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Groups generated by positive multi-twists
and the fake lantern problem
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Abstract Let Γ be a group generated by two positive multi-twists. We
give some su�cient conditions for Γ to be free or have no \unexpectedly
reducible" elements. For a group Γ generated by two Dehn twists, we
classify the elements in Γ which are multi-twists. As a consequence we
are able to list all the lantern-like relations in the mapping class groups.
We classify groups generated by powers of two Dehn twists which are free,
or have no \unexpectedly reducible" elements. In the end we pose similar
problems for groups generated by powers of n � 3 twists and give a partial
result.
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1 Introduction

In a meeting of the American Mathematical Society in Ann Arbor, MI in March
2002, John McCarthy posed the following question: Suppose a collection of
simple closed curves satisfy the lantern relation (see Figure 3) algebraically. Is
it true that they must form a lantern, as in the same �gure, given the same
commutativity conditions? In this article we consider groups that are generated
by two multi-twists and give conditions that guarantee the group is free or
does not contain an accidental multi-twist. This will, in particular, answer
McCarthy’s question to the a�rmative (see Theorem 6.4).

To make this precise, let S be an oriented surface, possibly with punctures. For
the isotopy class of1 a simple closed curve c on S let Tc denote the right-handed
Dehn twist about c. Let (c1; c2) denote the minimum geometric intersection
number of isotopy classes of 1-sub-manifolds c1; c2: By M(S) we denote the

1We will usually drop the phrase \isotopy class of" in the rest of this paper for
brevity, as all curves are considered up to isotopy.
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1156 Hessam Hamidi-Tehrani

mapping class group of S , i.e, the group of homeomorphisms of S which per-
mute the punctures, up to isotopies �xing the punctures.

The free group on n generators will be denoted by Fn .

Let A = fa1; � � � ; akg be a collection of non-parallel, non-trivial, pairwise dis-
joint simple closed curves. For any integers m1; :::;mk , we call TA = Tmkak

� � �Tm1
a1

a multi-twist. If, furthermore, all mi > 0, we call TA a positive multi-twist. We
will study the group generated by two positive multi-twists in detail. We will
give explicit conditions which imply hTA; TBi �= F2 (see Theorem 3.2). For a
group hTa; Tbi generated by two Dehn twists, we give a complete description of
elements: We determine which elements are multi-twists, and which elements
are pseudo-Anosov restricted to the subsurface which is a regular neighborhood
of a[ b (see Theorems 3.5, 3.9, and 3.10). A mapping class f is called pseudo-
Anosov if fn(c) 6= c (up to isotopy) for all non-trivial simple closed curves c
and n > 0. Let A = fa1; a2; :::; ang be a set of non-parallel, non-trivial simple
closed curves on S . The surface �lled by A, denoted by SA , is a regular neigh-
borhood N of a1 [ � � � [ an together with the components of S nN which are
discs with 0 or 1 puncture, assuming that ai ’s are drawn as geodesics of some
constant-curvature metric. SA is well-de�ned independent of chosen metric [6].
We say that A �lls up S if SA = S .

De�nition 1.1 A word w = T n1
c1 � � � T nkck is called a cyclically-reduced word if

c1 6= ck . For such a word w , de�ne supp(w) = Sfc1;��� ;ckg . Then we say w is
relatively pseudo-Anosov if the restriction of the map w is pseudo-Anosov in
M(U), for all components U of supp(w) which are not annuli. If g = hwh−1

(as words) with w cyclically-reduced, de�ne supp(g) = h(supp(w)). Then
de�ne g to be relatively pseudo-Anosov in the same way as above.

In the above, the equation g = hwh−1 is an equation of words, not ele-
ments, otherwise one can easily give examples where the de�nition breaks
down. To show that the above de�nition is well-de�ned, note that if w =
T n1
c1 � � � T nkck is such that c1 = ck but n1 6= −nk , then one can write w =
T n1
c1 w

0T−n1
c1 = T−nkc1 w00T nkc1 , where w0; w00 are both cyclically reduced. Notice

that T nc1(Sfc1;��� ;ck−1g) = Sfc1;��� ;ck−1g for all n and so supp(w) = fc1; � � � ; ck−1g.

Also note that a power of a Dehn twist T nici is a relatively pseudo-Anosov word
since its support is an annulus. Similarly a multi-twist is relatively pseudo-
Anosov as well. A group Γ with given set of multi-twist generators is relatively
pseudo-Anosov if every reduced word in generators of Γ is relatively pseudo-
Anosov.
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Intuitively, a group Γ generated by multi-twists is relatively pseudo-Anosov if
no word in generators of Γ has \unexpected reducibility".

It should be noticed that in the case of two curves a; b �lling up a closed surface
this was done by Thurston as a method to construct pseudo-Anosov elements;
i.e., he showed that hTa; Tbi is free and consists of pseudo-Anosov elements
besides powers of conjugates of the generators [4]. Our methods are completely
di�erent and elementary, and are only based on how the geometric intersection
behaves under Dehn twists.

One surprising result that we �nd is a lantern-like relation:

(TbTa)2 = T@1T@2T
−4
γ T−4

γ0 ;

where these curves are de�ned in Figures 2 and 4 (see Proposition 5.1). This
relation is lantern-like in the sense that the left hand side is a word in two Dehn
twists about intersecting curves and the right hand side is a multi-twist. We
then prove that this relation and the lantern relation are the only lantern-like
relations (Theorem 6.4).

In the case when n � 3, we give some su�cient conditions for Γ = hTa1 ; � � � ; Tani
to be isomorphic to Fn . To motivate our condition, look at the case Γ =
hTa1 ; Ta2 ; Ta3i, and assume a3 = Ta1(a2). Now Ta3 = Ta1Ta2T

−1
a1

, so Γ � F3 .
But notice that (a1; a3) = (a1; a2) and (a2; a3) = (a1; a2)2 , by Lemma 2.1. This
shows that the set I = f(ai; aj) j i 6= jg is \spread around". It turns out that
this is in a sense an obstruction for Γ �= Fn :

Theorem Suppose Γ = hTa1 ; :::; Tah i, and let m = min I and M = max I ,
where I = f(ai; aj) j i 6= jg. Then Γ �= Fh if M � m2=6.

We will prove a more general version of this (see Theorem 7.2).

It should be noticed that similar arguments have been used to prove that certain
groups generated by three 2� 2 matrices are free [1, 13].

In Section 2 we go over basic facts about Dehn twists and geometric intersection
pairing and di�erent kinds of ping-pong arguments we are going to use. In
Section 3 we prove our general theorems about groups generated by two positive
multi-twists. In Section 4 we look at the speci�c case of a lantern formation.
In Section 5 we look at a formation which produces a lantern-like relation. In
Section 6 we prove that the only possible lantern-like relations are the ones
given in Theorem 6.1. In Section 7 we prove a theorem on groups generated by
n Dehn twists. In Section 8 we pose some questions that are of similar flavor.
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Remark 1.2 After the completion of this work, the author learned that Dan
Margalit has obtained some results on the subject of lantern relation using
the action of the mapping class group on homology [12]. Also notice that
Theorem 6.1 here answers the �rst question in [12, Section 7].

2 Basics

For two isotopy classes of closed 1-sub-manifolds a; b of S let (a; b) denote
their geometric intersection number. For a set of closed 1-sub-manifolds A =
fa1; :::; ang and a simple closed curve x put

jjxjjA =
nX
i=1

(x; ai):

For a non-trivial simple closed curve let Ta be the (right-handed) Dehn twist
in curve a. The following lemma is proved in [4].

Lemma 2.1 For simple closed curves a; x; b, and n � 0,

j(T�na (x); b)− n(x; a)(a; b)j � (x; b):

Let a = fa1; :::; akg be a collection of distinct, mutually disjoint non-trivial
isotopy classes of simple closed curves. For integers ni > 0, the mapping class
Ta = T n1

a1
� � �T nkak is called a positive multi-twist. We also have the following

lemma:

Lemma 2.2 For a positive multi-twist Ta = T n1
a1
� � �T nkak , 1-sub-manifolds x; b

and n 2 Z,

j(T na (x); b)− jnj
kX
i=1

ni(x; ai)(ai; b)j � (x; b):

For a proof see [8, Lemma 4.2]. The statement of that lemma has the ex-
pression jnj − 2 instead of jnj above. Using the assumption that all ni are
positive, the same proof goes through to prove the improved statement given
here. Alternatively, a proof can be found in [4, Expos�e 4].

The classic ping-pong argument was used �rst by Klein [11]. We give two
versions here which will be applied in Section 3. The group Γ can be a general
group. The notation Γ = hf1; :::; fni means that the group Γ is generated by
elements f1; :::; fn .
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Lemma 2.3 (Ping-pong) Let Γ = hf1; :::; fni, n � 2. Suppose Γ acts on a set
X . Assume that there are n non-empty mutually disjoint subsets X1; � � � ;Xn

of X such that f�ki ([j 6=iXj) � Xi , for all 1 � i � n and k > 0. Then Γ �= Fn .

Proof First notice that a non-empty reduced word of form w = f�1f
�
i � � � f�j f�1

(*’s are non-zero integers) is not the identity because w(X2)\X2 � X1 \X2 =
;. But any reduced word in f�1

1 ; � � � ; f�1
n is conjugate to a w of the above

form.

Lemma 2.4 (Tower ping-pong) Let Γ be a group generated by f1; � � � ; fn .
Suppose Γ acts on a set X , and there is a function jj:jj : X ! R�0 , with
the following properties: There are n non-empty mutually disjoint subsets
X1; � � � ;Xn of X such that f�ki (X nXi) � Xi and for any x 2 X nXi , we have
jjf�ki (x)jj > jjxjj for all k > 0. Then Γ �= Fn . Moreover, the action of every
g 2 Γ which is not conjugate to some power of some fi on X has no periodic
points.

Proof Any non-empty reduced word in f�1 ; :::; f
�
n (*’s denote non-zero integers)

is conjugate to a reduced word w = f�1 � � � f�1 . To show that w 6= id notice that
if x1 2 X n X1 , then w(x1) 2 X1 , therefore w(x1) 6= x1 . To prove the last
assertion, notice that it’s enough to show the claim with \periodic points"
replaced by \�xed points". Any element of Γ which is not conjugate to a power
of some fi is conjugate to some reduced word of the form w = f�j � � � f�i with
i 6= j . Now suppose w(x) = x. First assume x 2 X nXi . Then by assumption
jjw(x)jj > jjxjj which is impossible. If on the other hand, x 2 Xi and w(x) = x,
then w−1(x) = f�i � � � f�j (x) = x. But again by assumption jjw−1(x)jj > jjxjj,
which is a contradiction.

3 Groups generated by two positive multi-twists

Let a = fa1; � � � ; akg and b = fb1; � � � ; blg be two collections of isotopy classes
of non-trivial, mutually disjoint simple closed curves on S , respectively, such
that (a; b) > 0. Let m1; � � � ;mk; and n1; � � � ; nl be positive integers. In this
section we will set

� Ta = Tm1
a1
� � � Tmkak

and Tb = T n1
b1
� � �T nlbl .

� A = fa; bg.

� X = fx j x is the isotopy class of a simple closed curve and jjxjjA > 0 g:
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� For � 2 (0;1) set

Na;� = fx 2 X j (x; a) < �(x; b)g;
Nb;�−1 = fx 2 X j �(x; b) < (x; a)g:

Notice that a 2 Na;� and b 2 Nb;�−1 , and Na;�\Nb;�−1 = ;. Moreover, hTa; Tbi
acts on X , and when � is irrational X = Na;� [Nb;�−1 .

Lemma 3.1 With the above notation:

(i) T�na (Nb;�−1) � Na;� if nmi(ai; b) � 2�−1 for all 1 � i � k .

(ii) If nmi(ai; b) � 2�−1 for all 1 � i � k , and x 2 Nb;�−1 , then jjT�na (x)jjA >
jjxjjA:

(iii) T�nb (Na;�) � Nb;�−1 if nnj(a; bj) � 2� for all 1 � j � l .

(iv) If nnj(a; bj) � 2� for all 1 � j � l , and x 2 Na;� , then jjT�nb (x)jjA >
jjxjjA:

Proof Suppose x 2 Nb;�−1 , and n > 0 such that nmi(ai; b) � 2�−1 . Then by
Lemma 2.2,

(T�na (x); b) � n
X
i

mi(x; ai)(ai; b)− (x; b)

> n
X
i

mi(x; ai)(ai; b)− �−1
X
i

(x; ai)

=
X
i

(nmi(ai; b)− �−1)(x; ai)

� �−1
X
i

(x; ai)

= �−1(x; a)
= �−1(T�na (x); T�na (a))
= �−1(T�na (x); a):

This proves (i). By symmetry we immediately get (iii). Now notice that for

Algebraic & Geometric Topology, Volume 2 (2002)



Groups generated by positive multi-twists 1161

x 2 Nb;�−1 ,

jjT�na (x)jjA = (T�na (x); a) + (T�na (x); b)

� (x; a) + n
X
i

mi(x; ai)(ai; b)− (x; b)

>
X
i

(1 + nmi(ai; b)− �−1)(x; ai)

=
X
i

�(1 + nmi(ai; b)− �−1)(1 + �)−1(�−1(x; ai) + (x; ai)):

But �(1 + nmi(ai; b) − �−1)(1 + �)−1 � 1 if and only if nmi(ai; b) � 2�−1 ,
which by assumption implies

jjT�na (x)jjA >
X
i

(�−1(x; ai) + (x; ai))

= �−1(x; a) + (x; a)
> (x; b) + (x; a)
= jjxjjA:

This proves (ii), and by symmetry (iv).

Theorem 3.2 For two positive multi-twists Ta = Tm1
a1
� � � Tmkak

and Tb =
T n1
b1
� � � T nlbl on the surface S , the group hTa; Tbi �= F2 if both of the follow-

ing conditions are satis�ed:

(i) mi(ai; b) � 2 for all 1 � i � k .

(ii) nj(a; bj) � 2 for all 1 � j � l .

Proof The group hTa; Tbi acts on X = fx j jjxjjA > 0g, where A = fa; bg.
Now use the sets X1 = Na;1 and X2 = Nb;1 in Lemma 2.3 together with
Lemma 3.1 (i), (iii).

Let Γ = hTa; Tbi as before. Consider supp(Γ) = Sa[b . If supp(Γ) is not a
connected surface, and U is one of its components, we can look at the group
ΓjU . Certainly if ΓjU �= F2 then Γ �= F2 as well. Notice that an element
gjU 2 ΓjU is obtained by dropping the twists in curves which can be isotoped
o� U from g 2 Γ. So let us characterize the groups Γ such that supp(Γ) is
connected.

Remark 3.3 Let Γ = hTa; Tbi where Ta; Tb are multi-twists. If supp(Γ) is
connected then (ai; b) > 0 and (a; bj) > 0 for all i; j .
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Theorem 3.4 For two positive multi-twists Ta = Tm1
a1
� � � Tmkak

and Tb =
T n1
b1
� � � T nlbl on the surface S , let Γ = hTa; Tbi and assume that supp(Γ) is

connected. Then Γ �= F2 except possibly when either

(i) there is 1 � i � k such that mi(ai; b) = 1 and there is 1 � j � l such
that nj(a; bj) � 3, or

(ii) there is 1 � j � l such that nj(a; bj) = 1 and there is 1 � i � k such
that mi(ai; b) � 3.

Proof Suppose that neither of the two cases happen. The group Γ �= F2 if
mi(ai; b) � 2 and nj(a; bj) � 2 for all i; j , by Theorem 3.2. To understand
the other cases, without loss of generality assume that m1(a1; b) = 1. By
Remark 3.3 (ai; b) > 0 for all i and (a; bj) > 0 for all j since supp(Γ) is
connected.

Now put � = 2 in Lemma 3.1. Clearly the condition mi(ai; b) � 2�−1 = 1 is
satis�ed, so if nj(a; bj) � 2� = 4 for all j , using Lemma 2.3 we get Γ �= F2 .

One can completely answer the question \when is a group generated by powers
of Dehn twists isomorphic to F2?", as follows:

Theorem 3.5 Let A = fa; bg be a set of two simple closed curves on a surface
S and m;n > 0. Put Γ = hTma ; T nb i. The following conditions are equivalent:

(i) Γ �= F2 .

(ii) Either (a; b) � 2, or (a; b) = 1 and

fm;ng =2 ff1g; f1; 2g; f1; 3gg:

Proof By Theorem 3.4, (ii) implies (i). To prove (i) implies (ii), we must show
that for (a; b) = 1, the groups hTa; T nb i are not free for n = 1; 2; 3.

Let us denote Ta by a and Tb by b for brevity. We know that (ab)6 commutes
with both a and b, (see Figure 1; for a proof of this relation see [9].) so the
case n = 1 is non-free. Also, notice the famous braid relation aba = bab (see,
for instance [9]). Now consider the case n = 2. Observe that

(ab2)2 = ab2ab2 = ab(bab)b = ab(aba)b = (ab)3;
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so (ab2)4 = (ab)6 is in the center of ha; b2i. In the case n = 3, notice that

(ab3)3 = ab3ab3ab3

= ab2(bab)b(bab)b2

= ab2abababab2

= ab(bab)(aba)(bab)b
= ab(aba)(bab)(aba)b
= (ab)6:

Therefore (ab3)3 is in the center of ha; b3i.

�

b

a

Figure 1: (TaTb)6 = T�

Remark 3.6 After the completion of this work the author learned that the
isomorphism hTa; Tbi �= F2 for (a; b) � 2 was proved earlier by Ishida [7].

Let Ta , Tb be two positive multi-twists. In the rest of this section we an-
swer the question \which words in hTa; Tbi are relatively pseudo-Anosov?"(see
De�nition 1.1).

An element f 2 M(S) is called pure [8] if for any simple closed curve c,
fn(c) = c implies f(c) = c. In other words, by Thurston classi�cation [4], there
is a �nite (possibly empty) set C = fc1; � � � ; ckg of disjoint simple closed curves
ci such that f(ci) = ci and f keeps all components of Sn(c1[� � �[ck) invariant,
and is either identity or pseudo-Anosov on each such component. A subgroup
of M(S) is called pure if all elements of it are pure. Ivanov showed that M(S)
contains �nite-index pure subgroups, namely, ker(M(S) ! H1(S;Z=mZ)) for
m � 3 [8]. A relatively pseudo-Anosov word induces a pure element of the
mapping class group.

Theorem 3.7 For two positive multi-twists Ta = Tm1
a1
� � � Tmkak

and Tb =
T n1
b1
� � � T nlbl on the surface S , the group Γ = hTa; Tbi is pure and relatively

pseudo-Anosov if any of the following conditions holds:
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(i) For all i, mi(ai; b) � 2 and for all j , nj(a; bj) � 3.

(ii) For all i, mi(ai; b) � 3 and for all j , nj(a; bj) � 2.

(iii) For all i, mi(ai; b) � 1 and for all j , nj(a; bj) � 5.

(iv) For all i, mi(ai; b) � 5 and for all j , nj(a; bj) � 1.

Proof We use Lemma 2.4 together with Lemma 3.1 (ii),(iv). First assume that
� = 1 + � where � is a small irrational number. Notice that X = Na;� [Nb;�−1 .
If all mi(ai; b) � 2 > 2�−1 and ni(a; bi) � 3 > 2�, one can use Tower ping-
pong to show that if a simple closed curve intersects supp(Γ) then it cannot be
mapped to itself by any element of Γ except conjugates of powers of Ta and
Tb , which are already known to be pure and relatively pseudo-Anosov. This
proves (i) (A relatively pseudo-Anosov word induces a pure element). Similarly
by using � = 1 − �, � 2 R n Q in Lemma 3.1 (ii),(iv), we get (ii). To get
parts (iii),(iv) we can set � = 2 + � and � = 1=2 − � respectively and argue
similarly.

This in particular proves:

Corollary 3.8 (Thurston [4]) If a; b are two simple closed curves, which �ll
up the closed surface S of genus g � 2, then hTa; Tbi �= F2 and all elements not
conjugate to the powers of Ta and Tb are pseudo-Anosov.

Proof If a; b �ll up S we must have (a; b) � 3. Now we can use Theorem 3.7.

Theorem 3.9 Let A = fa; bg be a set of two simple closed curves on a surface
S and m;n > 0 be integers and Γ = hTma ; T nb i. The following conditions are
equivalent:

(i) Γ is relatively pseudo-Anosov.

(ii) Either (a; b) � 3, or (a; b) = 2 and (m;n) 6= (1; 1), or (a; b) = 1 and

fm;ng =2 ff1g; f1; 2g; f1; 3g; f1; 4g; f2gg:

Proof If (a; b) � 3, then Γ is relatively pseudo-Anosov for all m;n > 0 by
Theorem 3.7. If (a; b) = 2 then Γ is relatively pseudo-Anosov if m > 1 or
n > 1 by Theorem 3.7. We prove that if (a; b) = 2 then Γ = hTa; Tbi is not
relatively pseudo-Anosov. We consider two cases.

Algebraic & Geometric Topology, Volume 2 (2002)
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a

b

@2 @1

Figure 2: S1;2;0 and the curves a and b

Case 1 (a; b) = 2 and the algebraic intersection number of a; b is �2.

In this case both a; b can be embedded in a twice punctured torus subsurface
of S (see Figure 2). We will prove in Proposition 5.1 that (TbTa)2 is in fact a
multi-twist.

Case 2 (a; b) = 2 but the algebraic intersection number of a; b is 0.

In this case a; b can be embedded in a 4-punctured sphere. According to the
lantern relation [9] (see Figure 3), TbTa is a multi-twist.

a c

@2

@3 @4

b

@1

Figure 3: TaTbTc = T@1T@2T@3T@4

This proves that when (a; b) = 2, hTa; Tbi is not relatively pseudo-Anosov.
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If (a; b) = 1, the group Γ is relatively pseudo-Anosov except possibly when
fm;ng is one of f1; ig, i = 1; 2; 3; 4, or fm;ng = f2; 2g, by Theorem 3.7. The
groups hTa; Tbi, hTa; T 2

b i and hTa; T 3
b i are not relatively pseudo-Anosov because

the map (TaTb)6 = (TaT 2
b )4 = (TaT 3

b )3 is in fact a Dehn twist in the boundary
of the surface de�ned by a; b (see Figure 1) hence they induce the identity on
Sa;b .

If (a; b) = 1, then Γ = hT 2
a ; T

2
b i is not relatively pseudo-Anosov. This is because

T 2
b T

2
a has a trace of −2 and hence is reducible (see Remark 6.2). Similarly when

(a; b) = 1, the maps TaT 4
b and T 4

aTb both have a trace of −2 and hence are
reducible.

We saw that if a; b are two simple closed curves with (a; b) � 2, a word
w(Ta; Tb) 2 hTa; Tbi is relatively pseudo-Anosov except possibly when (a; b) =
2. In the following theorem we narrow down the search for words which are not
relatively pseudo-Anosov in this case.

Theorem 3.10 Let a; b be two simple closed curves on a surface S with
(a; b) = 2. Then a word w in Ta; Tb representing an element of hTa; Tbi is a
pure and relatively pseudo-Anosov unless possibly when w is cyclically reducible
to a power of either TbT

−1
a or TbTa .

Proof The proof is based on repeated application of Lemma 2.1. Clearly Ta
and Tb are both pure and relatively pseudo-Anosov. So in what follows we
assume that w is a cyclically reduced word of length > 1. Let X;A;Na;1;Nb;1

be de�ned as in the beginning of this section. Let

Y = fx 2 X j (x; a) = (x; b)g:

Hence X is a disjoint union Na;1 [Nb;1 [ Y .

By Lemma 3.1, we have T�na (Nb;1) � Na;1 and T�nb (Na;1) � Nb;1 for all n >
0. Moreover, for x 2 Nb;1 , we have jjT�na (x)jj > jjxjj and for x 2 Na;1 ,
jjT�nb (x)jj > jjxjj. By the same lemma, T�na (Y ) � Na;1 and T�nb (Y ) � Nb;1

for all n � 2 (This follows by applying the lemma to � = 1 + � and � = 1− �,
where � is a small positive number).

Let w = T nkb Tmka � � � T n1
b Tm1

a be a cyclically reduced word, where mi; ni 6= 0 and
k � 1. If any of mi is greater that 1 in absolute value, we can assume without
loss of generality that jm1j > 1, by conjugation. Therefore if x 2 Y [Nb;1 , then
Tm1
a (x) 2 Na;1 and hence jjwn(x)jj > jjxjj for all n > 0. Hence wn(x) 6= x for

all integers n. If x 2 Na;1 , then jjw−n(x)jj > jjxjj for n > 0, and so wn(x) 6= x
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for all n. This shows that w is relatively pseudo-Anosov. The case where some
jnij > 1 follows by symmetry by replacing w with w−1 .

So let us assume that for all 1 � i � k , we have mi; ni = �1. If w is not
conjugate to a power of TbTa or TbT

−1
a , by conjugating w we can assume

either m1 6= m2 , or nk 6= nk−1: We assume the former. The latter can be dealt
with similarly by symmetry and replacing w with w−1 . In this case the word
w could have any of the following forms:

(i) w = T nkb Tmka � � �TaTbT−1
a ,

(ii) w = T nkb Tmka � � �T−1
a TbTa ,

(iii) w = T nkb Tmka � � �TaT−1
b T−1

a ,

(iv) w = T nkb Tmka � � �T−1
a T−1

b Ta .

Suppose, for example, that w = T nkb Tmka � � � TaTbT−1
a . As before, if x 2 Na;1 [

Nb;1 , we get that wn(x) 6= x for all n > 0. So let us assume that x 2 Y . Then,
by de�nition of Y , (x; a) = (x; b) = p > 0. Then we have (T−1

a (x); a) = p and
by Lemma 2.1,

j(T−1
a (x); b) − (a; b)(x; a)j � (x; b);

which implies p � (T−1
a (x); b) � 3p. If p < (T−1

a (x); b), then T−1
a (x) 2 Na;1

and so wn(x) 6= x, for all n > 0. So let us assume (T−1
a (x); b) = p. Notice that

this implies (TbT−1
a (x); b) = p. Again by Lemma 2.1,

j(Tb(T−1
a (x)); a) − (a; b)(b; T−1

a (x))j � (T−1
a (x); a);

which gives p � (TbT−1
a (x); a) � 3p. Again, if p < (TbT−1

a (x); a), then
TbT

−1
a (x) 2 Nb;1 which implies wn(x) 6= x for n > 0. Otherwise, we can further

assume that (TbT−1
a (x); a) = p. Notice that this gives (TaTbT−1

a (x); a) = p. At
this point it looks like the argument is going to go on forever, but here is a
new ingredient. For any mapping class f , we have the following well-known
equation: fTbf−1 = Tf(b) . In particular: TaTbT−1

a = TTa(b) .

� Claim (Ta(b); b) = 4

This follows from Lemma 2.1: j(Ta(b); b) − (b; a)(a; b)j � (b; b).

Now by the same lemma,

j(TTa(b)(x); b) − (Ta(b); x)(Ta(b); b)j � (x; b);

which gives 3p � (TaTbT−1
a (x); b) � 5p, i.e., TaTbT

−1
a (x) 2 Na;1 , and so

wn(x) 6= x for all n � 0. The other cases (ii),(iii) and (iv) follow similarly.
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4 The case of two simple closed curves with inter-
section number 2 �lling a 4-punctured sphere

Let a; b be two simple closed curves such that (a; b) = 2 and Sfa;bg is a four-
holed sphere. (Figure 3).

The relation TaTbTc = T@1T@2T@3T@4 was discovered by Dehn [3] and later on
by Johnson [10]. A proof of the lantern relation can be found in [9]. Note the
commutativity between the various twists.

Proposition 4.1 In the group hTa; Tbi all words are pure. All words are
relatively pseudo-Anosov except precisely words that are cyclically reducible to
a non-zero power of TbTa .

Proof The lantern relation implies:

TaTb = T−1
c T@1T@2T@3T@4 :

This shows that TaTb (and hence its conjugate TbTa ) is a multi-twist. Notice
that

T−1
a Tb = T−2

a T−1
c T@1T@2T@3T@4 :

Hence restricted to Sa;b , T−1
a Tb = T−2

a T−1
c . But the group hT 2

a ; Tci is pure and
relatively pseudo-Anosov by Theorem 3.9, which shows that T−1

a Tb (and hence
its conjugate TbT

−1
a ) is pure relatively pseudo-Anosov. Moreover, a; c �ll the

same surface as a; b. Finally, we invoke Theorem 3.10.

5 The case of two simple closed curves with inter-

section number 2 �lling a twice-punctured torus

Let Sg;b;n denote a surface of genus g with b boundary components and n
punctures. Let a and b be two simple closed curves such that (a; b) = 2 and
assume both intersections have the same sign. In this case a and b are both
non-separating. One can therefore assume, up to di�eomorphism that they are
as given in Figure 2. Since the regular neighborhood of a[ b is homeomorphic
to S1;2;0 , the surface �lled by a; b is S1;i;j , for i; j = 0; 1; 2, i+ j � 2.

Assume that Sfa;bg = S1;2;0 . Let γ and γ0 be the curves de�ned in Figure 4. By
following Figure 4 one can see that (TbTa)2(γ) = γ , preserving the orientation.
Since by de�nition TbTa(γ) = γ0 , one also gets (TbTa)2(γ0) = γ0 . Now notice
that γ and γ0 cut up S1;2;0 into two pairs of pants. Hence (TbTa)2 is a multi-
twist in curves γ; γ0 , @1 and @2 .
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γ

Ta

Tb

Ta

Tb

γ0

γ

a

b

Figure 4: (TbTa)2(γ) = γ and (TbTa)(γ) = γ0

Proposition 5.1 With the notation in Figures 2 and 4, we have

(TbTa)2 = T@1T@2T
−4
γ T−4

γ0 :

Proof Since (TbTa)2 �xes @1; @2; γ and γ0 , it has to be a multi-twist in these
curves. We consider an arc joining @1 to @2 crossing γ once as in Figure 5.
We apply (TbTa)2 to I , and the result is the same as applying T@1T@2T

−4
γ to I

(again see Figure 5). Hence

(TbTa)2 = T@1T@2T
−4
γ T nγ0 ;

where n is to be found. One can argue by drawing another arc joining @1 to @2

passing through γ0 once, but here is a simpler way: We know that (TbTa)(γ) =
γ0 and (TbTa)(γ0) = γ (see Figure 4), so if we conjugate the above equation by
TbTa , we get:

(TbTa)2 = T@1T@2T
−4
γ0 T

n
γ ;

which shows that n = −4.

Proposition 5.2 The word TbT
−1
a is relatively pseudo-Anosov.
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I Ta

Ta

=

Tb

Tb

Figure 5: The arc I , and (TbTa)2(I)

Proof We use a \brute force" method to show that restricted to S = S1;0;2

(the boundary components @1; @2 shrunk to punctures p1; p2 , respectively), the
word TbT

−1
a induces a pseudo-Anosov map. It is enough to show that the word

T−1
b Ta is relatively pseudo-Anosov. Let f be the mapping class induced by the

word T−1
b Ta . We will �nd measured laminations F1;F2 and � > 0 such that

f(F1) = �F1 and f(F2) = �−1F2 . To this end, we use the theory of measured
train-tracks. For a review of these methods and the theory, see for example [5].

Consider the polygon R obtained by cutting S open as in Figure 6. Identifying
parallel sides of R yields back the surface S . Consider the measured train-track
� = �(x; y; z) (x; y; z � 0) on S de�ned as in Figure 7. We can calculate the
image f(�) in two steps as in Figures 8 and 9. (Remember that Dehn twists are
right-handed.) Luckily the action of f on the space of measures on � is linear,
so we can easily �nd �xed laminations carried on � : The matrix representing
f on the space of measured laminations carried on � is0@2 3 3

1 4 3
1 1 1

1A :
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a

b

b

b

p1p2p1

p2
p1p1

I

I

II

II

II
I

II
I

Figure 6: The surface S1;0;2 cut-open into a polygon R

x

xy

y

z

p1p2p1

p2
p1p1

I

I

II

II

II
I

II
I

Figure 7: The measured train-track �(x; y; z)

This matrix has eigenvalues 1; 3 +
p

10; 3−
p

10. The only eigenvalue that has
a non-negative eigenvector is � = 3 +

p
10 and the eigenvector corresponds to

the measured train-track �(2 +
p

10; 2 +
p

10; 2) (up to a positive factor). If we
\fatten up" this measured train-track, we get a lamination F1 as in Figure 10
with the property f(F1) = �F1 . Notice that, geometrically, all leaves have
slope -1. One can see that there are no closed loops of leaves (if there were they
would have been caught as eigenvectors already). Also, there is no leaf in F1
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x x+ y + z

y

y

x+ z

p1p2p1

p2
p1p1

I

I

II

II

II
I

II
I

Figure 8: The measured train-track Ta(�(x; y; z))

2x+ y + z
3x+ 4y + z

3x+ 3y + z

3x+ 4y + z

p1p2p1

p2
p1p1

2x+ y + z

I

I

II

II

II
I

II
I

Figure 9: The measured train-track f(�(x; y; z)) = Tb
−1Ta(�(x; y; z))

connecting a puncture to a puncture, since if it were so
p

10 would be rational.
Similarly, one can �nd a lamination F2 which satis�es f(F2) = �−1F2 . But
establishing such F1 is already enough to show that f is pseudo-Anosov on S ,
hence proving the proposition.

Corollary 5.3 All words in hTa; Tbi are pure except precisely the ones conju-
gate to the odd powers of TbTa . All words are relatively pseudo-Anosov except
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p1p2p1

2

2p2
p1p1

2 +
p

102 +
p

10

2 +
p

10

2 +
p

10

2 +
p

10

2 +
p

10

2 +
p

102 +
p

10

I II

III

III

III
Figure 10: The measured lamination F1 satis�es f(F1) = �F1

precisely the ones cyclically reducible to (TbTa)n for some non-zero integer n.

Proof Notice that the words conjugate to powers of TbT
−1
a are relatively

pseudo-Anosov and hence pure. Now the claim follows from Theorem 3.10
and Proposition 5.2.

6 Application to Lantern-type relations

Theorem 6.1 Let a; b be two simple closed curves on a surface S such that
(a; b) � 2. Let w be a word in Ta; Tb which is not cyclically reducible to a power
of Ta or Tb , but representing an element in M(S) which is a multi-twist. Then
(a; b) = 2 and exactly one of the following conditions hold:

(i) The curves a; b have algebraic intersection number 0, the word w can be
cyclically reduced to (TaTb)n for some n 2 Z, and

TaTb = T@1T@2T@3T@4T
−1
c :

(See Figure 3).

(ii) The curves a; b have algebraic intersection number 2, the word w can be
cyclically reduced to (TbTa)2n for some n 2 Z, and

(TbTa)2 = T@1T@2T
−4
γ T−4

γ0 :

(See Figures 2, 4).
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Proof By Theorem 3.7 (a; b) = 2, because otherwise w will be relatively
pseudo-Anosov, with a support which is not a union of annuli, so it cannot be
a multi-twist. Now apply Proposition 4.1 and Corollary 5.3.

Remark 6.2 It is well known that M1;0;1 = SL(2;Z). Also,

SL(2;Z) = ht =
�

1 1
0 1

�
; q =

�
0 1
−1 0

�
i:

We have a short exact sequence [2]

0! Z!M1;1;0 !M1;0;1 = SL(2;Z)! 0:

The Dehn twists Ta and Tb in Figure 1 induce the matrices

t =
�

1 1
0 1

�
and s =

�
1 0
−1 1

�
in SL(2;Z), respectively. Clearly sts = q and hence SL(2;Z) = ht; si. In
this case, a word in hTa; Tbi is pseudo-Anosov if and only if the trace of the
corresponding matrix has absolute value of 2 or more. Such a word is a multi-
twist if the corresponding matrix has trace 2.

De�nition 6.3 A relation w(Ta; Tb) = TC is called lantern-like if Ta; Tb are
Dehn twists, and TC is a multi-twist with C having at least 3 components.

Theorem 6.4 The only lantern-like relations in any mapping class group are
described in Theorem 6.1.

Proof We have to only show that, if (a; b) = 1, they cannot form a lantern-like
relation. But in that case, a; b are supported in a once-punctured torus, hence
TC can be made of twists in the boundary and at most one simple closed curve
in that torus.

7 Groups generated by n � 3 powers of twists

In this section the phrase \i 6= j 6= k" means that i; j; k are distinct. Let
a1; � � � an be n � 3 simple closed curves on a surface S such that (ai; aj) > 0
for i 6= j .

Let �ijk > 1 and �ij > 0 (for i 6= j 6= k) be real numbers such that �ji = �−1
ij .

Put � = (�ijk)i6=j 6=k and � = (�ij)i6=j . De�ne the set of simple closed curves

Nai = Nai;�;� = fx j (x; ai) < �ij(x; aj);
(x; ak)
(x; aj)

< �ijk
(ai; ak)
(ai; aj)

; 8j 6= k 6= ig;

for i = 1; � � � ; n. Note that ai 2 Nai .
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Lemma 7.1 Let a1; � � � ; an be a set of n � 3 simple closed curves such that
(ai; aj) 6= 0 for i 6= j .

(i) The sets Nai , i = 1; � � � ; n are mutually disjoint.

(ii) For 1 � i 6= j � n, we have T��ai (Naj ) � Nai for

� � max f 2
�ij(ai; aj)

;

1
�ik(ai; ak)

+ �jik
(aj ; ak)

(ai; aj)(ai; ak)
;

�jil
�ikl − 1

(aj ; al)
(ai; al)(aj ; ai)

+
�ikl�jik
�ikl − 1

(aj ; ak)
(aj ; ai)(ai; ak)

;

1
(�ikj − 1)�ij(ai; aj)

+
�ikj�jik
�ikj − 1

(aj ; ak)
(aj ; ai)(ai; ak)

;

�ijl
(�ijl − 1)�ij(ai; aj)

+
�jil

�ijl − 1
(aj ; al)

(aj ; ai)(ai; al)
gk 6=l 6=i:

Proof (i) is clear. To prove (ii), consider x 2 Naj . We have

(T��ai (x); aj) � �(ai; aj)(x; ai)− (x; aj) > �ji(x; ai) = �ji(T��ai (x); ai)

for � � 2�ji
(ai;aj)

. Let k 6= i; j . Then

(T��ai (x); ak) � �(ai; ak)(x; ai)− (x; ak) > �ki(x; ai)

if

� � 1
�ik(ai; ak)

+ �jik
(aj ; ak)

(ai; aj)(ai; ak)
:

Let k; l 6= i. Then

(T��ai (x); al)=(T��ai (x); ak) < �ikl(ai; al)=(ai; ak)

if and only if

(ai; ak)(T��ai (x); al) < �ikl(ai; al)(T��ai (x); ak):

This will hold if

(ai; ak)(�(ai; al)(x; ai) + (x; al)) < �ikl(ai; al)(�(ai; ak)(x; ai)− (x; ak)): (1)

The inequality (1) is equivalent to

�(ai; al)(�ikl − 1) >
(x; al)
(x; ai)

+ �ikl
(x; ak)(ai; al)
(x; ai)(ai; ak)

: (2)
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(One has (x; ai) > 0 since x 2 Naj .) Therefore for l 6= j and k 6= j , it is
enough to have

�(ai; al)(�ikl − 1) � �jil
(aj ; al)
(aj ; ai)

+ �ikl�jik
(aj ; ak)(ai; al)
(aj ; ai)(ai; ak)

;

i.e.,

� � �jil
�ikl − 1

(aj ; al)
(ai; al)(aj ; ai)

+
�ikl�jik
�ikl − 1

(aj ; ak)
(aj ; ai)(ai; ak)

:

If l = j (and so k 6= j ) then one can replace the inequality (2) with

�(ai; al)(�ikl − 1) � �ji + �ikl
(x; ak)(ai; al)
(x; ai)(ai; ak)

which gives

� � 1
(�ikj − 1)�ij(ai; aj)

+
�ikj�jik
�ikj − 1

(aj ; ak)
(aj ; ai)(ai; ak)

:

If k = j (and so l 6= j ) one similarly needs

� � �ijl
(�ijl − 1)�ij(ai; aj)

+
�jil

�ijl − 1
(aj ; al)

(aj ; ai)(ai; al)
:

This lemma conveys the idea that if the set f(ai; aj)gi6=j is not \too spread
around" then the group Γ = hTa1 ; � � � ; Tani is free on n generators, as follows:

Theorem 7.2 Let a1; � � � ; an be n � 3 simple closed curves on a surface S
such that M � m2=6 where M = maxf(ai; aj)gi6=j and m = minf(ai; aj)gi6=j .
Then

Γ = hTa1 ; � � � ; Tani �= Fn:

More generally, suppose that for all i 6= j 6= k we have

(ai; ak)
(ai; aj)(aj ; ak)

� 1
6
:

Then the same conclusion holds.

Proof Put �ij = 1 and �ijk = 2 in Lemma 7.1. By assumption, for all
i 6= j 6= k ,

(ai; ak)
(ai; aj)(aj ; ak)

� 1
6
:
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This implies (ai; aj) � 6 for all i 6= j , since otherwise it is impossible for both
of

(ai; ak)
(ai; aj)(aj ; ak)

and
(aj ; ak)

(ai; aj)(ai; ak)

to be � 1=6. Therefore, it is easily seen that � = 1 satis�es the requirements
of Lemma 7.1.

b

a2

a1

�1 �2

Figure 11: (Ta1Ta2Tb)4 = T�1T�2

8 Questions

We end this paper by looking at some questions. Consider the group Γ =
hTm1
a1
Tm2
a2
; T nb i, where the simple closed curves are de�ned in Figure 11, and

they satisfy the torus relation (Ta1Ta2Tb)
4 = T�1T�2 . It is interesting to �nd

out if there are any torus-like relations. Theorems 3.2 and 3.7 will restrict the
search. In particular:

Question 1 Is it true that hT 2
a1
Ta2 ; Tbi = F2?

Question 2 Under what conditions is Γ = hTa1 ; � � � ; Tani relatively pseudo-
Anosov?
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