposition A.2 Let .V ® W be a linear map. Then and are
self-adjoint endomorphisms of V. and W with nonnegative eigenvalues. For
each t >0 the map gives an isomorphism of ker( —1) with ker( —1),
so the nonzero eigenvalues of and their multiplicities are the same as those
of If £:[0;1) ® R then f¢C )= ) . O
De nition A.3 We write w(V) = f 2 End(V) j = ¢ (the space of

self-adjoint endomorphisms of V). If 2 w(V) then the eigenvalues of are
real, so we can list them in descending order, repeated according to multiplicity.
We write ek(d for the k’th element in this list, so e2( ) ::: en( ) and

det(t— )= ", (t—ex()).
We will need the following standard result:

Proposition A.4 The functions ex: w(V) -# R are continuous.

Proof Let y be a simple closed curve in C and let m be an integer. Let U
be the set of endomorphisms of V that have precisely m eigenvalues (counted
according to multiplicity) inside y, and no eigenvalues on y. A standard argu-
ment with Rouche’s theorem shows that U is open in End(V).

Given real numbers r R, consider the rectangular contour y.r with corners

atr iand R i. Clearly ex( ) >r i has at least k eigenvalues inside
yr:r for some R. It follows that ¥ jex( ) >rgisopen,asis t jex( )<rg
by a similar argument. This implies that ey is continuous. ]
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