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Algebraic linking numbers of knots in 3—manifolds

ROB SCHNEIDERMAN

Abstract Relative self-linking and linking “numbers” for pairs of oriented
knots and 2—component links in oriented 3—manifolds are defined in terms of
intersection invariants of immersed surfaces in 4-manifolds. The resulting
concordance invariants generalize the usual homological notion of linking by
taking into account the fundamental group of the ambient manifold and of-
ten map onto infinitely generated groups. The knot invariants generalize the
type 1 invariants of Kirk and Livingston and when taken with respect to cer-
tain preferred knots, called spherical knots, relative self-linking numbers are
characterized geometrically as the complete obstruction to the existence of
a singular concordance which has all singularities paired by Whitney disks.
This geometric equivalence relation, called W—equivalence, is also related
to finite type 1—equivalence (in the sense of Habiro and Goussarov) via the
work of Conant and Teichner and represents a “first order” improvement
to an arbitrary singular concordance. For null-homotopic knots, a slightly
weaker equivalence relation is shown to admit a group structure.
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1 Introduction

Working in the setting of finite type invariants, Kirk and Livingston defined
families of type 1 invariants for knots in many 3-manifolds and described in-
determinacies that may arise when one attempts to define relative invariants
for homotopically essential pairs of knots [19, 20]. The invariants of Kirk and
Livingston are extracted from the homology classes of double-point loops cor-
responding to crossing changes in the knots during a homotopy. This paper
will extract invariants from the homotopy classes of such double-point loops.
The choices involved in identifying free homotopy classes with elements in the
fundamental group of the ambient manifold require keeping careful track of
conjugation actions and the resulting linking “numbers” take values in a target
orbit space which is in general just a set (with a well-defined zero element) and
depends in a rather subtle way on the knots and manifolds being considered.
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922 Rob Schneiderman

Some of the benefits justifying this somewhat unusual target include extend-
ing the Kirk-Livingston invariants non-trivially to many more manifolds (e.g.
integral homology spheres) and showing they are concordance (not just iso-
topy) invariants, as well as providing a clear geometric characterization of the
invariants in terms of Whitney disks and demonstrating computability of the
indeterminacies.

The combination of 3— and 4-dimensional methods used in [19] and [20] high-
lights the suggestive relation between the various crossing change diagrams of
3—dimensional finite type theory and cross-sections of generic singularities of
surfaces in 4—-dimensions. The central idea of this paper is that this relation
can be further exploited by applying (a generalization of) Wall’s quadratic in-
tersection form to the trace of a homotopy of knots. This approach provides
a connection between two advancing lines of research: the extensions of finite
type theories to arbitrary 3—manifolds (e.g. [2, 9, 18, 19, 20] and many others)
and the developing theory of Whitney towers which detect the failure of the
Whitney move in dimension 4 (e.g. [3, 4, 22, 23, 26, 27]).

Knot theory in a non-simply connected manifold breaks naturally into the study
of free homotopy classes of knots (or classes of 0-equivalent knots in the language
of finite type theory). We assume that our manifolds are oriented and equipped
with basepoints. For each element v € m M in the fundamental group of a 3—
manifold M, let Iy (M) denote the set of oriented knots in the free homotopy
class determined by (the conjugacy class of) v and let C,(M) denote the set
Ky (M) modulo concordance (details in 2.2). Thus, any two knots k and j
in K, co-bound an immersed annulus in M x I (I the unit interval) and
our invariants will (1) provide obstructions to k£ and j representing the same
element in C, (M), that is, obstructions to k& and j co-bounding an embedded
annulus in M x I, and (2) provide geometric information towards improving a
singular concordance in the sense that all singularities can be paired by Whitney
disks.

Although we will not work explicitly in the setting of finite type invariants, the
reader familiar with the type 1 invariants of Kirk and Livingston will notice that
they factor through the invariants defined here (with their chosen cohomology
class corresponding to a representation from 7 M to a cyclic group).

A survey of our main results follows.

Null-homotopic knots Our first observation (details in Section 3) is that,
for any (oriented null-homotopic) knot k € Ki(M), Wall’s self-intersection
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invariant g (which counts signed double-point loops) can be applied to the
trace of any null-homotopy of k in M X I, yielding an algebraic self-linking
number (k) which takes values in a quotient A of the free abelian group
A := Z[m M] generated by the elements of m M. The quotient is by two
relations: The inversion relation ¢ = ¢~' for group elements corresponds to
changing the choice of orientation of a double-point loop, and the cusp relation
1 = 0 corresponds to the fact that local cusp homotopies create or eliminate
double point loops having the trivial group element 1 € 7 X (we are working
with unframed knots). The concordance invariance of self-linking numbers is
a direct consequence of the 3-dimensional Sphere Theorem (see Lemma 3.2.1)
and by clasp-doubling embedded loops it is not hard to construct knots realizing
all elements in A; this is the content of the following theorem which is proved
in Section 3.

Theorem 1 The map k — u(k) induces a well-defined map from C;(M) onto
A.

Due to the choice of basing of k, the image of u(k) € A is only well-defined up to
conjugation by elements of w1 M ; however, there are no further indeterminacies
and if M is not simply connected then self-linking numbers detect many null-
homotopic knots which are not null-concordant, i.e., which do not bound an
embedded 2—disk in M x I. For example, if a knot k, € M is constructed as
the clasped-double of a null homologous loop which represents any non-trivial
element g in the commutator subgroup of m M, then u(ky) = g # 0 € A
(Figure 4 in 3.2) showing that k4 is not null-concordant and not 1-equivalent
to the unknot (see paragraph after Theorem 3 below), facts not detected by the
homological invariants of [19] and [20].

Essential knots In Section 4 we will define relative algebraic self-linking
numbers for pairs of essential knots, i.e. knots in K, (M) for v # 1, by applying
a generalization of Wall’s self-intersection invariant to immersed annuli in M x 1.
This generalized p—invariant for immersed annuli naturally takes values in an
abelian group ]\7 generated by the double cosets of the fundamental group of
the ambient manifold by the cyclic subgroup () generated by the annulus; in
our case, v will be a knot longitude. If £ and j are knots in K, (M) then the
relative self-linking number pg(j) of j with respect to k takes values in an orbit
space of /NX.Y under two group actions: There is a conjugation action by the
centralizer ((7) which corresponds to basing choices and a more subtle action
of a certain indeterminacy sub-group

®(k) < ]\’Y x ()
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which accounts for the effect that pre-composing by a singular self-concordance
of k has on pu(j).

The following example illustrates some basic properties of relative self-linking
numbers. More subtle properties will be exhibited in Section 8.

Example Illustrated in Figure 1 are two knots k and j in KCgy.(M) where
M is the product F' x S of a thrice punctured 2-disk F' with the circle and
mM = (x,y,z) x (t) is the cartesian product of the free group on z, y and z
(represented by loops in F' around the punctures) with the central cyclic group
generated by the element ¢ (represented by a circle factor of M ). The figure
shows M cut open along F' cross a point.
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Figure 1

In this case, with respect to k, both the conjugacy and indeterminacy subgroup
actions are trivial (see Example 5.4.2) so the relative self-linking number 114(3)
takes values in the group A;,.. The two obvious crossing changes that change
k into j describe the trace H of a homotopy with two singularities of differing
sign. The group elements associated to these singularities can be computed from
the figure yielding (up to a sign from global orientation conventions) jux(j) =
u(H) = x — xy which is non-zero in Ay.. That k and j are not isotopic
can also, in this case, be detected by the Kirk-Livingston invariants (using a
cohomology class that is non-trivial on y); as a result of the next theorem we
see, furthermore, that k and j are not concordant.
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Although the target for ug(j), denoted A./(®(k),((7)), does not in general
have a group structure (Remark 4.7.2), it does have a well-defined orbit of
0 € /NX.Y and so it makes sense to speak of puy(j) vanishing. The following
theorem will be proved in Section 4.

Theorem 2 For each k € K,(M), the map j — ui(j) vanishes on knots
concordant to k and induces a well-defined map

Cy(M) — Ay /(2(K), (7))
onto the target.

Thus, the target reflects some of the structure of C (M) and a variety of prop-
erties which can occur are illustrated in the examples of Section 8 (including
torsion (8.1)). Describing this target depends to a large extent on understand-
ing the indeterminacy sub-group ®(k). A satisfying theme that will emerge is
that these indeterminacies, which come from essential tori and 2—spheres in M ,
can be measured in terms of intersections between lower-dimensional manifolds.
A generating set for ®(k) is given in Proposition 5.4.1.

The indeterminacies due to 2-spheres are computed in terms of an intersection
pairing A(o, k) between ma(M) and K, (M) (5.1). This allows our knot invari-
ants to be defined in reducible 3-manifolds, which is desirable even if one is
ultimately interested in the manifold structure; for instance, surgering a knot
in a reducible manifold can yield an irreducible one.

The indeterminacies due to tori correspond to singular self-concordances which
project to essential immersed tori in M and only exist if the centralizer ((v)
of v is non-cyclic. In this case, the computation of ®(k) can be reduced to
a computation in a Seifert fibered submanifold that carries () using the 3—
manifold structure theorems of Jaco-Shalen [15, 16], Johannson [17], Gabai
[8] and Casson-Jungreis [1]. This follows the approach used by Kalfagianni
[18] to show the existence of finite type knot invariants in many irreducible
3-manifolds. These indeterminacies correspond to intersections between knots
and tori in M and can in general be computed in terms of an intersection
pairing between curves in an orbit surface of a Seifert fibered sub-manifold of
M ([24]). In this paper we will mostly be concerned with cases where these
indeterminacies are trivial.

Spherical knots It turns out that there exist many knots for which the
indeterminacy subgroup ®(k) is completely determined by the pairing A(o, k)
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between the knots and 2-spheres; these knots, called spherical knots (6.1), play
a preferred role (analogous to the unknot in the trivial homotopy class) in the
geometric interpretation of linking invariants:

Theorem 3 If k € K. (M) is spherical, then for any knots j and j' in K. (M)
the following are equivalent:

(i) pe(d) = (i)
(ii) There exists a singular concordance between j and j' such that all sin-
gularities are paired by Whitney disks.

As illustrated later in Example 8.2, there are examples where pg(7) = pr(j’)
for a non-spherical knot k and property (ii) of Theorem 3 does not hold (as
detected by gk, (j) # pr,(3') for some spherical kg ).

W—-equivalence Theorem 3 shows that, with respect to spherical knots, rel-
ative self-linking numbers inherit the geometric characterization of Wall’s self-
intersection invariant in terms of Whitney disks (see Proposition 2.1.3). The
equivalence relation on K. (M) defined by property (ii) of Theorem 3 is called
W—equivalence and represents a “first order” improvement over an arbitrary sin-
gular concordance (a 0-equivalence) in the following sense: Conant and Teichner
have characterized finite type n—equivalence (in the sense of Habiro and Gous-
sarov) of knots in 3—manifolds in terms of the notion of 3—dimensional capped
grope cobordism [5, 6]. In their language, 1-equivalence corresponds to capped
surface cobordism. Such a capped surface bordism in M can be pushed into
M x I and surgered to a W—equivalence. (See [22] for details including higher
orders.) Thus, relative self-linking numbers give obstructions to 1-equivalence
of knots.

Example In the example illustrated in Figure 1 above, the knot k& is spherical
(see examples 5.4.2 and 6.1.2), hence k and j are not W—equivalent, by taking
j' =k in Theorem 3, since pg(j) — (k) = pug(j) is non-zero.

We are assured of the existence of spherical knots in all homotopy classes by
restricting to a large class M of 3—manifolds which do not contain circle bundles
over non-orientable surfaces whose total spaces are orientable and do not contain
certain Seifert fibered spaces containing non-vertical tori as sub-manifolds (see
Section 7).
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Theorem 4 For any M € M and any ~ € w1 M, there exists a spherical knot
ko in K, (M).

Thus, relative self-linking numbers characterize W—equivalence in M.

2—component links The discussion so far can be applied similarly to define
(relative) concordance invariants for 2—component links in terms of (a general-
ization (9.3) of) Wall’s intersection pairing A (2.1) with analogous results. This
is sketched in Section 9. One result worth mentioning here is that the (abso-
lute) algebraic linking number (9.1.1) for a 2—component link of null-homotopic
knots plays a role in defining a group structure on a quotient of Kj (M) (see
9.1.3).

Conventions For the most part, standard 3— and 4-dimensional techniques
and terminology are used throughout. Irreducible 3—manifolds will be allowed
to have spherical boundary components. The closed unit interval [0, 1] will be
denoted by I and occasionally be reparametrized implicitly. We work in the
smooth oriented category with specific orientations usually suppressed.

Acknowledgments I am happy to thank Paul Kirk and Peter Teichner for
helpful conversations, and my former advisor Rob Kirby for his guidance and
support. Thanks also to the referee whose careful reading and thoughtful com-
ments have significantly contributed to improving the exposition. This work
was supported in part by an NSF Postdoctoral Fellowship and the Max-Planck-
Institut fiir Mathematik.

2 Preliminaries

This section briefly reviews the 4-dimensional version of Wall’s intersection
and self-intersection invariants, A and pu, as well as the notions of concordance
and singular concordance and also serves to fix notation. See also [7] for more
details.

2.1 Wall’s intersection invariants

Let D and E be properly immersed 2—spheres or 2—disks (rel 9) in a 4-manifold
X, that is, boundary is embedded in boundary and interior immersed in interior.
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After a small perturbation (rel ), D and E can be assumed to be in general
position, so that D meets F in a finite set of transverse intersection points
and each of D and F have finitely many transverse self-intersection points or
double point singularities. Neighborhoods of an intersection point p in D and
E are called sheets of D and E (at p). Fix whiskers for each of D and E'; that
is, choose an arc in X connecting the basepoint of X to a basepoint on D and
likewise for F.

2.1.1 Intersection numbers

Each point p € DN E determines an element g, € m X from the following loop:
First go along the whisker on D from the basepoint of X to the basepoint of
D, then along D (avoiding all double points) to p, then along E (avoiding
all double points) to the basepoint on F and then back along E’s whisker
to the basepoint of X. Since D and E are simply connected, g, does not
depend on how the loop runs between p and the basepoints on D and F.
By summing (with appropriate signs) over all intersection points we get an
intersection “number” in A := Z[m1 X], the free abelian group generated by the
elements of m1 X :

Definition 2.1.1 The intersection number \(D, E) of D and FE is defined by
MND,E) := Z(signp) “gp €A

where the sum is over all intersection points p € D N E and signp equals
+1 (resp. —1) if the orientation of X at p agrees (resp. disagrees) with the
orientation determined by the sheets of D and E at p.

Note that the g, are all computed using the fixed whiskers on D and FE.
Changing the whisker on D (resp. E) changes A(D,E) by left (resp. right)
multiplication by an element of 7 X .

2.1.2 Self-intersection numbers

For each double point p of D, define g, € m; X from the following loop: First
go along the whisker on D from the basepoint of X to the basepoint of D,
then along D (avoiding all double points) to p, then change sheets at p and
go back along D (avoiding all double points) to the basepoint on D and then
back along D’s whisker to the basepoint of X . Note that (for a fixed whisker)
gp depends only on the choice of first sheet at p and changing the order of
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sheet-change for the loop at p changes g, to gpfl. Note also that a local

cusp homotopy (Figure 2) creates a double point p with g, equal to the trivial
element 1 € mX.

Definition 2.1.2 The self-intersection number (D) is defined by

u(D) =Y (signp) - gp € A

where the sum is over all double points p of D and signp = 41 is determined
by comparing the orientation of X at p with the orientation given by the two
sheets of D at p.

Here A is as described in the introduction:
~ A
A= —
{9—9 '@ Z[1]
where g ranges over m X and Z[1] is generated by the trivial element 1 € m X .

(This is a quotient as an abelian group, not as a ring.) Note that changing the
whisker on D changes p(D) by conjugation by an element of m X .

Remark This definition of self-intersection number is sometimes referred to
as the reduced self-intersection number; omitting the quotient by Z[1] yields an
unreduced version which is only invariant under regular homotopy. Using the
unreduced version would lead to an invariant of framed knots.

O
L, QO

Sl

Figure 2: Before and after a local cusp homotopy of a surface in a 4-manifold

2.1.3 Homotopy invariance and the geometry of Wall’s invariant

The homotopy invariance of intersection numbers can be shown by an analysis
of the singularities of homotopies of surfaces ([7]):
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Proposition 2.1.3 In the above setting, \(D,E) € A and u(D) € A depend
only on the homotopy classes (rel 0) of D and E. The intersection number
A(D, E) and self-intersection numbers p(D) and p(E) all vanish if and only
if D and E are homotopic (rel 0) to disjoint maps with all self-intersections
paired by Whitney disks. m]

The disjointness property follows from standard manipulations of Whitney
disks. (See 1.4 of [7] for an introduction to Whitney disks in 4-manifolds.)
If the Whitney disks in the conclusion of Prop 2.1.3 happened to be disjointly
embedded, correctly framed and with interiors disjoint from D and F, then it
would follow that D and E are homotopic (rel 9) to disjoint embeddings.

Note that in a simply connected 4-manifold A\(D, F) reduces to the usual ho-
mological intersection D - E' € Z which counts the signed intersection points
and that A = 0 so that p always vanishes.

2.2 Concordance and singular concordance

Definition 2.2.1 Two knots k and j in a 3-manifold M are concordant if
there exists a properly embedded annulus (C,9C) — (M x I, M x 9I) bounded
by k C M x {0} and j C M x {1}. The oriented boundary of the annulus C' is
required to induce the difference of the orientations of the knots: 0C =k — j.
Such a C is called a concordance between k and j. Two links (collections of
disjoint knots) [ and I’ in M are concordant if their components can be joined
by a collection of properly embedded pairwise disjoint annuli in M x I where
each annulus is a concordance between a component of [ and a component of
I'. The union of the annuli is a concordance between [ and [’.

Concordance is clearly an equivalence relation on knots or links with a fixed
number of components and isotopy is a special kind of level-preserving con-
cordance. By allowing the annuli to be immersed we get the (much) weaker
equivalence relation of singular concordance:

Definition 2.2.2 Two knots k and j in M are singularly concordant if there
exists a properly immersed annulus (C,9C) & (M xI, M x9I) bounded by k C
M x {0} and j C M x {1}. Such a C is called a singular concordance between
k and j (or from k to j). Two links [ and I’ in M are singularly concordant
if their components can be joined by a collection of properly immersed annuli
(not necessarily disjoint) in M x I where each annulus is a singular concordance
between a component of | and a component of I’.
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The trace of a homotopy of knots is a (level-preserving) singular concordance
and, by [11] and [10], the relations of singular concordance and homotopy are
in fact equivalent for knots and links in 3-manifolds. It will be convenient to
make statements in the a priori more general language of singular concordance,
however explicit constructions will usually be described by homotopies.

2.3 Whiskers for knots

Recalling the notation in the introduction, we will use the fundamental group
to index singular concordance classes of knots:

Definition 2.3.1 For each element v in the fundamental group of a 3-manifold
M, let K,(M) denote the set of oriented knots (up to isotopy) in the free
homotopy class determined by (the conjugacy class of) + and let C, (M) denote
the set IC, (M) modulo concordance.

This means that whenever we connect a knot k € K, (M) by a whisker to the
basepoint of M we require that this basing satisfies [k] =~y € m M.

3 Null-homotopic knots

This section contains the precise definition of the algebraic self-linking number
(k) and the proof of Theorem 1. The arguments here also apply to alge-
braic linking numbers of 2—component links of null-homotopic knots as will be
described in Section 9.

3.1 Algebraic self-linking numbers
Recall that our knots and manifolds are assumed oriented.

Definition 3.1.1 For k € K1(M) define the algebraic self-linking number u(k)
by N

p(k) == p(D) € A
where D is any properly immersed 2—disk in M x I bounded by k£ C M x {0}
and p(D) is Wall’s self-intersection number as defined in 2.1.2. Here (M x I)
is identified with 7 M via projection onto M x {0}. The immersed 2-disk D
is a singular null-concordance of k and is oriented by the orientation of k (via
some fixed convention).
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We may refer to p(k) simply as a “self-linking number” for sake of brevity,
since in the present context omitting “algebraic” should not cause confusion
with the well known integer-valued self-linking number of a framed knot.

3.2 Proof of Theorem 1
Independence of choice of D We show first that p(k) does not depend on
the choice of singular null-concordance. Let D and D’ be two singular null-

concordances of k. Then the union S of D and D’ along k (in two copies of
M x I identified along M) determines an element of mo(M x I) = mo(M) (see

Figure 3).
i\i
£

Figure 3

Lemma 3.2.1 Any n elements of mo(M X I) are represented by n embedded
pairwise disjoint 2-spheres.

Proof A well known consequence of the 3-dimensional Sphere Theorem is
that mo(M) is generated as a module over m (M) by disjoint embeddings (the
2-spheres that decompose M into prime factors, together with any spherical
boundary components and cross-sections of any S? x S! factors, see Proposition
3.12 of [13]). Tubing these generators together in M x I does not create any
new intersections, so mo(M x I) is spanned by disjoint embeddings. m|

Lemma 3.2.1 implies in particular that Wall’s intersection form vanishes on
mo(M x I) and so
(S) =0 = (D) — p(D").

This shows that u(k) does not depend on the choice of bounding disk.
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Concordance invariance If C is a concordance from k' to k then, up to
conjugation, u(k') = u(C U D) = u(D) = p(k) since C has no singularities.

The map k — p(k) is onto To construct a null-homotopic knot k, C M
with p(ky) = +g for any element g € m (M), push an arc of a small circle
around a loop representing g and create a +-clasp with the circle (Figure 4).
By iterating this procedure (or band summing together such clasps), one can
realize anything in A as p(k) for some k. O

Figure 4: Creating a null-homotopic knot k& with pu(k) = +g¢

Remark 3.2.2 Note that Lemma 3.2.1 implies that any homotopy invariant of
2-spheres in a 4-manifold which vanishes on disjoint embeddings (and restricts
to an invariant of immersed 2-disks rel boundary) will give a concordance in-
variant of null-homotopic knots in a 3-manifold. In particular, the invariant
7 of [26] can be used to define second order knot invariants whenever the first
order invariants vanish (see [25]).

4 Relative self-linking numbers

This section introduces the definitions, conventions and notation necessary to
define relative self-linking numbers p(j) and gives the proof of Theorem 2.
Since basepoint issues will complicate the procedure, some motivation is in
order. The goal is to construct a relative knot invariant that is as free from
basepoint dependence as possible and has a clear geometric characterization.
The first step (4.1) is to generalize Wall’s u homotopy invariant to immersed
annuli in such a way that u(A) vanishes if and only if the singularities of the
immersed annulus A can be paired up by Whitney disks (after a homotopy rel
0). This is where the double coset space (by the cyclic subgroup (7)) enters the
picture. Here also, the invariant in AW is well-defined only up to a conjugation
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action by the centralizer subgroup ((y), corresponding to the choice of whisker
connecting the annulus to the basepoint of the ambient manifold.

Next, we want to apply u to an immersed annulus joining two knots in M X
I. (Such an immersed annulus will often be denoted H since in practice it
will usually be the trace of a homotopy between knots.) This requires fixing
conventions (4.2) and more importantly examining the behavior of p under
composition of singular concordances, in particular singular self-concordances
of a knot which may contribute indeterminacies to the final invariant. A subtle
effect that arises is another conjugation action by ((7y) which comes from a
loop traced out by a basepoint on the knot during a homotopy, together with
the whiskers on the knots at either end of the homotopy; such a loop is called
a latitude (4.3, 4.4) and this conjugation action prevents p from being additive
(4.5, 4.6). The effect of this non-additivity is captured by the action of an
indeterminacy subgroup ®(k) which depends in general on the “base” knot k
(4.7). This action is compatible with the basepoint conjugation action (4.7.2)
and the precise definition of ux(j) is given in 4.8.

Having successfully waded through these conventions and notations, the proof
of Theorem 2 then more or less falls out of the definitions. In digesting the
above conjugation actions, notations, etc., it may be helpful for the reader to
draw schematic pictures along the lines of Figure 5 (in 4.9) in order to see the
effect of compositions, whisker changes, etc. on the double-point loops counted

by .

4.1 Self-intersection numbers for annuli

Let A: (S' x1I,S' x {0,1}) % (X,0X) be a properly immersed annulus in a
4-manifold X. Choosing a whisker for A identifies the image of 7 (S1 x 1) 2 Z
with a cyclic subgroup () of m X generated by the image of a generating circle
of the annulus. For each double point p of A, associate an element g, € m X
from a loop in A that changes sheets at p (and avoids all other double points)
together with the whisker on A. Note that g, is only well-defined up to left and
right multiplication by powers of v, corresponding to the loop in A wandering
around the circle direction before and after changing sheets at p. Denote by
A, the free abelian group additively generated by the double cosets of w1 X by
(), that is,

L . Z [7‘(1 X]

Ay = Z[(y)\m X/ (7)] =]

where n and m range over the integers.
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To account for indeterminacies due to the choices of orientation of the double-
point loops and from the introduction of trivial group elements via cusp homo-
topies, we take a further quotient and define
A Ay _ Z[m X]
T {g—gtezl]  {g-ngtym ezl

Definition 4.1.1 Let A be a properly immersed annulus in a 4-manifold X
and () be the image of the induced map on fundamental groups. Then the
self-intersection number u(A) of A is defined by

p(A) = (signp) - g, € A,

where the sum is over all double points p of A and signp comes from the
orientations of X and the sheets of A at p as usual.

Changing the whisker for A in a manner that preserves the image () of the
fundamental group has the effect of conjugating p(A) by an element of the
centralizer subgroup ((v) := {g € mX | gv = 79} < mX (see 4.5 below).
Thus, the orbit of u(A) in 1~\7 under conjugation by ((7) is invariant.

In general, changing the whisker on A changes both u(A) and the target space

by an isomorphism: z € Ay — aza~l e Agya-1-

The same arguments as in the proof of Proposition 2.1.3 give:

Proposition 4.1.2 The above defined self-intersection number p1(A) is invari-
ant under homotopy (rel 0) and vanishes if and only if all singularities of A can
be paired by Whitney disks (perhaps after some local cusp homotopies). m|

4.2 Conventions for singular concordances

Let H:(S'x1,S'x{0,1}) — (M x I,M x {0,1}) be a singular concordance
between any knots k£ and j in IC,(M). Orientations of H and M x I are
determined by the orientations on & C M x {0} and M together with the
orientation of I so that 0H = k — j. Identify w1 (M x I) with 7 M via
projection onto M x {0}. Take a whisker for k£ as the whisker for H. Since by
convention (2.3) we only take whiskers for &k so that [k] = v, the image of the
fundamental group of the annulus equals (y) < w1 M.

Unless otherwise specified, these conventions will be assumed for all singular
concordances.
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4.3 Latitudes of singular concordances

Let H be a singular concordance from k to j with whiskers chosen so that
[k] =[j] =~y € mM. A latitude of H is any arc that goes from the basepoint of
M in M x {0} along the whisker w of k, then along H, then along the whisker
w’ of j to the basepoint of M in M x {1}. The projection of a latitude of
H to M x {0} is a loop that determines an element ¢ in the centralizer ((vy)
of v in myM. This element ¢ is well-defined up to multiplication by powers
of v and hence determines a well-defined element in the double coset space

(T M/ (7).

In this setting we will speak of “the element ¢ € (() determined by a latitude”
since 