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A criterion for homeomorphism between
closed Haken manifolds

Pierre Derbez

Abstract In this paper we consider two connected closed Haken manifolds
denoted by M2 and N2, with the same Gromov simplicial volume. We give
a simple homological criterion to decide when a given map f: M3 ¥ N3
between M3 and N3 can be changed by a homotopy to a homeomorphism.
We then give a convenient process for constructing maps between M3 and
N3 satisfying the homological hypothesis of the map f.
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1 Introduction

1.1 The main result

Let N3 be an orientable connected, compact three-manifold without bound-
ary. We denote by kN 3k the Gromov simplicial volume (or Gromov Invariant)
of N3, see Gromov [7, paragraph 0.2] and Thurston [23, paragraph 6.1] for
de nitions. Then, our main result is stated as follows.

Theorem 1.1 Let M3 and N2 be two closed Haken manifolds with the same
Gromov simplicial volume. Let f: M3 8 N2 be a map such that for any nite
covering R of N3 (regular or not) the induced map £: M ¥ ] is a homology
equivalence (with coe cients Z). Then f is homotopic to a homeomorphism.

Note that the homological hypothesis on the map T required by the Theorem
1.1 is usually not easy to check. The following result, [17, Proposition 0.2 and
Lemma 0.6], gives a convenient process which allows us to construct such a map
between M3 and N3.
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336 Pierre Derbez

Proposition 1.2 Let M3, N3 be two closed Haken manifolds and assume
that there is a cobordism W* between M3 and N3 such that:

() themap 1(N3) ¥ 1(W?) is an epimorphism,
(ii) W* is obtained from N2 adding handles of index 2,
(i) the inclusions M3 ;¥ W* and N2, W* are Z-homological equivalences.

Then there exists a map f: M3 ¥ N3 satisfying the homological hypothesis of
Theorem 1.1 and thus if kM k = kNk then T is homotopic to a homeomorphism.

1.2 The motivation

The aim of Theorem 1.1 is to extend a main result of B. Perron and P. Shalen
which gives a homological criterion for deciding when a given map between two
closed, irreducible, graph manifolds, with in nite fundamental group, can be
homotoped to a homeomorphism (see [17, Proposition 0.1]). Thus, in this paper
we want to nd a larger class of three-manifolds for which Proposition 0.1 of B.
Perron and P. Shalen holds. Obviously their result does not hold for any closed
three-manifold. Consider for example a (closed) Z-homology sphere M2 such
that kMk = 0 and M3 8 S3. Then it is easy to construct a map f: M3 ¥
S® which satis es the hypothesis of Theorem 1.1. In order to generalize the
result of B. Perron and P. Shalen, a \good" class of closed three-manifolds
seems to be the Haken manifolds. This class allows us to avoid the above
type of obvious conter-example and strictly contains the class of irreducible
graph manifolds with in nite fundamental group considered by B. Perron and
P. Shalen. Indeed, it follows from Thurston [23] and [11, paragraph 1V.11]
that irreducible graph manifolds with in nite fundamental group correspond
exactly to Haken manifolds with zero Gromov Invariant. Thus when the given
manifolds M3 and N2 have their Gromov Invariant equal to zero (i.e. if kM 3k =
kN3k = 0) then Theorem 1.1 is equivalent to [17, Proposition 0.1]. Therefore,
the result of [17] allows us, from now on, to assume that the given manifolds
satisfy kM3k = kN3k & 0.

Finally note that the hypothesis on the Gromov Invariant of the given manifolds
is necessary in Theorem 1.1. Indeed in [2], M. Boileau and S. Wang construct
two closed Haken manifolds M3 and N3 satisfying kMk > kNk and a map
f: M I N satisfying the homological hypothesis of Theorem 1.1.
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1.3 Preliminaries and notations

We rst state the following terminology which will be convenient. Let T be a
2-manifold whose components are all tori and let m be a positive integer. A
covering space ® of T will be termed m m-—characteristic if each component
of F is equivalent to the covering space of some component T of T associated
to the characteristic subgroup Hy, of index m? in  ((T) (if we identify 1(T)
with Z Z, we have H,, =mZ m2).

Recall that for a closed Haken manifold M3, the torus decomposition of Jaco-
Shalen and Johannson ([12] and [13]) together with the uniformization Theorem
of Thurston ([22]) say that there is a collection of incompressible tori Wy, M,
unique up to ambiant isotopy, which cuts M into Seifert bered manifolds and
hyperbolic manifolds of nite volume. Denote the regular neighborhood of Wy
by Wnp  [—1; 1] with Wy Og = W . We write MnWy (—1;1) = Hy [ESwm,
where Hy, is the union of the nite volume hyperbolic manifold components
and Sy, is the union of the Seifert bered manifold components. Note that
since we assume that kMk & 0 we always have Hy € ;.

The hypothesis on the Gromov simplicial volume of the given manifolds allows
us to apply the following rigidity Theorem of Soma:

Theorem 1.3 [20, Theorem 1] Let f: M ¥ N be a proper, continuous
map of strictly positive degree between two Haken manifolds with (possibly
empty) toral boundary. Then f is properly homotopic to a map g such that
g(Hv) Hyn and gjHm: Hm ¥ Hy is a deg(f)-fold covering if and and only
if KMk = deg(f)kNK.

In our case this result implies that the map f: M ¥ N is homotopic to a map
g which induces a homeomorphism between Hy, and Hy . But this result does
not say anything about the behavior of £ on the Seifert components Sy, of
M. Even if we knew that f(Sps) Sy we can not have a reduction to the
Perron-Shalen case \with boundaries” (which is not anyway treated in their
article). This comes from the fact that one does not know how to extend
a given nite covering of Sy to the whole manifold N, see [9, Lemma 4.1].
More precisely, in [9], J. Hempel shows that if S is a 3-manifold with non-
empty boundary which admits either a Seifert bration or a complete hyperbolic
structure of nite volume then for all but nitely many primes g there is a

nite covering p: § ¥ S such that for each component T of @S and for
each component ® of p~1(T) the induced map pj€: B ¥ T isthe q q-
characteristic covering of T. In particular, we can show that Hempel’s Lemma
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is true for any prime q in the case of Seifert bered spaces without exceptional

ber and with orientable base whose boundary contains at least two boundary
components (i.e. S > F S where F is an orientable compact surface with
at least two boundary components). This fact is crucially used in [17] (see
proofs of Propositions 0.3 and 0.4) to construct their nite coverings. But in
the hyperbolic manifolds case we must exclude a nite collection of primes, thus
we cannot extend the coverings of [17] in our case. So we have to develop some
other techniques to avoid these main di culties.

1.4 Main steps in the proof of Theorem 1.1 and statement of
the intermediate results

It follows from Waldhausen, see [24, Corollary 6.5], that to prove Theorem 1.1
it is su cient to show that the map f induces an isomorphism f : (M) 1
1(N). Note that since T is a Z-homology equivalence then it is a degree one
map soitissu cienttoseethat ¥ : (M) ¥ ;(N) isinjective. On the other
hand it follows from the hypothesis of Theorem 1.1 that to prove Theorem 1.1
it is su cient to nd a nite covering @ of N such that the induced map
£ W8 homotopic to a homeomorphism (i.e. is 1-injective). Hence, we
can replace M, N and f by M, ¥ and £ (for an appropriate choice of the
nite sheeted covering of N).

First step: Simpli cation of N® The rst step consists in nding some
nite covering M of N which is more \convenient” than N. More precisely,
the rst step is to show the following result whose proof will occupy Section 2.

Proposition 1.4 Let N3 be a non geometric closed Haken manifold. Then
there is a nite covering B of N satisfying the following property: M3 has
large rst Betti number ( 1() 3), each component of 1§ nWg contains at
least two components in its boundary and each Seifert bered space of R is
homeomorphic to a product of type F S where F is an orientable surface
of genus 3.

Remark 1 In view of the above paragraph we assume now that N3 always
satis es the conclusion of Proposition 1.4.

Second step: The obstruction This step will show that to prove Theorem
1.1 it is su cient to see that the canonical tori of M do not degenerate (i.e.
the map fjWnm: Wpm ¥ N is  p-injective). More precisely we state here the
following result which will be proved in Section 3.
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Theorem 1.5 Let f: M3 ¥ N2 be a map between two closed Haken mani-
folds with the same Gromov Invariant and such that for any nite covering R of
N the induced map €: WY Risa Z-homology equivalence. Then T is homo-
topic to a homeomorphism if and only if the induced map fjWy: Wyp ¥ N3
is 1-injective.

Third step: A factorization theorem It follows from Theorem 1.5 that
to show our homeomorphism criterion it is su cient to see that the canonical
tori do not degenerate under the map . So in the following we will suppose
the contrary. The purpose of this step is to understand the behavior (up to
homotopy) of the map T in the case of degenerate tori. To do this we recall
the de nition of degenerate maps of Jaco-Shalen.

De nition 1.6 Let S be a Seifert bered space and let N be a closed Haken
manifold. Amap f: S ¥ N is said to be degenerate if either:

(1) thegroup Im(f : 1(S) ¥ 1(N))=Tflg, or

(2) the group Im(f : 1(S) ¥ 1(N)) is cyclic, or

(3) the map fjy is homotopic in N to a constant map for some ber y of S.

So we rst state the following result which explains how certain submanifolds
of M2 can degenerate.

Theorem 1.7 Let f: M ¥ N be a map between two closed Haken manifolds
satisfying hypothesis of Theorem 1.1 and suppose that N satis es the conclusion
of Proposition 1.4. Let T be a canonical torus in M which degenerates under
the map . Then T separates M in two submanifolds A, B, one and only one
(say A) satis es the followings properties:

() Hi(A;Z) = Z and each Seifert component of A n W), admits a Seifert
bration whose orbit space is a surface of genus 0,

(ii) each Seifert component of An W), degenerates under the map f, A is a
graph manifold and the group  ( 1(A)) is either trivial or in nite cyclic.

With this result we may write the following de nitions.

De nition 1.8 Let M2 and N2 be two closed, connected, Haken manifolds
and let £: M3 ¥ N3 be a map satisfying hypothesis of Theorem 1.1. We say
that a codimesion 0 submanifold A of M is a maximal end of M if A satis es
the following three properties:
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(i) @A is a single incompressible torus, H1(A;Z) =Z and f ( 1(A)) = Z,

(i) if p: M s any nite covering induced by f from some nite covering
K of N then each component of p~X(A) satis es (i),

(iii) if C is a submanifold of M which contains A and satisfying (i) and (ii)
then A=C.

To describe precisely the behavior of the map f (up to homotopy) we still need
the following de nition:

De nition 1.9 Let M be a closed, connected, compact 3-manifold and let A
be a compact, connected codimension 0 submanifold of M whose boundary is a
torus in M. We say that M collapses along A if there exists a homeomorphism
o @eD? sSH T eA=@MnA)andamap : M ¥ (MnA)[-D? S!?
such that jMnA=id and (A)=D? S!.

So using Theorem 1.5 and Theorem 1.7 we obtain the following factorization
Theorem which will be used to get a good decription of the behavior of the map
f.

Theorem 1.10 Let M3 and N3 be two closed, connected, Haken manifolds
satisfying hypothesis of Theorem 1.1 and assume that N satis es the conclusion
of Proposition 1.4. Then there exists a nite family fAs;:::; An,, g (eventually
empty) of disjoint maximal ends of M, a Haken manifold M, obtained from
M by collapsing M along the family fAg;::; An,,g and a homeomorphism
fi: M1 ¥ N such that f is homotopic to the map f; , where denotes the
collapsingmap : M ¥ M;.

Note that Theorems 1.7 and 1.10 remain true if we simply assume that the
given manifolds M3, N2 and the map f: M3 ¥ N2 satis es hypothesis of
Theorem 1.1. But it is more convenient for our purpose to suppose that N3
satis es the conclusion of Proposition 1.4.

Fourth step The purpose of this step is to show that the hypothesis which
says that certain canonical tori degenerate is nally absurd. To do this, we
will show that if A is a maximal end of M then we can construct a nite
covering p: M ¥ M induced by f from some nite covering of N, such that
the connected components of p~1(A) are not maximal ends, which contradicts
De nition 1.8. But to construct such a covering, it is rst necessary to have
good informations about the behavior of the induced map fjA: A ¥ N up
to homotopy. To do this we state the following result whose proof depends
crucially on Theorem 1.10 (see Section 5.2):
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Proposition 1.11 Let f: M ¥ N be a map between two closed Haken
manifolds with the same Gromov Invariant satisfying the hypothesis of Theorem
1.1 and assume that N satis es the conclusion of Proposition 1.4. If A denotes
a maximal end of M then there exists a Seifert piece S in A, whose orbit space
is a disk such that ¥ ( 1(S)) & flg, a Seifert piece B=F S! in N such that
f(S) f(A) B and f ( 1(S)) hti, where t denotes the homotopy class of
the berin B.

The aim of this result is to replace the Mapping Theorem (see [12, Chapter I11])
which says that if a map between a Seifert bered space and a Haken manifold
satis es certains good properties of non-degeneration then it can be changed
by a homotopy in such a way that its whole image is contained in a Seifert

bered space. But when such a map degenerates (which is the case for fjA)
its behavior can be very complicated a priori.

The above result shows that the map fjA is homotopically very simple. We next
construct a nite covering p: MU ¥ M, induced by f from some nite covering
of N such that the component of p~1(S) admits a Seifert bration whose orbit
space is a surface of genus > 0. Then using [17, Lemma 3.2] we show that
the components of p~1(A) are not maximal ends which gives a contradiction.
The construction of our nite covering depends crucially on the following result
which completes the proof of the fourth step and whose proof is based on the
Thurston Deformation Theory of complete nite volume hyperbolic structures
and will be proved in Section 6.3.

Proposition 1.12 Let N2 be a closed Haken manifold with non-trivial Gro-
mov simplicial volume. Then there exists a nite covering N of N satisfying
the following property: for every integer ng > 0 there exists an integer >0
and a nite covering p: N ¥ M such that for each Seifert piece § of 19 nWg

and for each component $ of p~1($) the map pjS: $ ¥ §is ber preserving
and induces the ng-index covering on the bers of §.

Note that this result plays a Key Role in the proof of Theorem 1.1. Indeed,
this Proposition 1.12 allows us to avoid the main di culty stated in paragraph
1.3.

2 Preliminary results on Haken manifolds

In this section we state some general results on Haken manifolds and their
nite coverings which will be useful in the following of this article. On the
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other hand we will always suppose in the following that the given manifold N
has non trivial Gromov simplicial volume which implies in particular that N
has no nite cover which is bered over the circle by tori.

2.1 Outline of proof of Proposition 1.4

In this section we outline the proof of Proposition 1.4 which extends in the
Haken manifolds case the result of [15] which concerns graph manifolds. For a
complete proof of this result see [4, Proposition 1.2.1].

First note that since N is a non geometric Haken manifold then N is not a
Seifert bered space (in particular N has a non empty torus decomposition)
and has no nite cover that bers as a torus bundle over the circle. By [14,
Theorem 2.6] we may assume, after passing possibly to a nite cover, that
each component of N n Wy either has hyperbolic interior or is Seifert bered
over an orientable surface whose base 2-orbifold has strictly negative Euler
characteristic.

By applying either [14, Theorem 2.4] or [14, Theorem 3.2] to each piece Q of
N n Wy (according to whether the piece is Seifert bered or hyperbolic, resp.)
there is a prime g, such that for every Q in N nWy thereisa nite, connected,
regular cover po: ®@ ¥ Q where, if T is a component of @Q, then (pQ)_l(T)
consists of more than one component; furthermore, if ® is a component of
(pQ)_l(T), then poj®@: @ ¥ Qisthe q g-characteristic covering. This allows
us to glue the covers of the pieces of N n Wy together to get a covering N of
N in which each piece of ¥ n Wy has at least two boundary components. By
repeating this process, we may assume, after passing to a nite cover, that each
component of N n Wy has at least three boundary components.

Let S be a Seifert piece of N and let F be the orbit space of S. Let Ty;::;; Ty
(p  3) be the components of @S, Dg;:::; Dy those of @F and set d; = [Dj] 2

1(F) (for a choice of base point). With these notations we have: 1(T;) =
hdj; hi where h denotes the regular ber in S. Since S has at least three
boundary components then using the presentation of 1(S) one can show that
for all but nitely many primes g there exists an epimorphism ~: 1(S) 1
Z=qZ Z=qZ such that:

(i) ~(dj)@h>(h)i for j =1;::;p,
(i) ker(”j 1(Tj)) isthe q q-characteristic subgroup of 1(T;) for j = 1;:::;p.

Let : § 1 S bethe nite covering of S correspondingto ” andlet g: F 8
F be the nite (branched) covering induced by  between the orbit spaces of
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S and §. Then using (i) and (ii) combined with the Riemann-Hurwitz formula
[18, pp. 133] one can show that @ > g where g (resp. @) denotes the genus of
F (resp. of ). Thus, by applying this result combined with [14, Theorem 3.2]
to each piece Q of N nWy (according to whether the piece is Seifert bered or
hyperbolic, resp.) there is a prime ¢, such that for every Q in N n Wy there
isa nite, connected, regular cover po: @ ¥ Q where, if T is a component of
@Q and if B is a component of (pg)1(T), then pojF: B ¥ T istheq g-
characteristic covering. This allows us to glue the covers of the pieces of N nWy
together to get a covering B of N. Furthermore, if Q is a Seifert piece of N
whose orbit space is a surface of genus g then ® is a Seifert piece of 1§ whose
orbit space is a surface of genus g > g.

It remains to see that N is nitely covered by a Haken manifold in which each
Seifert piece is a trivial circle bundle. Since the Euler characteristic of the orbit
space of the Seifert pieces of N is non-positive then by Selberg Lemma each
orbit space is nitely covered by an orientable surface. This covering induces a

nite covering (trivial when restricted on the boundary) of the Seifert piece by
a circle bundle over an orientable surface, which is trivial because the boundary
is not empty. Now we can (trivially) glue these coverings together to get the
desired covering of N.

2.2 A technical result for Haken manifolds

Proposition 2.1 Let N2 be a closed Haken manifold satisfying the conclusion
of Proposition 1.4 and let B be a Seifert piece of N. Let g and h be elements of

1(B) 1(N) such that either [g; h] & 1 or the group hg; hi is the free abelian
group of rank two. Then there exists a nite group H and a homomorphism
>: 1(N) ¥ H such that *(g)  h” (h)i.

The proof of this result depends on the following lemma which allows to extend
to the whole manifolds N certain \good" coverings of a given Seifert piece in
N.

Lemma 2.2 Let N be a closed Haken manifold such that each Seifert piece is
a product and has more than one boundary component and let By be a Seifert
piece in N. Then there exists a prime qg satisfying the following property: for
every nite covering By of Bg which induces the q" g"-characteristic covering
on the bounbary components of By with @ g9 prime and r 2 Z, there exists
a nite covering : M ¥ N such that
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(i) the covering K induces the q" g"-characteristic covering on each of the
canonical tori of N,

(ii) each component of the covering of By induces by M is equivalent to By.

The proof of this result depends of the following Lemma which is a slight gen-
eralization of Hempel’s Lemma, [9, Lemma 4.2] and whose proof may be found
in [4, Lemma 1.2.3].

Lemma 2.3 Let G bea nitely generated groupandlet : G ¥ SL(2;C) be
a discret and faithful representation of G. Let 1;::; n be elements of G such
that & 1g and tr( ( j)) = 2. Then for all but nitely many primes q and
for all integers r there exists a nite ring Agr over Z=q"Z and a representation
q- G ¥ SL(2; Agr) such that for each element g 2 G satisfying tr( (g9)) = 2
the element 4(g) is of order q'9, with rg  r in SL(2; Aqr) and the elements
q( i) are of order q" in SL(2; Agr).

Outline of proof of Lemma 2.2 We show that if B denotes a component
of N n Wy such that B & By then for each r 2 Z and for all but nitely
many primes ¢ there exists a connected regular nite covering B of B which
induces the q" q"-characteristic covering on each of the boundary component
of B. Next we use similar arguments as in [14] using Lemma 2.3 (see [4, Lemma
1.2.2)). O

Proof of Proposition 2.1 Recall that B can be identi ed to a product F
S, where F is an orientable surface of genus 1 with at least two boundary
components. Let Ds;:::; Dy denote the components of @F and set d;j = [Dj],
for i = 1;:::;n (for a choice of base point).

Case 1 If [g;h] & 1, then since 1(N) is a residually nite group (see [8,
Theorem 1.1]) there is a nite group H and an epimorphism ”: (N) ¥ H
such that ”([g;h]) & 1 and so ~(g)  h” (h)i.

Case 2 If [g;h] = 1 then we may write g = (u ;t ) and h = (u "t O) with
u2 1(F) and where t is a generator of 1(S') = Z. Since hg; hi is the free
abelian group of rank 2then '— " =y &0 and u6& 1. We rst show the
following assertion:

For all but nitely many primes p there exists an integer ry such that for each
integer r 1o there is a nite group K and a homomorphism : (B) T K
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inducing the p* p"-characteristic homomorphism on ;(@B) and such that
(@) 2h (h)i.
To prove this assertion we consider two cases.

Case 2.1 Assume rstthat ' & 0. Choose a prime p such that (p; ) =1
and (p;y) = 1. Then using Bezout’s Lemma we may nd an integer ng such
that —ng " 8 pZ. Then using the Key Lemma on surfaces of B. Perron
and P. Shalen, [17, Key Lemma 6.2], by taking g = u we get a homomorphism

1(F) ¥ Hg, where Hg is a p-group and satisfying (u) & 1 and (d;) has
order p" in Hg. Let : Z ¥ Z=p"Z denote the canonical epimorphism and
consider the following homomorphism:

= . (F) ZYHe Z=p'Z

It follows now easrily from the above construction that (g) 2 h (h)i and
ker( jhdi;ti) =hd® ;hP"i.

Case 2.2 We now suppose that '=0. Thus we have g=(u ;t ) and h =
(u 0;1) with ! & 0. Recall that 1(F) =hdii :: hdn—1i Lg with di = [Dj],
where Dy;:::; Dy denote the components of @F and where L is a free group.
Let ,: 1(F) ¥ Z be an epimorphism such that ,(d1) =::: 2(dh—1) =1 and

2(Lg) = 0. This implies that >(dn) = —(n—1). Choose a prime p satisfying
(p; )=1,(p;n—1)=1andlet": Z ¥ Z=p"Z be the canonical epimorphism.
So consider the following homomorphism.

=" 2 " 1B)= 1(F) Z ¥ Zxp'Z Z¥xp'Z

We now check easily that (g)  h (h)i and ker( jhd;;ti) = hd?r;hpri which
completes the proof of the above assertion.

Let ~: B ¥ B be the covering corresponding to the above homomorphism
Since this covering induces the p" p"-covering on each component of

@B then using Lemma 2.2 there is a nite covering : N ¥ N of N such

that each component of ~1(B) is equivalent to ~. We identify 1(N) as a

subgroup of nite index of 1(N). Let be a subgroup of 1(K) such that

is a nite index regular subgroup of 1(N). Then the canonical epimorphism

> 1(N) ¥ ;(N)= satis es the conclusion of Proposition 2.1. ]

3  Proof of Theorem 1.5

In this section we always assume that the manifold N3 has non-trivial Gromov
Invariant and satis es the conclusion of Proposition 1.4.
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3.1 Main ideas of the proof of Theorem 1.5

It follows from the Rigidity Theorem of Soma (see Theorem 1.3) that T is
properly homotopic to a map, still denoted by f, such that fj(Hwm;@Hm) :
(Hwm;@HMm) ¥ (Hn; @Hy) is a homeomorphism.  Then we will prove (see
Lemma 3.5) that we may arrange f by a homotopy xing fjHy, such that
f(Sm) Sn: this is the Mapping Theorem of W. Jaco and P. Shalen with
some care. So our main purpose here is to nd a nite covering B of N such
that for each component B of Sg there exists exactly one Seifert piece A
of Sg such that f(& @A) (58;@B). We next prove that the induced map
fj(A&; @A) is homotopic to a homeomorphism. To do this the key step consists,
for technical reasons, in nding a covering W, of M, induced by f, such that
for each Seifert piece A; of S~ the induced covering A&; over Aj is a Seifert
bered space whose orbit space is a surface of genus 3. This step depends on
Proposition 2.1. Indeed the construction of Mo will be splitted in two steps:

First step The rst step is to prove that there exists a nite covering Wy of
M induced by f from some nite covering Iy of N in which each Seifert piece
is either based on a surface of genus 3 (type I) or based on an annulus (type
I1) (see Lemma 3.1). More precisely the result of Lemma 3.1 is the \best" that
we may obtain using Proposition 2.1.

Second step The main purpose of this step is to prove, using speci ¢ argu-
ments, that M, contains no Seifert piece of type Il. More precisely, if A; denotes
a Seifert piece of type Il in W, then using [12, Characteristic Pair Theorem]
we know that there is a Seifert piece B; in N such that f(A;) int(B;j) (up
to homotopy). Then we construct a vertical torus U in Bj such that if T is a
component of @A; then £ may be changed by a homotopy Xing Mo n A so
that fjT: T ¥ U is a homeomorphism. We next use the structure of 1(Bj) to
show that this implies that A; has no exceptional ber (i.e. Aj=S! S 1)
which contradicts the minimality of the Torus Decomposition of .

Finally we show that the results obtained in the above steps allows us to use
arguments similar to those of [17, paragraphs 4.3.15 and 4.3.16] to complete
the proof (see paragraph 3.5).

3.2 Proof of the rst step

This section is devoted to the outline of proof of the following result (for a
complete proof see [4, Lemma 3.2.1]).
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Lemma 3.1 There exists a nite covering W, of M induced by f from some
nite covering Mo of N in which each Seifert piece & is either based on a
surface of genus 3 (Type I) or satis es the following properties (Type I1):

(i) the orbit space of & is an annulus,
(ii) the group f ( 1(A&)) is isomorphic to Z Z,

(iii) for each nite covering : M ¥ M induced by f from some nite
covering of 1§y then each component of ~1(&) satis es points (i) and (ii).

The proof of this result depends on the following lemma.

Lemma 3.2 Let S be a Seifert piece in M whose orbit space is a surface
of genus 0. Suppose that S contains at least three non-degenerate boundary
components. Then there exists a nite covering § of S satisfying the two
followings properties:

(i) § admits a Seifert bration whose orbit space is a surface of genus 1,

(i) § is equivalent to a component of the covering induced from some nite
covering of N by f.

Proof Denote by F the orbit space of the Seifert piece S. Let Ty;::;Tj,
I 3, be the non-degenerate tori in @S and 1(T;) = hd;hi, 1 | i,
the corresponding fundamental groups. Since Rk(hf (d;); f (h)i) = 2 for |

j, it follows from Proposition 1.4, that there exists a nite group H and a
homomorphism *: 1(N) ¥ H suchthat > f (d)&h>f (h)iforl | j.

Let K be the group *f ( 1(S)) and denote by : & ¥ S the nite covering
correspondingto > f : 1(S) ¥ K. Then § inherits a Seifert bration with
some base . We denote by the order of K, by t the order of *f (h) in
K and by ; the order of *f (c;) where cy;:::; ¢, denote the exceptional bers
of S with index 1;::; . The map induces a covering F: B ¥ F on the
orbit spaces of S and § with degree = =t, rami ed at the points Tj 2 F
corresponding to the exceptional ber c¢; of S. Let |, | = 1;::;p, denote the
boundary components of F corresponding to d; and let €;:::; ' denote the
components of ,Zl( ). Then we have rn; =  for each I, where n; is the
index of the subgroup generated by ”f (d;) and *f (h) in K. Then by the
Riemann-Hurwitz formula ([18, pp. 133], see also [17, Section 4.2.12]) we get:

L SN G| !
, Cin i)

=2+ 29+p+r—2- -
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where g (resp. g) denotes the genus of ¥ (resp. of F, here g = 0), p denotes
the number of boundary components of F and ( j; i) denotes the greatest
common divisor of ; and . Remark that n 2 for | j. Indeed if
n =1 then jK : h>f (h);”f [dDij = n = = =t = jK;h>f (h)ij. Hence
h?f (h); >f (d))i = h”f (h)i which is impossible since *f (d;) & h”f (h)i. In
particular we have 2.

Casel Ifj 4thenn 2forl=1;::;jandso2¢ 2+ (p—p+4—2-2)=
2. Thuse 1.

Case2 Ifj=3wehae2g 2+ (1—& — & —&)withn;ngng 2.

If =2thenny=n;=n3=2andthusg 1.

If > 2 theneither ny >2 for | = 1;:::3, and thus @ 1 or there is an element

| in £1;:::3g such that nj = 2. Since = niry we have r; 2 and thus &
contains at least four boundary components which are non-degenerate and we
have a reduction to Case 1. This proves the Lemma. O

Outline of proof of Lemma 3.1 Let A be a Seifert piece of M whose orbit
space is a surface of genus g = 2 (resp. g = 1). We prove here that such a Seifert
piece is neccessarily of type I. It follows from the hypothesis of Theorem 1.5 that
fjA: A I N is a non-degenerate map thus using [12, Mapping Theorem] we
can change T in such a way that f(A) is contained in a (product) Seifert piece
B of N. Then combining the fact that fj@A is non-degenerate and Proposition
2.1 we may easily construct a nite (regular) covering of M induced by f from
a nite covering of N in which each component of the pre-image of A is a
Seifert piece whose orbit space is a surface of genus g 3 (resp. g 2).

Suppose now that the orbit space F of A is a surface of genus 0. It is easily
checked that F has at least two boundary components. If A has at least three
boundary components then it follows easly from Lemma 3.2 that there isa nite
covering of M induces by f from a nite covering of N in which the lifting
of A is a Seifert piece of type I. Thus we may assume that A has exactly two
boundary components (and then F = St 1).

If £ ( 1(A)) is non-abelian then we check that A has at least three boundary
components and thus we have a reduction to the \Type I"* case. So suppose how
that T ( 1(A)) is abelian. Since T is a non-degenerate map and since  ( 1(A))
is a subgroup of a torsion free three-manifold group it is a free abelian group of
rank 2 or 3 (see [12, Theorem V.l and paragraph V.IH]). If £ ( 1(A)=Z Z Z
then A has at least three boundary components and we have a reduction to
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the type | case. So we may assume that f ( 1(A)) =Z Z. If thereisa nite
covering p of M induced by f from some nite covering of N such that some
component of p~1(A) does not satisfy (i) or (ii) of Lemma 3.1 then using the
above argument we show that A is a component of type I, up to nite covering.
If (i) and (ii) of Lemma 3.1 are always checked for any nite covering then A
is a component of type II. O

3.3 Preliminaries for the proof of the second step
3.3.1 Introduction

In the following we set TA;; i =1;::;;s(M)g (resp. fB ; =1;:::;s(N)g) the
Seifert pieces of a minimal torus decomposition of M (resp. N). On the other
hand we will denote by W,\S,I (resp. Wﬁ) the canonical tori of M (resp. of N)
which are adjacent on both sides to Seifert pieces of M (resp. of N). We set
Al = AinWn  [-1;1], for i =1;::;8(M). Using hypothesis of Theorem 1.5
and applying the Characteristic Pair Theorem of [12] we may assume that for
each i there is an j such that f(A)) int(B,). Thusif wm (resp. n)
denotes the union of the components of Sy, (resp. Sy ) with the components
Ti [-1;1] of Wm [—1;1] (resp. WNn [—1;1]) such that T; f 1g @Hwm
(resp. T; f 1g @HN) then f( \)  int( n). Moreover, by identifying a
regular neighborhood of W, with W, 1 we may suppose, up to homotopy,
that £~1(Wg) is a collection of incompressible tori in W, 1. Indeed since
for each i = 1;:::;5(M) we have f(A!) int(B ,) then using standard cut and
paste arguments we may suppose, after modifying f by a homotopy which is
constant on [A! [Hm that f~1(Wy) is a collection of incompressible surfaces
in W5, 1. Since each component T; of W, is an incompressible torus then
f‘l(Wﬁ) is a collection of tori parallel to the T;. In the following the main
purpose (in the second step) is to prove the following key result.

Lemma 3.3 Let fA;;i = 1;:::;s(|§lf))g (resp. fB ; = 1;:::;s(|fo)g) be the
Seifert pieces of SM~0 (resp. of Sr\To)' Then f is homotopic to a map g such
that:

() 9i(Hy @HG) « (Hg @Hy) 1 (Hg: @Hg.) is a homeomorphism,

(i) for each 2 f1;::5(W)g there is a single i 2 f1;::;s(Mg)g such that
f(Ai;@A;) (B ;@B ). Moreover the induced maps fi = fjAj: A; ¥ B are
Z-homology equivalences and fj@A;: @A; ¥ @B is a homeomorphism.
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The proof of this result will be given in paragraph 3.4 using Lemma 3.4 below.
In the remainder of Section 3 we will always assume that (M; N;f) is equal to
(Mzo; Ko; ) given by Lemma 3.1. The goal of this paragraph 3.3 is to prove
the following Lemma which simpli es by a homotopy the given map f.

Lemma 3.4 There is a subfamily of canonical tori fTj;j 2 Jg in M which
cuts M n Hy, into graph manifolds fV;; i =1;::;;t(M)  s(M)g such that:

(i) foreach 2 f1;::;s(N)g thereis asingle i 2 f1;:::;t(M)g such that T is
homotopic to a map g with g(V;;@Vi) (B ;;@B ;). Moreover we have:

(i) (Vj; @V;) contains at least one Seifert piece of type I,
(iii) gjav;:@v; ¥ @B , is a homeomorphism,
(iv) gi=0j(Vi;@0Vi): (Vi;@v;) ¥ (B ,;@0B ;) is a Z-homology equivalence.

3.3.2 Some useful lemmas

The proof of Lemma 3.4 depends on the following results. In particular Lemma
3.9 describes precisely the subfamily of canonical tori fTj;j 2 Jg. Here hy-
pothesis and notations are the same as in the above paragraph. The following
result is a consequence of [20, Main Theorem] and [19, Lemma 2.11].

Lemma 3.5 There is a homotopy (fi)o ¢+ 1 such that fo = f: M ¥ N,
fij m =f] m and such that f1j(Hwm; @HMm): (Hwm; @HMm) B (Hn; @HN) is a
homeomorphism.

Proof Let T be a component of @Hyn . We rst prove that, up to homotopy

xing fj M, we may assume that each component of f~1(T) is a torus which is
parallel to a component of Wy, . Indeed since f( v)  int( n) then F71(T)\

m = ;. On the other hand since @ n is incompressile, then using standard
cut and paste arguments (see [24]) we may suppose that, up to homotopy xing
fj wm, T is transversal to T and that £~1(T) is a collection of incompressible
surfaces in M n ;. The hypothesis of Theorem 1.5 together with Theorem
1.3 imply that Hyy ” Hyn . Hence we may use similar arguments as those of
[19, Proof of Lemma 2.11] to show that each component ofg_l(T) is a torus.
Thus £71(T) is a collection of incompresible tori in Hp LT [—11)).
Since each incompressible torus in Hy is @-parallel then we may change f
by a homotopy on a regular neighborhood of Hy, to push these tori in @H, .
Finally f~1(@Hy) is made of tori parallel to some components of Wy, . Each
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component E; of f7%(Hy) is a component of M cutte%along f~1@HN).
Since f( Mm)\Hn =; then f"Y(Hy) Mn m=HmIL[ Ti |. Theneach
component E; is either a component of Hyy or a component T;  [—1;1]. For

each component H of Hy we have degff~1(H) E’ Hg = deg(f) = 1. Since a
map T [—1;1] ¥ H has degree zero then £~1(H) must contain a component
of Hu. Since Hy ” Hyn then f71(H) contains exactly one component H? of
Hn which is sent by £ with degree equal to 1. So it follows from [22, Lemma
1.6] that after modifying f by a homotopy on a regular neighborhood of H’
then T sends H” homeomorphically on H. We do this for each component of
Hn . This nishs the proof of Lemma 3.5. ]

We next prove the following result.

Lemma 3.6 Let A be a Type Il Seifert piece in M given by Lemma 3.1 (recall
that we have replaced My by M). Then we have the following properties:

(i) A is not adjacent to a hyperbolic piece in M,

(i) let S be a Seifert piece adjacent to A and let B be the Seifert piece in N
such that £(S") int(B) then necessarily f(A) int(B).

The proof of this lemma depends on the following result whose proof is straight-
foward.

Lemma 3.7 Let A be a codimension 0 graph submanifold of M whose bound-
ary is made of a single canonical torus T M and such that Rk(H1(A; Z)) = 1.
If each canonical torus in A separates M then A contains a component which
admits a Seifert bration whose orbit space is the disk D?.

Proof of Lemma 3.6 We rst prove (i). Let T; and T, be the boundary
components of A. Suppose that there is a hyperbolic piece H in M which is
adjacent to A along T1. Up to homotopy we know that f(A")  int(B) where B
is a Seifert piece in N, f(H;@H) (H;; @H;) where H; is a hyperbolic piece in
N and that fj(H;@H): (H;@H) ¥ (H;; @H;) is a homeomorphism. Denote by
W (T1) aregular neighborhood of T; in M. Then f(W (T1)) contains necessarily
one component of @B \ @H; and so f induces a map f;: (A;T1) ¥ (B;@B).
Since fj(H;@H): (H;@H) ¥ (Hj;@H;) is a homeomorphism we have found a
canonical torus U in @B such that fjT,: T; ¥ U is a homeomorphism. Recall
that 1(A) has a presentation:

hdi;d2;q1; g h s [hygi] = [h;dj]l =1; ;' =hY'; didogiiigr = h®j
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and 1(B):
> . +
e
ap;bi;iiag by ol gt [6 Wl =[Lal =[]l =1, [aisbi] 1 p=1
i=1
with 1(U) =h q;ti. Sowe get £ (h) =( ,;t ), with ( ; ) =1. Let c; be the
homotopy class of an exceptional ber in A which exists, otherwise A would be

homeomorphic to St S! I, which is excluded. So ¢;' =h for some ;>1.
Since T ( 1(A)) is isomorphicto Z Z, we get: T (¢i) =( ,';t ). So we have
il ; ). This is a contradiction which proves (i). O

Before continuing the proof of Lemma 3.6 we state the following result.

Lemma 3.8 Let M, N be two Haken manifolds and let f : M ¥ N be
a Z-homology equivalence. Moreover we assume that M and N satisfy the
conclusions of Lemma 3.1. If T is a separating canonical torus which is a
boundary of a type Il Seifert piece in M then there exists a nite covering p
of M induced by f from a nite covering of N such that some component of
p~1(T) is non-separating.

Proof Let T beaseparating torusin M and let X; and X, be the components
of MnT. We rst prove that H;(X1;Z) 8 Z and H;(X2;Z) 8 Z. Suppose
the contrary. Thus we may assume that H{(X1;Z) * Z. It follows from (i)
of Lemma 3.6, from Lemma 3.1 and from [17, Lemma 3.2] that X; is made of
Seifert pieces of Type Il. Since T = @X; is a separating torus in M then each
canonical torus in X; separates M. Indeed to see this it is su cient to prove
that if A is a Seifert piece of X; (of type Il) whose a boundary component, say
Ty is separating in M then so is the second component of @A, say T,. This
fact follows easily from the homological exact sequence of the pair (A;QA).
Thus we may apply Lemma 3.7 to X; which gives a contradiction with the
fact that M contains no Seifert piece whose orbit space is a disk. Hence we
get H1(X1;Z) 8 Z. The same argument shows that Hi(X,;Z) 8 Z. So
to complete the proof it is su cient to apply arguments of [17] in paragraph
4.1.4. O

End of proof of Lemma 3.6 We now prove (ii) of Lemma 3.6. Let S be a
Seifert piece adjacent to A along T;. Let Bs and Ba be the Seifert pieces
in N such that F(AY) int(Ba), f(S") int(Bs) and let Ty, T, be the @-
components of A. If Bao & Bs, then by identifying a regular neighborhood
W (T1) of Ty with T; [—1;1] in such a way that f(T; f—1g) int(Ba)
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and f(T, f+1g) int(Bs) we see, using paragraph 3.3.1, that (W (Ty))
must contain a component U of @Ba. Thus, modifying f by a homotopy
supported on a regular neighborhood of Ty, we may assume that f induces a
map T : (A;T1) T (Ba;U).

Case 1 Suppose rst that T, is non-separating in M. We may choose a
simple closed curve y in M such that y cuts Ty in a single point. Since f is a
Z-homology equivalence it must preserve intersection number and then we get:

[Ta):[y] = deg(fjT1: Ty B U) [ULIF (V)]=1

Hence deg(fjT,: T1 ¥ U) =1 and then fjT,: Ty ¥ U induces an isomorphism
fju(T): 1(Ty) ¥ 1(U). Thus we get a contradiction as in the proof of (i)
using the fact that f ( 1(A)) is abelian.

Case 2 Suppose now that T, separates M and denote by Xs the component
of M nTy which contains S and by X the component of M nT; which contains
A. Let p: N ¥ M be the nite covering of M given by Lemma 3.8 with T;.
There is a component B of p~1(T1) which is non-separating in M. Let & §
be the Seifert components of ] adjacent to both sides of . Recall that A is
necessarily a Seifert piece of type Il such that f ( 1(&)) is abelian (see Lemma
3.1). Let B (resp. Bg) be the Seifert pieces of N such that

(&) int(By) (&) int(Bg):

Since Ba 6 Bs then B; 6 Bg, and thus there is a component 8 in @B such
that £ induces a map £: (& F) I (B;;8). Since P is non-separating we have
a reduction to case 1. This proves Lemma 3.6. O

Lemma 3.9 Thereis a homotopy (fi)o + 1 with fo = F and fij(Hm; @HMm) =
fj(Hm;@HpMm) and a collection of canonical tori fTj;j 2 Jg W,\S,I such that:
(i) f1 is transversal to Wy,

. —1n Sy — >

@) f,-(wWQ)= j23 Tj,

(iii) the family fTj;j 2 Jg corresponds exactly to tori of Wy, which are
adjacent on both sides to Seifert pieces of type I.

Proof The proof of (i) and (ii) are similar to paragraphs 4.3.3 and 4.3.6 of
[17]. Thus we only prove (iii). Let T be a component of W,\S;, which is adjacent
to Seifert pieces of type | denoted by A;, Ay in M. Using the same arguments
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as in paragraph 4.3.7 of [17] we prove that T  [—1;1] contains exactly one
component of f~1(WR).

On the other hand if T is the boundary component of a Seifert piece of type Il
denoted by A; we denote by A; the other Seifert piece adjacent to T . It follows
from Lemma 3.6 that B ; = B ;. Thus we get f(A] [(T [-1;1]) [ A))

int(B ,), and hence T  [—1;1] contains no component of f~1(Wg). This
completes the proof of Lemma 3.9. O

3.3.3 End of proof of lemma 3.4

Let Vi;:5; Vim) be the components of (M nHn)n (Lj23Tj) where fTj;j 2 Jg
is the family of canonical tori given by Lemma 3.9. It follows from Lemma 3.9
that f induces a map f; : (Vi;@Vi) ¥ (B ;;@B ;). Since deg(f) =1, then the
correspondance: f1;::;t(M)g3i A ;2 f1;:::;s(N)g is surjective.

(a) The fact that the graph manifolds Vy;:::; Vigmy contain some Seifert piece of
type | comes from the construction of the V; and from Lemma 3.6. Remark that
the construction implies that if A is a Seifert piece in Vj such that @V; \0A & ;
then A is of Type | (necessarily).

(b) We next show that the correspondence i ® ; is bijective. Since f is a
degree one map then to see this it issu cient to prove that this map is injective.
Suppose the contrary. Hence we may choose two pieces Vi and V, which are
sent in the same Seifert piece B in N. If V1 and V, are adjacent we denote
by T a common boundary component and by A; Vi and A, V», the Seifert
pieces (necessarily of type I) adajacent to T. Thus by [17, Lemma 4.3.4] we have
a contradiction. Thus we may assume that Vi and V, are non-adjacent. Since
deg(f) = 1 we may assume, after re-indexing, that f; : (V1;@0V1) ¥ (B ;@B )
has non-zero degree and that f, : (Vo;@V2) ¥ (B ;0B ) with Vi and V;
non-adjacent. Moreover, if A? (resp. V;?) denotes the space obtained from A;
(resp. Vi) by identifying each component of @A; (resp. @V;) to a point, we have:
Rk(H1(A7;Q))  Rk(H1(V;’;Q)). Since A; is of Type I, using [17, Lemma
3.2], we get Rk(H1(A7;Q)) 4 and thus Rk(H1(V;*;Q)) 4. Thus to obtain
a contradiction we apply the same arguments as in the proof of Lemma 4.3.9
of [17] to V1 and V,. This proves point (i) of Lemma 3.4.

We now show that we can arrange f so that f;j@Vv; : @vi ¥ @B, is a
homeomorphism for all i. The above paragraph implies that f induces maps
fi: (Vi;@V;) ¥ (B ;;@B ;) such that deg(f;) = deg(f) =1 for all i. Thus we
need only to show that f; induces a one-to-one map from the set of components
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of @V; to the set of components of @B ,. To see this we apply arguments of
paragraph 4.3.12 of [17].

Since f is a Z-homology equivalence and since f; is a degree one map and
restricts to a homeomorphism on the boundary, by a Mayer-Vietoris argument
we see that f; is a Z-homology equivalence for every i. This achieves the proof
of Lemma 3.4.

3.4 Proof of Lemma 3.3

It follows from Lemma 3.4 that to prove Lemma 3.3 it is su cient to show
that any graph manifold V. = V; of fVy;::1;Vi)g contains exactly one Seifert
piece (necessarily of Type I). In fact it is su cient to prove that V does not
contains type Il components. Indeed, in this case, if there were two adjacent
pieces of type I, they could not be sent into the same Seifert piece in N, by an
argument made in paragraph 3.3.3. So we suppose that V contains pieces of
type Il. Then we can nd a nite chain (Aq;:::; An) of Seifert pieces of type Il
in V such that:

M A  int(V) for i 2 f1;:::;ng,
(i) A1 is adjacent in V to a Seifert piece of type I, denoted by S;, along

a canonical torus T1 of Wy, and A, is adjacent to a Seifert piece of type I,
denoted by Sy, in V along a canonical torus Tp,

(iii) for each i 2 f1;::;;n — 1g the space A; is adjacent to Aj+; along a single
canonical torus in M.

This means that each Seifert piece of type Il in M can be included in a maximal
chain of Seifert %'eces of type Il. In the following we will denote by X the
connected space ; ; ,,Aj corresponding to a maximal chain of Seifert pieces
of type IlinV andby B =F S? the Seifert piece of N such that f(V;@V) =
(B;@B).

Remark 2 In the following we can always assume, using Lemma 3.8, up to
nite covering, that M n X is connected (i.e. T1 is non-separating in M).

In the proof of lemma 3.3 it will be convenient to separate the two following
(exclusive) situations:

Case 1 We assume that Tq is a non-separating torus in V (i.e. V. n X is
connected),
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Case 2 We assume that Ty is a separating torus in V (i.e. V n X is discon-
nected).

We rst prove that Case 1 is impossible (see section 3.4.1). We next show (see
section 3.4.2) that in Case 2 there isa nite covering p: M ¥ M induced by f
from some nite covering of N such that for each component ¥ of p~1(V) the
component X of p~1(X) which is included in @ is non-separating in ¥, which
gives a reduction to Case 1. This will imply that the family X of components
of type Il in V is empty and then the proof of Lemma 3.3 will be complete.
Before the beginning of the proof we state the following result (notations and
hypothesis are the same as in the above paragraph).

Lemma 3.10 LetV beagraph piece in M correponding to the decomposition
given by Lemma 3.4 and let X be a maximal chain of Seifert pieces of type Il
in V. Then the homomorphism (ix) : H1(@X;Z) ¥ H1(X;Z), induced by
the inclusion @X ,¥ X is surjective.

Proof Let G be the space M n X (connected by Remark 2). Since G con-
tains at least one Seifert piece of type I, then using [17, Lemma 3.2], we get
Rk(H1(G;Z)) 6. Thus the homomorphism (ig) : H1(@G;Z) ¥ H1i(G;2)
induced by the inclusion ig : @G ¥ G is not surjective. Thus there exists a
non-trivial torsion group Lg and a surjective homomorphism:

G- Hl(G;Z) 1 LG

such that ( g) (ic) = 0. On the other hand if we assume that (ix)
H1(@X;Z) ® H1(X;Z) is not surjective, then there is a non-trivial torsion
group Lx and a surjective homomorhism:

x 1 Hi(X;Z) ¥ Lx

such that ( x) (ix) =0, where ix is the inclusion @X ¥ X. Thus using
the Mayer-Vietoris exact sequence of the decomposition M = X [ G, we get:
Hi(M;Z) = Hi(G;Z) Hi1(X;Z) Z which allows us to construct a surjective
homomorphism

ZHl(M;Z) ¥ x LG

such that (H1(G;2)) & 0; (H1(X;2)) & 0 and (H1(@X;Z)) = 0. Let
p: N ¥ M bethe nite covering corresponding to . Then p~1(@X) has jLx

Lcj components and each component of p~1(G) (resp. of p~1(X)) contains
2jLx]j > 2 (resp. 2jLgj > 2) boundary components. This implies that for each
component of p~1(X) the number of boundary components over Ty is jLgj > 1,
which implies the each component of p~%(X) contains some Seifert piece which
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are not of type Il. Moreover since p is an abelian covering and since f is a
Z-homology equivalence then M is induced by f from a nite covering of N.
Since X is made of Seifert pieces of type Il this contradicts Lemma 3.1 and
proves Lemma 3.10. O

3.4.1 The \non-separating"* case

In this section we prove that if V nX is connected then we get a contradiction.
This result depends on the following Lemma:

Lemma 3.11 Let W(T1) be a regular neighborhood of T;. Then there exists
an incompressible vertical torus U =T S'inB ”F Slwherell Fisa
simple closed curve and a homotopy (ft)o ¢ 1 such that:

(i) fo =T, the homotopy (fi)o ¢ 1 isequal to T when restricted to MnW (T1)
and fl(Tl) =U,

(i)  1(U;x) = hu; tgi with x 2 £1(T1), u is represented by the curve I' in F
and tg is represented by the ber of 1(B;X).
Proof Denote by X; the space f(T;). Since T is a non-separating torus in

V we can choose a simple closed curve y in int(V) such that:

(i) vy cuts each component of @A, i = 1;:::;n transversally in a single point
and the other canonical tori of int(V) transversally,

(i) vy representes a generator of H1(M; Z)=T (M) where T (M) is the torsion
submodule of H1(M; Z).

Sn (\

Figure 1
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Let ? be a base point in T; such that y \ T; = f?g and set x = f(?). Let
h be the homotopy class of the regular ber of A; and let d; be an ele-
ment in  1(Ag1;?) such that hdi;hi = 1(T1;?). We now choose a basis of
H1(M;Z)=T (M) of type fly];e2;::;;eng. Since T is a Z-homology equivalence
then the family f ([y]); f (e2);:::; T (en)g is a basis of Hi(N;Z)=T(N). We
want to construct an epimorphism p; : Hy(N;Z) ¥ Z such that p1(f ([y])) is
a generator of Z and such that p.(f (h[d1];[h]i)) = 0.

To do this we choose a basis fly]; e2;:::;eng of H1(M; Z2)=T (M) so that [T1] ej =
0 for i = 2;::;;n. Denote by i the inclusion T, ,# M. Since [T1] i (h) =
[T1]1 1 (d1) =0 theni (h) and i (d;) are in the subspace K of H{(M; Z2)=T (M)
generated by fey;::;;eng. Soitissu cient to choose p; equal to the projection
of Hi(N;Z) on Zf ([y]) with respect to T (K). Denote by " the following
homomorphism:

LN;) P H(N;2) ® 2

Thus we get an epimorphism " : {(N;x) ¥ Z such that "([f(y)]) = z !
where z is a generator of Z and x = f(?). Since ;(B;X) is a subgroup
of 1(N;x) and since [F(y)] is represented by f(y) in B then " induces an
epimorphism  ="j 1(B;x): 1(B;x) ¥ Z= ((SYH) with (fiy))=z"1
and ( 1(X1;X)) =0 in Z. Since B and S are both K( ;1), it follows from
Obstruction theory (see [8]) that there is a continuous map : (B;x) ¥ (Si;y)
which induces the above homomorphism and such that y = (X).

The end of proof of Lemma 3.11 depends on the following result. Notations
and hypothesis are the same as in the above paragraph.

Lemma 3.12 There is a homotopy ( t)o ¢t 1 With g = such that:

@ 10X = 1«(F(T)) =Yy,

(i) 1_1(y) is a collection of incompressible surfaces in B.

Proof Since ( 1(X1;x)) =0in 1(S;y) then the homomorphism ( jX;) :
1(X1;x) ¥ 1(Sty) factors through 1(z) where z is a O-simplexe. Then

there exist two maps ©o1(Xy;x) T 4(2) and C 1) ¢ 1(Shy)
such that ( jX1) = . Since z and S! are both K( ;1) then the
homomorphisms on 1 are induced by maps : (Xy;x) ¥ z, :z ¥ (Sty)
and jX; is homotopic to . Thus we extend this homotopy to B and

we denote by ¢ the resulting map. Then the map ! : (B;x) ¥ (Sl;y) is
homotopic to and °(X;) =y. This proves point (i) of the Lemma.
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Using [8, Lemma 6.4], we may suppose that each component of 0_1(y) is a

surface in B. To complete the proof of the lemma it is su cient to show that
after changing ° by a homotopy xing ’jX;, then each component of ~(y)
is incompressible in B. In [8, pp. 60-61], J. Hempel proves this point using
chirurgical arguments on the map ! to get a simplical map ; homotopic to
¥ such that 1 is \simpler" than !, (this means that c¢( 1) < c¢( ") where
c( ) is the complexity of ) and inducts on the complexity of °. But these
chirurgical arguments can a priori modify the behavior of %X;. So we will
use some other arguments. Let U be the component of 0_1(y) which contains
f(T1) = X;1. Thensince fjT; : T1 ¥ N is non-degenerate the map f : (T1;?) ¥
(U; x) induces an injective homomorphism (fjT1) @ 1(T1;?) ¥ 1(U;X). Since
1(U; X) is a surface group then 1(U;x) has one of the following forms:

(i) a free abelian group of rank 2 or,
(ii) a non-abelian free group (when @U & ;) or,
(iii) a free product with amalgamation of two non-abelian free groups.

Since 1(U;Xx) contains a subgroup isomorphicto Z Z then (U;x) 2 Z
and hence U is an incompressible torus in B. Note that we necessarily have
f(T1) = U. Indeed if there were a point ? 2 U such that f(T;) U —f?g then
the two generators free group (U —T?g) would contain the group T ( 1(T1)) =
Z Z, which is impossible. D

End of proof of Lemma 3.11 We show here that U satis es the conclusion
of Lemma 3.11. Since ( ) (F (y)) =z ! then the intersection number (counted
with sign) of f(y) with U is an odd number and then U is a non-separating
incompressible torus in B. Let ts, be an element of 1(S1;?) represented
by a regular ber in S; and let tg 2 1(B;X) be represented by the ber in
B. Since S; is a Seifert piece of Type I, we get T (ts,) = tg. Indeed, the
image of ts, in 1(S1;?) is central, hence the centralizer of T (ts,) in 1(B;X)
contains (fjS1) ( 1(S1;?)) and since S; is of type I, by the second assertion
of [17, Lemma 4.2.1] the latter group is non abelian, which implies, using [12,
addendum to Theorem VI.1.6] that f (ts,) 2 htgi. Thus 1(U;x) htgi
i.e. 1(U;x) contains an in nite subgroup which is central in 1(B;x) and

1(U;x)  Z2 Z =1F ( 1(T1;?)): Then using [11, Theorem V1.3.4] we know
that U is a satured torus in B, then ;(U;X) = hu;tgi where u is represented
by a simple closed curve in F. This ends the proof of Lemma 3.11. O

End of proof of case 1 It follows from the above paragraph that [T1]:[y] =
[ULIF (y)] = 1 and thus fjT; : T; ¥ U is a degree one map. So T :
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(A1;T1;?) ¥ (B;U;x) induces an isomorphism T : 1(T1;?) T 1(U;X): Re-
call that 1(A1;?) has a presentation:

hdi; d2;q1;::0r; b s [h; di] = [h;g5] = 1;qjj = hYi:dydy = gq:::q,h0i
where dj is chosen in such a way that 1(Ty1;?) = hds; hi. Hence there are two
integers and suchthat f (h) = (u ;tg)and ( ; )=1. Since f ( 1(A1;7?))
is an abelian group we have f (ci) = (u i;tg") where ¢; denotes the homotopy

class of an exceptional ber in A;. Since ¢;' = h then j( ; ): Thisis a
contradiction. ]

3.4.2 The \separating" case

We suppose here that T; is a separating torus in V. We set X = Sl i nAi-
Moreover it follows from Remark 2, that the space M n X is connected. Let G
denote the space M n X and let T;, T, be the canonical tori of M such that
T1 Th=0X =@G. Consider the following commutative diagram:

H1(6G; 2) H1(S1 [ Sni Z) —— H1(G; 2)
kl kl kl
Hi(T1;Z2) Hi(Th;Z) —=H1(S1;Z) Hi(Sn;Z) —=H1(G; 2)

Since S; and Sy, are Seifert pieces of type | then Rk(H1(S1;Z2) ¥ H.(G;Z)) 6
and Rk(H1(Sn;Z) ¥ Hi(G;Z)) 6 (see [17, Lemma 3.2]).

. PIOTR] s

So there exists a non-trivial torsion group Lg and an epimorphism:

G- Hl(G;Z) 1 LG
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such that ¢ (ig) =0, RK( ¢(H1(S1;2)) & 0 and Rk( s(H1(S1;2)) & 0,
where ig denotes the inclusion of @G in G ((ic) = (G) (i) ). It follows
from Lemma 3.10 that the homomorphism (ix) : Hi(@X;Z) ¥ H1(X;2Z) is
surjective. Then by the Mayer-Vietoris exact sequence of M = X [ G we get
an epimorphism:

Hi(M;2Z2) ¥ Lg:

such that I =0 and (ix) =0where ] :@X ," Mandix: X, M
denote the inclusion and Rk( g(H1(S1;2))) & 0, Rk( c(H1(S1;2))) & 0.

Let p: N ¥ M be the nite covering induced by . Since it is an abelian
covering and since f is a homology equivalence this covering is induced from
a nite covering M of N. Moreover it follows from the above contruction that
p~1(X) (resp. p~1(G)) has jLgj > 1 (resp. 1) components and if §; (resp.
$,) denotes a component of p~1(S;) (resp. of p~2(Sn)) then @S; (resp. @Sn)
contains at least two components of p~1(Ty) (resp. of p~(T,)). Let  be a
component of p~1(V) in M and let §};::; 8P (resp. §%;::;SA") denote the
components of p~%(Sy) (resp. p~(Sn)) which are in ¢.

It follows from the construction of p that each component of §, (for i =1;n
and j 2 f1;:::;pig) has at least two boundary components and the components
Ry R of p7I(X)\'® are all homeomorphic to X (i.e. the covering is trivial
over X because of the surjectivity of H1(@X;Z) ¥ Hi(X;Z)). Let A denote
the submanifold ¥ equal to ([;$]) [ (LiXi) [ ([;Sh) where we have glued
the boundary components of the @X; with the boundary components of the
correponding spaces §, .

Hence it follows from the construction that there is a submanifold X; with a
boundary component, say T;, which is non-separating in A (and thus in ).
Let B be the Seifert piece of B such that #(#) B. So we can choose a
simple closed curve y in A such that y cuts transversally the canonical tori of
A in at most one point, such that f(y) B. Thus we have a reduction to the
non-separating case. This completes the proof of Lemma 3.3.

3.5 Proof of the third step

We complete here the proof of Theorem 1.5. Let B ; be a Seifert piece of the
decomposition of N given by Lemma 3.3 and let A; be the Seifert piece in
M such that f(A;;@A;)) (B ,;@B ;). On the other hand, it follows from
Lemma 3.3 that the induced map f; = fj(Ai; 0A;) : (Ai;0A;) T (B ;@B ;)
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Figure 3

is a Z-homology equivalence and the map Tij@A; : @A; ¥ @B , is a homeo-
morphism. So to complete the proof it is su cient to show that we can change
fi by a homotopy (rel. @A;) to a homeomorphism. To see this we rst prove
that f; induces an isomorphism on fundamental groups and we next use [24,
Corollary 6.5] to conclude. To prove that maps f; induce an isomorphism
(fi)) : 1(A;) ¥ 1(B ;) we apply arguments of [17, Paragraphs 4.3.15 and
4.3.16]. This completes the proof of Theorem 1.5.

4 Study of the degenerate canonical tori

This section is devoted to the proof of Theorem 1.7. Recall that the Haken
manifold N3 has large rst Betti number ( (N3 3) and that each Seifert
piece in N2 is homeomorphic to a product F  S' where F is an orientable
surface with at least two boundary components.

4.1 A key lemma for Theorem 1.7

This section is devoted to the proof of the following result.
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Lemma 4.1 Let f: M ¥ N be a map satisfying hypothesis of Theorem 1.7.
If T denotes a degenerate canonical torus in M then T separates M into two
submanifolds and there is a component (and only one), say A, of M nT, such
that:

(i) Hi(A;Z2) =2,

(i) for any nite covering p of M induced by f from some nite covering of
N the components of p~1(A) have connected boundary,

(iii) for any nite covering p of M induced by f from some nite covering of
N then each component & of p~1(A) satis es Hi(&;Z) = Z.

Proof It follows from [17, paragraph 4.1.3] that if T is a degenerate canonical
torus in M then T separates M into two submanifolds A and B such that
Hi(A;Z) or Hi(B; Z) is isomorphic to Z. Fix notations in such a way that
H1(A;Z) = Z. Note that since 1(N®) 3 then it follows from the Mayer-
Vietoris exact sequence of the decomposition M = A[1 B that 1(B) 3. So
to complete the proof of Lemma 4.1 it is su cient to prove (ii) and (iii).

We rst prove (ii) for regular coverings. Let M be a regular nite covering of
N and denote by M the induced nite covering over M. Since p: M E M s
regular we can denote by k (resp. k%) the number of connected components of
p~1(A) (resp. p~1(B)) and by p (resp. p’) the number of boundary components
of each component of p~1(A) (resp. of p~1(B)).

Let A&y;:: R (resp. Bq;::Bw) denote the components of p~1(A) (resp.
p~1(B)). For each i = 1;:5k (j = 1;::;K") choose a base point a; (resp.
bj) in the interior of each space A; (resp. B;j) and choose a base point Q in
each component of p~(T) (for | = 1;:::;Card(p~%(T))). For each A&; (resp.
Bj) and each component %  @A; (resp. B  @B8;) we choose an embedded
path ! in & joining a; to Q, (resp. a path " in Bj joining bj to Qm); we
choose these path in such a way that they don’t meet in their interior. Their

union is a connected graph denoted by .

Then the fundamental group 1(I") is a free group with 1 - (I') generators.
In particular Hy(I"; Z) is the free abelian group of rank 1 - (I") where (")
denotes the Euler characteristic of I'. Thus we have :

(N =pk +k+k with pk = p’k’
So suppose that p and p° 2. Then we get :
M k—-k and (M k'—k:
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D
k n
: y
: n

J

Thus we get (IN) 0 and Rk(H1(T; Z2)) 1. Then there exists at least
one 1-cycle in I, and thus we can nd a component of p~1(T) which is a non-
separating torus in M. So it follows from [17, paragraph 4.1.3] that there exists
a canonical torus B in p~1(T) such that B : B ¥ N is a non-degenerate map.
Since fjT : T ¥ N is a degenerate map, we have a contradiction.

-

Figure 4

So we can suppose that p or p’ is equal to 1. So suppose that p > 1. Hence
we have p’ =1, p~1(A) is connected with p boundary components and p~1(B)
has p components By;:::; B, and each of them have connected boundary. Note
that since 1(B) 3 then it follows from [17, Lemma 3.4] that .(B;) 3 for
i = 1:5p. Set B = 0B and &1 = p'(A) [, B [5, = L+, . Bp_1. It
follows easily by a Mayer-Vietoris argument that 1(&,—1) 2. So we get a
contradiction with the rst step of the lemma since W = &,_; [ B, and since
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1(&p-1) 2 and 1(Bp) 3. This proves that p = 1.

To complete the proof of (ii) it is su cient to consider the case of a nite
covering (not necessarily regular) g: ¥ ¥ N. Then there exists a nite cov-
ering g.: Kt ¥ M such that y =q gi: K ¥ N is regular. Denote by
p (resp. p1, resp. m) the covering induced by f which comes from q (resp.
g, resp. n). It follows from the above paragraph that each component of

,\_Al(A) = ql_l(q_l(A)) has connected boundary. So each component of p~1(A)
has connected boundary too, which completes the proof of (ii).

We now prove (iii). So suppose that there is a nite covering p : LY
induced by f from some nite covering of N such that a component & of p~1(A)
satis es Hy(&;Z) 8 Z. Then as in [17, paragraph 4.1.4] we can construct a

nite abelian covering g : M ¥ N in such a way that the components of g~ (&)
have at least two boundary components which contradicts (ii). This completes
the proof of Lemma 4.1. O

4.2 Proof of Theorem 1.7

In the following we denote by T a canonical torus in M which degenerates
under the map f: M T N, by A the component of M nT (given by Lemma
4.1) satisfying H1(A;Z) = Z and we set B =M nA with (B) 2. We will
show that the piece A satis es the conclusion of Theorem 1.7.

4.2.1 Characterization of the non-degenerate components of A

To prove Theorem 1.7 we will show that each Seifert piece in A degenerates un-
der the map f. Suppose the contrary. The purpose of this section is to prove the
following result which describes the (eventually) non-degenerate Seifert pieces
of A.

Lemma 4.2 Let T be a degenerate canonical torus in M and let A be the
component of M nT such that Hy(A; Z) is isomophic to Z. Let S be a Seifert
piece in A (using [17, Lemma 3.2] we know that S admits a base of genus 0)
such that fjS : S ¥ N is non-degenerate. Then we get the following properties:

(i) there exist exactly two components Ty; T, of @S such that the map fjT; :
Ti ¥ N is non-degenerate,

i fCu8N=2 2z,

(iii) ifp: M ¥ M denotes a nite covering of M induced by f from some
nite covering of N then each component of p~%(S) satis es (i) and (ii).
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This result will be used in the paragraph 4.2.2 to get a contradiction. The proof
of Lemma 4.2 depends on the following result.

Lemma 4.3 Let S be a Seifert piece in M whose orbit space is surface of
genus 0. Suppose that fjS : S ¥ N is a non-degenerate map. Then there
exist at least two components T; and T, in @S such that fjT; : T; ¥ N is
non-degenerate.

Proof Let us recall that the group 1(S) has a presentation (a):
hdy; iz ds by qes i gr [y gi] = [ dj] = 1,97 = hYidpdygeiige = hPi

Since fjS : S ¥ N is a non-degenerate map, then using [12, Mapping Theorem]
we may suppose, after modifying £ by a homotopy, that f(S) is contained in
a Seifert piece B > F  S'in N.

1. We rstshow thatif the map fjS:S ¥ N is non-degenerate then S contains
at least one boundary component which is non-degenerate under f. To see this,
we suppose the contrary: we will show that if each boundary component of S
degenerates under f then: T ( 1(S)) * Z which gives a contradiction with the
de nition of non-degenerate maps (see [12]).

Since fjS: S ¥ N is non-degenerate, we have f (h) & 1 and then f (hd;; hi) ~
Z. Thus there exist two integers j and ; such that

f i(di) =f ‘(h) and T i(gi) = FY(h) ©)

Case 1.1 We suppose that the group T ( 1(S)) is abelian (remember that the
group T ( 1(S)) is torsion free). Thus it follows from equalities (?) and from
the presentation (a) above that f ( 1(S)) is necessarily isomorphic to the free
abelian group of rank 1.

Case 1.2 We suppose that the group T ( 1(S)) is non-abelian. Since h is
central in  1(S), the centralizer (fjS) (h) in 1(B) contains T ( 1(S)). Since
the latter group is non-abelian, it follows from [12, addendum to Theorem VI
1.6] that f (h) 2 hti where t denotes the homotopy class of the regular ber in
B. Then equality (?) implies that T (dj) and f (g;) are in hti. Thus using the
presentation (a) we get f ( 1(S)) ” Z which is a contradiction.

2. We show now that if fjS:S ¥ N is a non-degenerate map then S contains
at least two boundary components which are non-degenerate under f. To do
this we suppose the contrary. This means that we can assume that f jhdq; hi
is an injective map and that f jhdy; hi,..., T jhdp; hi are degenerate.
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Case 2.1 We suppose that the group f ( 1(S)) is abelian. Thus since
di::dpa:gr = hP (??)

we get Rk(hf (dp); f (h)i = 1. This is a contradiction.

Case 2.2 We suppose that the group f ( 1(S)) is non-abelian. Since h is

central in 1(S), then by the same argument as in Case 1.2 we get T (h) 2
hti where t the homotopy class of the regular ber in B. Thus f (g;) 2 hti

for i = 1;:r and f (dj) 2 hti for j = 2;::;p. Then using (??) we get
RK(hf (d1); ¥ (h)i) = 1. This is contradiction. This completes the proof of
Lemma 4.3. O

Proof of Lemma 4.2 Since S is non-degenerate, we denote by B > F St
the Seifert piece of N such that f(S) B and by t the (regular) berin B.
Suppose that S contains at least three injective tori in @S. Denote by 1€ the
nite covering of N given by Lemma 3.2. M admits a nite covering (N p)
which is regular over N. Then each component of the covering over S induced
from N by f admits a Seifert bration whose orbit space is a surface of genus
1 and then, by regularity, each component of p~1(A) contains a Seifert piece
whose orbit space is a surface of genus 1.

Let Ag;::A, be the components of p~(A) and set B = p~%(B). It follows

from Lemma 4.1 that B is connected and each component A;, i = 1;::;p has

a connected boundary. Since 1(A;j) 2 using [17, Lemma 3.2] and 1(B)
1(B) 3, we get a contradiction with Lemma 4.1. This proves (i).

Suppose now that the group T ( 1(S)) is non-abelian. Since S admits a Seifert

bration over a surface of genus 0 then ;(S) admits a presentation as in (a)
(see the proof of Lemma 4.3). Using (i) of Lemma 4.2 we may assume that
hd1; hi;hdz; hi are injective tori and that hd;; hi, i = 3;::;p are degenerate.
Then we know that the elements f (dj) and f (gj) are in hti, (for i 3 and
Jj = 1;::r), and then it follows from (??) that:

f (dy)F (dp) 2 hti: 1)

Since B is a product, we may write ;. f (dy) = (u;t ) and f (dy) = (v;t 2):
Thus it follows from (1) that v = u™?, and then ¥ ( 1(S)) is an abelian group.
This is a contradiction. So T ( 1(S)) is abelian. Since fjS: S ¥ N is a non-
degenerate map and since 1(N) is a torsion free group, T ( 1(S)) isa nitely
generated abelian free subgroup of 1(N). Using [11, Theorem V.6] we know
that there exists a compact 3-manifold V and an immersion g : V ¥ N such
thatg : (V) ¥ 1(N) is an isomorphism onto f ( 1(S)). Finally ¥ ( 1(S))
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is a free abelian group of rank at least two which is the fundamental group
of a 3-manifold. Then using [11, exemple V.8] we get that T ( 1(S)) is a free
abelian group of rank 2 or 3.

Then we prove here that we necessarily have f ( 1(S)) > Z Z. We know that
Rk(hf (g;); F (h)i) =1 for j = 1;::;r and by (i) RK(hf (dj); f (h)i) = 1 for
i =3;:;p and RK(hf (d1); T (h)i) = Rk(hf (dz); T (h)i) = 2. Then using (??)
and the fact that £ ( 1(S)) is an abelian group, we can nd two integers ;

such that f (d1) f (d2) =T (h) . This implies that T (d2) 2 hf (d1); T (h)i
and then f ( 1(S)) > Z Z. This proves (ii). The proof of (iii) is a direct
consequence of (i) and (ii). O

4.2.2 End of proof of Theorem 1.7

To complete the proof of Theorem 1.7 it is su cient to prove (ii). So we rst
prove that each Seifert piece of A degenerates and that A is a graph manifold.
Denote by Sy the component of A which is adjacent to T = @A. It follows
from [20, Lemma 2] that Sq is necessarily a Seifert piece of A. We prove that
fjSo:Sp ¥ N isadegenerate map. Suppose the contrary. Thus Sg satis es the
conclusion of Lemma 4.2. Let Ty; T, be the non-degenerate components of @Sg
and 1(Ty) = hdy;hi; 1(T2) = hdy; hi the corresponding fundamental groups.
Let > : 1(N) ¥ H be the correponding epimorphism given by Proposition 2.1,
where H is a nite group such that ”f (d;); ”f (d2) 2 h>f (h)i. Denote by ¥
the (' nite) covering given by ~, ] (resp. Sp) the covering of M (resp. of Sp)
induced by f. Then formula of paragraph 3.2 applied to S|0 and §, becomes:

X
2g+p=2+ pHr- & _)—2 @
i=1 !
P P
where p= " §_ rj = P % (resp. p) is the number of boundary com-

ponents of the nite covering §y of Sy (resp. of Sp) and where g denotes the
genus of the orbit space of §y. We can write: p = 2 + p;, where p; denotes
the number of degenerate boundary components of Sp and p=2 + @ (where
g1 denotes the number of degenerate boundary components of ). It follows
from Lemma 4.2 that we may assume that @ = 0: Th:Js using (1), we get:

=

. Cis i)

Since (j; i) 1, we have @ pp and then @ = p;. This implies that
for each degenerate torus U in @Sp there are at least two (degenerate) tori

B = p1+r—
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in §, which project onto U. Let us denote by P: M ¥ M the nite regular
covering of M correponding to > f . Then each component of P ~1(A) contains
at least two components in its boundary. This contradicts Lemma 4.1 and so
fjSo: So ¥ N is a degenerate map. This proves, using [20, Lemma 2] that
each component of A adjacent to Sq is a Seifert manifold which allows to apply
the above arguments to each of them and prove that they degenerate. Then
we apply these arguments successively to each Seifert piece of A, which proves
that A is a graph manifold whose all Seifert pieces degenerate.

We now prove that the group T ( 1(A)) is either trivial or in nite cyclic by
induction on the number of Seifert components c(A) of A. If ¢(A) = 1 then
A admits a Seifert bration over the disk D?. Then the group 1(A) has a
presentation:

hdi; h;qe; e o [h;di] = [h;gj] = 1;qjj =hYi;d; = qq::qchPi
We know that fjA : A I N is a degenerate map. Thus either ¥ (h) =1 or
f ( 1(A)) is isomorphic to flg or Z. So it is su cient to consider the case
f (h) = 1. Since 1(N) is a torsion free group then f (q1) =::=f (qr) =1
and thus f (d1) = F (q1)::F (ar)F (h)° = 1. So we have T ( 1(A)) = flg.

Let us suppose now that c(A) > 1. Denote by Sy the Seifert piece adja-
cent to T in A and by Ty;:::;; Ty its boundary components in int(A). It fol-
lows from Lemma 4.1 that A n Sy is composed of k submanifolds Ag;:::; Ak
such that @A; = T; for i = 1;::; k. Furthermore, again by Lemma 4.1,
Hi(A1;Z2) = @i 7 Hi(Ax;Z) * Z. Thus the induction hypothesis applies
and implies that f ( 1(Aj)) = flg or T ( 1(Aj)) = Z for i = 1;::;;K. Let hg
denote the homotopy class of the regular ber of Sp.

Case 1 Suppose rst that f (hg) & 0. Since the map fjSg : Sp ¥ N is
degenerate, it follows from the de nition that the group f ( 1(Sp)) is abelian.
Denote by Xj;:::; Xk base points in Tq;::;;Tx. Since T ( 1(Aj)) is an abelian
group, we get the following commutative diagram:

@A X) —— 1(Anx) A (Nqyi)

| | e

Hi(@A; Z) — > Hi(AiZ) ” Z—> 1(N;yi)

Since H1(Aj; Z) * Z and since @A; = T; is connected, then [17, Lemma 3.3.(b)]
implies that the homomorphism H;(0A;; Z) ¥ H1(Aj; Z) is surjective and then

f(1(Aix) =T ( 2(Tisxi)) ()
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Let ( j; i) beabaseof 1(Ti;Xi) 1(Ai; Xi). Recall that the group 1(So; Xi)
has a presentation:

hdy; :::dk; d; hos a1 ::0r - [ho; 0j] = [ho; di] = [ho;d] = 1;
g; " = h¥;dyzadid = giigehi
where the element d; is chosen in such a way that 1_(Ti;xi)_ = hdj; hoi
1(So; i) for i = 1;:5k. Set Al = Sp [1, Ay and Al = AI™L [, Aj for

j = 2;u5k (with this notation we have AK = A). Applying the the Van-
Kampen Theorem to these decompositions we get:

1(A1; Xl) = 1(80! Xl) 1(T1;X1) 1(A1; Xl)

so we get

(1AL X%)) =F (1(S0iX1)) £ ( 1(raxa) F ( 1(ALX1))

On the other hand it follows from () that the injection f ( 1(T1;x%1)) ,X
T ( 1(A1;%1)) is an epimorphism, which implies that the canonical injection
T (10,1 T (1(S0:X1)) £ ( 1Ty T ( 1(A1;x1)) is an epimorphism. Thus
T ( 1(Al; %)) is a quotient of the free abelian group of rank 1  ( 1(So; X1))
which implies that f ( 1(A;x;)) = flg or Z. Applying the same argument
with the spaces Al, A, with base point x, we obtain that T ( 1(A?;x»)) is
a quotient of f ( 1(Al;x2)), which implies that f ( 1(A?)) = flg or Z. By
repeating this method a nite number of times we get: f ( 1(A)) = flg or Z.

Case 2 We suppose that f (hg) = 0. Since ¢;' = hg (where ¢; is any ex-
ceptional ber of Sp) and since 1(N) is a torion free group, we conclude that
f (y) = 1 for every bers y of Sg. Let Fp denote the orbit space (of genus
0) of the Seifert bered manifold Sp. Thenthe map f : 1(Sg) ¥ 1(N) fac-
tors through 1(Sg)=hall bersi > ;(Fp). Let Ds;::;; Dy denote the boundary
components of Fg in such a way that [Dij] = dj 2 1(Fp). Then there exist

two homomorphisms  : 1(Sg) ¥ 1(Fp) and : 1(Fg) ¥ 1(N) such that
(fiSo) =

We may suppose, after re-indexing, that there exists an integer ng 2 f1;:::; kg
such that f (d;) = i = f (dn,) = 1 and T (dj) & 1 for j = ng + 1;::5K.

If np = k then T ( 1(Sp)) = flg and we have a reduction to Case 1. Thus
we may assume that ng < n. Let Fo be the 2-manifold obtained from Fo by
gluing a disk Di2 along Dj for i = 1;:::;;ng. The homomorphism . 1(Fp) ¥

1(N) factors through the group 1(Fp). Finally we get two homomorphisms
N toa(So) B a(Fo) and Tt 4(Fo) ¥ 1(N) satisfying (fjSo) ="~
where A 1(Sg) ¥ 1(Fo) is an epimorphism. It follows from () that
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f(1(A)) =TFlg for i =1;25n0 and F ( 1(Aj)) = Z for j = ng + 1;::5K.
Thus the homomorphism (fjA;) : 1(Ai) ¥ 1(N) factors through ;(D?),
where Di2 denotes a disk, for i = 1;::;;ng and the homomorphism (fjA;)

1(Aj) ¥ 1(N) factors through 1(S]), where S denotes the circle, for
j =no+1:k. Sowecan nd two homomorphisms @ 1(A) ¥ 1(Fo)
and g: 1(Fo) ¥ 1(N) such that (FJA) =g  where : 1(A) ¥ {(Fp) is
an epimorphism. Then consider the following commutative diagram:

1(A) 1(Fo)

| l

H1(A; Z) — > H1(Fy; 2)

Since : 1(A) ¥ 1(Fp) is an epimorphism, then so is H1(A;Z) ¥ Hi(Fo;Z).
Moreover we know that Hi(A;Z) = Z. Thus we get: Hi(Fo;Z) ~ Hi(A;Z) ~
Z. Recall that 1(Fp) = hdpy+1i =i hde—1i. Thus Hi(Fo;Z) is an abelian
free group of rank k —1 —ng and thus we have: np = n — 2. Finally we have
proved that 1(Fo) ~ hdk_1i ” Z which implies that g ( 1(Fo)) is isomorphic
to Z and thus f ( 1(A)) * Z. The proof of Theorem 1.7 is now complete.

5 Proof of the Factorization Theorem and some con-
sequences

This section splits in two parts. The rst one (paragraph 5.1) is devoted to the
proof of Theorem 1.10 and the second one gives a consequence of this result
(see Proposition 1.11) which will be useful in the remainder of this paper.

5.1 Proof of Theorem 1.10

The rst step is to prove that there exists a nite collection Tq;:::;Tp,,g of
degenerate canonical tori satisfying  ( 1(T;)) = Z in M which de ne a nite
family A = fAq; 5 An,, 9 of maximal ends of M such that @A; = T; and
fj(Mn[A)) is a non-degenerate map. We next show that the map f: M3 ¥ N3
factors through M1, where M; is a collapse of M along Ag;::;; An,, and we
will see that the map f;: M3 ¥ N3, induced by f, satis es the hypothesis of
Theorem 1.5. Then the conclusion of Theorem 1.5 will complete the proof of
Theorem 1.10.
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5.1.1 First step

Let fTY; ;T2 g =Wy Wy be the canonical tori in M which degenerate
under f: M ¥ N. If W,?,, =;, bysetting Aj=;, =f=fand M =M,
then Theorem 1.10 is obvious by Theorem 1.5. So we may assume that W,E’,, €& ;.
It follows from [20, Lemma 2.1.2] that for each component T of @Hpn, the
induced map fjT: T ¥ N is j-injective and thus W,?,I & Wy . Then we can
choose a degenerate canonical torus T; such that T, is a boundary component
of a Seifert piece C; in M which does not degenerate under f. It follows from
Theorem 1.7 that T, is a separating torus in M. Using Theorem 1.7 there is a
component A; of M n Ty such that:

(@) Az isagraph manifold, Hi(A1; Z) = Z and the group T ( 1(A1)) is either
trivial or in nite cyclic,

(b) each Seifert piece of A; degenerates under the map f,

(c) A; satis es the hypothesis of a maximal end of M (see De nition 1.8).

This implies that int(A7)\ int(Cy) = ; and T ( 1(A1) = Z (if T ( 1(A1)) =
flg, Cy would degenerate under f). Set B; = MnA;. If W3 = fT};:5T7 g
W, denotes the family of degenerate canonical tori in int(B;) then n; < ng. If
ny =0 we take A = fA19. So suppose that n;  1; we may choose a canonical
torus Ts in ng in the same way as above. Let C, denote the non-degenerate
Seifert piece in M such that T, @C, and let A, be the component of M nT»,
which does not meet int(C,). It follows from Theorem 1.7 that:

1) Ai1NA =3,
(2) A, satis es the above properties (a), (b) and (c).

Thus by repeating these arguments a nite number of times we get a nite
collection fAg;:::; Any, gsof pairwise disjoint maximal ends of M such that each

canonical torusof M n , ; , Aj is non-degenerate.

5.1.2 Second step

We next show that the map f: M ¥ N factors through a manifold M; which
is obtained from M by collapsing M along Aj;:::; An,, (see De nition 1.9).
To see this it is su cient to consider the case of a single maximal end (i.e.
A = fA10). Let T; be the canonical torus @A; and let C; be the (nhon-
degenerate) Seifert piece in M adjacent to A; along T;. Since T ( 1(A1)) =
Z, the homomorphism f : 1(A;) ¥ 1(N) factors through Z. Then there
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are two homomorphisms ( 0) . 1(A1) | 1(V1), (fo) . 1(V1) L 1(N)
such that (FjA1) = (fo) ( o) (where V; denotes a solid torus) and where
(o0): 1(A1) ¥ 41(Vp) is an epimorphism. Since V1 and N are K( ;1),
it follows from Obstruction Theory [8] that these homomorphisms on 1 are
induced by two maps o: A; ¥ V; and fp: V1 ¥ N. Moreover we can assume
that fy is an embedding. We show that we can choose ¢ in its homotopy class
in such a way that its behavior is su ciently \nice". This means that we want
that ( satis es the following two conditions:

() o (A;0AL) ¥ (V1;@V1),
(ii) o induces a homeomorphism (j@A1: @A; ¥ @V;.

Indeed since T ( 1(Ty)) = Z, then there is a basis ( ; ) of 1(T1) such that
(o) ()=1in (V1) and h( o) ( )i = 1(V1). So we may suppose that
o( ) =1y, (resp. o( ) = m) where ly, is a parallel (resp. m is a meridian) of
V1. So we have de ned amap o: @A1 ¥ @V1 which induces an isomorphism
( 0j0A7) : 1(@A1) ¥ 1(@V1). So we may assume that condition (ii) is
checked. Thus it is su cient to show that the map (j@Ao can be extended to
amap o: A1 ¥ V;. For this consider a handle presentation of A; from Ty:

To[(el [oefi Lep,) [(ef [iefi [ef,) [(e3 [ieii [e)y)
where fe§<g are k-cells (k = 1;2;3). Since ( o) ( 1(A) = ( o) ( 1(@A1)),
we can extend the map o de ned on @A; to the 1-skeletton. Since Vi is a
K( ;1) space, we can extend ¢ to A;. Thus, up to homotopy, we can suppose

that the map f: M ¥ N is such that fjA; = fy o, where (j0A; is a
homeomorphism.

Set B; = M nA;. Attach a solid torus V; to B; along T; in such a way that
the meridian of V; is identi ed to and the parallel Iy, of Vi is identi ed to

. Let ” denote the corresponding gluing homeomorphism * : @V, ¥ @B; and
denote by B the resulting manifold. Let §: B; ¥ BjnV; be the identity
map. Wede neamap 1: M =A; [B;y ¥ M; such that ;jA; = ¢ and

1jB1 = % and M; = B;. Thus it follows from the above construction that

1: M T My is awell de ned continuous map. Since the map ;1jB1nTy :
BynT; ¥ BinV; is equal to the identity, we can de ne the map f1jB1nV; by
setting f1jBinVi =Ff ( 1)7LjBinVy and f,:Vy ¥ N as fo. Thus we get a
map f; : M1 ¥ N suchthat f =1, ;.

We now check that M, is still a Haken manifold of nite volume. Let &; be
the space C; [- V1. Since M n (A1 [ C1) is a Haken manifold, it is su cient
to prove that ¢, admits a Seifert bration. Since fiC1 :C; ¥ N is a non-
degenerate map, then f (h;) & 1, where h; denotes the homotopy class of the
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regular berin C;. Therefore the curve isnota berin C;. Thus the Seifert

bration of C; extends to a Seifert bration in €;. On the other hand, since
f is homotopic to f; 1, we have deg(f;) = deg( 1) = deg(f) = 1 and since
kNk = kMk then kNk = kMk = kM1Kk.

In the following, if A denotes a Z-module, let T (A) (resp. F(A)) be the torsion
submodule (resp. the free submodule) of A. To complete the proof of the second
step we show that f; satis es the homological hypothesis of Theorem 1.1. Let
qg:N ¥ N bea nitecoverof N, p: N ¥ M the nite covering induced from
) by f and p: M, ¥ M; the nite covering induced from I by f;. Denote
by £: M ¥ ] and B : W, ¥ € the induced maps. Fix base points: X 2 M,
B2pi(x), x1 = 1(X), y=Ff(X), g = (&), and B; such that B (&) = . In
the following diagram we rst show that there is a map e; : (W; &) ¥ (W;; 1)
such that diagrams (1) and (I1) are consistent.

(W, &) F (99
€1 ﬁ
(M 1)
p P1 q
(My1;x1)
Lt
(M; x) f (N3y)

We know that:
(1) ( 1(W1;R1)) = (F) 7 (@ ( 2(9;9))
and
p (W) =(F)"2(q ( 1(9;9)

So we get:

(1)@ (M) =(1) O (108e)=(1) () ) (1(8:9)
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and thus nally:
(1) (@ ( «(M5R)) = (F)"2q ( 1(8;9) = (p1) ( 1(Wy;R0))

Thus it follows from the lifting criterion, that there is a map e; such that the
diagram (1) is consistent. Denote by f the map £ e;. We easily check that
g f=Ff pandthus we have = f. We next show that the maps 1, f1,
e; and 4 induce isomorphisms on H; (with coe cients Z). Since f (resp.
£) is a Z-homology equivalence then ( 1) : Hq(M;Z) ¥ Hq(My;Z) (resp.
(e1) : Hq(MT;2) ¥ Hy(W; 2)) is injective and (f1) : Hq(My1;Z) ¥ Hy(N;2)
(resp. () Hq(M:l;Z) ¥ Hy(];2)) is surjective (for g = 0;:::;3). Since
deg(f) = deg(®) = 1 then deg(e1) = deg(f) = deg( 1) = deg(f,) = 1. Thus
the homomorphism ( 1) : Hi(M;Z) ¥ Hy(Mgy;Z) (resp. (e1) : Hl(M:; Z) "
H,(MW1; Z)) is surjective and therefore is an isomorphism, which implies that
1 and f; induce isomorphisms on Hj.

We now check that the maps £ and e; are Z-homology equivalences. Recall
that M = A; [1, B; and M; = Vi [, B1 where V; is a solid torus and
where 1j(B1;@B1) : (B1;@B1) ¥ (B1;@B;) is the identity map. On the other
hand we see directly that the map 1j(Az1;@A71) : (A1;0A1) ¥ (V1;0Vy) is a
Z-homology equivalence and deg(p) = deg(p1) = deg(q). Set & = p~1(B1)
and By, = (p1)"1(B1). Since Vq is a solid torus, it follows from Lemma 4.1
that:

() Ei and Bj.; are connected and have the same number k; of boundary
components,

(i) p~'(A1) is composed of k; connected components & &S o s
connected; Hl(ﬂiJ;Z) =Z and (pl)_l(vl) is composed of k; connected com-
ponents Wl,...,ﬁkl where the ¥ are solid tori,

(i) the map e; induces a map e : & oy 1 (B ol).

Thus we get the two following commutative diagram:

T1jB1

(B1;081) —— (By;1;081;1)

pl lpl

(B1;@B;) — %> (B1;@B1)

Since deg(pjB1) = deg(p1jB1.1) then deg(e1ji) = 1 and so the map eijil; is
homotopic to a homeomorphism and is a Z-homology equivalence. Consider
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the following commutative diagram:
A o) — (& o)

Dl lpl

(A1; 0A1) —— (V1;@V1)

Then we show that we have the following properties:
Hl(lﬁJ;Z):Z and Hq(lﬁJ;Z)zo for q 2

The rst identity comes directly from Lemma 4.1. On the other hand since
@Zflj & ;, and since Zflj is a 3-manifold, the homology exact sequence of
the pair (,Zﬁj;@lflj) implies that Hg(/zf]_J;Z) = 0. Using [21, Corollary 4,
p. 244] and combining this with Poincare duality, we get: Hg(lflj;Z) ”
H(A' ;04 ;2) and thus T(H.(A; 2)) = T(Ho(A; 0" ; 2)) = 0. More-
over , F(H_l(lﬁj;@lflj;Z)) = F(Hl(l_flj;@lflj;Z)) and since 1(lf11;@1f11) +
1= (&) =1, we have: Ho(®;Z2) = 0. So the map e; induces an
isomorphism on Hq(ﬂiJ;Z) for g = 0;1;2;3. g‘hus using the Mayer-Vietoris
exact sequence of the decompositions M = (7, ; , A&l) [ (8;) and W =

(10K ©) [ (B1.1) we check that the map e; and then & are Z-homology
equivalences. This proves that f; satis es hypothesis of Theorem 1.1. Then
using Theorem 1.5 the proof of Theorem 1.10 is now complete.

5.2 Some consequences of the Factorization Theorem

We assume here that the manifold M2 contains some canonical tori which
degenerate under the map f. Then we x a maximal end A of M, whose
existence is given by Theorem 1.10. We state here a result which shows that
the induced map fjA can be homotoped to a very nice map. More precisely
we prove here Proposition 1.11. The proof of this result splits in two lemmas.

Lemma 5.1 If A denotes a maximal end of M then the space AnWy, contains
at least one component, denoted by S, which admits a Seifert bration whose
orbit space is a disk D? in such a way that  ( 1(S)) & fig.

Proof The fact that the maximal end A contains at least one Seifert piece
whose orbit space is a disk (called an extremal component of A) comes directly
from Lemma 3.7 since A is a graph submanifold of M whose Seifert pieces are

Algebraic & Geometric Topology, Volume 3 (2003)



A criterion for homeomorphism between closed Haken manifolds 377

based on a surface of genus zero and whose canonical tori are separating in M.
To prove the second part of Lemma 5.1 we suppose the contrary. This means
that we suppose, for each extremal component S of A, that the induced map
fjS is homotopic in N to a constant map. Then we show, arguing inductively
on the number of connected components of A n W), denoted by ka, that
this hypothesis implies that f ( 1(A)) = flg which gives a contradiction with
De nition 1.8.

If ka = 1, this result is obvious since the component A is a Seifert space whose
orbit space is a 2-disk. Then we now suppose that ka > 1. The induction
hypothesis is the following:

If A is a degenerate graph submanifold of M made of j < ka Seifert pieces
and if each Seifert piece $ of A based on a disk satis es f ( 1($)) = flg then
the group f ( 1(A)) is trivial.

Denote by Sy the Seifert piece of A which contains @A, Ti;:::; Tk the compo-
nents of @Son@A and Az;:::; Ak the connected components of An int(Sp) such
that @A; = T; for i = 1;::;;k. So we may apply the induction hypothesis to
the spaces Aj;:::; Ax which implies that the groups T ( 1(A1)); 5 F ( 1(Ak))
are trivial. Recall that the group 1(Sg) has a presentation:
hdy; :2:; die; d; by ga; o gr 2 [y di] = [hi 03] = 105" = h¥i;dy:zididayiige = h°i

where the group hdj; hi is conjugated to 1(T;) for i = 1;::;k and where
hd; hi is conjugated to 1(T), where T = @A. Since h admits a representa-
tive in each component of @Sy and since ¥ ( 1(T;)) = 1 then f (h) =1 and
f (dy) = :::f (dk) = 1. This implies that f (q1) = ::: = f (qy) = 1 and since
dq:didgr:igr = h® we get F (d) = 1, which proves that £ ( 1(Sp)) = 1. Since
A =So[A1[:: [Ax, then applying the Van Kampen Theorem to this decom-
position of A, we get T ( 1(A)) = flg which completes the proof of Lemma
5.1. O

Lemma 5.2 Let A be a maximal end of M3. Let S be a submanifold
of A which admits a Seifert bration whose orbit space is a disk such that
f ( 1(S)) & f1g. Then there exists a Seifert piece B of N such that f ( 1(S))
hti, where t denotes the homotopy class of the berin B.

Proof Applying Theorem 1.10 to the map f : M ¥ N, we know that f is
homotopic to the comopsition f1  where : M ¥ M; denotes the collapsing
map of M2 along its maximal ends and where f; : M; ¥ N is a homeomor-
phism. More precisely, if C denotes the Seifert piece of M3 adjacent to A along
@A then we know, by the proof of Theorem 1.10 that there is a solid torus V
in M; and a homeomorphism ~ : @V ¥ @A such that:
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(i) the space C; =C [~V is a Seifert piece in My,

(i)  (A;0A) =(v;av) int(B) andthemap jMnA:MnA ¥ MinV
is the identity.

Since the map f; is a homeomorphism from M; to N, then by the proof of
Theorem 1.5, we know that there exists a Seifert bered space of N, denoted
by Bn, such that f; sends (C1;@C1) to (Bn;@Bn) homeomorphically. Hence
the map T is homotopic to the map f;  still denoted by f, such that f(A)
int(Bn) where By is a Seifert piece in N nW\y . In particular, we have T(S)
int(Bn). On the other hand, since Hi(A;Z) = Z then it follows from [17,
lemma 5.3.1(b)], that the map H1(@A;Z) ¥ Hi(A;Z), induced by inclusion,
is surjective and since T ( 1(A)) is an abelian group (in fact isomorphic to Z)
we get T ( 1(A)) =F ( 1(@A)). Since f =f; |, if hy denotes the homotopy
class of the ber in C represented in @A, then f (hy) =t ! where t denotes
the homotopy class of the ber in By . Moreover, since j 1(@A) is a homo-
morphism of rank 1 and since By is homeomophic to a product F, S%, then
we get T ( 1(A)) =T ( 1(@A)) = hti 1(Bn) 7 1(Fn) hti. Finally, since
1(S) is a subgroup of 1(A) we get £ ( 1(S)) hti which completes the proof
of Lemma 5.2. The proof of Proposition 1.11 is now complete. O

6 Proof of Theorem 1.1

6.1 Preliminary
6.1.1 Reduction of the general problem

It follows from the form of the hypothesis of Theorem 1.1 that to prove this
resultitissu cientto nda nite cover § of N such that the lifting £: N X
M of f is homotopic to a homeomorphism. So we may always assume without
loss of generality that the manifold N satis es the conclusions of Proposition
1.4. It follows from Theorem 1.5 that to prove Theorem 1.1 it is su cient to
show that the canonical tori in M do not degenerate under f. Thus suppose
the contrary: using Theorem 1.10 this means that there is a nite collection
A = TAq; ::;; Ang of codimension-0 submanifolds of M which degenerate under
T (the maximal ends). We denote by M; the Haken manifold obtained from
M by collapsing along the components of A, by : M ¥ M; the collapsing
projection and by 1 : My ¥ N the homeomorphism such that £ = f; . Let
A = A; be a maximal end in A and let S be a Seifert piece of A whose orbit
space is a disk, given by Proposition 1.11. Then the proof of Theorem 1.1 will
depend on the following result:
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Lemma 6.1 There exists a nite covering p : W ® M induced by f from
some nite covering of N such that each component of p~1(S) admits a Seifert
bration whose orbit space is a surface of genus 1.

This result implies that the components of p~1(A) are not maximal ends. In-
deed since each component of p~2(A) contains at least one Seifert piece whose
orbit space is a surface of genus 1 then it follows from [17, Lemma 3.2] that
their rst homology group is an abelian group of rank 2 which contradicts
De nition 1.8. This result gives the desired contradiction.

6.1.2 Proposition 1.12 implies Lemma 6.1.

In this paragraph we show that to prove Lemma 6.1 it is su cient to prove
Proposition 1.12.

Let f: M ¥ N beamap between two Haken manifolds satisfying hypothesis of
Theorem 1.1. Let A be a maximal end of M and let S be the extremal Seifert
piece of A given by Proposition 1.11 and we denote by By the Seifert piece
of N such that f(A) By . Let h (resp. t) denote the homotopy class of the

ber in S (resp. in Bn). Then Proposition 1.11 implies that £ ( 1(S)) hti.
Recall that the group 1(S) has a presentation:

hdi;de;ides s [hydil = [higil =1 g;F =hY' digaiige = h°i

Letusdenote by f 1;::;; (g theintegerssuchthat f (c;) =t ;5 fF (cr) =t *
where cy;::;; ¢, denote the homotopy class of the exceptional bers in S (i.e.
¢;' = h). In particular we have f (h) = ti i for i = 1;::;r. Since the
canonical tori in M are incompressible, the manifold S contains at least two
exceptional bers ¢; and ¢, (otherwise S = D? S which is impossible). Set
Np= 1 2 1 2, where j denotes the index of the exceptional ber c;. Then,
we apply Proposition 1.12 to the manifold N® with the integer ny de ned as
above. Let By be a component of p~%(By) in €, where p is the nite covering
given by Proposition 1.12. Thus there exists an integer m such that the ber
preserving map pjBn : By ¥ By induces the mng-index covering on the

bers € of By . Let  denote the homomorphism correponding to the covering
induced on the bers. Thus the covering induces, via f, a regular nite covering
g over S which corresponds to the following homomorphism

(i) > i g Z _ hti
1(S) A 2 7t mnoZ  ht™oj

Let § be a component of the covering of S corresponding to . Our goal
here is to comput the genus of the orbit space, denoted by F of §. For each
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i 2 f1;:::;rg, we denote by  the order of the element (¢i) = 77 in Z=mnyZ.
Thus we get the following equalities:

1=m 122 2=mgqrand (13 )= 1 (2, 2)= 2

Let f : B ¥ F denote the (branched) covering induced by g on the orbit
spaces of § and S and denote by  the degree of the map g. It follows
from Lemma 4.1 (applied to S) that each component of q~%(S) has connected
boundary. Using paragraph 3.2 we know that the genus g of [ is given by the

following formula:
1

= o

—, Civ i)
Since @§ is connected, then using the above equalities, the last one implies
that:

1
=2+ r—1—--—-—

1 1
2¢ 1+ 1———— 1
1 2

which proves that Proposition 1.12 implies Lemma 6.1. Hence the remainder
of this section will be devoted to the proof of Proposition 1.12.

6.2 Preliminaries for the proof of Proposition 1.12

We assume that N3 satis es the conclusion of Proposition 1.4. In this section we
begin by constructing a class of nite coverings for hyperbolic manifolds. This
is the heart of the proof of Theorem 1.1: we use deep results of W. P. Thurston
on the theory of deformation of hyperbolic structure. Next (in subsection 6.2.4)
we construct special nite coverings of Seifert pieces, that can be glued to the
previous coverings over the hyperbolic pieces, to get a covering of N3 having
the desired properties.

6.2.1 A nite covering lemma for hyperbolic manifolds

In this paragraph we construct a special class of nite coverings for hyperbolic
manifolds (see Lemma 6.2). To state this result precisely we need some nota-
tions. Throughout this paragraph we assume that the manifold N3 satis es
the conclusion of Proposition 1.4.

In this section we deal with a class, denoted by H of three-manifolds with non-
empty boundary made of pairwise disjoint tori whose interior is endowed with
a complete, nite volume hyperbolic structure. Let H be an element of H and
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let Tq;:::; Th be the components of @H . We consider H as a submanifold of the
Haken manifold N and we cut @H in two parts: the rstone is made of the tori,
denoted Tyq;:::; Ty, which are adjacent to Seifert pieces in N and the second one
is made of tori, denoted Us;:::; Uy, which are adjacent to hyperbolic manifolds
along their two sides. For each T; (i 2 f1;::;1g) in @H we X generators
(mi; 1) of 1(T;) » Z Z and we assume these generators are represented by
simple smooth closed curves (denoted by I; and m; too) meeting transversally
at one point and such that T; n(l; [ m;) is di eomorphic to the open disk. The
curves (mj; l;) will be abusively called system of \longitude-meridian™ (we use
notation \ " as T; is not the standard torus but a subset of N2). On the other
hand we denote by P the set of all prime numbers in N and for each integer
no, we denote by Pp, the set:

Pn, = fn 2 P such that there is an m 2 N with n = mng + 19

It follows from the Dirichlet Theorem (see [10, Theorem 1, Chapter 16]) that
for each integer ng the set Py, is in nite. The goal if this paragraph is to prove
the following result:

Lemma 6.2 For each integer ng and for all but nitely many primes q of the
form mng + 1, there exists a nite group K, a cyclic subgroup G, * Z=nZ of
K, an element T 2 G, of multiplicative order mng, elements Vl; :::;VI in G,
and a homomorphism ~ : 1(H) ¥ K satisfying the following properties:

(i) foreach i 2 T1;:::; 1g there exists an element g; 2 K such that > ( 1(Tj))
giGngi_1 = G, 7 Z=nZ with the following equalities: ~(m;) = gngi_l and
") = givigi

(i) for each j 2 f1;:::;rg the group ~( 1(U;j)) is either isomorphic to Z=qZ
orto Z=qZ Z=9Z.

6.2.2 Preparation of the proof of Lemma 6.2.

We rst recall some results on deformation of hyperbolic structures for three-
manifolds. These results come from chapter 5 of [23]. Let Q be a 3-manifold
whose interior admits a complete nite volume hyperbolic structure and whose
boundary is made of tori Ty;:::;Tx. This means that Q is obtained as the
orbit space of the action of a discret, torsion free subgroup I of 1*(H3%) ~
PSL(2;C) on H* (where H®* denotes the Poincare half space) denoted by
r=H3*. Hence we may associate to the complete hyperbolic structure of Q a
discret and faithful representation Hq (called holonomy) of 1(Q) in PSL(2;C)
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de ned up to conjugation by an element of PSL(2; C). It follows from Proposi-
tion 3.1.1 of [3], that this representation lifts to a faithful representation denoted
by Ho: 1(Q) ¥ SL(2;C). Note that since Q has nite volume, the repre-
sentation Hy is necessarily irreducible. Moreover, since Hy is faithful, then for
each component T of @Q and for each element 2 1(T), the matrix Ho( )
is conjugated to a matrix of the form:

1

0 1 where 2 C

We will show here that for each primitive element 2 (T), there exists a
neighborhood W of 1 in C such that for all z 2 W there exists a representation
1(Q) ¥ SL(2;C) such that one of the eigenvalues of ( ) is equal to z.

Denote by R( 1(Q)) the a ne algebraic variety of representations of 1(Q) in
SL(Z,C) (ie. R( 1(Q) =T ; : 1(Q) ¥ SL(2,C)g) and by X( 1(Q)) the
space of characters of the representations of 1(Q). For each element g 2 1(Q)
we denote by ¢ the map de ned by:

¢ -R(1(Q)3 A 1tr((9)2C

Let T denote the ring generated by all the functions ¢ when g2 1(Q). Since

1(Q) is netely generated, then so is the ring T ; so we can choose a nite
number of elements y1;:::;ym in 1(Q) such that h ;=5 .1 =T. We de ne
now the map t in the following way:

t:R(1(Q)N3 A (y,( )i ym())2CT

which allows to identify the space of characters X( 1(Q)) with t(R( 1(Q))). In
particular, if Ry denotes an irreducible component of R( 1(Q)) which contains
Hg, then the space Xo = t(Rp) is an a ne algebraic variety called deformation
space of Q near the initial structure Ho. It follows from [23, Theorem 5.6], or
[3, Proposition 3.2.1], that if Q has k boundary components (all homeomorphic
to a torus), then dim(Xp) = dim(Rg) —3 k. We now X basis of \meridian-
longitude™ (m;;l;), 1 i Kk, for each torus Ty;:::; Tx. This allows us to de ne
a map:
tr:Xo ¥ CK

in the following way: let q be an element in X( 1(Q)). The above paragraph
implies that there exists a representation Hg such that t(Hg) = q; then we set
tr(q) = (tr(Hq(my)); ::5; tr(Hq(my))) 2 CK. By construction this map is a well
de ned polynomial map between the a ne algebraic varieties X( 1(Q)) and
CK. Moreover, if qo denotes the element of X, equal to t(Hg), then it follows
from the Mostow Rigidity Theorem (see [1, Chapter C]) that the element qq is
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the only point in the inverse image of tr(qo). Using [16, Theorem 3.13] this im-
plies that dim(Xo) = dim(C*) = k. Next, applying the Fundamental Openness
Principle (see [16, Theorem 3.10]) we know that there exists a neighborhood U
of go in Xg such that tr(U) is a neighborhood of tr(qe) = (2;:::;2) in CK de-
noted by V. Let T be the map de ned by f(z1;:::;zk) = (z1+1=z1; i35z + 1=2)
and let W be a neighborhood of (1;:::;1) in CK such that f(W) = tr(U) = V.
This proves that for each k-uple = ( 1;:::; k) of W there exists a represen-
tation H of 1(Q) in SL(2;C) such that for each i 2 f1;:::;kg the matrix
H (m;) has an eigenvalue equal to ;.

6.2.3 Proof of Lemma 6.2

Let H be a submanifold of M2 which admits a complete nite volume hyper-
bolic structure go. We denote by Hp the irreducible holonomy of ;(H) in
SL(2; C) associated to the complete structure of H, by Rp an irreducible com-
ponent of R( 1(H)) which contains Hy and by Xg the component of X( 1(H))
de ned by Xo = t(Rg) (see paragraph 6.2.2 for de nitions). Let Uq;:::; Uy be
the components of @H which bound hyperbolic manifolds of M3 along their
both sides and let Ty;:::; T) be the components of @H adjacent to Seifert pieces.
For each T;, i = 1;::;;1 (resp. U, j = 1;::55r), we X a system of \longitude-
meridian™ (m;; l;) (resp. ( j; j)).- Let be a transcendental number (over Z),
near of 1 in C (this is possible since the set of algebraic number over Z is
countable). It follows from paragraph 6.2.2 that there is a representation Hy
of 1(Q) in SL(2; C) satisfying the following equalities:

vp(Hq( j)) = Vvj(@) =vp(Hq( j)) =1 for j2f1;::rg
vp(Hq(mi)) = i(@) =  fori2fL;:;lg
where vp(A) denotes one of the eigenvalues of the matrix A 2 SL(2; C). Thus
we get the following equalities:

Hom)=Qi o °o Q% W =Q g

for i 2 f1;:::;;1g where is a transcendental number over Z and where the
matrix Qg;::;Qp are in SL(2;C). On the other hand, since vp(Hq( j)) =
vj(@) = vp(Hq( j)) =1 for j = 1;::;r, the groups Hq( 1(Uj)) are unipotent
and isomorphic to Z Z. This implies that:

i ; PiHq( )Pt = Lo for j 2 f1;::rg

_ 1
B i 1 _
PiHd (P == 0 1
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where q;::; ¢ are in CnQ and where the Pj’s are in SL(2;C). Moreover
since 1(H) isa nitely generated group, we may choose a nite susbet G which
generates 1(H). Then consider the subring A of C, generated over Z[ ] by
the following system:

Z  fentries of the matrix Hq(g) for g 2 Gg
H H . —1. . -1 [ . —1. . —1.
fentries of the matrix Pj; Pj ; Qi QD) g T (i) 9
It follows from the above construction that A is a nitely generated ring over
Z[ 1, and Z[ ] is isomorphic to Z[X] since is transcendental over Z. So
using the Noether Normalization Lemma (see [6], Theorem 3.3) for the ring A

over Bg = Z[ ], we know that there exists a polynomial P of Z[X] and a nite
algebraically free family xq;:::; Xkg over Z[ ] such that A is integral over

B=27[] % [X1; 5 Xk]

To complete the proof of Lemma 6.2 we need the following result.

Lemma 6.3 Let ng >0 bea xed integer. Let A be a subring of C integral
over a ring B isomorphic to Z[ 1[1=P ( )] [X1;:::; Xk], where is transcendental
over Z, P is a polynomial in Z[ ] and Xi;:::; Xk are algebraically free over
Z[ ] 7 Z[X]. Let 1;::; | beelements of A. Then for all np 2 N and for all
but nitely many primes ¢ = mng+1, there isa nite eld Fq of characteristic
g, an element T in (Fq) = Fqn f0g of multiplicative order mng, elements
Y1, :5Y) in (Fg) and a ring homomorphism " : A ¥ F4 such that:

(M hh( )" i Fq 7 Z=nZ for i = 1;::;1, where hhg; hii is the multi-
plicative subgroup of A generated by g et h and where n = jFqj — 1,

@iy "()=cand "( ;) =y, fori=1;::;l.

Proof of Lemma 6.3 We rst prove that for all but nitely many primes
q 2 Pp, there exists a ring homomorphism " : B ¥ Z=qZ such that "( ) is a
generator of the cyclic group (Z=9Z) ~ Z=(q—1)Z. We next show that we can
extend " to a homomorphism from A by taking some nite degree extension of
Z=qZ and using the fact that A is integral over B. To this purpose we claim

that for all but nitely many primes g = mng + 1, there is a homomorphism
1
" Z — ¥ 7=qZ
[] 50) q

where "( ) is a generator of the group (Z=qZ) and where P = ag +a; X +
i+an XN, with integral coe cients. For all su ciently large primes q we may

Algebraic & Geometric Topology, Volume 3 (2003)



A criterion for homeomorphism between closed Haken manifolds 385

assume that (q;ap) = (q;an) = 1. Hence for g su ciently large the projection
Z ¥ 7Z=qZ associates to P a non-trivial polynomial P in Z=qZ[X] of degree
N. On the other hand it is well known that (Z=qZ) is a cyclic group of order
q— 1, when g is a prime. Thus there exists ”(q — 1) = ~(mng) elements in
Z=qZ generating (Z=qZ) , where ” is the Euler function. Moreover it is easy to
prove that limnx 41 ”(n) = +1: Hence for a prime g su ciently large we get:
Card(G((Z=9Z) ))="(q@—1) >N Card (5_1(0)) which allows us to choose
an element T in Z=qZ generating (Z=9gZ) and such that P(c) & 0. Hence
for all but nitely many primes g = mng + 1, we may de ne a homomorphism
" Z[ ] ¥ Z=qgZ by setting "( ) = T where T is a generator of (Z=qZ) ,
which is possible since is transcendental over Z. Since P(c) & 0 we can
extend " to a homomorphism " : Z[ ][1=P( )] ¥ Z=qZ. Since the elements
X1; 11 Xk are algebraically free over Z[ ], we extend the above homomorphism
to B = Z[ ][1=P ( )][x1;:::; Xk] by choosing arbitrary images for xi;:::; Xx. We
still denote by " : B ¥ Z=qZ this homomorphism. Let us remark that it follows
from the above construction that is sent to an element of multiplicative order
q—1=mng.

We next show that we can extend " to A. We rst prove that there is an

extension of " to B[ 1;:::; 1] in such a way that the ; are sent to non-trivial
elements. We assume that there is an integer 0 i < | such that for all
Jj 2 10;:::;ig there isa nite eld F{] of characteristic g which is a nite degree
extension of Z=qZ and an extension of " denoted by "l : B = B[ 1;::; j] ¥

F{] such that "J( ) & 0 for r = 1;::;j. Since A is integral over B, there
is a polynomial P,y = ab™ + ::: + al*1X" in B[X] where al"! and al! are
invertible in A such that Pis1( i+1) = 0. The homomorphism " associates
to Pj+1 a polynomial Pi+1 which can be assumed to be irreducible in Fa[X],
having a non-trivial root Xj4+1 in some extension of Fa. If Pix1 has no root
in Fy we take the eld extension Fi*! = F{[X]=(Pi+1) and we set Xj+1 = X
where X' denotes the class of X for the projection Fi[X] ¥ F{[X]=(P+1).
If Pi+1 has a non-trivial root Xj+1 in F{ we set Fi*! = F}. This proves,
by induction, that we can extend " to B[ 1;:::; 1]. To extend " to A it is
su cient to x images for its other generators. Since A has a nite number of
generators we use the same method as above (using the fact that A is integral
over B). Let " be the homomorphism extended to A and Fg be the extended

eld. Since "( i) =y; &0 for i = 1;::51 then y; 2 Fy 7 Z=nZ with n =
Card(Fq) — 1, which ends the proof of Lemma 6.3. O

End of proof of Lemma 6.2 Let g be a prime satisfying the conclusion of
Lemma 6.3. We denote by " : A ¥ F, the homomorphism given by Lemma 6.3.
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This homomorphism combined with the holonomy Hy of ((H) in SL(2;C)
induces a homomorphism ~ such that the following diagram commutes.

L(H) —2-SL(2;C)
, l %
SL(2; Fy)

where % is the restriction of the homomorphism % : SL(2;A) ¥ SL(2;Fq)
de ned by:

a b w ll(a) ll(b)
cd © '@ @
So we get the following identities:
» = ©€0 =1, , = Vi O —— .
(mj) = Q; 0 o Qil; () = Q; \6' gl Qil fori 2 f1;:::;1g
1
R R T R S ) B e PSR
(D=Pi 41 Piv 7(D=Pj 4 10 Py forj2flrg

Let Gp be the subgroup of SL(2;Fy) de ned by:

Gh= a= g 2—1 when a2 Fq
Since F, is a cyclic group of order n, so is Gn. To complete the proof of (i)
it is su cient to set g; = Q;. To prove (ii), it is su cient to use the fact that
Fq is a eld of characteristic g and the form of the elements ”( j); ”( j) for
J =1;:5r. Indeed this proves that ~( 1(U;)) is either isomorphic to Z=qZ or
to Z=qZ Z=qZ depending on whether the elements 1 and "( j) are linearly
dependant or not. This ends the proof of Lemma 6.2. O

Remark 3 Lemma 6.2 can be easily extended to the case of a nite number of
complete nite volume hyperbolic manifolds. More precisely, if Hy;::;;H  de-
note  hyperbolic submanifolds in N2, we can write Lemma 6.2 simultaneously
for the submanifolds by choosing the same prime q 2 Py,, the same group
K, the same cyclic group G, > Z=nZ K and the same element ¢ 2 G, of
multiplicative order mng. Hence we get the following corollary.

Corollary 6.4 Let Hy;::;;H be submanifolds of N2 whose interiors admit
a complete nite volume hyperbolic structure. Then for any integer np 1
and for all but nitely many primes g of the form mng + 1, there exists a

nite group K, a cyclic subgroup G, *> Z=nZ of K, an element T 2 G, of
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multiplicative order mng, elements V} in Gp, i =1, j =110, and
group homomorphisms >Hi: (H;) ¥ K, i =1;::; satisfying the following
properties:

(i) foreach i 2 fl;:::; g and j 2 T1;:::;1ig there is an element g} 2 K such
that "M 1(T{))  gjGn(g)) ™" ~ Z=nZ,

(ii) for each i 2 f1;::;; g and j 2 f1;:::;1jg we have the following equalities:
“Hi(mi) = gjc(@) ™ and ~Mi(1) = givi@h) ™,

(iii) for each i 2 f1;::; g and j 2 f1;:::;rig the group ~Hi( 1(Uj‘)) is isomor-
phic to either Z=qZ or Z=qZ Z=9Z.

6.2.4 A nite covering lemma for Seifert bered manifolds

In this section we construct a class of nite coverings for Seifert bered man-
ifolds with non-empty boundary homeomorphic to a product which allows to
extend the hyperbolic coverings given by Corollary 6.4. We show here that these
coverings may be extended if some simple combinatorial conditions are checked
and we will see that these combinatorial conditions can always be satis ed up
to nite covering over N3. Throughout this paragraph we consider a Seifert
piece S of N identi ed to a product F  S', where F denotes an orientable
surface of genus g 1 with at least two boundary components. We X two
intergers n > 1 and c in Z and we denote by  the order of T in Z=nZ. Then
the main result of this section is the following.

Lemma 6.5 Let S be a Seifert bered space homeomorphic to F _Sl.
We_ denote by DY D" Gy Gy the components of @F and we set d' =
[D'1 2 41(F) and j = [Gj] 2 1(F) (for a choice of base points). Let
y(S) = fyl;::;ylg be a nite sequence of integers. Then there exists a -
nite covering : § =B S! ¥ S=F S! inducing the trivial covering on
the boundary and satisfying the following property: there exists a group ho-
momorphism *: (§) ¥ Z=nZ G, where G denotes a nite abelian group
such that:
(i) foreach component T} =D} S! (j =1;:;deg( ))of ~}(T) = ~H(D)
St, we have *( 1(Tji)) Z=nZ f0g and in particular we have the equalities:
"(® = (c;0) and ~(d}) = (v%;0), where di =[Di]2 1(P) and where € denotes
the berof §,
(i) for each component Uj of ~1(Gj S!) the group ker(7j 1(Uj)) is the
-characteristic subgroup in  1(U;).
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Proof Let Ny be the integer de ned by Ng = y! +:: +y'. Then the proof of
Lemma 6.5 is splitted is two cases.

Case 1 We rst assume that Ng 0 (n). Then we show in this case that S
itself satis es the conclusion of Lemma 6.5. Recall that with the notations of
Lemma 6.5 the group 1(S) has a presentation:

hal;bl;:::;ag;bg;dl;:::;d'; [

tdl=[t jl=[tal=[thl=1 [a;b] &  =1i
i=1 =1 k=1

withn 2and r 2 (Indeed recall that N satis es the conclusion of Proposi-
tion 1.4. In particular, N is a nite covering P: N ¥ N of a Haken manifold
N such that for each canonical torus T of Wye and for each geometric piece
S adjacent to T in N the space (PjS)™(T) is made of at least two con-
nected components). We show here that we may construct a homomorphism
$: (S) ¥ Z=nZ (Z= Z)"! such that $(hd';ti) Z=nZ F0g and satis-
fying the following equalities:

$@dH) (v 0) forevery i =1;::;1,

$() (c;0) and the group ker(Sjh j;ti) is the -characteristic

subgroup of h j;ti for j =1;::r.
Then consider the group K de ned by the folloging relja_tions:

E S

: N kT
K= dhund; o ot pdl=[ =@ dA=1; K =1
j=1 k=1
obtained from 1(S) by Kkilling the generators a;j;b; for i = 1;:::;g and adding
two relations. Denote by : 31(S) ¥ K the corresponding projection homo-
morphism. Then we de ne a homomorphism : K ¥ Z Z™1 py setting:

(dh) =y} 0; :::;0); cn (@Y =('50;0000),
( 1) =(0;1;0;:::;0); 5 (r=1) =(0;:::;0;1) and (t) = (c; 0;:::0).
Since dQ— 1weget: (d)=—-@'+:z+y™D fog (y' (n) fog

and since =1 we have: () =(0;1;::;1). Finally, if :z 2zl 1
Z=nZ (Z= Z)"—l is the canonical epimorphism, then the homomorphism ~
de ned by the composition satis es the conclusion of Lemma 6.5. This

ends the proof of Lemma 6.5 in case 1.

Case 2 We now assume that No = y! +::+y!' 6 0 (n). So there exists
an integer p > 1 (that may be chosen minimal) such that: (??) pNg = py* +
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+py! 0 (n). Let : & ¥ S bethe nite covering of degree p of S
corresponding to the following homomorphism:

— haji Z

S) W hai>z ¥ - =
1(S) ail hall 0Z
It follows from the above construction that this covering induces the trivial
covering on @S. So each component T of @S has p connected components in
its pre-image by . With the same notations as in the above paragraph, the
group 1($) has a presentation:
hal'bl;:::'a~gv;b~g~;d1;:::;d ""dl,::"dp, €6

o 1o A .

N9 Y Rt T
@ [ai;bi]A:@  diA: & =1i h&
i=1 ij k=1
Then we show that we can construct a homomrphism $ : 1(8) ¥ Z=nZ
(Z= 2)™! such that $(hdi;€) Z=nZ f0g and satisfying the following
equalities:
$(d}) (v';0) for every j =1;::;p and i =1;::;1,
$(6) (t;0) and the group ker(jh;; &) is the -caracteristic sub-
group of h&; & for j =1;::;E.
Consider now the group K obtained from 1(§) by setting:
hdl,:::'dp,:::'dl,::"dp, €88
o 1 1

: Y Y
[€djI=[€ ;1=1@ dA=1 & =1i
ij k=1
Let : 1(8) ¥ K be the corresponding canonical epimorphism. We de ne a

homomorphism :K ¥ Z=nZ (Z= Z)™! by setting:

(dD) = (v} 0;:50); 0 (d) = (v 0;::550); 055

@) ="0;:; ); s (dp_l) = (y"0; ...,0),

(1) =1(0;1;0;::50); 5 (p=1) =(0;::5;0;1) and  (t) = (c;0;:::0).
Since Q dl =1weget: (d)=—(y'+:+@E-1y") vy (n) andsince

H |
=1wehave: () =(0;1;::1). Flnally if we denote by :Z ZT1 ¥

j J
Z=nZ (Z= Z)"! the canonical projection then the homomorphism * de ned
by the composition satis es the conclusion of Lemma 6.5. This completes
the proof of Lemma 6.5. ]
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6.3 Proof of Proposition 1.12

Throughout this section N3 will denote a closed Haken manifold with non-
trivial Gromov simplicial volume, whose Seifert pieces are product. Let np 1
be a xed integer. We denote by Hj;:::;;H the hyperbolic components and
by Sj;:::; St the Seifert pieces of N n Wy . We want to apply Corollary 6.4 to
Hay;::;; H  uniformly with respect to the integer ng. To do this we rst X sys-
tem of \longitude-meridian™ on each boundary component of these manifolds.
This choice will be determined in the following way: Let H be a hyperbolic
manifold and let T be a component of @H. If T is adjacent on both sides to
hyperbolic manifolds we x a system of \longitude-meridian™ arbitrarily. We
now assume that T is adjacent to a Seifert piece in N denoted by S =F S,
We identify a regular neighborhood of T with T [-1;1], where T =T f0g,
T-=T f-lgand T* =T f+1g. We assume that T* is a component
of @S and that T~ is a component of @H and we denote by hy : T+ ¥ T~
the corresponding gluing homeomorphism. Let t be the ber of S represented
in T™ and let d be the homotopy class of the boundary component of the
base F of S corresponding to T*. Then the curves (t;d) represent a system
of \longitude-meridian" for 1(T™) and allow us to associate to T~ @H a
\longitude-meridian' system by setting:

m = ht(t) and | = hy (d)

We now give some notations: for a hyperbolic manifold H; of N, we denote by
T} :::;T,‘i the components of @H; adjacent to a Seifert piece and by U};::; Uﬂi
those which are adjacent on both sides to hyperbolic manifolds. For each T/,
we denote by (m}; I}) its \longitude-meridian™ system corresponding to the
construction described above.

We now describe how the hyperbolic pieces of N allow us to associate, via
Corollary 6.4, a sequence of integers y(S) to each Seifert piece of N, in the
sense of Lemma 6.5. Let S be a Seifert piece in N, we denote by Hy;:::; Hy the
hyperbolic pieces adjacent to S along @S and we Xx a torus T; in @S adjacent
to Hi (say). It follows from Corollary 6.4 that there exists a homomorphism
1. J(Hy) ¥ K such that *1( 1(T1)) 9Gnhg™?!, where G, is a n-cyclic
subgroup of K and such that *(m) =gcg™t, ~(l) = gy,9* where T and v,
are elements of G, = Z=nZ and where (m;I) denotes the \longitude-meridian"
system of T;. Let c and y; be representatives in Z of T and y;. Then we set
v1(S) = vy1. Applying the same method for all tori of @S which are adjacent to
hyperbolic components we get a sequence fy1(S); ::;; yn; (S)g = y(S) associated
to S, when S is a Seifert piece in N. We x a suitable prime g of the form
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mngy + 1 (i.e. we choose ¢ su ciently large) and we apply Corollary 6.4 to the
hyperbolic manifolds Hyq;:::;;H . This means that for each i 2 f1;:::; g there
exists a homomorphism *Hi: ((H;) ¥ K satisfying the conclusion of Corol-
lary 6.4. This allows us to associate to each Seifert piece Si;:::; St an integer
sequence Y(S1);:::;¥(St). So the proof of Proposition 1.12 will be splitted in
two cases.

6.3.1 Proof of Proposition 1.12: Case 1

We rst assume that we can apply Lemma 6.5 for each Seifert piece S of NnW\y
and the associated integer sequence y(S) (i.e. without using a nite covering).
It follows from Lemma 6.5, that for each i 2 T1;::;;tg, there exists a group
homomorphism ~*s,: 1(Si) ¥ Z=nZ G; satisfying properties (i) and (ii) of
this lemma for the sequence y(S;) with =qg—1=mny.

It follows from [9, Lemma 4.1] or [14, Theorems 2.4 and 3.2] that for each
i 2 f1;::; g (resp. i 2 F1;:::;tg) there exists a nite group H (resp. L;) and
a group homomorphism *y,: 1(H;j) ¥ H (resp. *s;: 1(Si) ¥ L;) which
induces the q q-characteristic covering on @H; (resp. @S;). For each i 2
T1;::5; g (resp. i 2 f1;:::;tg) we consider the homomorphism ; (resp. s;)
de ned by the following formula:

Hi — > Hi AHi: 1(Hi) IK H
S — > Si ASi: 1(Si) L (Z:nZ GI) Li

where ~Hi is given by Corollary 6.4. The above homomorphisms allow us to
associate to each Seifert piece S of N n Wy a nite covering ps: § 1 S.
De netheset R by R:=fps: § ¥ S when S describes the Seifert pieces of
Ng [fon: 8 ¥ H when H describes the hyperbolic pieces of Ng. Since for
each Seifert piece S of N the homomorphism s sends the homotopy class of
the regular ber of S, denoted by tg, to an element of order gmng, then to
prove Proposition 1.12 it is su cient to show the following result.

Lemma 6.6 There exists a nite covering r: ¥ ¥ N such that for each
component S of N n Wy and for each component § of r—1(S), the induced
covering rj§: § ¥ S is equivalent to the covering corresponding to S in the
set R.

In the proof of this result, it will be convenient to call a co-dimension 0 sub-
manifold Xy, of N a k —chain of N if Xy is a connected manifold made of
exactly k components of N nWy. Then we prove Lemma 6.6 by induction on
k.
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Proof of Lemma 6.6 When k =1 this is an obvious consequence of Lemma
6.2, if the 1-chain X; is hyperbolic or of Lemma 6.5, if X; is a Seifert piece.
Indeed it is su cient to take the associated homomorphism of type 4 or s.
We x now an integer k t+ and we set the following inductive hypothesis:

(Hk—1): for each j <k t+ and for each j-chain Xj of N, there exists
a nite covering pj: X;j ¥ X; such that for each component S of Xj n Wy

and for each component § of pj_l(S) the induced covering p;j§: & ¥ S is
equivalent to the covering ps corresponding to S in the set R.

Let Xk be a k-chain in N. We choose a (k — 1)-chain denoted by Xyk—1 in Xk
and we set X; the (connected) component of Xy n Xy—;.

Case 1.1 We rst assume that X; is a Seifert piece of N, denoted by S. Let
Hi;::;; Hm be the hyperbolic pieces of Xi—; adjacent to S and let Si;:::; Sk
be the Seifert pieces of Xyx—; adjacent to S. The hyperbolic manifold Hi is
adjacent to S along tori (T ;:;T%7)  @H; and (Ty"; 5 TY") @S and
S;j is adjacent to S along tori (U'";::;ULT) @S and (U™ TA™) - @S.
With these notations the fundamental group of S has a presentation:
hag; by; i agsbgs di; o dt o dl s d®y T fonn o
1 O 10 1
Y Y Y
[ai;bi] (@ dIA:@ IA=1j hti

i [H] (]

Where the group ht; !i corresponds to 1(Uji;+) and ht; d}i corresponds to
1(T{"™). We denote by hi: T/ ¥ T~ and by ~}: U™ T U}~ the gluing

homeomorphism in N (see gure5). Let px,_,: Xk—1 ¥ Xk—; be the covering

given by the inductive hypothesis. In particular, for each hyperbolic piece H;
(resp. Seifert piece Sj) of Xx—1 and for each component 19; of p;i_l(Hi) (resp.
§j of p;(ifl(sj)) the covering px,_,jl8i (resp. px,_,iSj) is equivalent to py;
(resp. ps;) in R. Denote by ; (resp. s;) the homomorphisms corresponding
to py; (resp. to ps;):

Sj = ,Sj ASJ' : 1(Sj) L (Z:nz GI) Li
and , =M AL (H) 'K H
where K;H;G; and L; are nite groups. In particular, we have the following

properties (P;"):
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@  wi 1(T7) = Twd 1(T7) A 1(T7) is @ homomorphism from
1(T;7) to (9):Gni(9))™") (Z79Z Z=gZ) K H with gj 2K and
“r; (M) = (g}::(9)) 71 0;0) (where T is an element of order = mny in
Gn) and (1)) = (9]V}(9)) 7 0; 0) and 7 ( l(Tji;_)) =f0g Z=qZ
Z=qZ for i=1;:;;mand j =1;:; .
(b) the groups ker( s;j 1(Uji;_)) are q q -characteristic in 1(Uji;_).

We consider the integer sequence yn(S) = fyjigi;j of liftings in Z of fv}gi;j.
It follows from the hypothesis of Case 1, that we can apply Lemma 6.5 to
S = F S!; this means that there exists a homomorphism g: 1(S) 1
Z=nZ G Lg satisfying the following equalities denoted by (Ps):

(c) the group ker( sjh I;ti) = ker( sj 1(Uji;+)) is the chatacteristic sub-
group of index q q inh };+;ti fori=1;:;tand jJ =1;:n;.

) si (T = 7si () A o(Tf): o(TfT) 1 Z=nz fog
(Z=9Z2 Z=q2) Z=_nZ f0g Li with "s(dj) = (Y};0;0), “s(t) =
(c;0;0) and *s( 1(U;™)) = fog Z=qZ Z=qZ for i = 1;::t and

J=1:5n.
1;+ 1 h% —
T =5y (|18 = 0hmb
_ 1 Hi
TH = @50 ()" (J12 = a3mi)
S
T =gy ()M, (T = akmi)
Ui =Ckn ) "1 (jus-
S1
U= (ko () T2 (U
Figure 5

Denote by ps: § ¥ S the nite covering corresponding to s, by s the
degree of ps and by x,_, the degree of px,_,. Let Tj"" (resp. T{"") be
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a torus in @S (resp. in @H;). It follows from the construction of the__cov-
erings pxk , and ps that px,_, (resp. ps) is a covering of degree J!’_ =

joCa(Tf R (I mii)j (resp. = s o(T7)i =] shdi;ti)j).
If J'+ (resp. V") denotes the number of connected components of psl(T' ")
(resp. of p>_<1—1(TJ ")) we can write:

i+ i+ _ R i— _ i+ _ i—
j i T s i = xemand U= )

by properties Pji;_ and Ps. For each component Uji;_ of S; (resp. Uji;+ of S),
the covering px,_, (resp. ps) induces the g q -characteristic covering. If

I (resp. ji;_) denotes the number of connected components of pgl(Uji;+)
(resp. of p;(ifl(uji;_)), we can write:

?? T=s ®?2 =kl @)

We want to show that there are two positive integers x and y independant of
i and j satisfying the following equalities:

x U=y T ox =y T 3)
Using (1), it is su cient to choose x and y in such a way that X s =y x,_,
which is possible. So we take x coples §;::; 8% of § and y copies RE_ ;i
R)_, of Ry with the coverings p: §' ¥ S (resp. px PR, Xq)
equivalent to ps (resp. pxbl) Then consgler the space X de ned by

x=0 " ¢A @ )Qf(_lA
i1 x 1y .

Note that it follows from the above arguments that the spaces ; ; ,§' and

1y 5%{;_1 have the same number of boundary components. Thus it is suf-
cient to show that we can glue together the connected components of X via
those of (p5)™(@S) and of (p, . )~"(@Xk-1) (see gure 5). To do this, we x

a component 'ﬁ' * (resp. 'P' ) of psl('ﬁ' ") (resp. pxk l('?i;_)) and we pro-
ceed as before W|th the components of psl(@' ") (resp. pxk l(@ji;_)). Then it

issu cient to prove that there exist homeomorphisms ﬁj' and éj' such that the
following diagrams are consistent:

1 >l

. ht R R 1 R
1+ J 1,— 1+ J 1,—
K —F 8 —§,
4) psﬁ,—“*l lpxk_ljf,—“ psjU}‘J'l lpxkljﬁji‘_ )
Yoo TR
i+ i i,— I+ 1 =
Tj Tj Ui —U;
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Since the coverings psj@ji”’ and pxk_lj@ji;_ correspond to the characteristic
subgroup of index g q in 1(Uj™) and 1(U;7), it is straightforward that
there exists a homeomorphism éJ! such that the diagram (5) is consistent (since
for each integer n, the n  n-characteristic subgroup of 1(Uj”_) is unique).
We now x a base point x* (resp. x~ = hi(x*)) in Tj';+ (resp. T;{"7). So we
have 1(T;"";x*) =hdi;ti and 1(T{"";x7) =hl};mii. By (d), we know that
the covering ps,j’ﬁj';+ corresponds to the homomorphism " de ned by:

=" "i= sijnditi="gjhdlti A jhdiiti ¥ (Z=nZ fOg) (Z=qZ Z=qZ)
with equalities: s, (d}) = (7s,(d}); s, (@) = ((¥};00; ™5, (@) (6)
and Si(t) = (,Si(t); ?\Si(t)) = ((C’ 0)’ ?\Si(t))
It follows from (&) that the covering pxkflj?ji;_ corresponds to the homomor-
phism "0z hif;mli ¥ (giGn(g))™") (Z=4Z Z=qZ) de ned by:
W=rlo= bl mii= gl mii o Ayl mji
with equalities: 1, (1) = (7, (1): ™, (1) = (@75 @) 750 M () ()
and i, (M}) = (7 rg (M) M (M) = ((9§T(9]) ™5 0); M (M)
where G, ” Z=nZ. To prove that the homomorphism h} lifts in the diagram
(4) itis su cient to see that: (h}) (ker(*)) = ker("?). It follows from the above
arguments that ker() = ker(";) \ ker(";) and ker("") = ker("?) \ ker(*}). We
rst prove the following equality (hJ!) (ker(")) = ker("). Using (6) and (7) we
know that:
"t hd;ti @ Z=nZ with "i(d}) =y} and "(t) =¢
“Lonlmii ¥ glGa(g)™t 7 Z=nZ
with "i(1j) = g;v}(g)) ™" and "(m}) = gjc(g))
Moreover, since the elements m! and I} have been chosen such that mj = hi(t)
and II = hi(d}), the above arguments imply that (h}) (ker(";)) = ker("}).
Hence it is su cient to check that (h}) (ker(*)) = ker(*Y). Since ker(*;) (resp.
ker("})) is the g g-characteristic subgroup of 1(T;"™") (resp. of 1(T;"")) this
latter equality is obvious. So the lifting criterion implies that there is a homeo-
morphism ﬁJ! such that diagram (4) commutes. Finally the space K obtained
by gluing together the connected components of X via the homeomorphisms
éJ! and ﬁJ! satis es the induction hypothesis (Hy). This proves Lemma 6.6 in
Case 1.1.
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Case 1.2 To complete the proof of Lemma 6.6 it remains to assume that the
space X is a hyperbolic submanifold of N2. In this case the arguments are
similar to those of Case 1.1. This ends the proof of Lemma 6.6. O

6.3.2 Proof of Proposition 1.12: Case 2

We now assume that for some Seifert pieces fS;;i 2 1g in N, in order to apply
Lemma 6.5 we have to take a nite covering of order p 1 inducing the trivial
covering on the boundary. More precisely, for each S;, i 2 f1;:::;tg, we denote
by y(Si) the integer sequence which comes from the hyperbolic coverings via
Corollary 6.4 and we denote by j: § ¥ S; the covering (trivial on the bound-
ary) obtained by applying Lemma 6.5 to S; with y(Sj). Then we construct a

nite covering : I ¥ N such that each component of ~%(S;) is equivalent
to the covering i: & ¥ S; in the following way: for each i 2 f1;::;tg we
denote by ; the degree of ;. We de ne the integer mqg by:

mo = Le.m( 1;:5 ¢)

For each i 2 f1;:::;tg, we take ti = mo= ; copies of S' denoted by S!;::; S{
and mq copies of H; denoted by Hi;::;Hk, for j 2 f1;::;;mg. Since the
map  induces the trivial covering on @$; we may glue together the connected

components of the space:
@) 1 O 1

A A = = 8 =1 .
X =0 SiA @ HIA
10 tl j ¢ 1 i tl j mg

via the (trivial) liftings of the gluing homeomorphism of the pieces N n Wy .
This allows us to obtain a Haken manifold N1 which is a nite covering of
N and which satis es the hypothesis of Case 1 (see subsection 6.3.1). It is
now su cient to apply the arguments of subsection 6.3.1 for the induced map
fi: M1 ¥ Nj. This completes the proof of Proposition 1.12. By paragraph
6.1.1 and paragraph 6.1.2 this completes the proof of Theorem 1.1.
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