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Abstract We define Casson-Gordon σ -invariants for links and give a lower
bound of the slice genus of a link in terms of these invariants. We study
as an example a family of two component links of genus h and show that
their slice genus is h , whereas the Murasugi-Tristram inequality does not
obstruct this link from bounding an annulus in the 4-ball.
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1 Introduction

A knot in S3 is slice if it bounds a smooth 2-disk in the 4-ball B4 . Levine
showed [Le] that a slice knot is algebraically slice, i.e. any Seifert form of a slice
knot is metabolic. In this case, the Tristram-Levine signatures at the prime
power order roots of unity of a slice knot must be zero. Levine showed also that
the converse holds in high odd dimensions, i.e. any algebraically slice knot is
slice. This is false in dimension 3: Casson and Gordon [CG1, CG2, G] showed
that certain two-bridge knots in S3 , which are algebraically slice, are not slice
knots. For this purpose, they defined several knot and 3-manifold invariants,
closely related to the Tristram-Levine signatures of associated links. Further
methods to calculate these invariants were developed by Gilmer [Gi3, Gi4],
Litherland [Li], Gilmer-Livingston [GL], and Naik [N]. Lines [L] also computed
some of these invariants for some fibered knots, which are algebraically slice but
not slice. The slice genus of a link is the minimal genus for a smooth oriented
connected surface properly embedded in B4 with boundary the given link.

The Murasugi-Tristram inequality (see Theorem 2.1 below) gives a lower bound
on the slice genus of a link in terms of the link’s Tristram-Levine signatures
and related nullity invariants. The second author [Gi1] used Casson-Gordon
invariants to give another lower bound on the slice genus of a knot. In particular
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906 Vincent Florens and Patrick M. Gilmer

he gave examples of algebraically slice knots whose slice genus is arbitrarily
large. We apply these methods to restrict the slice genus of a link.

We study as an example a family of two component links, which have genus h
Seifert surfaces. Using Theorem 4.1, we show that these links cannot bound a
smoothly embedded surface in B4 with genus lower than h, while the Murasugi-
Tristram inequality does not show this. In fact there are some links with the
same Seifert form that bound annuli in B4 . We work in the smooth category.

The second author was partially supported by NSF-DMS-0203486.

2 Preliminaries

2.1 The Tristram-Levine signatures

Let L be an oriented link in S3 , with µ components, and θS be the Seifert
pairing corresponding to a connected Seifert surface S of the link. For any
complex number λ with |λ| = 1, one considers the hermitian form θλS := (1 −
λ)θS + (1−λ)(θS)T . The Tristram signature σL(λ) and nullity nL(λ) of L are
defined as the signature and nullity of θλS . Levine defined these same signatures
for knots [Le]. The Alexander polynomial of L is ∆L(t) := Det(θS − t(θS)T ).
As is well-known, σL is a locally constant map on the complement in S1 of the
roots of ∆L and nL is zero on this complement. If ∆L = 0, it is still true that
the signature and nullity are locally constant functions on the complement of
some finite collection of points.

The Murasugi-Tristram inequality allows one to estimate the slice genus of L,
in terms of the values of σL(λ) and nL(λ).

Theorem 2.1 [M, T] Suppose that L is the boundary of a properly embedded
connected oriented surface F of genus g in B4 . Then, if λ is a prime power
order root of unity, we have

|σL(λ)|+ nL(λ) ≤ 2g + µ− 1.

2.2 The Casson-Gordon σ-invariant

In this section, for the reader convenience, we review the definition and some
of the properties of the simplest kind of Casson-Gordon invariant. It is a refor-
mulation of the Atiyah-Singer α-invariant.
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Let M be an oriented compact three manifold and χ : H1(M) → C∗ be a
character of finite order. For some q ∈ N∗ , the image of χ is contained a
cyclic subgroup of order q generated by α = e2iπ/q . As Hom(H1(M), Cq) =
[M,B(Cq)], it follows that χ induces q -fold covering of M , denoted M̃ , with
a canonical deck transformation. We will denote this transformation also by
α. If χ maps onto Cq, the canonical deck transformation sends x to the other
endpoint of the arc

that begins at x and covers a loop representing an element of (χ)−1(α).

As the bordism group Ω3(B(Cq)) = Cq , we may conclude that n disjoint copies
of M , for some integer n, bounds bound a compact 4-manifold W over B(Cq).
Note n can be taken to be q. Let W̃ be the induced covering with the deck
transformation, denoted also by α, that restricts to α on the boundary. This
induces a Z[Cq]- module structure on C∗(W̃ ), where the multiplication by
α ∈ Z[Cq] corresponds to the action of α on W̃ .

The cyclotomic field Q(Cq) is a natural Z[Cq]-module and the twisted homology
Ht
∗(W ;Q(Cq)) is defined as the homology of

C∗(W̃ )⊗Z[Cq ] Q(Cq).

Since Q(Cq) is flat over Z[Cq], we get an isomorphism

Ht
∗(W ;Q(Cq)) ' H∗(W̃ )⊗Z[Cq] Q(Cq).

Similarly, the twisted homology Ht
∗(M ;Q(Cq)) is defined as the homology of

C∗(M̃ )⊗Z[Cq] Q(Cq).

Let φ̃ be the intersection form on H2(W̃ ;Q) and define

φχ(W ) : Ht
2(W ;Q(Cq))×Ht

2(W ;Q(Cq))→ Q(Cq)

so that, for all a, b in Q(Cq) and x, y in H2(W̃ ),

φχ(W )(x⊗ a, y ⊗ b) = ab

q∑
i=1

φ̃(x, αiy)αi,

where a→ ā denotes the involution on Q(Cq) induced by complex conjugation.

Definition 2.2 The Casson-Gordon σ -invariant of (M,χ) and the related
nullity are

σ(M,χ) :=
1
n

(
Sign(φχ(W ))− Sign(W )

)
η(M,χ) := dim Ht

1(M ;Q(Cq)).
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If U is a closed 4-manifold and χ : H1(U) → Cq we may define φχ(U) as
above. One has that modulo torsion the bordism group Ω4(B(Cq)) is gener-
ated by the constant map from CP (2) to B(Cq). If χ is trivial, one has that
Sign(φχ(U)) = Sign(U). Since both signatures are invariant under cobordism,
one has in general that Sign(φχ(U)) = Sign(U). The independence of σ(M,χ)
from the choice of W and n follows from this and Novikov additivity. One
may see directly that these invariants do not depend on the choice of q . In this
way Casson and Gordon argued that σ(M,χ) is an invariant. Alternatively one
may use the Atiyah-Singer G-Signature theorem and Novikov additivity [AS].

We now describe a way to compute σ(M,χ) for a given surgery presentation of
(M,χ).

Definition 2.3 Let K be an oriented knot in S3 . Let A be an embedded
annulus such that ∂A = K ∪ K ′ with lk(K,K ′) = f . A p-cable on K with
twist f is defined to be the union of oriented parallel copies of K lying in A
such that the number of copies with the same orientation minus the number
with opposite orientation is equal to p.

Let us suppose that M is obtained by surgery on a framed link L = L1∪· · ·∪Lµ
with framings f1, . . . , fµ . One shows that the linking matrix Λ of L with
framings in the diagonal is a presentation matrix of H1(M) and a character on
H1(M) is determined by αpi = χ(mLi) ∈ Cq where mLi denotes the class of
the meridian of Li . Let ~p = (p1, . . ., pµ). We use the following generalization
of a formula in [CG2, Lemma (3.1)], where all pi are assumed to be 1, that is
given in [Gi2, Theorem(3.6)].

Proposition 2.4 Suppose χ maps onto Cq . Let L′ with µ′ components be the
link obtained from L by replacing each component by a non-empty algebraic
pi -cable with twist fi along this component. Then, if λ = e2irπ/q , for (r, q) = 1,
one has

σ(M,χr) = σL′(λ)− Sign(Λ) + 2
r(q − r)
q2

~p>Λ~p,

η(M,χr) = ηL′(λ)− µ′ + µ.

The following proposition collects some easy additivity properties of the σ -
invariant and the nullity under the connected sum.

Proposition 2.5 Suppose that M1, M2 are connected. Then, for all χi ∈
H1(Mi;Cq), i = 1, 2, we have

σ(M1#M2, χ1 ⊕ χ2) = σ(M1, χ1) + σ(M2, χ2).
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If both χi are non-trivial, then

η(M1#M2, χ1 ⊕ χ2) = η(M1, χ1) + η(M2, χ2) + 1.

If one χi is trivial, then

η(M1#M2, χ1 ⊕ χ2) = η(M1, χ1) + η(M2, χ2).

Proposition 2.6 For all χ ∈ H1(S1 × S2;Cq), we have

σ(S1 × S2, χ) = 0

If χ 6= 0, then η(S1 × S2, χ) = 0. If χ = 0, then η(S1 × S2, χ) = 1.

Proposition 2.6 for non-trivial χ can be proved for example by the use of Propo-
sition 2.4, since S1×S2 is obtained by surgery on the unknot framed 0. However
it is simplest to derive this result directly from the definitions.

2.3 The Casson-Gordon τ -invariant

In this section, we recall the definition and some of the properties of the Casson-
Gordon τ -invariant. Let C∞ denote a multiplicative infinite cyclic group gen-
erated by t. For χ+ : H1(M) → Cq ⊕ C∞ , we denote χ̄ : H1(M) → Cq the
character obtained by composing χ+ with projection on the first factor. The
character χ+ induces a Cq × C∞ -covering M̃∞ of M .

Since the bordism group Ω3(B(Cq×C∞)) = Cq, bounds a compact 4-manifold
W over B(Cq × C∞) Again n can be taken from to be q .

If we identify Z[Cq × C∞] with the Laurent polynomial ring Z[Cq][t, t−1], the
field Q(Cq)(t) of rational functions over the cyclotomic field Q(Cq) is a flat
Z[Cq×C∞]-module. We consider the chain complex C∗(W̃∞) as a Z[Cq×C∞]-
module given by the deck transformation of the covering. Since W is compact,
the vector space Ht

2(W ;Q(Cq)(t)) ' H2(W̃∞) ⊗Z[Cq ][t,t−1] Q(Cq)(t) is finite
dimensional.

We let J denote the involution on Q(Cq)(t) that is linear over Q sends ti to
t−i and αi to α−i. As in [G], one defines a hermitian form, with respect to J ,

φχ+ : Ht
2(W ;Q(Cq)(t))×Ht

2(W ;Q(Cq)(t))→ Q(Cq)(t),

such that

φχ+(x⊗ a, y ⊗ b) = J(a) · b ·
∑
i∈Z

q∑
j=1

φ̃+(x, tiαjy)αjt−i.
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Here φ̃+ denotes the ordinary intersection form on W̃∞. Let W(Q(Cq)(t)) be
the Witt group of non-singular hermitian forms on finite dimensional Q(Cq)(t)
vector spaces. Let us consider Ht

2(W ;Q(Cq)(t))/(Radical(φχ+)). The induced
form on it represents an element in W (Q(Cq)(t)), which we denote w(W ).
Furthermore, the ordinary intersection form on H2(W ;Q) represents an element
of W(Q). Let w0(W ) be the image of this element in W(Q(Cq)(t)).

Definition 2.7 The Casson-Gordon τ -invariant of (M,χ+) is

τ(M,χ+) :=
1
n

(
w(W )− w0(W )

)
∈ W(Q(Cq)(t))⊗Q.

Suppose that nM bounds another compact 4-manifold W ′ over B(Cq ×C∞).
Form the closed compact manifold over B(Cq × C∞), U := W ∪W ′ by gluing
along the boundary. By Novikov additivity, we get w(U) − w0(U) =

(
w(W )−

w0(W )
)
−
(
w(W ′)−w0(W ′)

)
. Using [CF], the bordism group Ω4(B(Cq×C∞)),

modulo torsion, is generated by CP (2), with the constant map to B(Cq×C∞).
We have that w(CP (2)) = w0(CP (2)). Since w(U), and w0(U) only depend
on the bordism class of U over B(Cq×C∞), it follows that w(U) = w0(U) and
τ(M,χ+) is independent of the choice of W . Using the above techniques, one
may check τ(M,χ+) is independent of n.

If A ∈ W(Q(Cq)(t)), let A(t) be a matrix representative for A. The entries of
A(t) are Laurent polynomials with coefficients in Q(Cq). If λ is in S1 ⊂ C,
then A(λ) is hermitian and has a well defined signature σλ(A). One can view
σλ(A) as a locally constant map on the complement of the set of the zeros of
detA(λ). As in [CG1], we re-define σλ(A) at each point of discontinuity as the
average of the one-sided limits at the point.

We have the following estimate [Gi3, Equation (3.1)].

Proposition 2.8 Let χ+ : H1(M) → Cq ⊕ C∞ and χ̄ : H1(M) → Cq be χ+

followed by the projection to Cq . We have

|σ1

(
τ(M,χ+)

)
− σ(M, χ̄)| ≤ η(M, χ̄).

2.4 Linking forms

Let M be a rational homology 3-sphere with linking form

l : H1(M)×H1(M)→ Q/Z.

We have that l is non-singular, that is the adjoint of l is an isomorphism
ι : H1(M) → Hom(H1(M),Q/Z). Let H1(M)∗ denote Hom(H1(M),C∗). Let
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ν denote the map Q/Z→ C∗ that sends a
b to e

2πia
b . So we have an isomorphism

 : H1(M)→ H1(M)∗ given by x 7→ ν ◦ι(x). Let β : H1(M)∗×H1(M)∗ → Q/Z
be the dual form defined by β(x, y) = −l(x, y).

Definition 2.9 The form β is metabolic with metabolizer H if there exists a
subgroup H of H1(M)∗ such that H⊥ = H .

Lemma 2.10 [Gi1] If M bounds a spin 4-manifold W then β = β1 ⊕ β2

where β2 is metabolic and β1 has an even presentation with rank dim H2(W ;Q)
and signature Sign(W ). Moreover, the set of characters that extend to H1(W )
forms a metabolizer for β2 .

2.5 Link invariants

Let L = L1∪· · ·∪Lµ be an oriented link in S3 . Let N2 be the two-fold covering
of S3 branched along L and βL be the linking form on H1(N2)∗ , see previous
section.

We suppose that the Alexander polynomial of L satisfies

∆L(−1) 6= 0.

Hence, N2 is a rational homology sphere. Note that if ∆L(−1) 6= 1, then
H1(N2;Z) is non-trivial.

Definition 2.11 For all characters χ in H1(N2)∗ , the Casson-Gordon σ -
invariant of L and the related nullity are (see Definition 2.2):

σ(L,χ) := σ(N2, χ),

η(L,χ) := η(N2, χ).

Remark 2.12 If L is a knot, then Definition 2.11 coincides with σ(L,χ)
defined in [CG1, p.183].
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3 Framed link descriptions

In this section, we study the Casson-Gordon τ -invariants of the two-fold cover
M2 of the manifold M0 described below.

Let S3 − T (L) be the complement in S3 of an open tubular neighborhood of
L in S3 and P be a planar surface with µ boundary components.

Let S be a Seifert surface for L and γi for i = 1, . . . , µ be the curves where
S intersects the boundary of S3 − T (L). We define M0 as the result of gluing
P × S1 to S3 − T (L), where P × 1 is glued along the curves γi . Let ∗ be a
point in the boundary of P .

A recipe for drawing a framed link description for M0 is given in the proof of
Proposition 3.1.

Proposition 3.1

H1(M0) ' Z⊕ Zµ−1 ' 〈m〉 ⊕ Zµ−1,

where m denotes the class of ∗ × S1 in P × S1 .

Proof Form a 4-manifold X by gluing P ×D2 to D4 along S3 in such a way
that the total framing on L agrees with the Seifert surface S . The boundary of
this 4-manifold is M0 . We can get a surgery description of M0 in the following
way: pick µ−1 paths of S joining up the components of L in a chain. Deleting
open neighborhoods of these paths in S gives a Seifert surface for a knot L′

obtained by doing a fusion of L along bands that are neighborhoods of the
original paths. Put a circle with a dot around each of these bands (representing
a 4-dimensional 1-handle in Kirby’s [K] notation), and the framing zero on L′.
This describes a handlebody decomposition of X.

One can then get a standard framed link description of M0 by replacing the
circle with dots with unknots T1, . . . , Tµ−1 framed zero. This changes the 4-
manifold but not the boundary. Note also that lk(Ti, Tj) = 0 and lk(Ti, L′) = 0
for all i = 1, . . . , µ − 1. Hence H1(M0) ' Zµ and m represents one of the
generators.

We now consider an infinite cyclic covering M∞ of M0 , defined by a character
H1(M0) → C∞ = 〈t〉 that sends m to t and the other generators to zero. Let
us denote by M2 the intermediate two-fold covering obtained by composing this
character with the quotient map C∞ → C2 sending t to −1. Let m2 denote
the loop in M2 given by the inverse image of m. A recipe for drawing a framed
link description for M2 is given in the proof of Remark 3.3.
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Proposition 3.2 There is an isomorphism between H1(N2) and the torsion
subgroup of H1(M2), which only depends on L. Moreover

H1(M2) ' H1(N2)⊕ Zµ ' H1(N2)⊕ 〈m2〉 ⊕ Zµ−1.

Proof Let R be the result of gluing P ×D2 to S3 × I along L× 1 ⊂ S3 × 1
using the framing given by the Seifert surface. Thus R is the result of adding
µ − 1 1-handles to S3 × I and then one 2-handle along L′ , as in the proof
above. Then X in the proof above can be obtained by gluing D4 to R along
S3×0. Since D2 is the double branched cover of itself along the origin, P ×D2

is the double branched cover of itself along P × 0. Let R2 denote the double
branched cover of R that is obtained by gluing P × D2 to N2 × I along a
neighborhood of the lift of L × 1 ⊂ S3 × 1. We have that ∂R2 = −N2 tM2 ,
where R2 is the result of adding µ − 1 1-handles to N2 × I and then one
2-handle along the lift L′. Moreover this lift of L′ is null-homologous in N2.
It follows that H1(R2) is isomorphic to H1(N2) ⊕ Zµ−1, with the inclusion of
N2 into R2 inducing an isomorphism iN of H1(N2) to the torsion subgroup of
H1(R2). Turning this handle decomposition upside down we have that R2 is
the result of adding to M2 × I one 2-handle along a neighborhood of m2 and
then µ−1 3-handles. It follows that H1(R2)⊕Z = H1(R2)⊕〈m2〉 is isomorphic
to H1(M2) with the inclusion of M2 in R2 inducing an isomorphism iM of the
torsion subgroup H1(M2) to the torsion subgroup of H1(R2). Thus (iM )−1 ◦ iN
is an isomorphism from H1(N2) to the torsion subgroup of H1(M2) and this
isomorphism is constructed without any arbitrary choices.

Remark 3.3 We could have proved Proposition 3.1 in a similar way to the
proof of Proposition 3.2. We could have also proved Proposition 3.2 (except
for the isomorphism only depending on L) in a similar way to the proof of
Proposition 3.1 as follows. We can find a surgery description of M2 from a
surgery description of N2 . The procedure of how to visualize a lift of L and
the surface S in N2 is given in [AK]. One considers the lifts of the paths chosen
in the proof of Proposition 3.1, on the lift of S. One then fuses the components
of the lift of L along these paths, obtaining a lift of L′. The surgery description
of M2 is obtained by adding to the surgery description of N2 the lift of L′ with
zero framing together with µ − 1 more unknotted zero-framed components
encircling each fusion. The linking matrix of this link is a direct sum of that of
N2 and a µ× µ zero matrix.
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Let iT denote the inclusion of the torsion subgroup of H1(M2) into H1(M2),
and let ψ : H1(N2)→ H1(M2) denote the monomorphism given by iT ◦(iM )−1◦
iN .

Theorem 3.4 Let χ+ : H1(M2)→ Cq⊕C∞. Let χ : H1(N2)→ Cq be χ+ ◦ψ
composed with the projection to Cq. We have that:

|σ1(τ(M2, χ
+))− σ(L,χ)| ≤ η(L,χ) + µ.

Remark 3.5 If L is a knot, then τ(M2, χ
+) coincides with τ(L,χ) defined

in [CG1, p.189].

Proof of Theorem 3.4 We use the surgery description of M2 given in Re-
mark 3.3. Let P be given by the surgery description of M2 but with the
component corresponding to L′ deleted. Hence,

P = N2](µ−1)S
1 × S2.

χ+ induces some character χ′ on H1(P ).

According to Section 2.3, we let χ ∈ H1(M2;Cq) and χ′ ∈ H1(P ;Cq) denote
the characters χ+ and χ′ followed by the projection Cq ⊕ C∞ → Cq . Using
Propositions 2.5 and 2.6, one has that

σ(P,χ′) = σ(L,χ) and η(P,χ′) = η(L,χ) + µ− 1.

Moreover, since M2 is obtained by surgery on L′ in P , it follows from [Gi3,
Proposition (3.3)] that

|σ(P,χ′)− σ(M2, χ)|+ |η(M2, χ)− η(P,χ′)| ≤ 1 or

|σ(L,χ) − σ(M2, χ)|+ |η(M2, χ)− η(L,χ) − µ+ 1| ≤ 1.

Thus
|σ(L,χ) − σ(M2, χ)| ≤ η(L,χ) + µ− η(M2, χ).

Finally, one gets, by Theorem 2.8,

|σ1(τ(M2, χ
+))− σ(L,χ)| ≤ |σ1(τ(M2, χ

+))− σ(M2, χ)|+ |σ(M2, χ)− σ(L,χ)|

≤ η(M2, χ) + η(L,χ) + µ− η(M2, χ) = η(L,χ) + µ.
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4 The slice genus of links

See Section 2.5 for notations.

Theorem 4.1 Suppose L is the boundary of a connected oriented properly
embedded surface F of genus g in B4, and that ∆L(−1) 6= 0. Then, βL can
be written as a direct sum β1⊕β2 such that the following two conditions hold:

1) β1 has an even presentation of rank 2g + µ− 1 and signature σL(−1), and
β2 is metabolic.

2) There is a metabolizer for β2 such that for all characters χ of prime power
order in this metabolizer,

|σ(L,χ) + σL(−1)| ≤ η(L,χ) + 4g + 3µ− 2.

Proof We let bi(X) denote the ith Betti number of a space X . We have
b1(F ) = 2g + µ− 1.

Let W ′0 , with boundary M ′0 , be the complement of an open tubular neighbor-
hood of F in B4 . By the Thom isomorphism, excision, and the long exact
sequence of the pair (B4,W ′0), W ′0 has the homology of S1 wedge b1(F ) 2-
spheres. Let W ′2 with boundary M ′2 be the two-fold covering of W ′0 . Note that
if F is planar, M ′0 = M0, and M ′2 = M2 (see Section 3).

Let V2 be the two-fold covering of B4 with branched set F . Note that V2

is spin as w2(V2) is the pull-up of a class in H2(B4,Z2), by [Gi5, Theorem
7], for instance. The boundary of V2 is N2 . As in [Gi1], one calculates that
b2(V2) = 2g + µ− 1. One has Sign(V2) = σL(−1) by [V].

By Lemma 2.10, βL can be written as a direct sum β1 ⊕ β2 as in condition
1) above, such that the characters on H1(N2) that extend to H1(V2) form a
metabolizer H for β2 . We now suppose χ ∈ H and show that Condition 2)
holds for χ.

We also let χ denote an extension of χ to H1(V2) with image some cyclic group
Cq where q is a power of a prime integer (possibly larger than those correspond-
ing to the character on H1(N2)). Of course χ ∈ H1(V2, Cq) restricted to W ′2
extends χ restricted to M ′2 . We simply denote all these restrictions by χ.

Let W ′∞ denote the infinite cyclic cover of W ′0 . Note that W ′2 is a quotient of
this covering space. χ induces a Cq -covering of V2 and thus of W ′2 . If we pull
the Cq -covering of W ′2 up to W ′∞ , we obtain W̃ ′∞ , a Cq×C∞ -covering of W ′2 . If
we identify properly F×S1 in M ′2, this covering restricted to F×S1 is given by
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a character H1(F×S1) ' H1(F )⊕H1(S1)→ Cq×C∞ that maps H1(F ) to zero
in C∞ , H1(S1) to zero in Cq and isomorphically onto C∞ . For this note: since
Hom(H1(F ),Z) = H1(F ) = [F, S1], we may define diffeomorphisms of F × S1

that induce the identity on the second factor of H1(F ×S1) ≈ H1(F )⊕Z, and
send (x, 0) ∈ H1(F )⊕Z, to (x, f(x)) ∈ H1(F )⊕Z, for any f ∈ Hom(H1(F ),Z).

As in [Gi1], choose inductively a collection of g disjoint curves in the kernel
of χ that form a metabolizer for the intersection form on H1(F )/H1(∂F ). By
taking a tubular neighborhood of these curves in F , we obtain a collection of
S1×I embedded in F . Using these embeddings we can attach round 2-handles
(B2 × I)× S1 along (S1 × I)× S1 to the trivial cobordism M ′2 × I and obtain
a cobordism Ω between M2 and M ′2 .

Let U = W ′2 ∪M ′2 Ω with boundary M2 . The Cq ×C∞ -covering of W ′2 extends
uniquely to U . Note that Ω may also be viewed as the result of attaching round
1-handles to M2 × I.
As in [Gi1], Sign(W ′2) = Sign(V2). Since the intersection form on Ω is zero, we
get Sign(U) = Sign(W ′2) = Sign(V2) = σL(−1). The Cq × C∞ -covering of Ω,
restricted to each round 2-handle is q copies of B2 × I × R attached to the
trivial cobordism M̃ ′∞× I along q copies of S1× I×R. Using a Mayer-Vietoris
sequence, one sees that the inclusion induces an isomorphism (which preserves
the Hermitian form)

Ht
2(U ;Q(Cq)(t)) ' Ht

2(W ′2;Q(Cq)(t)).

Thus, if w(W ′2) denotes the image of the intersection form on Ht
2(W ′2;Q(Cq)(t))

in W (Q(Cq)(t)), we get σ1(τ(M2, χ
+)) = σ1(w(W ′2))− σL(−1).

If q is a prime power, we may apply Lemma 2 of [Gi1] and conclude that
Hi(W̃ ′∞;Q) is finite dimensional for all i 6= 2. Thus, Ht

i (W
′
2;Q(Cq)(t)) is zero

for all i 6= 2. Since the Euler characteristic of W ′2 with coefficients in Q(Cq)(t)
coincides with those with coefficients in Q, we get dim Ht

2(W ′2;Q(Cq)(t)) =
χ(W ′2) = 2χ(W ′0) = 2(1 − χ(F )) = 2b1(F ). Thus |σ1(τ(M2, χ

+) + σL(−1)| ≤
2b1(F ). Hence,

|σ(L,χ) + σL(−1)| ≤ |σ(L,χ) − σ1(τ(M2, χ)+)|+ |σ1(τ(M2, χ)+) + σL(−1)|
≤ η(L,χ) + µ+ 2(2g + µ− 1) = η(L,χ) + 4g + 3µ− 2 by Theorem 3.4.

5 Examples

Let L = L1 ∪ L2 be the link with two components of Figure 1 and S be the
Seifert surface of L given by the picture. The squares with K denote two
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parallel copies with linking number 0 of an arc tied in the knot K . Note that
L is actually a family of examples. Specific links are determined by the choice
of two parameters: a knot K and a positive integer h. Since S has genus h,
the slice genus of L is at most h.

h

K
K

K
K

Figure 1: The link L

One calculates that σL(λ) = 1, and nL(λ) = 0 for all λ. Thus, the Murasugi-
Tristram inequality says nothing about the slice genus of L. In fact, if K is a
slice knot, then one can surger this surface to obtain a smooth cylinder in the
4-ball with boundary L. Thus there can be no arguments based solely on a
Seifert pairing for L that would imply that the slice genus is non-zero.

Theorem 5.1 If σK(e2iπ/3) ≥ 2h or σK(e2iπ/3) ≤ −2h − 2, then L has slice
genus h.

Proof Using [AK], a surgery presentation of N2 as surgery on a framed link
of 2h+ 1 components can be obtained from the surface S (see Figure 2).

Let Q be the 3-manifold obtained from the link pictured in Figure 2. Here K ′

denotes K with the string orientation reversed. Since RP (3) is obtained by
surgery on the unknot framed 2, we get:

N2 = RP (3)#hQ.

The linking matrix of the framed link of the surgery presentation of N2 is

Λ = [2]
⊕
⊕h
[
0 3
3 0

]
. Λ is a presentation matrix of (H1(N2)∗, βL); we obtain

H1(N2)∗ ' Z2

⊕
⊕2hZ3
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K

(0) (0)

K

K’ K’

Figure 2: Surgery presentation of Q

and βL is given by the following matrix, with entries in Q/Z:

[1/2]
⊕
⊕h
[

0 1/3
1/3 0

]
.

By Theorem 4.1, if L bounds a surface of genus h− 1 in B4 , then βL must be
decomposed as β1 ⊕ β2 where:

1) β1 has an even presentation matrix of rank 2h− 1, and signature 1 (all we
really need here is that it has a rank 2h− 1 presentation.)

2) β2 is metabolic and for all characters χ of prime power order in some
metabolizer of β2 , the following inequality holds:

(∗) |σ(L,χ) + 1| − η(L,χ) ≤ 4h.

As Z2
⊕
⊕2hZ3 does not have a rank 2h − 1 presentation, β2 is non-trivial.

As metabolic forms are defined on groups whose cardinality is a square, β2 is
defined on a group with no 2-torsion. Thus the metabolizer contains a non-
trivial character of order three satisfying βL(χ, χ) = 0.

The first homology of Q is Z3 ⊕ Z3 , generated by, say, m1 and m2 , positive
meridians of these components. Each of these components is oriented counter-
clockwise. We first work out σ(Q,χ) and η(Q,χ) for characters of order three.

Let χ(a1,a2) denote the character on H1(Q) sending mj to e
2iπaj

3 , where the aj
take the values zero and ±1.

We use Proposition 2.4 to compute σ(Q,χ(1,0)) and η(Q,χ(1,0)) assuming that
K is trivial. For this, one may adapt the trick illustrated on a link with 2 twists
between the components [Gi2, Fig (3.3), Remark (3.65b)]. In the case K is the
unknot, we obtain

σ(Q,χ(1,0)) = 1 and η(Q,χ(1,0)) = 0.
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It is not difficult to see that inserting the knots of the type K changes the result
as follows (note that K and K ′ have the same Tristram-Levine signatures):

σ(Q,χ(1,0)) = 1 + 2σK(e2πi/3) and η(Q,χ(1,0)) = 0.

These same values hold for the characters χ(−1,0) and χ(0,±1) by symmetry.

Using Proposition 2.4

σ(Q,±χ(1,1)) = −1− 24/9 + 4σK(e2πi/3), η(Q,±χ(1,1)) = 0

σ(Q,±χ(1,−1)) = 4 + 24/9 + 4σK(e2πi/3) and η(Q,±χ(1,−1)) = 1.

One also has
σ(Q,χ(0,0)) = 0 and η(Q,χ(0,0)) = 0.

Any order three character on N2 that is self annihilating under the linking form
is given as the sum of the trivial character on RP (3) and characters of type
χ(0,0) , χ(±1,0) and χ(0,±1) on Q and characters of type ±χ(1,1) + ±χ(1,−1) on
Q#Q. Using Proposition 2.5, one can calculate σ(L,χ) and η(L,χ) for all
these characters χ. It is now a trivial matter to check that for every non-trivial
character with β(χ, χ) = 0, the inequality (*) is not satisfied.
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