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A criterion for homeomorphism between
closed Haken manifolds

Pierre Derbez

Abstract In this paper we consider two connected closed Haken manifolds
denoted by M3 and N3 , with the same Gromov simplicial volume. We give
a simple homological criterion to decide when a given map f : M3 ! N3

between M3 and N3 can be changed by a homotopy to a homeomorphism.
We then give a convenient process for constructing maps between M3 and
N3 satisfying the homological hypothesis of the map f .
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1 Introduction

1.1 The main result

Let N3 be an orientable connected, compact three-manifold without bound-
ary. We denote by kN3k the Gromov simplicial volume (or Gromov Invariant)
of N3 , see Gromov [7, paragraph 0.2] and Thurston [23, paragraph 6.1] for
de�nitions. Then, our main result is stated as follows.

Theorem 1.1 Let M3 and N3 be two closed Haken manifolds with the same
Gromov simplicial volume. Let f : M3 ! N3 be a map such that for any �nite
covering eN of N3 (regular or not) the induced map ef : fM ! eN is a homology
equivalence (with coe�cients Z). Then f is homotopic to a homeomorphism.

Note that the homological hypothesis on the map f required by the Theorem
1.1 is usually not easy to check. The following result, [17, Proposition 0.2 and
Lemma 0.6], gives a convenient process which allows us to construct such a map
between M3 and N3 .
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Proposition 1.2 Let M3 , N3 be two closed Haken manifolds and assume
that there is a cobordism W 4 between M3 and N3 such that:

(i) the map �1(N3)! �1(W 4) is an epimorphism,

(ii) W 4 is obtained from N3 adding handles of index � 2,

(iii) the inclusions M3 ,! W 4 and N3 ,!W 4 are Z-homological equivalences.

Then there exists a map f : M3 ! N3 satisfying the homological hypothesis of
Theorem 1.1 and thus if kMk = kNk then f is homotopic to a homeomorphism.

1.2 The motivation

The aim of Theorem 1.1 is to extend a main result of B. Perron and P. Shalen
which gives a homological criterion for deciding when a given map between two
closed, irreducible, graph manifolds, with in�nite fundamental group, can be
homotoped to a homeomorphism (see [17, Proposition 0.1]). Thus, in this paper
we want to �nd a larger class of three-manifolds for which Proposition 0.1 of B.
Perron and P. Shalen holds. Obviously their result does not hold for any closed
three-manifold. Consider for example a (closed) Z-homology sphere M3 such
that kMk = 0 and M3 6’ S3 . Then it is easy to construct a map f : M3 !
S3 which satis�es the hypothesis of Theorem 1.1. In order to generalize the
result of B. Perron and P. Shalen, a \good" class of closed three-manifolds
seems to be the Haken manifolds. This class allows us to avoid the above
type of obvious conter-example and strictly contains the class of irreducible
graph manifolds with in�nite fundamental group considered by B. Perron and
P. Shalen. Indeed, it follows from Thurston [23] and [11, paragraph IV.11]
that irreducible graph manifolds with in�nite fundamental group correspond
exactly to Haken manifolds with zero Gromov Invariant. Thus when the given
manifolds M3 and N3 have their Gromov Invariant equal to zero (i.e. if kM3k =
kN3k = 0) then Theorem 1.1 is equivalent to [17, Proposition 0.1]. Therefore,
the result of [17] allows us, from now on, to assume that the given manifolds
satisfy kM3k = kN3k 6= 0.

Finally note that the hypothesis on the Gromov Invariant of the given manifolds
is necessary in Theorem 1.1. Indeed in [2], M. Boileau and S. Wang construct
two closed Haken manifolds M3 and N3 satisfying kMk > kNk and a map
f : M ! N satisfying the homological hypothesis of Theorem 1.1.
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1.3 Preliminaries and notations

We �rst state the following terminology which will be convenient. Let T be a
2-manifold whose components are all tori and let m be a positive integer. A
covering space eT of T will be termed m�m−characteristic if each component
of eT is equivalent to the covering space of some component T of T associated
to the characteristic subgroup Hm of index m2 in �1(T ) (if we identify �1(T )
with Z� Z, we have Hm = mZ�mZ).

Recall that for a closed Haken manifold M3 , the torus decomposition of Jaco-
Shalen and Johannson ([12] and [13]) together with the uniformization Theorem
of Thurston ([22]) say that there is a collection of incompressible tori WM �M ,
unique up to ambiant isotopy, which cuts M into Seifert �bered manifolds and
hyperbolic manifolds of �nite volume. Denote the regular neighborhood of WM

by WM�[−1; 1] with WM�f0g = WM . We write MnWM�(−1; 1) = HM[SM ,
where HM is the union of the �nite volume hyperbolic manifold components
and SM is the union of the Seifert �bered manifold components. Note that
since we assume that kMk 6= 0 we always have HM 6= ;.

The hypothesis on the Gromov simplicial volume of the given manifolds allows
us to apply the following rigidity Theorem of Soma:

Theorem 1.3 [20, Theorem 1] Let f : M ! N be a proper, continuous
map of strictly positive degree between two Haken manifolds with (possibly
empty) toral boundary. Then f is properly homotopic to a map g such that
g(HM ) � HN and gjHM : HM ! HN is a deg(f)-fold covering if and and only
if kMk = deg(f)kNk.

In our case this result implies that the map f : M ! N is homotopic to a map
g which induces a homeomorphism between HM and HN . But this result does
not say anything about the behavior of f on the Seifert components SM of
M . Even if we knew that f(SM ) � SN we can not have a reduction to the
Perron-Shalen case \with boundaries" (which is not anyway treated in their
article). This comes from the fact that one does not know how to extend
a given �nite covering of SN to the whole manifold N , see [9, Lemma 4.1].
More precisely, in [9], J. Hempel shows that if S is a 3-manifold with non-
empty boundary which admits either a Seifert �bration or a complete hyperbolic
structure of �nite volume then for all but �nitely many primes q there is a
�nite covering p : eS ! S such that for each component T of @S and for
each component eT of p−1(T ) the induced map pjeT : eT ! T is the q � q -
characteristic covering of T . In particular, we can show that Hempel’s Lemma
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is true for any prime q in the case of Seifert �bered spaces without exceptional
�ber and with orientable base whose boundary contains at least two boundary
components (i.e. S ’ F � S1 where F is an orientable compact surface with
at least two boundary components). This fact is crucially used in [17] (see
proofs of Propositions 0.3 and 0.4) to construct their �nite coverings. But in
the hyperbolic manifolds case we must exclude a �nite collection of primes, thus
we cannot extend the coverings of [17] in our case. So we have to develop some
other techniques to avoid these main di�culties.

1.4 Main steps in the proof of Theorem 1.1 and statement of
the intermediate results

It follows from Waldhausen, see [24, Corollary 6.5], that to prove Theorem 1.1
it is su�cient to show that the map f induces an isomorphism f� : �1(M) !
�1(N). Note that since f is a Z-homology equivalence then it is a degree one
map so it is su�cient to see that f� : �1(M)! �1(N) is injective. On the other
hand it follows from the hypothesis of Theorem 1.1 that to prove Theorem 1.1
it is su�cient to �nd a �nite covering eN of N such that the induced mapef : fM ! eN is homotopic to a homeomorphism (i.e. is �1 -injective). Hence, we
can replace M , N and f by fM , eN and ef (for an appropriate choice of the
�nite sheeted covering of N ).

First step: Simpli�cation of N3 The �rst step consists in �nding some
�nite covering eN of N which is more \convenient" than N . More precisely,
the �rst step is to show the following result whose proof will occupy Section 2.

Proposition 1.4 Let N3 be a non geometric closed Haken manifold. Then
there is a �nite covering eN of N satisfying the following property: eN3 has
large �rst Betti number (�1( eN) � 3), each component of eN nW

Ñ
contains at

least two components in its boundary and each Seifert �bered space of eN is
homeomorphic to a product of type F � S1 where F is an orientable surface
of genus � 3.

Remark 1 In view of the above paragraph we assume now that N3 always
satis�es the conclusion of Proposition 1.4.

Second step: The obstruction This step will show that to prove Theorem
1.1 it is su�cient to see that the canonical tori of M do not degenerate (i.e.
the map f jWM : WM ! N is �1 -injective). More precisely we state here the
following result which will be proved in Section 3.
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Theorem 1.5 Let f : M3 ! N3 be a map between two closed Haken mani-
folds with the same Gromov Invariant and such that for any �nite covering eN of
N the induced map ef : fM ! eN is a Z-homology equivalence. Then f is homo-
topic to a homeomorphism if and only if the induced map f jWM : WM ! N3

is �1 -injective.

Third step: A factorization theorem It follows from Theorem 1.5 that
to show our homeomorphism criterion it is su�cient to see that the canonical
tori do not degenerate under the map f . So in the following we will suppose
the contrary. The purpose of this step is to understand the behavior (up to
homotopy) of the map f in the case of degenerate tori. To do this we recall
the de�nition of degenerate maps of Jaco-Shalen.

De�nition 1.6 Let S be a Seifert �bered space and let N be a closed Haken
manifold. A map f : S ! N is said to be degenerate if either:

(1) the group Im(f� : �1(S)! �1(N)) = f1g, or

(2) the group Im(f� : �1(S)! �1(N)) is cyclic, or

(3) the map f jγ is homotopic in N to a constant map for some �ber γ of S .

So we �rst state the following result which explains how certain submanifolds
of M3 can degenerate.

Theorem 1.7 Let f : M ! N be a map between two closed Haken manifolds
satisfying hypothesis of Theorem 1.1 and suppose that N satis�es the conclusion
of Proposition 1.4. Let T be a canonical torus in M which degenerates under
the map f . Then T separates M in two submanifolds A, B , one and only one
(say A) satis�es the followings properties:

(i) H1(A;Z) = Z and each Seifert component of A n WM admits a Seifert
�bration whose orbit space is a surface of genus 0,

(ii) each Seifert component of A nWM degenerates under the map f , A is a
graph manifold and the group f�(�1(A)) is either trivial or in�nite cyclic.

With this result we may write the following de�nitions.

De�nition 1.8 Let M3 and N3 be two closed, connected, Haken manifolds
and let f : M3 ! N3 be a map satisfying hypothesis of Theorem 1.1. We say
that a codimesion 0 submanifold A of M is a maximal end of M if A satis�es
the following three properties:
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(i) @A is a single incompressible torus, H1(A;Z) = Z and f�(�1(A)) = Z,

(ii) if p : fM !M is any �nite covering induced by f from some �nite coveringeN of N then each component of p−1(A) satis�es (i),

(iii) if C is a submanifold of M which contains A and satisfying (i) and (ii)
then A = C .

To describe precisely the behavior of the map f (up to homotopy) we still need
the following de�nition:

De�nition 1.9 Let M be a closed, connected, compact 3-manifold and let A
be a compact, connected codimension 0 submanifold of M whose boundary is a
torus in M . We say that M collapses along A if there exists a homeomorphism
’ : @(D2 � S1) ! @A = @(M n A) and a map � : M ! (M nA) [’ D2 � S1

such that �jM n A = id and �(A) = D2 � S1 .

So using Theorem 1.5 and Theorem 1.7 we obtain the following factorization
Theorem which will be used to get a good decription of the behavior of the map
f .

Theorem 1.10 Let M3 and N3 be two closed, connected, Haken manifolds
satisfying hypothesis of Theorem 1.1 and assume that N satis�es the conclusion
of Proposition 1.4. Then there exists a �nite family fA1; :::; AnM g (eventually
empty) of disjoint maximal ends of M , a Haken manifold M1 obtained from
M by collapsing M along the family fA1; :::; AnM g and a homeomorphism
f1 : M1 ! N such that f is homotopic to the map f1 �� , where � denotes the
collapsing map � : M !M1 .

Note that Theorems 1.7 and 1.10 remain true if we simply assume that the
given manifolds M3 , N3 and the map f : M3 ! N3 satis�es hypothesis of
Theorem 1.1. But it is more convenient for our purpose to suppose that N3

satis�es the conclusion of Proposition 1.4.

Fourth step The purpose of this step is to show that the hypothesis which
says that certain canonical tori degenerate is �nally absurd. To do this, we
will show that if A is a maximal end of M then we can construct a �nite
covering p : fM ! M induced by f from some �nite covering of N , such that
the connected components of p−1(A) are not maximal ends, which contradicts
De�nition 1.8. But to construct such a covering, it is �rst necessary to have
good informations about the behavior of the induced map f jA : A ! N up
to homotopy. To do this we state the following result whose proof depends
crucially on Theorem 1.10 (see Section 5.2):
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Proposition 1.11 Let f : M ! N be a map between two closed Haken
manifolds with the same Gromov Invariant satisfying the hypothesis of Theorem
1.1 and assume that N satis�es the conclusion of Proposition 1.4. If A denotes
a maximal end of M then there exists a Seifert piece S in A, whose orbit space
is a disk such that f�(�1(S)) 6= f1g, a Seifert piece B = F �S1 in N such that
f(S) � f(A) � B and f�(�1(S)) � hti, where t denotes the homotopy class of
the �ber in B .

The aim of this result is to replace the Mapping Theorem (see [12, Chapter III])
which says that if a map between a Seifert �bered space and a Haken manifold
satis�es certains good properties of non-degeneration then it can be changed
by a homotopy in such a way that its whole image is contained in a Seifert
�bered space. But when such a map degenerates (which is the case for f jA)
its behavior can be very complicated a priori.

The above result shows that the map f jA is homotopically very simple. We next
construct a �nite covering p : fM !M , induced by f from some �nite covering
of N such that the component of p−1(S) admits a Seifert �bration whose orbit
space is a surface of genus > 0. Then using [17, Lemma 3.2] we show that
the components of p−1(A) are not maximal ends which gives a contradiction.
The construction of our �nite covering depends crucially on the following result
which completes the proof of the fourth step and whose proof is based on the
Thurston Deformation Theory of complete �nite volume hyperbolic structures
and will be proved in Section 6.3.

Proposition 1.12 Let N3 be a closed Haken manifold with non-trivial Gro-
mov simplicial volume. Then there exists a �nite covering eN of N satisfying
the following property: for every integer n0 > 0 there exists an integer � > 0
and a �nite covering p : N̂ ! eN such that for each Seifert piece eS of eN nW

Ñ

and for each component Ŝ of p−1(eS) the map pjŜ : Ŝ ! eS is �ber preserving
and induces the �n0 -index covering on the �bers of eS .

Note that this result plays a Key Role in the proof of Theorem 1.1. Indeed,
this Proposition 1.12 allows us to avoid the main di�culty stated in paragraph
1.3.

2 Preliminary results on Haken manifolds

In this section we state some general results on Haken manifolds and their
�nite coverings which will be useful in the following of this article. On the
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other hand we will always suppose in the following that the given manifold N
has non trivial Gromov simplicial volume which implies in particular that N
has no �nite cover which is �bered over the circle by tori.

2.1 Outline of proof of Proposition 1.4

In this section we outline the proof of Proposition 1.4 which extends in the
Haken manifolds case the result of [15] which concerns graph manifolds. For a
complete proof of this result see [4, Proposition 1.2.1].

First note that since N is a non geometric Haken manifold then N is not a
Seifert �bered space (in particular N has a non empty torus decomposition)
and has no �nite cover that �bers as a torus bundle over the circle. By [14,
Theorem 2.6] we may assume, after passing possibly to a �nite cover, that
each component of N nWN either has hyperbolic interior or is Seifert �bered
over an orientable surface whose base 2-orbifold has strictly negative Euler
characteristic.

By applying either [14, Theorem 2.4] or [14, Theorem 3.2] to each piece Q of
N nWN (according to whether the piece is Seifert �bered or hyperbolic, resp.)
there is a prime q , such that for every Q in N nWN there is a �nite, connected,
regular cover pQ : eQ ! Q where, if T is a component of @Q, then (pQ)−1(T )
consists of more than one component; furthermore, if eT is a component of
(pQ)−1(T ), then pQj eQ : eQ! Q is the q�q -characteristic covering. This allows
us to glue the covers of the pieces of N nWN together to get a covering eN of
N in which each piece of eN nW

Ñ
has at least two boundary components. By

repeating this process, we may assume, after passing to a �nite cover, that each
component of N nWN has at least three boundary components.

Let S be a Seifert piece of N and let F be the orbit space of S . Let T1; :::; Tp
(p � 3) be the components of @S , D1; :::;Dp those of @F and set di = [Di] 2
�1(F ) (for a choice of base point). With these notations we have: �1(Ti) =
hdi; hi where h denotes the regular �ber in S . Since S has at least three
boundary components then using the presentation of �1(S) one can show that
for all but �nitely many primes q there exists an epimorphism ’ : �1(S) !
Z=qZ� Z=qZ such that:

(i) ’(dj) 62 h’(h)i for j = 1; :::; p,

(ii) ker(’j�1(Tj)) is the q�q -characteristic subgroup of �1(Tj) for j = 1; :::; p.

Let � : eS ! S be the �nite covering of S corresponding to ’ and let �F : eF !
F be the �nite (branched) covering induced by � between the orbit spaces of
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S and eS . Then using (i) and (ii) combined with the Riemann-Hurwitz formula
[18, pp. 133] one can show that eg > g where g (resp. eg) denotes the genus of
F (resp. of eF ). Thus, by applying this result combined with [14, Theorem 3.2]
to each piece Q of N nWN (according to whether the piece is Seifert �bered or
hyperbolic, resp.) there is a prime q , such that for every Q in N nWN there
is a �nite, connected, regular cover pQ : eQ! Q where, if T is a component of
@Q and if eT is a component of (pQ)−1(T ), then pQjeT : eT ! T is the q � q -
characteristic covering. This allows us to glue the covers of the pieces of N nWN

together to get a covering eN of N . Furthermore, if Q is a Seifert piece of N
whose orbit space is a surface of genus g then eQ is a Seifert piece of eN whose
orbit space is a surface of genus eg > g .

It remains to see that N is �nitely covered by a Haken manifold in which each
Seifert piece is a trivial circle bundle. Since the Euler characteristic of the orbit
space of the Seifert pieces of N is non-positive then by Selberg Lemma each
orbit space is �nitely covered by an orientable surface. This covering induces a
�nite covering (trivial when restricted on the boundary) of the Seifert piece by
a circle bundle over an orientable surface, which is trivial because the boundary
is not empty. Now we can (trivially) glue these coverings together to get the
desired covering of N .

2.2 A technical result for Haken manifolds

Proposition 2.1 Let N3 be a closed Haken manifold satisfying the conclusion
of Proposition 1.4 and let B be a Seifert piece of N . Let g and h be elements of
�1(B) � �1(N) such that either [g; h] 6= 1 or the group hg; hi is the free abelian
group of rank two. Then there exists a �nite group H and a homomorphism
’ : �1(N)! H such that ’(g) 62 h’(h)i.

The proof of this result depends on the following lemma which allows to extend
to the whole manifolds N certain \good" coverings of a given Seifert piece in
N .

Lemma 2.2 Let N be a closed Haken manifold such that each Seifert piece is
a product and has more than one boundary component and let B0 be a Seifert
piece in N . Then there exists a prime q0 satisfying the following property: for
every �nite covering eB0 of B0 which induces the qr� qr -characteristic covering
on the bounbary components of B0 with q � q0 prime and r 2 Z, there exists
a �nite covering � : eN ! N such that
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(i) the covering eN induces the qr � qr -characteristic covering on each of the
canonical tori of N ,

(ii) each component of the covering of B0 induces by eN is equivalent to eB0 .

The proof of this result depends of the following Lemma which is a slight gen-
eralization of Hempel’s Lemma, [9, Lemma 4.2] and whose proof may be found
in [4, Lemma 1.2.3].

Lemma 2.3 Let G be a �nitely generated group and let � : G! SL(2;C) be
a discret and faithful representation of G. Let �1; :::; �n be elements of G such
that �i 6= 1G and tr(�(�i)) = �2. Then for all but �nitely many primes q and
for all integers r there exists a �nite ring Aqr over Z=qrZ and a representation
�q : G! SL(2;Aqr ) such that for each element g 2 G satisfying tr(�(g)) = �2
the element �q(g) is of order qrg , with rg � r in SL(2;Aqr) and the elements
�q(�i) are of order qr in SL(2;Aqr ).

Outline of proof of Lemma 2.2 We show that if B denotes a component
of N n WN such that B 6= B0 then for each r 2 Z and for all but �nitely
many primes q there exists a connected regular �nite covering eB of B which
induces the qr � qr -characteristic covering on each of the boundary component
of B . Next we use similar arguments as in [14] using Lemma 2.3 (see [4, Lemma
1.2.2]).

Proof of Proposition 2.1 Recall that B can be identi�ed to a product F �
S1 , where F is an orientable surface of genus � 1 with at least two boundary
components. Let D1; :::;Dn denote the components of @F and set di = [Di],
for i = 1; :::; n (for a choice of base point).

Case 1 If [g; h] 6= 1, then since �1(N) is a residually �nite group (see [8,
Theorem 1.1]) there is a �nite group H and an epimorphism ’ : �1(N) ! H
such that ’([g; h]) 6= 1 and so ’(g) 62 h’(h)i.

Case 2 If [g; h] = 1 then we may write g = (u� ; t�) and h = (u�
0
; t�
0
) with

u 2 �1(F ) and where t is a generator of �1(S1) = Z. Since hg; hi is the free
abelian group of rank 2 then ��0 − �0� = γ 6= 0 and u 6= 1. We �rst show the
following assertion:

For all but �nitely many primes p there exists an integer r0 such that for each
integer r � r0 there is a �nite group K and a homomorphism  : �1(B)! K
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inducing the pr � pr -characteristic homomorphism on �1(@B) and such that
 (g) 62 h (h)i.
To prove this assertion we consider two cases.

Case 2.1 Assume �rst that �0 6= 0. Choose a prime p such that (p; �0) = 1
and (p; γ) = 1. Then using Bezout’s Lemma we may �nd an integer n0 such
that � − n0�

0 62 pZ. Then using the Key Lemma on surfaces of B. Perron
and P. Shalen, [17, Key Lemma 6.2], by taking g = u we get a homomorphism
� : �1(F )! HF , where HF is a p-group and satisfying �(u) 6= 1 and �(di) has
order pr in HF . Let � : Z ! Z=prZ denote the canonical epimorphism and
consider the following homomorphism:

 = �� � : �1(F )� Z! HF � Z=prZ

It follows now easily from the above construction that  (g) 62 h (h)i and
ker( jhdi; ti) = hdp

r

i ; h
pri.

Case 2.2 We now suppose that �0 = 0. Thus we have g = (u�; t�) and h =
(u�

0
; 1) with �0� 6= 0. Recall that �1(F ) = hd1i� :::�hdn−1i�Lq with di = [Di],

where D1; :::;Dn denote the components of @F and where Lq is a free group.
Let �2 : �1(F )! Z be an epimorphism such that �2(d1) = :::�2(dn−1) = 1 and
�2(Lq) = 0. This implies that �2(dn) = −(n− 1). Choose a prime p satisfying
(p; �) = 1, (p; n−1) = 1 and let " : Z! Z=prZ be the canonical epimorphism.
So consider the following homomorphism.

 = (" � �2)� " : �1(B) = �1(F )� Z! Z=prZ� Z=prZ

We now check easily that  (g) 62 h (h)i and ker( jhdi; ti) = hdp
r

i ; h
pr i which

completes the proof of the above assertion.

Let �̂ : B̂ ! B be the covering corresponding to the above homomorphism
 . Since this covering induces the pr � pr -covering on each component of
@B then using Lemma 2.2 there is a �nite covering � : N̂ ! N of N such
that each component of �−1(B) is equivalent to �̂ . We identify �1(N̂ ) as a
subgroup of �nite index of �1(N). Let � be a subgroup of �1(N̂) such that �
is a �nite index regular subgroup of �1(N). Then the canonical epimorphism
’ : �1(N)! �1(N)=� satis�es the conclusion of Proposition 2.1.

3 Proof of Theorem 1.5

In this section we always assume that the manifold N3 has non-trivial Gromov
Invariant and satis�es the conclusion of Proposition 1.4.
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3.1 Main ideas of the proof of Theorem 1.5

It follows from the Rigidity Theorem of Soma (see Theorem 1.3) that f is
properly homotopic to a map, still denoted by f , such that f j(HM ; @HM ) :
(HM ; @HM ) ! (HN ; @HN ) is a homeomorphism. Then we will prove (see
Lemma 3.5) that we may arrange f by a homotopy �xing f jHM such that
f(SM) � SN : this is the Mapping Theorem of W. Jaco and P. Shalen with
some care. So our main purpose here is to �nd a �nite covering eN of N such
that for each component eB of SÑ there exists exactly one Seifert piece eA
of S

M̃
such that f( eA; @ eA) � ( eB; @ eB). We next prove that the induced map

f j( eA; @ eA) is homotopic to a homeomorphism. To do this the key step consists,
for technical reasons, in �nding a covering fM0 of M , induced by f , such that
for each Seifert piece Ai of S

M̃0
the induced covering eAi over Ai is a Seifert

�bered space whose orbit space is a surface of genus � 3. This step depends on
Proposition 2.1. Indeed the construction of fM0 will be splitted in two steps:

First step The �rst step is to prove that there exists a �nite covering fM0 of
M induced by f from some �nite covering eN0 of N in which each Seifert piece
is either based on a surface of genus � 3 (type I) or based on an annulus (type
II) (see Lemma 3.1). More precisely the result of Lemma 3.1 is the \best" that
we may obtain using Proposition 2.1.

Second step The main purpose of this step is to prove, using speci�c argu-
ments, that fM0 contains no Seifert piece of type II. More precisely, if Ai denotes
a Seifert piece of type II in fM0 then using [12, Characteristic Pair Theorem]
we know that there is a Seifert piece Bj in N such that f(Ai) � int(Bj) (up
to homotopy). Then we construct a vertical torus U in Bj such that if T is a
component of @Ai then f may be changed by a homotopy �xing fM0 n Ai so
that f jT : T ! U is a homeomorphism. We next use the structure of �1(Bj) to
show that this implies that Ai has no exceptional �ber (i.e. Ai = S1 � S1 � I )
which contradicts the minimality of the Torus Decomposition of fM0 .

Finally we show that the results obtained in the above steps allows us to use
arguments similar to those of [17, paragraphs 4.3.15 and 4.3.16] to complete
the proof (see paragraph 3.5).

3.2 Proof of the �rst step

This section is devoted to the outline of proof of the following result (for a
complete proof see [4, Lemma 3.2.1]).
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Lemma 3.1 There exists a �nite covering fM0 of M induced by f from some
�nite covering eN0 of N in which each Seifert piece eA is either based on a
surface of genus � 3 (Type I) or satis�es the following properties (Type II):

(i) the orbit space of eA is an annulus,

(ii) the group f�(�1( eA)) is isomorphic to Z�Z,

(iii) for each �nite covering � : M̂ ! fM0 induced by f from some �nite
covering of eN0 then each component of �−1( eA) satis�es points (i) and (ii).

The proof of this result depends on the following lemma.

Lemma 3.2 Let S be a Seifert piece in M whose orbit space is a surface
of genus 0. Suppose that S contains at least three non-degenerate boundary
components. Then there exists a �nite covering eS of S satisfying the two
followings properties:

(i) eS admits a Seifert �bration whose orbit space is a surface of genus � 1,

(ii) eS is equivalent to a component of the covering induced from some �nite
covering of N by f .

Proof Denote by F the orbit space of the Seifert piece S . Let T1; :::; Tj ,
j � 3, be the non-degenerate tori in @S and �1(Tl) = hdl; hi, 1 � l � j ,
the corresponding fundamental groups. Since Rk(hf�(dl); f�(h)i) = 2 for l �
j , it follows from Proposition 1.4, that there exists a �nite group H and a
homomorphism ’ : �1(N)! H such that ’ � f�(dl) 62 h’f�(h)i for 1 � l � j .

Let K be the group ’f�(�1(S)) and denote by � : eS ! S the �nite covering
corresponding to ’ � f� : �1(S)! K . Then eS inherits a Seifert �bration with
some base eF . We denote by � the order of K , by t the order of ’f�(h) in
K and by �i the order of ’f�(ci) where c1; :::; cr denote the exceptional �bers
of S with index �1; :::; �r . The map � induces a covering �F : eF ! F on the
orbit spaces of S and eS with degree � = �=t, rami�ed at the points ci 2 F
corresponding to the exceptional �ber ci of S . Let �l , l = 1; :::; p, denote the
boundary components of F corresponding to dl and let e�1

l ; :::;
e�rll denote the

components of �−1
F (�l). Then we have rlnl = � for each l , where nl is the

index of the subgroup generated by ’f�(dl) and ’f�(h) in K . Then by the
Riemann-Hurwitz formula ([18, pp. 133], see also [17, Section 4.2.12]) we get:

2eg = 2 + �

 
2g + p+ r − 2−

l=pX
l=1

1
nl
−

i=rX
i=1

1
(�i; �i)

!
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where eg (resp. g) denotes the genus of eF (resp. of F , here g = 0), p denotes
the number of boundary components of F and (�i; �i) denotes the greatest
common divisor of �i and �i . Remark that nl � 2 for l � j . Indeed if
nl = 1 then jK : h’f�(h); ’f�(dl)ij = rl = � = �=t = jK; h’f�(h)ij. Hence
h’f�(h); ’f�(dl)i = h’f�(h)i which is impossible since ’f�(dl) 62 h’f�(h)i. In
particular we have � � 2.

Case 1 If j � 4 then nl � 2 for l = 1; :::; j and so 2eg � 2+�(p−p+4−2−2) =
2. Thus eg � 1.

Case 2 If j = 3 we have 2eg � 2 + �(1 − 1
n1
− 1

n2
− 1

n3
) with n1; n2; n3 � 2.

If � = 2 then n1 = n2 = n3 = 2 and thus eg � 1.

If � > 2 then either nl > 2 for l = 1; :::3, and thus eg � 1 or there is an element
l in f1; :::3g such that nl = 2. Since � = nlrl we have rl � 2 and thus eS
contains at least four boundary components which are non-degenerate and we
have a reduction to Case 1. This proves the Lemma.

Outline of proof of Lemma 3.1 Let A be a Seifert piece of M whose orbit
space is a surface of genus g = 2 (resp. g = 1). We prove here that such a Seifert
piece is neccessarily of type I. It follows from the hypothesis of Theorem 1.5 that
f jA : A ! N is a non-degenerate map thus using [12, Mapping Theorem] we
can change f in such a way that f(A) is contained in a (product) Seifert piece
B of N . Then combining the fact that f j@A is non-degenerate and Proposition
2.1 we may easily construct a �nite (regular) covering of M induced by f from
a �nite covering of N in which each component of the pre-image of A is a
Seifert piece whose orbit space is a surface of genus g � 3 (resp. g � 2).

Suppose now that the orbit space F of A is a surface of genus 0. It is easily
checked that F has at least two boundary components. If A has at least three
boundary components then it follows easly from Lemma 3.2 that there is a �nite
covering of M induces by f from a �nite covering of N in which the lifting
of A is a Seifert piece of type I. Thus we may assume that A has exactly two
boundary components (and then F ’ S1 � I ).

If f�(�1(A)) is non-abelian then we check that A has at least three boundary
components and thus we have a reduction to the \Type I" case. So suppose now
that f�(�1(A)) is abelian. Since f is a non-degenerate map and since f�(�1(A))
is a subgroup of a torsion free three-manifold group it is a free abelian group of
rank 2 or 3 (see [12, Theorem V.I and paragraph V.III]). If f�(�1(A)) = Z�Z�Z
then A has at least three boundary components and we have a reduction to
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the type I case. So we may assume that f�(�1(A)) = Z�Z. If there is a �nite
covering p of M induced by f from some �nite covering of N such that some
component of p−1(A) does not satisfy (i) or (ii) of Lemma 3.1 then using the
above argument we show that A is a component of type I, up to �nite covering.
If (i) and (ii) of Lemma 3.1 are always checked for any �nite covering then A
is a component of type II.

3.3 Preliminaries for the proof of the second step

3.3.1 Introduction

In the following we set fAi; i = 1; :::; s(M)g (resp. fB�; � = 1; :::; s(N)g) the
Seifert pieces of a minimal torus decomposition of M (resp. N ). On the other
hand we will denote by W S

M (resp. W S
N ) the canonical tori of M (resp. of N )

which are adjacent on both sides to Seifert pieces of M (resp. of N ). We set
A0i = Ai nWM � [−1; 1], for i = 1; :::; s(M). Using hypothesis of Theorem 1.5
and applying the Characteristic Pair Theorem of [12] we may assume that for
each i there is an �i such that f(A0i) � int(B�i). Thus if �M (resp. �N )
denotes the union of the components of SM (resp. SN ) with the components
Ti � [−1; 1] of WM � [−1; 1] (resp. WN � [−1; 1]) such that Ti � f�1g � @HM

(resp. Ti � f�1g � @HN ) then f(�M) � int(�N ). Moreover, by identifying a
regular neighborhood of W S

M with W S
M � I we may suppose, up to homotopy,

that f−1(W S
N ) is a collection of incompressible tori in W S

M � I . Indeed since
for each i = 1; :::; s(M) we have f(A0i) � int(B�i) then using standard cut and
paste arguments we may suppose, after modifying f by a homotopy which is
constant on [A0i [HM that f−1(W S

N ) is a collection of incompressible surfaces
in W S

M � I . Since each component Tj of W S
M is an incompressible torus then

f−1(W S
N ) is a collection of tori parallel to the Tj . In the following the main

purpose (in the second step) is to prove the following key result.

Lemma 3.3 Let fAi; i = 1; :::; s(fM0)g (resp. fB�; � = 1; :::; s(fN0)g) be the
Seifert pieces of S

M̃0
(resp. of S

Ñ0
). Then f is homotopic to a map g such

that:

(i) gj(H
M̃0
; @H

M̃0
) : (H

M̃0
; @H

M̃0
)! (H

Ñ0
; @H

Ñ0
) is a homeomorphism,

(ii) for each � 2 f1; :::; s(fN0)g there is a single i 2 f1; :::; s(fM0)g such that
f(Ai; @Ai) � (B�; @B�). Moreover the induced maps fi = f jAi : Ai ! B� are
Z-homology equivalences and f j@Ai : @Ai ! @B� is a homeomorphism.
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The proof of this result will be given in paragraph 3.4 using Lemma 3.4 below.
In the remainder of Section 3 we will always assume that (M;N; f) is equal to
(fM0; eN0; ef0) given by Lemma 3.1. The goal of this paragraph 3.3 is to prove
the following Lemma which simpli�es by a homotopy the given map f .

Lemma 3.4 There is a subfamily of canonical tori fTj ; j 2 Jg in M which
cuts M nHM into graph manifolds fVi; i = 1; :::; t(M) � s(M)g such that:

(i) for each �i 2 f1; :::; s(N)g there is a single i 2 f1; :::; t(M)g such that f is
homotopic to a map g with g(Vi; @Vi) � (B�i ; @B�i). Moreover we have:

(ii) (Vi; @Vi) contains at least one Seifert piece of type I,

(iii) gj@Vi : @Vi ! @B�i is a homeomorphism,

(iv) gi = gj(Vi; @Vi) : (Vi; @Vi)! (B�i ; @B�i) is a Z-homology equivalence.

3.3.2 Some useful lemmas

The proof of Lemma 3.4 depends on the following results. In particular Lemma
3.9 describes precisely the subfamily of canonical tori fTj ; j 2 Jg. Here hy-
pothesis and notations are the same as in the above paragraph. The following
result is a consequence of [20, Main Theorem] and [19, Lemma 2.11].

Lemma 3.5 There is a homotopy (ft)0�t�1 such that f0 = f : M ! N ,
ftj�M = f j�M and such that f1j(HM ; @HM ) : (HM ; @HM )! (HN ; @HN ) is a
homeomorphism.

Proof Let T be a component of @HN . We �rst prove that, up to homotopy
�xing f j�M , we may assume that each component of f−1(T ) is a torus which is
parallel to a component of WM . Indeed since f(�M ) � int(�N ) then f−1(T )\
�M = ;. On the other hand since @�M is incompressile, then using standard
cut and paste arguments (see [24]) we may suppose that, up to homotopy �xing
f j�M , f is transversal to T and that f−1(T ) is a collection of incompressible
surfaces in M n �M . The hypothesis of Theorem 1.5 together with Theorem
1.3 imply that HM ’ HN . Hence we may use similar arguments as those of
[19, Proof of Lemma 2.11] to show that each component of f−1(T ) is a torus.
Thus f−1(T ) is a collection of incompresible tori in HM

S
[j(Tj � [−1; 1]).

Since each incompressible torus in HM is @ -parallel then we may change f
by a homotopy on a regular neighborhood of HM to push these tori in @HM .
Finally f−1(@HN ) is made of tori parallel to some components of WM . Each
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component Ei of f−1(HN ) is a component of M cutted along f−1(@HN ).
Since f(�M)\HN = ; then f−1(HN ) �M n�M = HM [

S
Ti� I . Then each

component Ei is either a component of HM or a component Tj � [−1; 1]. For

each component H of HN we have degff−1(H)
f j! Hg = deg(f) = 1. Since a

map T � [−1; 1]! H has degree zero then f−1(H) must contain a component
of HM . Since HM ’ HN then f−1(H) contains exactly one component H 0 of
HM which is sent by f with degree equal to 1. So it follows from [22, Lemma
1.6] that after modifying f by a homotopy on a regular neighborhood of H 0

then f sends H 0 homeomorphically on H . We do this for each component of
HN . This �nishs the proof of Lemma 3.5.

We next prove the following result.

Lemma 3.6 Let A be a Type II Seifert piece in M given by Lemma 3.1 (recall

that we have replaced fM0 by M ). Then we have the following properties:

(i) A is not adjacent to a hyperbolic piece in M ,

(ii) let S be a Seifert piece adjacent to A and let B be the Seifert piece in N
such that f(S0) � int(B) then necessarily f(A) � int(B).

The proof of this lemma depends on the following result whose proof is straight-
foward.

Lemma 3.7 Let A be a codimension 0 graph submanifold of M whose bound-
ary is made of a single canonical torus T �M and such that Rk(H1(A;Z)) = 1.
If each canonical torus in A separates M then A contains a component which
admits a Seifert �bration whose orbit space is the disk D2 .

Proof of Lemma 3.6 We �rst prove (i). Let T1 and T2 be the boundary
components of A. Suppose that there is a hyperbolic piece H in M which is
adjacent to A along T1 . Up to homotopy we know that f(A0) � int(B) where B
is a Seifert piece in N , f(H;@H) � (Hi; @Hi) where Hi is a hyperbolic piece in
N and that f j(H;@H) : (H;@H)! (Hi; @Hi) is a homeomorphism. Denote by
W (T1) a regular neighborhood of T1 in M . Then f(W (T1)) contains necessarily
one component of @B \ @Hi and so f induces a map f1 : (A;T1) ! (B; @B).
Since f j(H;@H) : (H;@H) ! (Hi; @Hi) is a homeomorphism we have found a
canonical torus U in @B such that f jT1 : T1 ! U is a homeomorphism. Recall
that �1(A) has a presentation:

hd1; d2; q1; :::qr; h : [h; qi] = [h; dj ] = 1; q�ii = hγi ; d1d2q1:::qr = hbi
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and �1(B):*
a1; b1; :::ag; bg; �1; :::�p; t : [t; �k] = [t; ai] = [t; bj ] = 1;

i=gY
i=1

[ai; bi]�1:::�p = 1

+
with �1(U) = h�1; ti. So we get f�(h) = (��1 ; t

�), with (�; �) = 1. Let ci be the
homotopy class of an exceptional �ber in A which exists, otherwise A would be
homeomorphic to S1 � S1 � I , which is excluded. So c�ii = h for some �i > 1.
Since f�(�1(A)) is isomorphic to Z�Z, we get: f�(ci) = (��i1 ; t�i). So we have
�ij(�; �). This is a contradiction which proves (i).

Before continuing the proof of Lemma 3.6 we state the following result.

Lemma 3.8 Let M , N be two Haken manifolds and let f : M ! N be
a Z-homology equivalence. Moreover we assume that M and N satisfy the
conclusions of Lemma 3.1. If T is a separating canonical torus which is a
boundary of a type II Seifert piece in M then there exists a �nite covering p
of M induced by f from a �nite covering of N such that some component of
p−1(T ) is non-separating.

Proof Let T be a separating torus in M and let X1 and X2 be the components
of M n T . We �rst prove that H1(X1;Z) 6’ Z and H1(X2;Z) 6’ Z. Suppose
the contrary. Thus we may assume that H1(X1;Z) ’ Z. It follows from (i)
of Lemma 3.6, from Lemma 3.1 and from [17, Lemma 3.2] that X1 is made of
Seifert pieces of Type II. Since T = @X1 is a separating torus in M then each
canonical torus in X1 separates M . Indeed to see this it is su�cient to prove
that if A is a Seifert piece of X1 (of type II) whose a boundary component, say
T1 is separating in M then so is the second component of @A, say T2 . This
fact follows easily from the homological exact sequence of the pair (A; @A).
Thus we may apply Lemma 3.7 to X1 which gives a contradiction with the
fact that M contains no Seifert piece whose orbit space is a disk. Hence we
get H1(X1;Z) 6’ Z. The same argument shows that H1(X2;Z) 6’ Z. So
to complete the proof it is su�cient to apply arguments of [17] in paragraph
4.1.4.

End of proof of Lemma 3.6 We now prove (ii) of Lemma 3.6. Let S be a
Seifert piece adjacent to A along T1 . Let BS and BA be the Seifert pieces
in N such that f(A0) � int(BA), f(S0) � int(BS) and let T1 , T2 be the @ -
components of A. If BA 6= BS , then by identifying a regular neighborhood
W (T1) of T1 with T1 � [−1; 1] in such a way that f(T1 � f−1g) � int(BA)
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and f(T1 � f+1g) � int(BS) we see, using paragraph 3.3.1, that f(W (T1))
must contain a component U of @BA . Thus, modifying f by a homotopy
supported on a regular neighborhood of T1 , we may assume that f induces a
map f : (A;T1)! (BA; U).

Case 1 Suppose �rst that T1 is non-separating in M . We may choose a
simple closed curve γ in M such that γ cuts T1 in a single point. Since f is a
Z-homology equivalence it must preserve intersection number and then we get:

[T1]:[γ] = deg(f jT1 : T1 ! U)� [U ]:[f�(γ)] = 1

Hence deg(f jT1 : T1 ! U) = 1 and then f jT1 : T1 ! U induces an isomorphism
f�j�1(T1) : �1(T1) ! �1(U). Thus we get a contradiction as in the proof of (i)
using the fact that f�(�1(A)) is abelian.

Case 2 Suppose now that T1 separates M and denote by XS the component
of M nT1 which contains S and by XA the component of M nT1 which contains
A. Let p : fM ! M be the �nite covering of M given by Lemma 3.8 with T1 .
There is a component eT of p−1(T1) which is non-separating in fM . Let eA, eS
be the Seifert components of fM adjacent to both sides of eT . Recall that eA is
necessarily a Seifert piece of type II such that f�(�1( eA)) is abelian (see Lemma
3.1). Let BÃ (resp. BS̃ ) be the Seifert pieces of eN such that

f( eA0) � int(B
Ã

) f(eS0) � int(B
S̃

):

Since BA 6= BS then BÃ 6= BS̃ , and thus there is a component eU in @BÃ such
that ef induces a map ef : ( eA; eT )! (B

Ã
; eU). Since eT is non-separating we have

a reduction to case 1. This proves Lemma 3.6.

Lemma 3.9 There is a homotopy (ft)0�t�1 with f0 = f and ftj(HM ; @HM ) =
f j(HM ; @HM ) and a collection of canonical tori fTj ; j 2 Jg �W S

M such that:

(i) f1 is transversal to W S
N ,

(ii) f−1
1 (W S

N ) =
S
j2J Tj ,

(iii) the family fTj ; j 2 Jg corresponds exactly to tori of W S
M which are

adjacent on both sides to Seifert pieces of type I.

Proof The proof of (i) and (ii) are similar to paragraphs 4.3.3 and 4.3.6 of
[17]. Thus we only prove (iii). Let T be a component of W S

M which is adjacent
to Seifert pieces of type I denoted by Ai , Ai0 in M . Using the same arguments
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as in paragraph 4.3.7 of [17] we prove that T � [−1; 1] contains exactly one
component of f−1(W S

N ).

On the other hand if T is the boundary component of a Seifert piece of type II
denoted by Ai we denote by Aj the other Seifert piece adjacent to T . It follows
from Lemma 3.6 that B�i = B�j . Thus we get f(A0i [ (T � [−1; 1]) [ A0j) �
int(B�i), and hence T � [−1; 1] contains no component of f−1(W S

N ). This
completes the proof of Lemma 3.9.

3.3.3 End of proof of lemma 3.4

Let V1; :::; Vt(M) be the components of (M nHM ) n ([j2JTj) where fTj ; j 2 Jg
is the family of canonical tori given by Lemma 3.9. It follows from Lemma 3.9
that f induces a map fi : (Vi; @Vi)! (B�i ; @B�i). Since deg(f) = 1, then the
correspondance: f1; :::; t(M)g 3 i 7! �i 2 f1; :::; s(N)g is surjective.

(a) The fact that the graph manifolds V1; :::; Vt(M) contain some Seifert piece of
type I comes from the construction of the Vi and from Lemma 3.6. Remark that
the construction implies that if A is a Seifert piece in Vi such that @Vi\@A 6= ;
then A is of Type I (necessarily).

(b) We next show that the correspondence i 7! �i is bijective. Since f is a
degree one map then to see this it is su�cient to prove that this map is injective.
Suppose the contrary. Hence we may choose two pieces V1 and V2 which are
sent in the same Seifert piece B� in N . If V1 and V2 are adjacent we denote
by T a common boundary component and by A1 � V1 and A2 � V2 the Seifert
pieces (necessarily of type I) adajacent to T . Thus by [17, Lemma 4.3.4] we have
a contradiction. Thus we may assume that V1 and V2 are non-adjacent. Since
deg(f) = 1 we may assume, after re-indexing, that f1 : (V1; @V1)! (B�; @B�)
has non-zero degree and that f2 : (V2; @V2) ! (B�; @B�) with V1 and V2

non-adjacent. Moreover, if A?i (resp. V ?
i ) denotes the space obtained from Ai

(resp. Vi ) by identifying each component of @Ai (resp. @Vi ) to a point, we have:
Rk(H1(A?i ;Q)) � Rk(H1(V ?

i ;Q)). Since Ai is of Type I, using [17, Lemma
3.2], we get Rk(H1(A?i ;Q)) � 4 and thus Rk(H1(V ?

i ;Q)) � 4. Thus to obtain
a contradiction we apply the same arguments as in the proof of Lemma 4.3.9
of [17] to V1 and V2 . This proves point (i) of Lemma 3.4.

We now show that we can arrange f so that fij@Vi : @Vi ! @B�i is a
homeomorphism for all i. The above paragraph implies that f induces maps
fi : (Vi; @Vi)! (B�i ; @B�i) such that deg(fi) = deg(f) = 1 for all i. Thus we
need only to show that fi induces a one-to-one map from the set of components
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of @Vi to the set of components of @B�i . To see this we apply arguments of
paragraph 4.3.12 of [17].

Since f is a Z-homology equivalence and since fi is a degree one map and
restricts to a homeomorphism on the boundary, by a Mayer-Vietoris argument
we see that fi is a Z-homology equivalence for every i. This achieves the proof
of Lemma 3.4.

3.4 Proof of Lemma 3.3

It follows from Lemma 3.4 that to prove Lemma 3.3 it is su�cient to show
that any graph manifold V = Vi of fV1; :::; Vt(M)g contains exactly one Seifert
piece (necessarily of Type I). In fact it is su�cient to prove that V does not
contains type II components. Indeed, in this case, if there were two adjacent
pieces of type I, they could not be sent into the same Seifert piece in N , by an
argument made in paragraph 3.3.3. So we suppose that V contains pieces of
type II. Then we can �nd a �nite chain (A1; :::; An) of Seifert pieces of type II
in V such that:

(i) Ai � int(V ) for i 2 f1; :::; ng,

(ii) A1 is adjacent in V to a Seifert piece of type I, denoted by S1 , along
a canonical torus T1 of WM and An is adjacent to a Seifert piece of type I,
denoted by Sn in V along a canonical torus Tn ,

(iii) for each i 2 f1; :::; n − 1g the space Ai is adjacent to Ai+1 along a single
canonical torus in M .

This means that each Seifert piece of type II in M can be included in a maximal
chain of Seifert pieces of type II. In the following we will denote by X the
connected space

S
1�i�nAi corresponding to a maximal chain of Seifert pieces

of type II in V and by B = F �S1 the Seifert piece of N such that f(V; @V ) =
(B; @B).

Remark 2 In the following we can always assume, using Lemma 3.8, up to
�nite covering, that M nX is connected (i.e. T1 is non-separating in M ).

In the proof of lemma 3.3 it will be convenient to separate the two following
(exclusive) situations:

Case 1 We assume that T1 is a non-separating torus in V (i.e. V n X is
connected),
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Case 2 We assume that T1 is a separating torus in V (i.e. V nX is discon-
nected).

We �rst prove that Case 1 is impossible (see section 3.4.1). We next show (see
section 3.4.2) that in Case 2 there is a �nite covering p : fM !M induced by f
from some �nite covering of N such that for each component eV of p−1(V ) the
component eX of p−1(X) which is included in eV is non-separating in eV , which
gives a reduction to Case 1. This will imply that the family X of components
of type II in V is empty and then the proof of Lemma 3.3 will be complete.
Before the beginning of the proof we state the following result (notations and
hypothesis are the same as in the above paragraph).

Lemma 3.10 Let V be a graph piece in M correponding to the decomposition
given by Lemma 3.4 and let X be a maximal chain of Seifert pieces of type II
in V . Then the homomorphism (iX )� : H1(@X;Z) ! H1(X;Z), induced by
the inclusion @X ,! X is surjective.

Proof Let G be the space M n X (connected by Remark 2). Since G con-
tains at least one Seifert piece of type I, then using [17, Lemma 3.2], we get
Rk(H1(G;Z)) � 6. Thus the homomorphism (iG)� : H1(@G;Z) ! H1(G;Z)
induced by the inclusion iG : @G ! G is not surjective. Thus there exists a
non-trivial torsion group LG and a surjective homomorphism:

�G : H1(G;Z)! LG

such that (�G)� � (iG)� = 0. On the other hand if we assume that (iX)� :
H1(@X;Z) ! H1(X;Z) is not surjective, then there is a non-trivial torsion
group LX and a surjective homomorhism:

�X : H1(X;Z)! LX

such that (�X)� � (iX)� = 0, where iX is the inclusion @X ! X . Thus using
the Mayer-Vietoris exact sequence of the decomposition M = X [ G, we get:
H1(M;Z) = H1(G;Z)�H1(X;Z)�Z which allows us to construct a surjective
homomorphism

� : H1(M;Z)! LX � LG
such that �(H1(G;Z)) 6= 0; �(H1(X;Z)) 6= 0 and �(H1(@X;Z)) = 0. Let
p : fM !M be the �nite covering corresponding to �. Then p−1(@X) has jLX�
LGj components and each component of p−1(G) (resp. of p−1(X)) contains
2jLX j > 2 (resp. 2jLGj > 2) boundary components. This implies that for each
component of p−1(X) the number of boundary components over T1 is jLGj > 1,
which implies the each component of p−1(X) contains some Seifert piece which
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are not of type II. Moreover since p is an abelian covering and since f is a
Z-homology equivalence then fM is induced by f from a �nite covering of N .
Since X is made of Seifert pieces of type II this contradicts Lemma 3.1 and
proves Lemma 3.10.

3.4.1 The \non-separating" case

In this section we prove that if V nX is connected then we get a contradiction.
This result depends on the following Lemma:

Lemma 3.11 Let W (T1) be a regular neighborhood of T1 . Then there exists
an incompressible vertical torus U = Γ� S1 in B ’ F � S1 where Γ � F is a
simple closed curve and a homotopy (ft)0�t�1 such that:

(i) f0 = f , the homotopy (ft)0�t�1 is equal to f when restricted to M nW (T1)
and f1(T1) = U ,

(ii) �1(U; x) = hu; tBi with x 2 f1(T1), u is represented by the curve Γ in F
and tB is represented by the �ber of �1(B;x).

Proof Denote by X1 the space f(T1). Since T1 is a non-separating torus in
V we can choose a simple closed curve γ in int(V ) such that:

(i) γ cuts each component of @Ai , i = 1; :::; n transversally in a single point
and the other canonical tori of int(V ) transversally,

(ii) γ representes a generator of H1(M;Z)=T (M) where T (M) is the torsion
submodule of H1(M;Z).

γ

T1Tn

S1
Sn

A1An

Figure 1
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Let ? be a base point in T1 such that γ \ T1 = f?g and set x = f(?). Let
h be the homotopy class of the regular �ber of A1 and let d1 be an ele-
ment in �1(A1; ?) such that hd1; hi = �1(T1; ?). We now choose a basis of
H1(M;Z)=T (M) of type f[γ]; e2; :::; eng. Since f is a Z-homology equivalence
then the family ff�([γ]); f�(e2); :::; f�(en)g is a basis of H1(N;Z)=T (N). We
want to construct an epimorphism p1 : H1(N;Z) ! Z such that p1(f�([γ])) is
a generator of Z and such that p1(f�(h[d1]; [h]i)) = 0.

To do this we choose a basis f[γ]; e2; :::; eng of H1(M;Z)=T (M) so that [T1]�ei =
0 for i = 2; :::; n. Denote by i the inclusion T1 ,! M . Since [T1] � i�(h) =
[T1]�i�(d1) = 0 then i�(h) and i�(d1) are in the subspace K of H1(M;Z)=T (M)
generated by fe2; :::; eng. So it is su�cient to choose p1 equal to the projection
of H1(N;Z) on Zf�([γ]) with respect to f�(K). Denote by " the following
homomorphism:

�1(N;x) Ab! H1(N;Z)
p1! Z

Thus we get an epimorphism " : �1(N;x) ! Z such that "([f(γ)]) = z�1

where z is a generator of Z and x = f(?). Since �1(B;x) is a subgroup
of �1(N;x) and since [f(γ)] is represented by f(γ) in B then " induces an
epimorphism �� = "j�1(B;x) : �1(B;x) ! Z = �1(S1) with ��([f(γ)]) = z�1

and ��(�1(X1; x)) = 0 in Z. Since B and S1 are both K(�; 1), it follows from
Obstruction theory (see [8]) that there is a continuous map � : (B;x)! (S1; y)
which induces the above homomorphism and such that y = �(x).

The end of proof of Lemma 3.11 depends on the following result. Notations
and hypothesis are the same as in the above paragraph.

Lemma 3.12 There is a homotopy (�t)0�t�1 with �0 = � such that:

(i) �1(X1) = �1(f(T1)) = y ,

(ii) �−1
1 (y) is a collection of incompressible surfaces in B .

Proof Since ��(�1(X1; x)) = 0 in �1(S1; y) then the homomorphism (�jX1)� :
�1(X1; x) ! �1(S1; y) factors through �1(z) where z is a 0-simplexe. Then
there exist two maps �� : �1(X1; x) ! �1(z) and �� : �1(z) ! �1(S1; y)
such that (�jX1)� = �� � �� . Since z and S1 are both K(�; 1) then the
homomorphisms on �1 are induced by maps � : (X1; x) ! z , � : z ! (S1; y)
and �jX1 is homotopic to � � �. Thus we extend this homotopy to B and
we denote by �0 the resulting map. Then the map �0 : (B;x) ! (S1; y) is
homotopic to � and �0(X1) = y . This proves point (i) of the Lemma.
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Using [8, Lemma 6.4], we may suppose that each component of �0−1(y) is a
surface in B . To complete the proof of the lemma it is su�cient to show that
after changing �0 by a homotopy �xing �0jX1 , then each component of �0−1(y)
is incompressible in B . In [8, pp. 60-61], J. Hempel proves this point using
chirurgical arguments on the map �0 to get a simplical map �1 homotopic to
�0 such that �1 is \simpler" than �0 , (this means that c(�1) < c(�0) where
c(�) is the complexity of �) and inducts on the complexity of �0 . But these
chirurgical arguments can a priori modify the behavior of �0jX1 . So we will
use some other arguments. Let U be the component of �0−1(y) which contains
f(T1) = X1 . Then since f jT1 : T1 ! N is non-degenerate the map f : (T1; ?)!
(U; x) induces an injective homomorphism (f jT1)� : �1(T1; ?)! �1(U; x). Since
�1(U; x) is a surface group then �1(U; x) has one of the following forms:

(i) a free abelian group of rank � 2 or,

(ii) a non-abelian free group (when @U 6= ;) or,

(iii) a free product with amalgamation of two non-abelian free groups.

Since �1(U; x) contains a subgroup isomorphic to Z�Z then �1(U; x) ’ Z�Z
and hence U is an incompressible torus in B . Note that we necessarily have
f(T1) = U . Indeed if there were a point ? 2 U such that f(T1) � U −f?g then
the two generators free group �1(U−f?g) would contain the group f�(�1(T1)) =
Z� Z, which is impossible.

End of proof of Lemma 3.11 We show here that U satis�es the conclusion
of Lemma 3.11. Since (�0)�(f�(γ)) = z�1 then the intersection number (counted
with sign) of f(γ) with U is an odd number and then U is a non-separating
incompressible torus in B . Let tS1 be an element of �1(S1; ?) represented
by a regular �ber in S1 and let tB 2 �1(B;x) be represented by the �ber in
B . Since S1 is a Seifert piece of Type I, we get f�(tS1) = t�B . Indeed, the
image of tS1 in �1(S1; ?) is central, hence the centralizer of f�(tS1) in �1(B;x)
contains (f jS1)�(�1(S1; ?)) and since S1 is of type I, by the second assertion
of [17, Lemma 4.2.1] the latter group is non abelian, which implies, using [12,
addendum to Theorem VI.1.6] that f�(tS1) 2 htBi. Thus �1(U; x) � ht�Bi
i.e. �1(U; x) contains an in�nite subgroup which is central in �1(B;x) and
�1(U; x) � Z � Z = f�(�1(T1; ?)): Then using [11, Theorem VI.3.4] we know
that U is a satured torus in B , then �1(U; x) = hu; tBi where u is represented
by a simple closed curve in F . This ends the proof of Lemma 3.11.

End of proof of case 1 It follows from the above paragraph that [T1]:[γ] =
[U ]:[f�(γ)] = 1 and thus f jT1 : T1 ! U is a degree one map. So f :
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(A1; T1; ?) ! (B;U; x) induces an isomorphism f� : �1(T1; ?) ! �1(U; x): Re-
call that �1(A1; ?) has a presentation:

hd1; d2; q1; :::qr; h : [h; di] = [h; qj ] = 1; q�jj = hγj ; d1d2 = q1:::qrh
bi

where d1 is chosen in such a way that �1(T1; ?) = hd1; hi. Hence there are two
integers � and � such that f�(h) = (u�; t�B) and (�; �) = 1. Since f�(�1(A1; ?))
is an abelian group we have f�(ci) = (u�i ; t�iB ) where ci denotes the homotopy
class of an exceptional �ber in A1 . Since c�ii = h then �ij(�; �): This is a
contradiction.

3.4.2 The \separating" case

We suppose here that T1 is a separating torus in V . We set X =
S

1�i�nAi .
Moreover it follows from Remark 2, that the space M nX is connected. Let G
denote the space M nX and let T1 , Tn be the canonical tori of M such that
T1
‘
Tn = @X = @G. Consider the following commutative diagram:

H1(@G;Z)
i�

//

k
��

H1(S1 [ Sn;Z)
j�

//

k
��

H1(G;Z)

k
��

H1(T1;Z)�H1(Tn;Z) // H1(S1;Z)�H1(Sn;Z) // H1(G;Z)

Since S1 and Sn are Seifert pieces of type I then Rk(H1(S1;Z)! H1(G;Z)) � 6
and Rk(H1(Sn;Z)! H1(G;Z)) � 6 (see [17, Lemma 3.2]).

X

T1Tn

S1Sn
A1An

Figure 2

So there exists a non-trivial torsion group LG and an epimorphism:

�G : H1(G;Z)! LG
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such that �G � (iG)� = 0, Rk(�G(H1(S1;Z)) 6= 0 and Rk(�G(H1(S1;Z)) 6= 0,
where iG denotes the inclusion of @G in G ((iG)� = (j)� � (i)� ). It follows
from Lemma 3.10 that the homomorphism (iX)� : H1(@X;Z) ! H1(X;Z) is
surjective. Then by the Mayer-Vietoris exact sequence of M = X [ G we get
an epimorphism:

� : H1(M;Z)! LG:

such that � � I� = 0 and � � (iX)� = 0 where I : @X ,! M and iX : X ,! M
denote the inclusion and Rk(�G(H1(S1;Z))) 6= 0, Rk(�G(H1(S1;Z))) 6= 0.

Let p : fM ! M be the �nite covering induced by �. Since it is an abelian
covering and since f is a homology equivalence this covering is induced from
a �nite covering eN of N . Moreover it follows from the above contruction that
p−1(X) (resp. p−1(G)) has jLGj > 1 (resp. 1) components and if eS1 (resp.eSn) denotes a component of p−1(S1) (resp. of p−1(Sn)) then @ eS1 (resp. @ eSn)
contains at least two components of p−1(T1) (resp. of p−1(Tn)). Let eV be a
component of p−1(V ) in fM and let eS1

1 ; :::;
eSp1

1 (resp. eS1
n; :::; eSpnn ) denote the

components of p−1(S1) (resp. p−1(Sn)) which are in eV .

It follows from the construction of p that each component of eSji (for i = 1; n
and j 2 f1; :::; pig) has at least two boundary components and the componentseX1; :::; eXr of p−1(X)\ eV are all homeomorphic to X (i.e. the covering is trivial
over X because of the surjectivity of H1(@X;Z) ! H1(X;Z)). Let A denote
the submanifold eV equal to ([j eSj1) [ ([i eXi) [ ([j eSjn) where we have glued
the boundary components of the @ eXi with the boundary components of the
correponding spaces eSji .

Hence it follows from the construction that there is a submanifold eXi with a
boundary component, say Ti , which is non-separating in A (and thus in eV ).
Let eB be the Seifert piece of eN such that ef(eV ) � eB . So we can choose a
simple closed curve γ in A such that γ cuts transversally the canonical tori of
A in at most one point, such that ef(γ) � eB . Thus we have a reduction to the
non-separating case. This completes the proof of Lemma 3.3.

3.5 Proof of the third step

We complete here the proof of Theorem 1.5. Let B�i be a Seifert piece of the
decomposition of N given by Lemma 3.3 and let Ai be the Seifert piece in
M such that f(Ai; @Ai) � (B�i ; @B�i). On the other hand, it follows from
Lemma 3.3 that the induced map fi = f j(Ai; @Ai) : (Ai; @Ai) ! (B�i ; @B�i)
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eX1eS1
n

eS2
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eS3
n

eS1
1

eS2
n

Figure 3

is a Z-homology equivalence and the map fij@Ai : @Ai ! @B�i is a homeo-
morphism. So to complete the proof it is su�cient to show that we can change
fi by a homotopy (rel. @Ai ) to a homeomorphism. To see this we �rst prove
that fi induces an isomorphism on fundamental groups and we next use [24,
Corollary 6.5] to conclude. To prove that maps fi induce an isomorphism
(fi)� : �1(Ai) ! �1(B�i) we apply arguments of [17, Paragraphs 4.3.15 and
4.3.16]. This completes the proof of Theorem 1.5.

4 Study of the degenerate canonical tori

This section is devoted to the proof of Theorem 1.7. Recall that the Haken
manifold N3 has large �rst Betti number (�1(N3) � 3) and that each Seifert
piece in N3 is homeomorphic to a product F � S1 where F is an orientable
surface with at least two boundary components.

4.1 A key lemma for Theorem 1.7

This section is devoted to the proof of the following result.
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Lemma 4.1 Let f : M ! N be a map satisfying hypothesis of Theorem 1.7.
If T denotes a degenerate canonical torus in M then T separates M into two
submanifolds and there is a component (and only one), say A, of M n T , such
that:

(i) H1(A;Z) = Z,

(ii) for any �nite covering p of M induced by f from some �nite covering of
N the components of p−1(A) have connected boundary,

(iii) for any �nite covering p of M induced by f from some �nite covering of
N then each component eA of p−1(A) satis�es H1( eA;Z) = Z.

Proof It follows from [17, paragraph 4.1.3] that if T is a degenerate canonical
torus in M then T separates M into two submanifolds A and B such that
H1(A;Z) or H1(B;Z) is isomorphic to Z. Fix notations in such a way that
H1(A;Z) = Z. Note that since �1(N3) � 3 then it follows from the Mayer-
Vietoris exact sequence of the decomposition M = A[T B that �1(B) � 3. So
to complete the proof of Lemma 4.1 it is su�cient to prove (ii) and (iii).

We �rst prove (ii) for regular coverings. Let eN be a regular �nite covering of
N and denote by fM the induced �nite covering over M . Since p : fM !M is
regular we can denote by k (resp. k0 ) the number of connected components of
p−1(A) (resp. p−1(B)) and by p (resp. p’) the number of boundary components
of each component of p−1(A) (resp. of p−1(B)).

Let eA1; :::; eAk (resp. eB1; :::; eBk0 ) denote the components of p−1(A) (resp.
p−1(B)). For each i = 1; :::; k (j = 1; :::; k0 ) choose a base point ai (resp.
bj ) in the interior of each space eAi (resp. eBj ) and choose a base point Ql in
each component of p−1(T ) (for l = 1; :::;Card(p−1(T ))). For each eAi (resp.eBj ) and each component eTl � @ eAi (resp. eTl � @ eBj ) we choose an embedded
path �li in eAi joining ai to Ql (resp. a path �mj in eBj joining bj to Qm); we
choose these path in such a way that they don’t meet in their interior. Their
union is a connected graph denoted by Γ.

Then the fundamental group �1(Γ) is a free group with 1 - �(Γ) generators.
In particular H1(Γ;Z) is the free abelian group of rank 1 - �(Γ) where �(Γ)
denotes the Euler characteristic of Γ. Thus we have :

�(Γ) = pk + k + k0 with pk = p0k0

So suppose that p and p0 � 2. Then we get :

�(Γ) � k − k0 and �(Γ) � k0 − k:
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Thus we get �(Γ) � 0 and Rk(H1(Γ;Z)) � 1. Then there exists at least
one 1-cycle in Γ, and thus we can �nd a component of p−1(T ) which is a non-
separating torus in fM . So it follows from [17, paragraph 4.1.3] that there exists
a canonical torus eT in p−1(T ) such that ef jeT : eT ! eN is a non-degenerate map.
Since f jT : T ! N is a degenerate map, we have a contradiction.

So we can suppose that p or p0 is equal to 1. So suppose that p > 1. Hence
we have p0 = 1, p−1(A) is connected with p boundary components and p−1(B)
has p components eB1; :::; eBp and each of them have connected boundary. Note
that since �1(B) � 3 then it follows from [17, Lemma 3.4] that �1( eBi) � 3 for
i = 1; :::; p. Set eTi = @ eBi and eAp−1 = p−1(A) [T̃1

eB1 [T̃2
::: [T̃p−1

eBp−1 . It

follows easily by a Mayer-Vietoris argument that �1( eAp−1) � 2. So we get a
contradiction with the �rst step of the lemma since fM = eAp−1 [ eBp and since
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�1( eAp−1) � 2 and �1( eBp) � 3. This proves that p = 1.

To complete the proof of (ii) it is su�cient to consider the case of a �nite
covering (not necessarily regular) q : eN ! N . Then there exists a �nite cov-
ering q1 : N̂ ! eN such that �N = q � q1 : N̂ ! N is regular. Denote by
p (resp. p1 , resp. �M ) the covering induced by f which comes from q (resp.
q1 , resp. �N ). It follows from the above paragraph that each component of
�−1
M (A) = q−1

1 (q−1(A)) has connected boundary. So each component of p−1(A)
has connected boundary too, which completes the proof of (ii).

We now prove (iii). So suppose that there is a �nite covering p : fM ! M ,
induced by f from some �nite covering of N such that a component eA of p−1(A)
satis�es H1( eA;Z) 6’ Z. Then as in [17, paragraph 4.1.4] we can construct a
�nite abelian covering q : M̂ ! fM in such a way that the components of q−1( eA)
have at least two boundary components which contradicts (ii). This completes
the proof of Lemma 4.1.

4.2 Proof of Theorem 1.7

In the following we denote by T a canonical torus in M which degenerates
under the map f : M ! N , by A the component of M n T (given by Lemma
4.1) satisfying H1(A;Z) = Z and we set B = M n A with �1(B) � 2. We will
show that the piece A satis�es the conclusion of Theorem 1.7.

4.2.1 Characterization of the non-degenerate components of A

To prove Theorem 1.7 we will show that each Seifert piece in A degenerates un-
der the map f . Suppose the contrary. The purpose of this section is to prove the
following result which describes the (eventually) non-degenerate Seifert pieces
of A.

Lemma 4.2 Let T be a degenerate canonical torus in M and let A be the
component of M n T such that H1(A;Z) is isomophic to Z. Let S be a Seifert
piece in A (using [17, Lemma 3.2] we know that S admits a base of genus 0)
such that f jS : S ! N is non-degenerate. Then we get the following properties:

(i) there exist exactly two components T1; T2 of @S such that the map f jTi :
Ti ! N is non-degenerate,

(ii) f�(�1(S)) = Z� Z,

(iii) if p : fM ! M denotes a �nite covering of M induced by f from some
�nite covering of N then each component of p−1(S) satis�es (i) and (ii).
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This result will be used in the paragraph 4.2.2 to get a contradiction. The proof
of Lemma 4.2 depends on the following result.

Lemma 4.3 Let S be a Seifert piece in M whose orbit space is surface of
genus 0. Suppose that f jS : S ! N is a non-degenerate map. Then there
exist at least two components T1 and T2 in @S such that f jTi : Ti ! N is
non-degenerate.

Proof Let us recall that the group �1(S) has a presentation (a):

hd1; :::::; dp; h; q1; :::::; qr : [h; qi] = [h; dj ] = 1; q�ii = hγi ; d1:::dpq1:::qr = hbi

Since f jS : S ! N is a non-degenerate map, then using [12, Mapping Theorem]
we may suppose, after modifying f by a homotopy, that f(S) is contained in
a Seifert piece B ’ F � S1 in N .

1. We �rst show that if the map f jS : S ! N is non-degenerate then S contains
at least one boundary component which is non-degenerate under f . To see this,
we suppose the contrary: we will show that if each boundary component of S
degenerates under f then: f�(�1(S)) ’ Z which gives a contradiction with the
de�nition of non-degenerate maps (see [12]).

Since f jS : S ! N is non-degenerate, we have f�(h) 6= 1 and then f�(hdi; hi) ’
Z. Thus there exist two integers �i and �i such that

f�i� (di) = f�i� (h) and f�i� (qi) = fγi� (h) (?)

Case 1.1 We suppose that the group f�(�1(S)) is abelian (remember that the
group f�(�1(S)) is torsion free). Thus it follows from equalities (?) and from
the presentation (a) above that f�(�1(S)) is necessarily isomorphic to the free
abelian group of rank 1.

Case 1.2 We suppose that the group f�(�1(S)) is non-abelian. Since h is
central in �1(S), the centralizer (f jS)�(h) in �1(B) contains f�(�1(S)). Since
the latter group is non-abelian, it follows from [12, addendum to Theorem VI
1.6] that f�(h) 2 hti where t denotes the homotopy class of the regular �ber in
B . Then equality (?) implies that f�(di) and f�(qi) are in hti. Thus using the
presentation (a) we get f�(�1(S)) ’ Z which is a contradiction.

2. We show now that if f jS : S ! N is a non-degenerate map then S contains
at least two boundary components which are non-degenerate under f . To do
this we suppose the contrary. This means that we can assume that f�jhd1; hi
is an injective map and that f�jhd2; hi,..., f�jhdp; hi are degenerate.
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Case 2.1 We suppose that the group f�(�1(S)) is abelian. Thus since

d1:::dpq1:::qr = hb (??)

we get Rk(hf�(d1); f�(h)i = 1. This is a contradiction.

Case 2.2 We suppose that the group f�(�1(S)) is non-abelian. Since h is
central in �1(S), then by the same argument as in Case 1.2 we get f�(h) 2
hti where t the homotopy class of the regular �ber in B . Thus f�(qi) 2 hti
for i = 1; :::; r and f�(dj) 2 hti for j = 2; :::; p. Then using (??) we get
Rk(hf�(d1); f�(h)i) = 1. This is contradiction. This completes the proof of
Lemma 4.3.

Proof of Lemma 4.2 Since S is non-degenerate, we denote by B ’ F � S1

the Seifert piece of N such that f(S) � B and by t the (regular) �ber in B .
Suppose that S contains at least three injective tori in @S . Denote by eN the
�nite covering of N given by Lemma 3.2. eN admits a �nite covering (N̂ ; p)
which is regular over N . Then each component of the covering over S induced
from N̂ by f admits a Seifert �bration whose orbit space is a surface of genus
� 1 and then, by regularity, each component of p−1(A) contains a Seifert piece
whose orbit space is a surface of genus � 1.

Let A1; :::Ap be the components of p−1(A) and set B̂ = p−1(B). It follows
from Lemma 4.1 that B̂ is connected and each component Ai , i = 1; :::; p has
a connected boundary. Since �1(Ai) � 2 using [17, Lemma 3.2] and �1(B̂) �
�1(B) � 3, we get a contradiction with Lemma 4.1. This proves (i).

Suppose now that the group f�(�1(S)) is non-abelian. Since S admits a Seifert
�bration over a surface of genus 0 then �1(S) admits a presentation as in (a)
(see the proof of Lemma 4.3). Using (i) of Lemma 4.2 we may assume that
hd1; hi; hd2; hi are injective tori and that hdi; hi, i = 3; :::; p are degenerate.
Then we know that the elements f�(di) and f�(qj) are in hti, (for i � 3 and
j = 1; :::; r), and then it follows from (??) that:

f�(d1)f�(d2) 2 hti: (1)

Since B is a product, we may write : f�(d1) = (u; t�1) and f�(d2) = (v; t�2):
Thus it follows from (1) that v = u−1 , and then f�(�1(S)) is an abelian group.
This is a contradiction. So f�(�1(S)) is abelian. Since f jS : S ! N is a non-
degenerate map and since �1(N) is a torsion free group, f�(�1(S)) is a �nitely
generated abelian free subgroup of �1(N). Using [11, Theorem V.6] we know
that there exists a compact 3-manifold V and an immersion g : V ! N such
that g� : �1(V )! �1(N) is an isomorphism onto f�(�1(S)). Finally f�(�1(S))
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is a free abelian group of rank at least two which is the fundamental group
of a 3-manifold. Then using [11, exemple V.8] we get that f�(�1(S)) is a free
abelian group of rank 2 or 3.

Then we prove here that we necessarily have f�(�1(S)) ’ Z�Z. We know that
Rk(hf�(qj); f�(h)i) = 1 for j = 1; :::; r and by (i) Rk(hf�(di); f�(h)i) = 1 for
i = 3; :::; p and Rk(hf�(d1); f�(h)i) = Rk(hf�(d2); f�(h)i) = 2. Then using (??)
and the fact that f�(�1(S)) is an abelian group, we can �nd two integers �; �
such that f�(d1)�f�(d2)� = f�(h)� . This implies that f�(d2)� 2 hf�(d1); f�(h)i
and then f�(�1(S)) ’ Z � Z. This proves (ii). The proof of (iii) is a direct
consequence of (i) and (ii).

4.2.2 End of proof of Theorem 1.7

To complete the proof of Theorem 1.7 it is su�cient to prove (ii). So we �rst
prove that each Seifert piece of A degenerates and that A is a graph manifold.
Denote by S0 the component of A which is adjacent to T = @A. It follows
from [20, Lemma 2] that S0 is necessarily a Seifert piece of A. We prove that
f jS0 : S0 ! N is a degenerate map. Suppose the contrary. Thus S0 satis�es the
conclusion of Lemma 4.2. Let T1; T2 be the non-degenerate components of @S0

and �1(T1) = hd1; hi; �1(T2) = hd2; hi the corresponding fundamental groups.
Let ’ : �1(N)! H be the correponding epimorphism given by Proposition 2.1,
where H is a �nite group such that ’f�(d1); ’f�(d2) 62 h’f�(h)i. Denote by eN
the (�nite) covering given by ’, fM (resp. eS0 ) the covering of M (resp. of S0)
induced by f . Then formula of paragraph 3.2 applied to S0 and eS0 becomes:

2eg + ep = 2 + �

 
p+ r −

i=rX
i=1

1
(�i; �i)

− 2

!
(1)

where ep =
Pp

j=1 rj = �
�Pp

j=1
1
nj

�
(resp. p) is the number of boundary com-

ponents of the �nite covering eS0 of S0 (resp. of S0) and where eg denotes the
genus of the orbit space of eS0 . We can write: p = 2 + p1 , where p1 denotes
the number of degenerate boundary components of S0 and ep = 2 + ep1 (whereep1 denotes the number of degenerate boundary components of eS0 ). It follows
from Lemma 4.2 that we may assume that eg = 0: Thus using (1), we get:

ep1 = �

 
p1 + r −

i=rX
i=1

1
(�i; �i)

!
Since (�i; �i) � 1, we have ep1 � �p1 and then ep1 = �p1 . This implies that
for each degenerate torus U in @S0 there are at least two (degenerate) tori

Algebraic & Geometric Topology, Volume 3 (2003)



A criterion for homeomorphism between closed Haken manifolds 369

in eS0 which project onto U . Let us denote by P : fM ! M the �nite regular
covering of M correponding to ’�f� . Then each component of P−1(A) contains
at least two components in its boundary. This contradicts Lemma 4.1 and so
f jS0 : S0 ! N is a degenerate map. This proves, using [20, Lemma 2] that
each component of A adjacent to S0 is a Seifert manifold which allows to apply
the above arguments to each of them and prove that they degenerate. Then
we apply these arguments successively to each Seifert piece of A, which proves
that A is a graph manifold whose all Seifert pieces degenerate.

We now prove that the group f�(�1(A)) is either trivial or in�nite cyclic by
induction on the number of Seifert components c(A) of A. If c(A) = 1 then
A admits a Seifert �bration over the disk D2 . Then the group �1(A) has a
presentation:

hd1; h; q1; :::; qr : [h; d1] = [h; qj ] = 1; q�jj = hγj ; d1 = q1:::qrh
bi

We know that f jA : A ! N is a degenerate map. Thus either f�(h) = 1 or
f�(�1(A)) is isomorphic to f1g or Z. So it is su�cient to consider the case
f�(h) = 1. Since �1(N) is a torsion free group then f�(q1) = ::: = f�(qr) = 1
and thus f�(d1) = f�(q1):::f�(qr)f�(h)b = 1. So we have f�(�1(A)) = f1g.

Let us suppose now that c(A) > 1. Denote by S0 the Seifert piece adja-
cent to T in A and by T1; :::; Tk its boundary components in int(A). It fol-
lows from Lemma 4.1 that A n S0 is composed of k submanifolds A1; :::; Ak
such that @Ai = Ti for i = 1; :::; k . Furthermore, again by Lemma 4.1,
H1(A1;Z) ’ ::: ’ H1(Ak;Z) ’ Z. Thus the induction hypothesis applies
and implies that f�(�1(Ai)) = f1g or f�(�1(Ai)) = Z for i = 1; :::; k . Let h0

denote the homotopy class of the regular �ber of S0 .

Case 1 Suppose �rst that f�(h0) 6= 0. Since the map f jS0 : S0 ! N is
degenerate, it follows from the de�nition that the group f�(�1(S0)) is abelian.
Denote by x1; :::; xk base points in T1; :::; Tk . Since f�(�1(Ai)) is an abelian
group, we get the following commutative diagram:

�1(@Ai; xi)
i�

//

��

�1(Ai; xi)
(f jAi)�

//

��

�1(N; yi)

Id
��

H1(@Ai;Z)
i�

// H1(Ai;Z) ’ Z // �1(N; yi)

Since H1(Ai;Z) ’ Z and since @Ai = Ti is connected, then [17, Lemma 3.3.(b)]
implies that the homomorphism H1(@Ai;Z)! H1(Ai;Z) is surjective and then

f�(�1(Ai; xi)) = f�(�1(Ti; xi)) (�)
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Let (�i; �i) be a base of �1(Ti; xi) � �1(Ai; xi). Recall that the group �1(S0; xi)
has a presentation:

hd1; :::dk; d; h0; q1; :::qr : [h0; qj ] = [h0; di] = [h0; d] = 1;

q�ii = hγi0 ; d1:::dkd = q1:::qrh
b
0i

where the element di is chosen in such a way that �1(Ti; xi) = hdi; h0i �
�1(S0; xi) for i = 1; :::; k . Set A1 = S0 [T1 A1 and Aj = Aj−1 [Tj Aj for
j = 2; :::; k (with this notation we have Ak = A). Applying the the Van-
Kampen Theorem to these decompositions we get:

�1(A1; x1) = �1(S0; x1) ��1(T1;x1) �1(A1; x1)

so we get

f�(�1(A1; x1)) = f�(�1(S0; x1)) �f�(�1(T1;x1)) f�(�1(A1; x1))

On the other hand it follows from (�) that the injection f�(�1(T1; x1)) ,!
f�(�1(A1; x1)) is an epimorphism, which implies that the canonical injection
f�(�1(S0)) ,!f�(�1(S0; x1))�f�(�1(T1;x1))f�(�1(A1; x1)) is an epimorphism. Thus
f�(�1(A1; x1)) is a quotient of the free abelian group of rank 1 f�(�1(S0; x1))
which implies that f�(�1(A1; x1)) = f1g or Z. Applying the same argument
with the spaces A1 , A2 with base point x2 we obtain that f�(�1(A2; x2)) is
a quotient of f�(�1(A1; x2)), which implies that f�(�1(A2)) = f1g or Z. By
repeating this method a �nite number of times we get: f�(�1(A)) = f1g or Z.

Case 2 We suppose that f�(h0) = 0. Since c�ii = h0 (where ci is any ex-
ceptional �ber of S0 ) and since �1(N) is a torion free group, we conclude that
f�(γ) = 1 for every �bers γ of S0 . Let F0 denote the orbit space (of genus
0) of the Seifert �bered manifold S0 . Then the map f� : �1(S0) ! �1(N) fac-
tors through �1(S0)=hall �bersi ’ �1(F0). Let D1; :::;Dn denote the boundary
components of F0 in such a way that [Di] = di 2 �1(F0). Then there exist
two homomorphisms �� : �1(S0)! �1(F0) and �� : �1(F0)! �1(N) such that
(f jS0)� = �� � �� .

We may suppose, after re-indexing, that there exists an integer n0 2 f1; :::; kg
such that f�(d1) = ::: = f�(dn0) = 1 and f�(dj) 6= 1 for j = n0 + 1; :::; k .
If n0 = k then f�(�1(S0)) = f1g and we have a reduction to Case 1. Thus
we may assume that n0 < n. Let F̂0 be the 2-manifold obtained from F0 by
gluing a disk D2

i along Di for i = 1; :::; n0 . The homomorphism �� : �1(F0)!
�1(N) factors through the group �1(F̂0). Finally we get two homomorphisms
�̂� : �1(S0) ! �1(F̂0) and �̂� : �1(F̂0) ! �1(N) satisfying (f jS0)� = �̂� � �̂�
where �̂� : �1(S0) ! �1(F̂0) is an epimorphism. It follows from (�) that
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f�(�1(Ai)) = f1g for i = 1; :::; n0 and f�(�1(Aj)) = Z for j = n0 + 1; :::; k .
Thus the homomorphism (f jAi)� : �1(Ai) ! �1(N) factors through �1(D2

i ),
where D2

i denotes a disk, for i = 1; :::; n0 and the homomorphism (f jAj)� :
�1(Aj) ! �1(N) factors through �1(S1

j ), where S1
j denotes the circle, for

j = n0 + 1; :::; k . So we can �nd two homomorphisms � : �1(A) ! �1(F̂0)
and g : �1(F̂0)! �1(N) such that (f jA)� = g � � where � : �1(A)! �1(F̂0) is
an epimorphism. Then consider the following commutative diagram:

�1(A) �
//

��

�1(F̂0)

��

H1(A;Z) �̂
// H1(F̂0;Z)

Since � : �1(A)! �1(F̂0) is an epimorphism, then so is H1(A;Z)! H1(F̂0;Z).
Moreover we know that H1(A;Z) ’ Z. Thus we get: H1(F̂0;Z) ’ H1(A;Z) ’
Z. Recall that �1(F̂0) = hdn0+1i � ::: � hdk−1i. Thus H1(F̂0;Z) is an abelian
free group of rank k − 1 − n0 and thus we have: n0 = n − 2. Finally we have
proved that �1(F̂0) ’ hdk−1i ’ Z which implies that g�(�1(F̂0)) is isomorphic
to Z and thus f�(�1(A)) ’ Z. The proof of Theorem 1.7 is now complete.

5 Proof of the Factorization Theorem and some con-

sequences

This section splits in two parts. The �rst one (paragraph 5.1) is devoted to the
proof of Theorem 1.10 and the second one gives a consequence of this result
(see Proposition 1.11) which will be useful in the remainder of this paper.

5.1 Proof of Theorem 1.10

The �rst step is to prove that there exists a �nite collection fT1; :::; TnM g of
degenerate canonical tori satisfying f�(�1(Ti)) = Z in M which de�ne a �nite
family A = fA1; :::; AnM g of maximal ends of M such that @Ai = Ti and
f j(Mn[Ai) is a non-degenerate map. We next show that the map f : M3 ! N3

factors through M1 , where M1 is a collapse of M along A1; :::; AnM and we
will see that the map f1 : M3

1 ! N3 , induced by f , satis�es the hypothesis of
Theorem 1.5. Then the conclusion of Theorem 1.5 will complete the proof of
Theorem 1.10.
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5.1.1 First step

Let fT 0
1 ; :::; T

0
n0
g = W 0

M � WM be the canonical tori in M which degenerate
under f : M ! N . If W 0

M = ;, by setting Ai = ;, � = f = f1 and M = M1

then Theorem 1.10 is obvious by Theorem 1.5. So we may assume that W 0
M 6= ;.

It follows from [20, Lemma 2.1.2] that for each component T of @HM , the
induced map f jT : T ! N is �1 -injective and thus W 0

M 6= WM . Then we can
choose a degenerate canonical torus T1 such that T1 is a boundary component
of a Seifert piece C1 in M which does not degenerate under f . It follows from
Theorem 1.7 that T1 is a separating torus in M . Using Theorem 1.7 there is a
component A1 of M n T1 such that:

(a) A1 is a graph manifold, H1(A1;Z) = Z and the group f�(�1(A1)) is either
trivial or in�nite cyclic,

(b) each Seifert piece of A1 degenerates under the map f ,

(c) A1 satis�es the hypothesis of a maximal end of M (see De�nition 1.8).

This implies that int(A1)\ int(C1) = ; and f�(�1(A1)) = Z (if f�(�1(A1)) =
f1g, C1 would degenerate under f ). Set B1 = MnA1 . If W 0

B1
= fT 1

1 ; :::; T
1
n1
g �

W 0
M denotes the family of degenerate canonical tori in int(B1) then n1 < n0 . If

n1 = 0 we take A = fA1g. So suppose that n1 � 1; we may choose a canonical
torus T2 in W 0

B1
in the same way as above. Let C2 denote the non-degenerate

Seifert piece in M such that T2 � @C2 and let A2 be the component of M nT2

which does not meet int(C2 ). It follows from Theorem 1.7 that:

(1) A1 \A2 = ;,
(2) A2 satis�es the above properties (a), (b) and (c).

Thus by repeating these arguments a �nite number of times we get a �nite
collection fA1; :::; AnM g of pairwise disjoint maximal ends of M such that each
canonical torus of M n

S
1�i�nM Ai is non-degenerate.

5.1.2 Second step

We next show that the map f : M ! N factors through a manifold M1 which
is obtained from M by collapsing M along A1; :::; AnM (see De�nition 1.9).
To see this it is su�cient to consider the case of a single maximal end (i.e.
A = fA1g). Let T1 be the canonical torus @A1 and let C1 be the (non-
degenerate) Seifert piece in M adjacent to A1 along T1 . Since f�(�1(A1)) =
Z, the homomorphism f� : �1(A1) ! �1(N) factors through Z. Then there
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are two homomorphisms (�0)� : �1(A1) ! �1(V1), (f0)� : �1(V1) ! �1(N)
such that (f jA1)� = (f0)� � (�0)� (where V1 denotes a solid torus) and where
(�0)� : �1(A1) ! �1(V1) is an epimorphism. Since V1 and N are K(�; 1),
it follows from Obstruction Theory [8] that these homomorphisms on �1 are
induced by two maps �0 : A1 ! V1 and f0 : V1 ! N . Moreover we can assume
that f0 is an embedding. We show that we can choose �0 in its homotopy class
in such a way that its behavior is su�ciently \nice". This means that we want
that �0 satis�es the following two conditions:

(i) �0 : (A1; @A1)! (V1; @V1),

(ii) �0 induces a homeomorphism �0j@A1 : @A1 ! @V1 .

Indeed since f�(�1(T1)) = Z, then there is a basis (�; �) of �1(T1) such that
(�0)�(�) = 1 in �1(V1) and h(�0)�(�)i = �1(V1). So we may suppose that
�0(�) = lV1 (resp. �0(�) = m) where lV1 is a parallel (resp. m is a meridian) of
V1 . So we have de�ned a map �0 : @A1 ! @V1 which induces an isomorphism
(�0j@A1)� : �1(@A1) ! �1(@V1). So we may assume that condition (ii) is
checked. Thus it is su�cient to show that the map �0j@A0 can be extended to
a map �0 : A1 ! V1 . For this consider a handle presentation of A1 from T1 :

T1 [ (e1
1 [ :::e1

i ::: [ e1
n1

) [ (e2
i [ :::e2

j ::: [ e2
n2

) [ (e3
1 [ :::e3

k::: [ e3
n3

)

where feki g are k -cells (k = 1; 2; 3). Since (�0)�(�1(A1)) = (�0)�(�1(@A1)),
we can extend the map �0 de�ned on @A1 to the 1-skeletton. Since V1 is a
K(�; 1) space, we can extend �0 to A1 . Thus, up to homotopy, we can suppose
that the map f : M ! N is such that f jA1 = f0 � �0 , where �0j@A1 is a
homeomorphism.

Set B1 = M n A1 . Attach a solid torus V1 to B1 along T1 in such a way that
the meridian of V1 is identi�ed to � and the parallel lV1 of V1 is identi�ed to
�. Let ’ denote the corresponding gluing homeomorphism ’ : @V1 ! @B1 and
denote by B̂1 the resulting manifold. Let �00 : B1 ! B̂1 n V1 be the identity
map. We de�ne a map �1 : M = A1 [ B1 ! M1 such that �1jA1 = �0 and
�1jB1 = �00 and M1 = B̂1 . Thus it follows from the above construction that
�1 : M ! M1 is a well de�ned continuous map. Since the map �1jB1 n T1 :
B1 n T1 ! B̂1 n V1 is equal to the identity, we can de�ne the map f1jB̂1 n V1 by
setting f1jB̂1 n V1 = f � (�1)−1jB̂1 n V1 and f1 : V1 ! N as f0 . Thus we get a
map f1 : M1 ! N such that f = f1 � �1 .

We now check that M1 is still a Haken manifold of �nite volume. Let Ĉ1 be
the space C1 [’ V1 . Since M n (A1 [ C1) is a Haken manifold, it is su�cient
to prove that Ĉ1 admits a Seifert �bration. Since f jC1 : C1 ! N is a non-
degenerate map, then f�(h1) 6= 1, where h1 denotes the homotopy class of the
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regular �ber in C1 . Therefore the curve � is not a �ber in C1 . Thus the Seifert
�bration of C1 extends to a Seifert �bration in Ĉ1 . On the other hand, since
f is homotopic to f1 � �1 , we have deg(f1) = deg(�1 ) = deg(f ) = 1 and since
kNk = kMk then kNk = kMk = kM1k.
In the following, if A denotes a Z-module, let T (A) (resp. F(A)) be the torsion
submodule (resp. the free submodule) of A. To complete the proof of the second
step we show that f1 satis�es the homological hypothesis of Theorem 1.1. Let
q : eN ! N be a �nite cover of N , p : fM !M the �nite covering induced fromeN by f and p : fM1 ! M1 the �nite covering induced from eN by f1 . Denote
by ef : fM ! eN and ef1 : fM1 ! eN the induced maps. Fix base points: x 2M ,ex 2 p−1(x), x1 = �1(x), y = f(x), ey = ef(ex), and ex1 such that ef1(ex1) = ey . In
the following diagram we �rst show that there is a map e�1 : (fM; ex)! (fM1; ex1)
such that diagrams (I) and (II) are consistent.

(M;x) (N; y)

(M1; x1)

(fM1; ex1)

(fM; ex) ( eN; ey)

f

�1 f1

p qp1

e�1
ef1

ef

We know that:
(p1)�(�1(fM1; ex1)) = (f1)−1

� (q�(�1( eN; ey))

and
p�(�1(fM; ex)) = (f)−1

� (q�(�1( eN; ey))

So we get:

(�1)�(p�(�1(fM; ex))) = (�1)�(f)−1
� q�(�1( eN; ey)) = (�1)�(�1)−1

� (f1)−1
� q�(�1( eN; ey))
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and thus �nally:

(�1)�(p�(�1(fM; ex))) = (f1)−1
� q�(�1( eN; ey)) = (p1)�(�1(fM1; ex1))

Thus it follows from the lifting criterion, that there is a map e�1 such that the
diagram (I) is consistent. Denote by f̂ the map ef1 � e�1 . We easily check that
q � f̂ = f � p and thus we have ef = f̂ . We next show that the maps �1 , f1 ,e�1 and ef1 induce isomorphisms on H1 (with coe�cients Z). Since f (resp.ef ) is a Z-homology equivalence then (�1)� : Hq(M;Z) ! Hq(M1;Z) (resp.
(e�1)� : Hq(fM;Z)! Hq(fM1;Z)) is injective and (f1)� : Hq(M1;Z)! Hq(N;Z)
(resp. ( ef1)� : Hq(fM1;Z) ! Hq( eN;Z)) is surjective (for q = 0; :::; 3). Since
deg(f) = deg( ef) = 1 then deg(e�1) = deg( ef1) = deg(�1) = deg(f1) = 1. Thus
the homomorphism (�1)� : H1(M;Z) ! H1(M1;Z) (resp. (e�1)� : H1(fM;Z) !
H1(fM1;Z)) is surjective and therefore is an isomorphism, which implies thatef1 and f1 induce isomorphisms on H1 .

We now check that the maps ef1 and e�1 are Z-homology equivalences. Recall
that M = A1 [T1 B1 and M1 = V1 [T1 B1 where V1 is a solid torus and
where �1j(B1; @B1) : (B1; @B1)! (B1; @B1) is the identity map. On the other
hand we see directly that the map �1j(A1; @A1) : (A1; @A1) ! (V1; @V1) is a
Z-homology equivalence and deg(p) = deg(p1 ) = deg(q). Set fB1 = p−1(B1)
and eB1;1 = (p1)−1(B1). Since V1 is a solid torus, it follows from Lemma 4.1
that:

(i) fB1 and eB1;1 are connected and have the same number k1 of boundary
components,

(ii) p−1(A1) is composed of k1 connected components fA1
1
,...,fA1

k1 ; @fA1
j

is

connected; H1(fA1
j
;Z) = Z and (p1)−1(V1) is composed of k1 connected com-

ponents fV1
1
,...,fV1

k1
where the fV1

j
are solid tori,

(iii) the map e�1 induces a map e�j1 : (fA1
j
; @fA1

j
)! (fV1

j
; @fV1

j
).

Thus we get the two following commutative diagram:

( eB1; @ eB1)
�̃1jB̃1

//

p

��

( eB1;1; @ eB1;1)

p1

��

(B1; @B1) Id
// (B1; @B1)

Since deg(pj eB1) = deg(p1j eB1;1) then deg(e�1jfB1) = 1 and so the map e�1jfB1 is
homotopic to a homeomorphism and is a Z-homology equivalence. Consider
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the following commutative diagram:

(fA1
j
; @fA1

j
)

�̃1
//

p

��

(fV1
j
; @fV1

j
)

p1

��

(A1; @A1)
�1

// (V1; @V1)

Then we show that we have the following properties:

H1(fA1
j
;Z) = Z and Hq(fA1

j
;Z) = 0 for q � 2

The �rst identity comes directly from Lemma 4.1. On the other hand since
@fA1

j 6= ;, and since fA1
j

is a 3-manifold, the homology exact sequence of
the pair (fA1

j
; @fA1

j
) implies that H3(fA1

j
;Z) = 0. Using [21, Corollary 4,

p. 244] and combining this with Poincar�e duality, we get: H2(fA1
j
;Z) ’

H1(fA1
j
; @fA1

j
;Z) and thus T (H2(fA1

j
;Z)) = T (H0(fA1

j
; @fA1

j
;Z)) = 0. More-

over , F (H1(fA1
j
; @fA1

j
;Z)) = F (H1(fA1

j
; @fA1

j
;Z)) and since �1(fA1

j
; @fA1

j
) +

1 = �1(fA1
j
) = 1, we have: H2(fA1

j
;Z) = 0. So the map e�1 induces an

isomorphism on Hq(fA1
j
;Z) for q = 0; 1; 2; 3. Thus using the Mayer-Vietoris

exact sequence of the decompositions fM = (
S

1�i�k1
eAi1) [ ( eB1) and fM1 =

(
S

1�i�k1
eV i

1 ) [ ( eB1;1) we check that the map e�1 and then ef1 are Z-homology
equivalences. This proves that f1 satis�es hypothesis of Theorem 1.1. Then
using Theorem 1.5 the proof of Theorem 1.10 is now complete.

5.2 Some consequences of the Factorization Theorem

We assume here that the manifold M3 contains some canonical tori which
degenerate under the map f . Then we �x a maximal end A of M , whose
existence is given by Theorem 1.10. We state here a result which shows that
the induced map f jA can be homotoped to a very nice map. More precisely
we prove here Proposition 1.11. The proof of this result splits in two lemmas.

Lemma 5.1 If A denotes a maximal end of M then the space AnWM contains
at least one component, denoted by S , which admits a Seifert �bration whose
orbit space is a disk D2 in such a way that f�(�1(S)) 6= f1g.

Proof The fact that the maximal end A contains at least one Seifert piece
whose orbit space is a disk (called an extremal component of A) comes directly
from Lemma 3.7 since A is a graph submanifold of M whose Seifert pieces are
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based on a surface of genus zero and whose canonical tori are separating in M .
To prove the second part of Lemma 5.1 we suppose the contrary. This means
that we suppose, for each extremal component S of A, that the induced map
f jS is homotopic in N to a constant map. Then we show, arguing inductively
on the number of connected components of A n WM , denoted by kA , that
this hypothesis implies that f�(�1(A)) = f1g which gives a contradiction with
De�nition 1.8.

If kA = 1, this result is obvious since the component A is a Seifert space whose
orbit space is a 2-disk. Then we now suppose that kA > 1. The induction
hypothesis is the following:

If Â is a degenerate graph submanifold of M made of j < kA Seifert pieces
and if each Seifert piece Ŝ of Â based on a disk satis�es f�(�1(Ŝ)) = f1g then
the group f�(�1(Â)) is trivial.

Denote by S0 the Seifert piece of A which contains @A, T1; :::; Tk the compo-
nents of @S0 n@A and A1; :::; Ak the connected components of An int(S0) such
that @Ai = Ti for i = 1; :::; k . So we may apply the induction hypothesis to
the spaces A1; :::; Ak which implies that the groups f�(�1(A1)); :::; f�(�1(Ak))
are trivial. Recall that the group �1(S0) has a presentation:

hd1; :::; dk ; d; h; q1; :::; qr : [h; di] = [h; qj ] = 1; q�jj = hγj ; d1:::dkdq1:::qr = hbi
where the group hdi; hi is conjugated to �1(Ti) for i = 1; :::; k and where
hd; hi is conjugated to �1(T ), where T = @A. Since h admits a representa-
tive in each component of @S0 and since f�(�1(Ti)) = 1 then f�(h) = 1 and
f�(d1) = :::f�(dk) = 1. This implies that f�(q1) = ::: = f�(qr) = 1 and since
d1:::dkdq1:::qr = hb we get f�(d) = 1, which proves that f�(�1(S0)) = 1. Since
A = S0[A1[ :::[Ak , then applying the Van Kampen Theorem to this decom-
position of A, we get f�(�1(A)) = f1g which completes the proof of Lemma
5.1.

Lemma 5.2 Let A be a maximal end of M3 . Let S be a submanifold
of A which admits a Seifert �bration whose orbit space is a disk such that
f�(�1(S)) 6= f1g. Then there exists a Seifert piece B of N such that f�(�1(S)) �
hti, where t denotes the homotopy class of the �ber in B .

Proof Applying Theorem 1.10 to the map f : M ! N , we know that f is
homotopic to the comopsition f1 �� where � : M !M1 denotes the collapsing
map of M3 along its maximal ends and where f1 : M1 ! N is a homeomor-
phism. More precisely, if C denotes the Seifert piece of M3 adjacent to A along
@A then we know, by the proof of Theorem 1.10 that there is a solid torus V
in M1 and a homeomorphism ’ : @V ! @A such that:
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(i) the space C1 = C [’ V is a Seifert piece in M1 ,

(ii) �(A; @A) = (V; @V ) � int(B) and the map �jM n A : M n A ! M1 n V
is the identity.

Since the map f1 is a homeomorphism from M1 to N , then by the proof of
Theorem 1.5, we know that there exists a Seifert �bered space of N , denoted
by BN , such that f1 sends (C1; @C1) to (BN ; @BN ) homeomorphically. Hence
the map f is homotopic to the map f1 �� still denoted by f , such that f(A) �
int(BN ) where BN is a Seifert piece in N nWN . In particular, we have f(S) �
int(BN ). On the other hand, since H1(A;Z) = Z then it follows from [17,
lemma 5.3.1(b)], that the map H1(@A;Z) ! H1(A;Z), induced by inclusion,
is surjective and since f�(�1(A)) is an abelian group (in fact isomorphic to Z)
we get f�(�1(A)) = f�(�1(@A)). Since f = f1 � � , if h1 denotes the homotopy
class of the �ber in C represented in @A, then f�(h1) = t�1 where t denotes
the homotopy class of the �ber in BN . Moreover, since f�j�1(@A) is a homo-
morphism of rank 1 and since BN is homeomophic to a product Fn�S1 , then
we get f�(�1(A)) = f�(�1(@A)) = hti � �1(BN ) ’ �1(Fn) � hti. Finally, since
�1(S) is a subgroup of �1(A) we get f�(�1(S)) � hti which completes the proof
of Lemma 5.2. The proof of Proposition 1.11 is now complete.

6 Proof of Theorem 1.1

6.1 Preliminary

6.1.1 Reduction of the general problem

It follows from the form of the hypothesis of Theorem 1.1 that to prove this
result it is su�cient to �nd a �nite cover eN of N such that the lifting ef : fM !eN of f is homotopic to a homeomorphism. So we may always assume without
loss of generality that the manifold N satis�es the conclusions of Proposition
1.4. It follows from Theorem 1.5 that to prove Theorem 1.1 it is su�cient to
show that the canonical tori in M do not degenerate under f . Thus suppose
the contrary: using Theorem 1.10 this means that there is a �nite collection
A = fA1; :::; Ang of codimension-0 submanifolds of M which degenerate under
f (the maximal ends). We denote by M1 the Haken manifold obtained from
M by collapsing along the components of A, by � : M ! M1 the collapsing
projection and by f1 : M1 ! N the homeomorphism such that f ’ f1 � � . Let
A = A1 be a maximal end in A and let S be a Seifert piece of A whose orbit
space is a disk, given by Proposition 1.11. Then the proof of Theorem 1.1 will
depend on the following result:
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Lemma 6.1 There exists a �nite covering p : fM ! M induced by f from
some �nite covering of N such that each component of p−1(S) admits a Seifert
�bration whose orbit space is a surface of genus � 1.

This result implies that the components of p−1(A) are not maximal ends. In-
deed since each component of p−1(A) contains at least one Seifert piece whose
orbit space is a surface of genus � 1 then it follows from [17, Lemma 3.2] that
their �rst homology group is an abelian group of rank � 2 which contradicts
De�nition 1.8. This result gives the desired contradiction.

6.1.2 Proposition 1.12 implies Lemma 6.1.

In this paragraph we show that to prove Lemma 6.1 it is su�cient to prove
Proposition 1.12.

Let f : M ! N be a map between two Haken manifolds satisfying hypothesis of
Theorem 1.1. Let A be a maximal end of M and let S be the extremal Seifert
piece of A given by Proposition 1.11 and we denote by BN the Seifert piece
of N such that f(A) � BN . Let h (resp. t) denote the homotopy class of the
�ber in S (resp. in BN ). Then Proposition 1.11 implies that f�(�1(S)) � hti.
Recall that the group �1(S) has a presentation:

hd1; q1; :::; qr; h : [h; d1] = [h; qi] = 1 q�ii = hγi d1q1:::qr = hbi
Let us denote by f�1; :::; �rg the integers such that f�(c1) = t�1 ; :::; f�(cr) = t�r

where c1; :::; cr denote the homotopy class of the exceptional �bers in S (i.e.
c�ii = h). In particular we have f�(h) = t�i�i for i = 1; :::; r . Since the
canonical tori in M are incompressible, the manifold S contains at least two
exceptional �bers c1 and c2 (otherwise S = D2 � S1 which is impossible). Set
n0 = �1�2�1�2 , where �i denotes the index of the exceptional �ber ci . Then,
we apply Proposition 1.12 to the manifold N3 with the integer n0 de�ned as
above. Let eBN be a component of p−1(BN ) in eN , where p is the �nite covering
given by Proposition 1.12. Thus there exists an integer m such that the �ber
preserving map pj eBN : eBN ! BN induces the mn0 -index covering on the
�bers et of eBN . Let � denote the homomorphism correponding to the covering
induced on the �bers. Thus the covering induces, via f , a regular �nite covering
q over S which corresponds to the following homomorphism � :

�1(S)
(f jS)�! Z ’ hti �! Z

mn0Z
=
hti
htmn0i

Let eS be a component of the covering of S corresponding to � . Our goal
here is to comput the genus of the orbit space, denoted by eF of eS . For each
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i 2 f1; :::; rg, we denote by �i the order of the element �(ci) = �i in Z=mn0Z.
Thus we get the following equalities:

�1 = m�1�2�2 �2 = m�1�2�1 and (�1; �1) = �1 (�2; �2) = �2

Let �F : eF ! F denote the (branched) covering induced by q on the orbit
spaces of eS and S and denote by � the degree of the map �F . It follows
from Lemma 4.1 (applied to S ) that each component of q−1(S) has connected
boundary. Using paragraph 3.2 we know that the genus eg of eF is given by the
following formula:

2eg = 2 + �

 
r − 1− 1

�
−

i=rX
i=1

1
(�i; �i)

!
Since @ eS is connected, then using the above equalities, the last one implies
that:

2eg � 1 + �

�
1− 1

�1
− 1
�2

�
� 1

which proves that Proposition 1.12 implies Lemma 6.1. Hence the remainder
of this section will be devoted to the proof of Proposition 1.12.

6.2 Preliminaries for the proof of Proposition 1.12

We assume that N3 satis�es the conclusion of Proposition 1.4. In this section we
begin by constructing a class of �nite coverings for hyperbolic manifolds. This
is the heart of the proof of Theorem 1.1: we use deep results of W. P. Thurston
on the theory of deformation of hyperbolic structure. Next (in subsection 6.2.4)
we construct special �nite coverings of Seifert pieces, that can be glued to the
previous coverings over the hyperbolic pieces, to get a covering of N3 having
the desired properties.

6.2.1 A �nite covering lemma for hyperbolic manifolds

In this paragraph we construct a special class of �nite coverings for hyperbolic
manifolds (see Lemma 6.2). To state this result precisely we need some nota-
tions. Throughout this paragraph we assume that the manifold N3 satis�es
the conclusion of Proposition 1.4.

In this section we deal with a class, denoted by H of three-manifolds with non-
empty boundary made of pairwise disjoint tori whose interior is endowed with
a complete, �nite volume hyperbolic structure. Let H be an element of H and
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let T1; :::; Th be the components of @H . We consider H as a submanifold of the
Haken manifold N and we cut @H in two parts: the �rst one is made of the tori,
denoted T1; :::; Tl , which are adjacent to Seifert pieces in N and the second one
is made of tori, denoted U1; :::; Ur , which are adjacent to hyperbolic manifolds
along their two sides. For each Ti (i 2 f1; :::; lg) in @H we �x generators
(mi; li) of �1(Ti) ’ Z � Z and we assume these generators are represented by
simple smooth closed curves (denoted by li and mi too) meeting transversally
at one point and such that Ti n (li [mi) is di�eomorphic to the open disk. The
curves (mi; li) will be abusively called system of \longitude-meridian" (we use
notation \ " as Ti is not the standard torus but a subset of N3 ). On the other
hand we denote by P� the set of all prime numbers in N� and for each integer
n0 , we denote by Pn0 the set:

Pn0 = fn 2 P� such that there is an m 2 N with n = mn0 + 1g

It follows from the Dirichlet Theorem (see [10, Theorem 1, Chapter 16]) that
for each integer n0 the set Pn0 is in�nite. The goal if this paragraph is to prove
the following result:

Lemma 6.2 For each integer n0 and for all but �nitely many primes q of the
form mn0 + 1, there exists a �nite group K , a cyclic subgroup Gn ’ Z=nZ of
K , an element c 2 Gn of multiplicative order mn0 , elements γ1; :::; γl in Gn
and a homomorphism ’ : �1(H)! K satisfying the following properties:

(i) for each i 2 f1; :::; lg there exists an element gi 2 K such that ’(�1(Ti)) �
giGng

−1
i = Gin ’ Z=nZ with the following equalities: ’(mi) = gicg

−1
i and

’(li) = giγig
−1
i ,

(ii) for each j 2 f1; :::; rg the group ’(�1(Uj)) is either isomorphic to Z=qZ
or to Z=qZ� Z=qZ.

6.2.2 Preparation of the proof of Lemma 6.2.

We �rst recall some results on deformation of hyperbolic structures for three-
manifolds. These results come from chapter 5 of [23]. Let Q be a 3-manifold
whose interior admits a complete �nite volume hyperbolic structure and whose
boundary is made of tori T1; :::; Tk . This means that Q is obtained as the
orbit space of the action of a discret, torsion free subgroup Γ of I+(H3;+) ’
PSL(2;C) on H3;+ (where H3;+ denotes the Poincar�e half space) denoted by
Γ=H3;+ . Hence we may associate to the complete hyperbolic structure of Q a
discret and faithful representation H0 (called holonomy) of �1(Q) in PSL(2;C)
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de�ned up to conjugation by an element of PSL(2;C). It follows from Proposi-
tion 3.1.1 of [3], that this representation lifts to a faithful representation denoted
by H0 : �1(Q) ! SL(2;C). Note that since Q has �nite volume, the repre-
sentation H0 is necessarily irreducible. Moreover, since H0 is faithful, then for
each component T of @Q and for each element � 2 �1(T ), the matrix H0(�)
is conjugated to a matrix of the form:�

1 �
0 1

�
where � 2 C�

We will show here that for each primitive element � 2 �1(T ), there exists a
neighborhood W of 1 in C� such that for all z 2W there exists a representation
� : �1(Q)! SL(2;C) such that one of the eigenvalues of �(�) is equal to z .

Denote by R(�1(Q)) the a�ne algebraic variety of representations of �1(Q) in
SL(2;C) (i.e. R(�1(Q)) = f�; � : �1(Q) ! SL(2;C)g) and by X(�1(Q)) the
space of characters of the representations of �1(Q). For each element g 2 �1(Q)
we denote by �g the map de�ned by:

�g : R(�1(Q)) 3 � 7! tr(�(g)) 2 C

Let T denote the ring generated by all the functions �g when g 2 �1(Q). Since
�1(Q) is �netely generated, then so is the ring T ; so we can choose a �nite
number of elements γ1; :::; γm in �1(Q) such that h�γ1 ; :::; �γmi = T . We de�ne
now the map t in the following way:

t : R(�1(Q)) 3 � 7! (�γ1(�); :::; �γm (�)) 2 Cm

which allows to identify the space of characters X(�1(Q)) with t(R(�1(Q))). In
particular, if R0 denotes an irreducible component of R(�1(Q)) which contains
H0 , then the space X0 = t(R0) is an a�ne algebraic variety called deformation
space of Q near the initial structure H0 . It follows from [23, Theorem 5.6], or
[3, Proposition 3.2.1], that if Q has k boundary components (all homeomorphic
to a torus), then dim(X0 ) = dim(R0)− 3 � k . We now �x basis of \meridian-
longitude" (mi; li), 1 � i � k , for each torus T1; :::; Tk . This allows us to de�ne
a map:

tr : X0 ! Ck

in the following way: let q be an element in X(�1(Q)). The above paragraph
implies that there exists a representation Hq such that t(Hq) = q ; then we set
tr(q) = (tr(Hq(m1)); :::; tr(Hq(mk))) 2 Ck . By construction this map is a well
de�ned polynomial map between the a�ne algebraic varieties X(�1(Q)) and
Ck . Moreover, if q0 denotes the element of X0 equal to t(H0), then it follows
from the Mostow Rigidity Theorem (see [1, Chapter C]) that the element q0 is
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the only point in the inverse image of tr(q0). Using [16, Theorem 3.13] this im-
plies that dim(X0) = dim(Ck) = k . Next, applying the Fundamental Openness
Principle (see [16, Theorem 3.10]) we know that there exists a neighborhood U
of q0 in X0 such that tr(U) is a neighborhood of tr(q0) = (2; :::; 2) in Ck de-
noted by V . Let f be the map de�ned by f(z1; :::; zk) = (z1+1=z1; :::; zk+1=zk)
and let W be a neighborhood of (1; :::; 1) in Ck such that f(W ) = tr(U) = V .
This proves that for each k -uple � = (�1; :::; �k) of W there exists a represen-
tation H� of �1(Q) in SL(2;C) such that for each i 2 f1; :::; kg the matrix
H�(mi) has an eigenvalue equal to �i .

6.2.3 Proof of Lemma 6.2

Let H be a submanifold of M3 which admits a complete �nite volume hyper-
bolic structure q0 . We denote by H0 the irreducible holonomy of �1(H) in
SL(2;C) associated to the complete structure of H , by R0 an irreducible com-
ponent of R(�1(H)) which contains H0 and by X0 the component of X(�1(H))
de�ned by X0 = t(R0) (see paragraph 6.2.2 for de�nitions). Let U1; :::; Ur be
the components of @H which bound hyperbolic manifolds of M3 along their
both sides and let T1; :::; Tl be the components of @H adjacent to Seifert pieces.
For each Ti , i = 1; :::; l (resp. Uj , j = 1; :::; r), we �x a system of \longitude-
meridian" (mi; li) (resp. (�j ; �j)). Let � be a transcendental number (over Z),
near of 1 in C (this is possible since the set of algebraic number over Z is
countable). It follows from paragraph 6.2.2 that there is a representation Hq

of �1(Q) in SL(2;C) satisfying the following equalities:

vp(Hq(�j)) = vj(q) = vp(Hq(�j)) = 1 for j 2 f1; :::; rg

vp(Hq(mi)) = �i(q) = � for i 2 f1; :::; lg

where vp(A) denotes one of the eigenvalues of the matrix A 2 SL(2;C). Thus
we get the following equalities:

Hq(mi) = Qi

�
� 0
0 �−1

�
Q−1
i ; Hq(li) = Qi

�
�i 0
0 (�i)−1

�
Q−1
i

for i 2 f1; :::; lg where � is a transcendental number over Z and where the
matrix Q1; :::; Ql are in SL(2;C). On the other hand, since vp(Hq(�j)) =
vj(q) = vp(Hq(�j)) = 1 for j = 1; :::; r , the groups Hq(�1(Uj)) are unipotent
and isomorphic to Z� Z. This implies that:

PjHq(�j)P−1
j =

�
1 1
0 1

�
; PjHq(�j)P−1

j =
�

1 �j
0 1

�
for j 2 f1; :::; rg
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where �1; :::; �r are in C n Q and where the Pj ’s are in SL(2;C). Moreover
since �1(H) is a �nitely generated group, we may choose a �nite susbet G which
generates �1(H). Then consider the subring A of C, generated over Z[�] by
the following system:

Z
[
fentries of the matrix Hq(g) for g 2 Gg[

fentries of the matrix Pj ; P−1
j ; Qi; (Qi)−1g

[
f�; �−1; �i; (�i)−1; �jg

It follows from the above construction that A is a �nitely generated ring over
Z[�], and Z[�] is isomorphic to Z[X] since � is transcendental over Z. So
using the Noether Normalization Lemma (see [6], Theorem 3.3) for the ring A
over B0 = Z[�], we know that there exists a polynomial P of Z[X] and a �nite
algebraically free family fx1; :::; xkg over Z[�] such that A is integral over

B = Z[�]
�

1
P (�)

�
[x1; :::; xk ]

To complete the proof of Lemma 6.2 we need the following result.

Lemma 6.3 Let n0 > 0 be a �xed integer. Let A be a subring of C integral
over a ring B isomorphic to Z[�] [1=P (�)] [x1; :::; xk ], where � is transcendental
over Z, P is a polynomial in Z[�] and x1; :::; xk are algebraically free over
Z[�] ’ Z[X]. Let �1; :::; �l be elements of A. Then for all n0 2 N and for all
but �nitely many primes q = mn0 +1, there is a �nite �eld Fq of characteristic
q , an element c in (Fq)� = Fq n f0g of multiplicative order mn0 , elements
γ1; :::; γ l in (Fq)� and a ring homomorphism " : A! Fq such that:

(i) hh"(�); "(�i)ii � F�q ’ Z=nZ for i = 1; :::; l , where hhg; hii is the multi-
plicative subgroup of A generated by g et h and where n = jFqj − 1,

(ii) "(�) = c and "(�i) = γi for i = 1; :::; l .

Proof of Lemma 6.3 We �rst prove that for all but �nitely many primes
q 2 Pn0 there exists a ring homomorphism " : B ! Z=qZ such that "(�) is a
generator of the cyclic group (Z=qZ)� ’ Z=(q−1)Z. We next show that we can
extend " to a homomorphism from A by taking some �nite degree extension of
Z=qZ and using the fact that A is integral over B . To this purpose we claim
that for all but �nitely many primes q = mn0 + 1, there is a homomorphism

" : Z[�]
�

1
P (�)

�
! Z=qZ

where "(�) is a generator of the group (Z=qZ)� and where P = a0 + a1X +
:::+aNXN , with integral coe�cients. For all su�ciently large primes q we may
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assume that (q; a0) = (q; aN ) = 1. Hence for q su�ciently large the projection
Z ! Z=qZ associates to P a non-trivial polynomial P in Z=qZ[X] of degree
N . On the other hand it is well known that (Z=qZ)� is a cyclic group of order
q − 1, when q is a prime. Thus there exists ’(q − 1) = ’(mn0) elements in
Z=qZ generating (Z=qZ)� , where ’ is the Euler function. Moreover it is easy to
prove that limn!+1 ’(n) = +1: Hence for a prime q su�ciently large we get:
Card(G((Z=qZ)�)) = ’(q − 1) > N � Card(P−1(0)) which allows us to choose
an element c in Z=qZ generating (Z=qZ)� and such that P (c) 6= 0. Hence
for all but �nitely many primes q = mn0 + 1, we may de�ne a homomorphism
" : Z[�] ! Z=qZ by setting "(�) = c where c is a generator of (Z=qZ)� ,
which is possible since � is transcendental over Z. Since P (c) 6= 0 we can
extend " to a homomorphism " : Z[�][1=P (�)] ! Z=qZ. Since the elements
x1; :::; xk are algebraically free over Z[�], we extend the above homomorphism
to B = Z[�][1=P (�)][x1; :::; xk ] by choosing arbitrary images for x1; :::; xk . We
still denote by " : B ! Z=qZ this homomorphism. Let us remark that it follows
from the above construction that � is sent to an element of multiplicative order
q − 1 = mn0 .

We next show that we can extend " to A. We �rst prove that there is an
extension of " to B[�1; :::; �l] in such a way that the �i are sent to non-trivial
elements. We assume that there is an integer 0 � i < l such that for all
j 2 f0; :::; ig there is a �nite �eld Fj

q of characteristic q which is a �nite degree
extension of Z=qZ and an extension of " denoted by "j : Bj = B[�1; :::; �j ]!
Fj
q such that "j(�r) 6= 0 for r = 1; :::; j . Since A is integral over B , there

is a polynomial Pi+1 = ai+1
0 + ::: + ai+1

n Xn in B[X] where ai+1
0 and ai+1

n are
invertible in A such that Pi+1(�i+1) = 0. The homomorphism "i associates
to Pi+1 a polynomial P i+1 which can be assumed to be irreducible in Fi

q[X],
having a non-trivial root xi+1 in some extension of Fi

q . If P i+1 has no root
in Fi

q we take the �eld extension Fi+1
q = Fi

q[X]=(P i+1) and we set xi+1 = X

where X denotes the class of X for the projection Fi
q[X] ! Fi

q[X]=(P i+1).
If P i+1 has a non-trivial root xi+1 in Fi

q we set Fi+1
q = Fi

q . This proves,
by induction, that we can extend " to B[�1; :::; �l]. To extend " to A it is
su�cient to �x images for its other generators. Since A has a �nite number of
generators we use the same method as above (using the fact that A is integral
over B ). Let " be the homomorphism extended to A and Fq be the extended
�eld. Since "(�i) = γi 6= 0 for i = 1; :::; l then γi 2 F�q ’ Z=nZ with n =
Card(Fq)− 1, which ends the proof of Lemma 6.3.

End of proof of Lemma 6.2 Let q be a prime satisfying the conclusion of
Lemma 6.3. We denote by " : A! Fq the homomorphism given by Lemma 6.3.
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This homomorphism combined with the holonomy Hq of �1(H) in SL(2;C)
induces a homomorphism ’ such that the following diagram commutes.

�1(H)
Hq

//

’

��

SL(2;C)

%
xxqq
q
q
q
q
q
q
q
q

SL(2;Fq)

where % is the restriction of the homomorphism % : SL(2;A) ! SL(2;Fq)
de�ned by: �

a b
c d

�
7!
�
"(a) "(b)
"(c) "(d)

�
So we get the following identities:

’(mi) = Qi

�
c 0
0 c−1

�
Q
−1
i ; ’(li) = Qi

�
γi 0
0 γ−1

i

�
Q
−1
i for i 2 f1; :::; lg

’(�j) = P j

�
1 1
0 1

�
P
−1
j ; ’(�j) = P j

�
1 "(�j)
0 1

�
P
−1
j for j 2 f1; :::; rg

Let Gn be the subgroup of SL(2;Fq) de�ned by:

Gn =
�
a =

�
a 0
0 a−1

�
when a 2 F�q

�
Since F�q is a cyclic group of order n, so is Gn . To complete the proof of (i)
it is su�cient to set gi = Qi . To prove (ii), it is su�cient to use the fact that
Fq is a �eld of characteristic q and the form of the elements ’(�j); ’(�j) for
j = 1; :::; r . Indeed this proves that ’(�1(Uj)) is either isomorphic to Z=qZ or
to Z=qZ � Z=qZ depending on whether the elements 1 and "(�j) are linearly
dependant or not. This ends the proof of Lemma 6.2.

Remark 3 Lemma 6.2 can be easily extended to the case of a �nite number of
complete �nite volume hyperbolic manifolds. More precisely, if H1; :::;H� de-
note � hyperbolic submanifolds in N3 , we can write Lemma 6.2 simultaneously
for the � submanifolds by choosing the same prime q 2 Pn0 , the same group
K , the same cyclic group Gn ’ Z=nZ � K and the same element c 2 Gn of
multiplicative order mn0 . Hence we get the following corollary.

Corollary 6.4 Let H1; :::;H� be � submanifolds of N3 whose interiors admit
a complete �nite volume hyperbolic structure. Then for any integer n0 � 1
and for all but �nitely many primes q of the form mn0 + 1, there exists a
�nite group K , a cyclic subgroup Gn ’ Z=nZ of K , an element c 2 Gn of
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multiplicative order mn0 , elements γij in Gn , i = 1; :::; � , j = 1; :::; li , and

group homomorphisms ’Hi : �1(Hi) ! K , i = 1; :::; � satisfying the following
properties:

(i) for each i 2 f1; :::; �g and j 2 f1; :::; lig there is an element gij 2 K such

that ’Hi(�1(T ij )) � gijGn(gij)
−1 ’ Z=nZ,

(ii) for each i 2 f1; :::; �g and j 2 f1; :::; lig we have the following equalities:
’Hi(mi

j) = gijc(g
i
j)
−1 and ’Hi(lij) = gijγ

i
j(g

i
j)
−1 ,

(iii) for each i 2 f1; :::; �g and j 2 f1; :::; rig the group ’Hi(�1(U ij)) is isomor-
phic to either Z=qZ or Z=qZ� Z=qZ.

6.2.4 A �nite covering lemma for Seifert �bered manifolds

In this section we construct a class of �nite coverings for Seifert �bered man-
ifolds with non-empty boundary homeomorphic to a product which allows to
extend the hyperbolic coverings given by Corollary 6.4. We show here that these
coverings may be extended if some simple combinatorial conditions are checked
and we will see that these combinatorial conditions can always be satis�ed up
to �nite covering over N3 . Throughout this paragraph we consider a Seifert
piece S of N3 identi�ed to a product F � S1 , where F denotes an orientable
surface of genus g � 1 with at least two boundary components. We �x two
intergers n > 1 and c in Z� and we denote by � the order of c in Z=nZ. Then
the main result of this section is the following.

Lemma 6.5 Let S be a Seifert �bered space homeomorphic to F � S1 .
We denote by D1; :::;Dl; G1; :::; Gr the components of @F and we set di =
[Di] 2 �1(F ) and �j = [Gj ] 2 �1(F ) (for a choice of base points). Let
γ(S) = fγ1; :::; γlg be a �nite sequence of integers. Then there exists a �-
nite covering � : eS = eF � S1 ! S = F � S1 inducing the trivial covering on
the boundary and satisfying the following property: there exists a group ho-
momorphism ’ : �1(eS) ! Z=nZ� G, where G denotes a �nite abelian group
such that:

(i) for each component T ij = Di
j�S1 (j = 1; ::; deg(�)) of �−1(T i) = �−1(Di)�

S1 , we have ’(�1(T ij )) � Z=nZ� f0g and in particular we have the equalities:

’(et) = (c; 0) and ’(dij) = (γi; 0), where dij = [Di
j ] 2 �1( eF ) and where et denotes

the �ber of eS ,

(ii) for each component Uj of �−1(Gj � S1) the group ker(’j�1(Uj)) is the
�� �-characteristic subgroup in �1(Uj).
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Proof Let N0 be the integer de�ned by N0 = γ1 + :::+ γl . Then the proof of
Lemma 6.5 is splitted is two cases.

Case 1 We �rst assume that N0 � 0 (n). Then we show in this case that S
itself satis�es the conclusion of Lemma 6.5. Recall that with the notations of
Lemma 6.5 the group �1(S) has a presentation:

ha1; b1; :::; ag; bg; d
1; :::; dl; �1; :::; �r ; t :

[t; di] = [t; �j ] = [t; ai] = [t; bi] = 1;
i=gY
i=1

[ai; bi]
j=lY
j=1

dj
k=rY
k=1

�k = 1i

with n � 2 and r � 2 (Indeed recall that N satis�es the conclusion of Proposi-
tion 1.4. In particular, N is a �nite covering P : N ! N 0 of a Haken manifold
N 0 such that for each canonical torus T of WN 0 and for each geometric piece
S adjacent to T in N 0 the space (P jS)−1(T ) is made of at least two con-
nected components). We show here that we may construct a homomorphism
$ : �1(S)! Z=nZ� (Z=�Z)r−1 such that $(hdi; ti) � Z=nZ� f0g and satis-
fying the following equalities:

� $(di) � (γi; 0) for every i = 1; :::; l ,

� $(t) � (c; 0) and the group ker($jh�j ; ti) is the � � �-characteristic
subgroup of h�j ; ti for j = 1; :::; r .

Then consider the group K de�ned by the following relations:

K =

*
d1; :::; dl; �1; :::; �r ; t : [t; di] = [t; �j ] = 1;

0@j=lY
j=1

dj

1A = 1;

 
k=rY
k=1

�k

!
= 1

+
obtained from �1(S) by killing the generators ai; bi for i = 1; :::; g and adding
two relations. Denote by � : �1(S) ! K the corresponding projection homo-
morphism. Then we de�ne a homomorphism � : K ! Z� Zr−1 by setting:

� �(d1) = (γ1; 0; :::; 0); :::; �(dl−1) = (γl−1; 0; :::; 0),

� �(�1) = (0; 1; 0; :::; 0); :::; �(�r−1) = (0; :::; 0; 1) and �(t) = (c; 0; :::0).

Since
Q
i d
i = 1 we get: �(dl) = −(γ1 + ::: + γl−1) � f0g � (γl (n)) � f0g

and since
Q
j �j = 1 we have: �(�r) = (0; 1; :::; 1). Finally, if � : Z � Zr−1 !

Z=nZ � (Z=�Z)r−1 is the canonical epimorphism, then the homomorphism ’
de�ned by the composition ��� �� satis�es the conclusion of Lemma 6.5. This
ends the proof of Lemma 6.5 in case 1.

Case 2 We now assume that N0 = γ1 + ::: + γl 6� 0 (n). So there exists
an integer p > 1 (that may be chosen minimal) such that: (??) pN0 = pγ1 +
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::: + pγl � 0 (n). Let � : eS ! S be the �nite covering of degree p of S
corresponding to the following homomorphism:

�1(S) h! ha1i ’ Z −! ha1i
hap1i

’ Z
pZ

It follows from the above construction that this covering induces the trivial
covering on @S . So each component T of @S has p connected components in
its pre-image by � . With the same notations as in the above paragraph, the
group �1(eS) has a presentation:

ha1; b1; :::; ag̃ ; bg̃; d
1
1; :::; d

1
p; :::; d

l
1; :::; d

l
p;
e�1; :::; e�r̃ :0@i=g̃Y

i=1

[ai; bi]

1A :

0@Y
i;j

dij

1A :

 
k=r̃Y
k=1

e�k
!

= 1i � heti
Then we show that we can construct a homomrphism $ : �1(eS) ! Z=nZ �
(Z=�Z)r̃−1 such that $(hdij ;eti) � Z=nZ � f0g and satisfying the following
equalities:

� $(dij) � (γi; 0) for every j = 1; :::; p and i = 1; :::; l ,

� $(et) � (c; 0) and the group ker($jhe�j ;eti) is the �� �-caracteristic sub-
group of he�j ;eti for j = 1; :::; er .

Consider now the group K obtained from �1(eS) by setting:

K = hd1
1; :::; d

1
p; :::; d

l
1; :::; d

l
p;
e�1; :::; e�r̃ ;et :

[et; dij ] = [et; �j ] = 1;

0@Y
i;j

dij

1A = 1;

 
k=r̃Y
k=1

e�k
!

= 1i

Let � : �1(eS) ! K be the corresponding canonical epimorphism. We de�ne a
homomorphism � : K ! Z=nZ� (Z=�Z)r̃−1 by setting:

� �(d1
1) = (γ1; 0; :::; 0); :::; �(d1

p) = (γ1; 0; :::; 0); :::;

� �(dl1) = (γl; 0; :::; 0); :::; �(dlp−1) = (γl; 0; :::; 0),

� �(�1) = (0; 1; 0; :::; 0); :::; �(�r̃−1) = (0; :::; 0; 1) and �(t) = (c; 0; :::0).

Since
Q
i;j d

i
j = 1 we get: �(dlp) = −(pγ1 + ::: + (p − 1)γl) � γl (n) and sinceQ

j
e�j = 1 we have: �(�r̃) = (0; 1; :::; 1). Finally if we denote by � : Z�Zr̃−1 !

Z=nZ�(Z=�Z)r̃−1 the canonical projection then the homomorphism ’ de�ned
by the composition ����� satis�es the conclusion of Lemma 6.5. This completes
the proof of Lemma 6.5.
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6.3 Proof of Proposition 1.12

Throughout this section N3 will denote a closed Haken manifold with non-
trivial Gromov simplicial volume, whose Seifert pieces are product. Let n0 � 1
be a �xed integer. We denote by H1; :::;H� the hyperbolic components and
by S1; :::; St the Seifert pieces of N nWN . We want to apply Corollary 6.4 to
H1; :::;H� uniformly with respect to the integer n0 . To do this we �rst �x sys-
tem of \longitude-meridian" on each boundary component of these manifolds.
This choice will be determined in the following way: Let H be a hyperbolic
manifold and let T be a component of @H . If T is adjacent on both sides to
hyperbolic manifolds we �x a system of \longitude-meridian" arbitrarily. We
now assume that T is adjacent to a Seifert piece in N denoted by S = F �S1 .
We identify a regular neighborhood of T with T � [−1; 1], where T = T �f0g,
T− = T � f−1g and T+ = T � f+1g. We assume that T+ is a component
of @S and that T− is a component of @H and we denote by hT : T+ ! T−

the corresponding gluing homeomorphism. Let t be the �ber of S represented
in T+ and let d be the homotopy class of the boundary component of the
base F of S corresponding to T+ . Then the curves (t; d) represent a system
of \longitude-meridian" for �1(T+) and allow us to associate to T− � @H a
\longitude-meridian" system by setting:

m = hT (t) and l = hT (d)

We now give some notations: for a hyperbolic manifold Hi of N , we denote by
T i1; :::; T

i
li

the components of @Hi adjacent to a Seifert piece and by U i1; :::; U
i
ri

those which are adjacent on both sides to hyperbolic manifolds. For each T ij ,
we denote by (mi

j ; l
i
j) its \longitude-meridian" system corresponding to the

construction described above.

We now describe how the hyperbolic pieces of N allow us to associate, via
Corollary 6.4, a sequence of integers γ(S) to each Seifert piece of N , in the
sense of Lemma 6.5. Let S be a Seifert piece in N , we denote by H1; :::;Hm the
hyperbolic pieces adjacent to S along @S and we �x a torus T1 in @S adjacent
to H1 (say). It follows from Corollary 6.4 that there exists a homomorphism
’1 : �1(H1) ! K such that ’1(�1(T1)) � gGng

−1 , where Gn is a n-cyclic
subgroup of K and such that ’1(m) = gcg−1 , ’1(l) = gγ1g

−1 where c and γ1

are elements of Gn = Z=nZ and where (m; l) denotes the \longitude-meridian"
system of T1 . Let c and γ1 be representatives in Z of c and γ1 . Then we set
γ1(S) = γ1 . Applying the same method for all tori of @S which are adjacent to
hyperbolic components we get a sequence fγ1(S); :::; γni (S)g = γ(S) associated
to S , when S is a Seifert piece in N . We �x a suitable prime q of the form
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mn0 + 1 (i.e. we choose q su�ciently large) and we apply Corollary 6.4 to the
hyperbolic manifolds H1; :::;H� . This means that for each i 2 f1; :::; �g there
exists a homomorphism ’Hi : �1(Hi) ! K satisfying the conclusion of Corol-
lary 6.4. This allows us to associate to each Seifert piece S1; :::; St an integer
sequence γ(S1); :::; γ(St). So the proof of Proposition 1.12 will be splitted in
two cases.

6.3.1 Proof of Proposition 1.12: Case 1

We �rst assume that we can apply Lemma 6.5 for each Seifert piece S of N nWN

and the associated integer sequence γ(S) (i.e. without using a �nite covering).
It follows from Lemma 6.5, that for each i 2 f1; :::; tg, there exists a group
homomorphism ’Si : �1(Si) ! Z=nZ � Gi satisfying properties (i) and (ii) of
this lemma for the sequence γ(Si) with � = q − 1 = mn0 .

It follows from [9, Lemma 4.1] or [14, Theorems 2.4 and 3.2] that for each
i 2 f1; :::; �g (resp. i 2 f1; :::; tg) there exists a �nite group H (resp. Li ) and
a group homomorphism ’̂Hi : �1(Hi) ! H (resp. ’̂Si : �1(Si) ! Li ) which
induces the q � q -characteristic covering on @Hi (resp. @Si ). For each i 2
f1; :::; �g (resp. i 2 f1; :::; tg) we consider the homomorphism  Hi (resp.  Si )
de�ned by the following formula:

 Hi = ’Hi � ’̂Hi : �1(Hi)! K �H
 Si = ’Si � ’̂Si : �1(Si)! (Z=nZ�Gi)� Li

where ’Hi is given by Corollary 6.4. The above homomorphisms allow us to
associate to each Seifert piece S of N n WN a �nite covering pS : eS ! S .
De�ne the set R by R := fpS : eS ! S when S describes the Seifert pieces of
Ng [ fpH : eH ! H when H describes the hyperbolic pieces of Ng. Since for
each Seifert piece S of N the homomorphism  S sends the homotopy class of
the regular �ber of S , denoted by tS , to an element of order qmn0 , then to
prove Proposition 1.12 it is su�cient to show the following result.

Lemma 6.6 There exists a �nite covering r : eN ! N such that for each
component S of N nWN and for each component eS of r−1(S), the induced
covering rjeS : eS ! S is equivalent to the covering corresponding to S in the
set R.

In the proof of this result, it will be convenient to call a co-dimension 0 sub-
manifold Xk of N a k − chain of N if Xk is a connected manifold made of
exactly k components of N nWN . Then we prove Lemma 6.6 by induction on
k .
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Proof of Lemma 6.6 When k = 1 this is an obvious consequence of Lemma
6.2, if the 1-chain X1 is hyperbolic or of Lemma 6.5, if X1 is a Seifert piece.
Indeed it is su�cient to take the associated homomorphism of type  H or  S .
We �x now an integer k � t+ � and we set the following inductive hypothesis:

(Hk−1): for each j < k � t + � and for each j -chain Xj of N , there exists

a �nite covering pj : eXj ! Xj such that for each component S of Xj nWN

and for each component eS of p−1
j (S) the induced covering pjjeS : eS ! S is

equivalent to the covering pS corresponding to S in the set R.

Let Xk be a k -chain in N . We choose a (k− 1)-chain denoted by Xk−1 in Xk

and we set X1 the (connected) component of Xk nXk−1 .

Case 1.1 We �rst assume that X1 is a Seifert piece of N , denoted by S . Let
H1; :::;Hm be the hyperbolic pieces of Xk−1 adjacent to S and let S1; :::; Sk
be the Seifert pieces of Xk−1 adjacent to S . The hyperbolic manifold Hi is
adjacent to S along tori (T i;−1 ; :::; T i;−�i ) � @Hi and (T i;+1 ; :::; T i;+�i ) � @S and
Sj is adjacent to S along tori (U j;−1 ; :::; U j;−nj ) � @Sj and (U j;+1 ; :::; T j;+nj ) � @S .
With these notations the fundamental group of S has a presentation:

ha1; b1; :::; ag; bg; d
1
1; :::; d

1
�1
; :::; ds1; :::; d

s
�s ; �

1
1 ; :::; �

1
r1 ; :::; �

�
1 ; :::; �

�
r�

:

 Y
i

[ai; bi]

!
:

0@Y
i;j

dij

1A :

0@Y
i;j

�ij

1A = 1i � hti

Where the group ht; �iji corresponds to �1(U i;+j ) and ht; diji corresponds to
�1(T i;+j ). We denote by hik : T i;+k ! T i;−k and by ’jk : U j;+k ! U j;−k the gluing
homeomorphism in N (see �gure 5). Let pXk−1

: eXk−1 ! Xk−1 be the covering
given by the inductive hypothesis. In particular, for each hyperbolic piece Hi

(resp. Seifert piece Sj ) of Xk−1 and for each component eHi of p−1
Xk−1

(Hi) (resp.eSj of p−1
Xk−1

(Sj)) the covering pXk−1
j eHi (resp. pXk−1

jeSj ) is equivalent to pHi
(resp. pSj ) in R. Denote by  Hi (resp.  Sj ) the homomorphisms corresponding
to pHi (resp. to pSj ):

 Sj = ’Sj � ’̂Sj : �1(Sj)! (Z=nZ�Gi)� Li

and  Hi = ’Hi � ’̂Hi : �1(Hi)! K �H

where K;H;Gi and Li are �nite groups. In particular, we have the following
properties (Pi;−j ):
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(a)  Hi j�1(T i;−j ) = ’Hi j�1(T i;−j ) � ’̂Hi j�1(T i;−j ) is a homomorphism from
�1(T i;−j ) to (gij :Gn:(g

i
j)
−1)� (Z=qZ� Z=qZ) � K �H with gij 2 K and

’Hi(m
i
j) = (gij :c:(g

i
j)
−1; 0; 0) (where c is an element of order � = mn0 in

Gn ) and ’Hi(l
i
j) = (gijγ

i
j(g

i
j)
−1; 0; 0) and ’̂Hi(�1(T i;−j )) = f0g � Z=qZ�

Z=qZ for i = 1; :::;m and j = 1; :::; �i .

(b) the groups ker( Si j�1(U i;−j )) are q�� q�-characteristic in �1(U i;−j ).

We consider the integer sequence γH(S) = fγijgi;j of liftings in Z of fγijgi;j .
It follows from the hypothesis of Case 1, that we can apply Lemma 6.5 to
S = F � S1 ; this means that there exists a homomorphism  S : �1(S) !
Z=nZ�G� LS satisfying the following equalities denoted by (PS):

(c) the group ker( S jh�ij ; ti) = ker( S j�1(U i;+j )) is the chatacteristic sub-
group of index q�� q� in h�i;+j ; ti for i = 1; :::; t and j = 1; :::; ni .

(d)  S j�1(T i;+j ) = ’S j�1(T i;+j ) � ’̂S j�1(T i;+j ) : �1(T i;+j ) ! Z=nZ � f0g �
(Z=qZ � Z=qZ) � Z=nZ � f0g � Li with ’S(dij) = (γij; 0; 0), ’S(t) =
(c; 0; 0) and ’̂S(�1(U i;+j )) = f0g � Z=qZ � Z=qZ for i = 1; :::; t and
j = 1; :::; ni .

’1
2

’1
1

h1
3

h1
2

h1
1

U1;+
2 = (�1

2 ; t)

U1;+
1 = (�1

1 ; t)

T 1;+
3 = (d1

3; t)

T 1;+
2 = (d1

2; t)

T 1;+
1 = (d1

1; t)

U1;−
2

U1;−
1

T 1;−
3 = (l13;m

1
3)

T 1;−
2 = (l12;m

1
2)

T 1;−
1 = (l11;m

1
1)

S

S1

H1

Figure 5

Denote by pS : eS ! S the �nite covering corresponding to  S , by �S the
degree of pS and by �Xk−1

the degree of pXk−1
. Let T i;+j (resp. T i;−j ) be
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a torus in @S (resp. in @Hi). It follows from the construction of the cov-
erings pXk−1

and pS that pXk−1
(resp. pS ) is a covering of degree �i;−j =

j Hi(�1(T i;−j ))j = j Hi(hlij ;mi
ji)j (resp. �i;+j = j S(�1(T i;+j ))j = j S(hdij ; ti)j).

If �i;+j (resp. �i;−j ) denotes the number of connected components of p−1
S (T i;+j )

(resp. of p−1
Xk−1

(T i;−j )) we can write:

�i;+j � �i;+j = �S ; �
i;−
j � �i;−j = �Xk−1

and �i;+j = �i;−j (1)

by properties Pi;−j and PS . For each component U i;−j of Si (resp. U i;+j of S ),
the covering pXk−1

(resp. pS ) induces the q� � q�-characteristic covering. If
�i;+j (resp. �i;−j ) denotes the number of connected components of p−1

S (U i;+j )
(resp. of p−1

Xk−1
(U i;−j )), we can write:

q2�2 � �i;+j = �S ; q2�2 � �i;−j = �Xk−1
(2)

We want to show that there are two positive integers x and y independant of
i and j satisfying the following equalities:

x�i;+j = y�i;−j x�i;+j = y�i;−j (3)

Using (1), it is su�cient to choose x and y in such a way that x�S = y�Xk−1

which is possible. So we take x copies eS1; :::; eSx of eS and y copies eX1
k−1; :::;eXy

k−1 of eXk−1 with the coverings piS : eSi ! S (resp. piXk−1
: eXi

k−1 ! Xk−1)
equivalent to pS (resp. pXk−1

). Then consider the space X de�ned by

X =

0@ a
i�i�x

eSi
1Aa0@ a

1�j�y

eXj
k−1

1A
Note that it follows from the above arguments that the spaces

‘
i�i�x

eSi and‘
1�j�y

eXj
k−1 have the same number of boundary components. Thus it is suf-

�cient to show that we can glue together the connected components of X via
those of (piS)−1(@S) and of (piXk−1

)−1(@Xk−1) (see �gure 5). To do this, we �x

a component eT i;+j (resp. eT i;−j ) of p−1
S (eT i;+j ) (resp. p−1

Xk−1
( eT i;−j )) and we pro-

ceed as before with the components of p−1
S (eU i;+j ) (resp. p−1

Xk−1
(eU i;−j )). Then it

is su�cient to prove that there exist homeomorphisms ehij and e’ij such that the
following diagrams are consistent:

eT i;+j
(4) pS jT̃ i;+j

��

h̃ij
// eT i;−j

pXk−1
jT̃ i;−j

��

eU i;+j
pS jŨ i;+j

��

’̃ij
// eU i;−j

pXk−1
jŨ i;−j (5)

��

T i;+j
hij

// T i;−j U i;+j
’ij

// U i;−j
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Since the coverings pS jeU i;+j and pXk−1
jeU i;−j correspond to the characteristic

subgroup of index q�� q� in �1(U i;+j ) and �1(U i;−j ), it is straightforward that
there exists a homeomorphism e’ij such that the diagram (5) is consistent (since
for each integer n, the n � n-characteristic subgroup of �1(U i;−j ) is unique).
We now �x a base point x+ (resp. x− = hij(x

+)) in T i;+j (resp. T i;−j ). So we
have �1(T i;+j ; x+) = hdij ; ti and �1(T i;−j ; x−) = hlij ;mi

ji. By (d), we know that
the covering pS jeT i;+j corresponds to the homomorphism " de�ned by:

"="i�"i= Si jhdij ; ti=’Si jhdij ; ti�’̂Si jhdij ; ti ! (Z=nZ�f0g)�(Z=qZ�Z=qZ)

with equalities:  Si(d
i
j) = (’Si(d

i
j); ’̂Si(d

i
j)) = ((γij; 0); ’̂Si (d

i
j)) (6)

and  Si(t) = (’Si(t); ’̂Si(t)) = ((c; 0); ’̂Si(t))

It follows from (a) that the covering pXk−1
j eT i;−j corresponds to the homomor-

phism "0 : hlij ;mi
ji ! (gijGn(gij)

−1)� (Z=qZ� Z=qZ) de�ned by:

"0 = "0i � "0i =  Hi jhlij ;mi
ji = ’Hi jhlij ;mi

ji � ’̂Hi jhlij ;mi
ji

with equalities:  Hi(l
i
j) = (’Hi(l

i
j); ’̂Hi(l

i
j)) = ((gijγ

i
j(g

i
j)
−1; 0); ’̂Hi(l

i
j)) (7)

and  Hi(m
i
j) = (’Hi(m

i
j); ’̂Hi(m

i
j)) = ((gijc(g

i
j)
−1; 0); ’̂Hi(m

i
j))

where Gn ’ Z=nZ. To prove that the homomorphism hij lifts in the diagram
(4) it is su�cient to see that: (hij)�(ker(")) = ker("0). It follows from the above
arguments that ker(") = ker("i) \ ker("i) and ker("0) = ker("0i) \ ker("0i). We
�rst prove the following equality (hij)�(ker("i)) = ker("0i). Using (6) and (7) we
know that:

"i : hdij ; ti ! Z=nZ with "i(dij) = γij and "(t) = c

"0i : hlij ;mi
ji ! gijGn(gij)

−1 ’ Z=nZ

with "i(lij) = gijγ
i
j(g

i
j)
−1 and "(mi

j) = gijc(g
i
j)
−1

Moreover, since the elements mi
j and lij have been chosen such that mi

j = hij(t)
and lij = hij(d

i
j), the above arguments imply that (hij)�(ker("i)) = ker("0i).

Hence it is su�cient to check that (hij)�(ker("i)) = ker("0i). Since ker("i) (resp.
ker("0i)) is the q� q -characteristic subgroup of �1(T i;+j ) (resp. of �1(T i;−j )) this
latter equality is obvious. So the lifting criterion implies that there is a homeo-
morphism ehij such that diagram (4) commutes. Finally the space eN obtained
by gluing together the connected components of X via the homeomorphismse’ij and ehij satis�es the induction hypothesis (Hk). This proves Lemma 6.6 in
Case 1.1.
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Case 1.2 To complete the proof of Lemma 6.6 it remains to assume that the
space X1 is a hyperbolic submanifold of N3 . In this case the arguments are
similar to those of Case 1.1. This ends the proof of Lemma 6.6.

6.3.2 Proof of Proposition 1.12: Case 2

We now assume that for some Seifert pieces fSi; i 2 Ig in N , in order to apply
Lemma 6.5 we have to take a �nite covering of order p � 1 inducing the trivial
covering on the boundary. More precisely, for each Si , i 2 f1; :::; tg, we denote
by γ(Si) the integer sequence which comes from the hyperbolic coverings via
Corollary 6.4 and we denote by �i : eSi ! Si the covering (trivial on the bound-
ary) obtained by applying Lemma 6.5 to Si with γ(Si). Then we construct a
�nite covering � : eN ! N such that each component of �−1(Si) is equivalent
to the covering �i : eSi ! Si in the following way: for each i 2 f1; :::; tg we
denote by �i the degree of �i . We de�ne the integer m0 by:

m0 = l.c.m(�1; :::; �t)

For each i 2 f1; :::; tg, we take ti = m0=�i copies of Si denoted by Si1; :::; S
i
ti

and m0 copies of Hj denoted by Hj
1 ; :::;H

j
m0 for j 2 f1; :::;mg. Since the

map �i induces the trivial covering on @ eSi we may glue together the connected
components of the space:

X =

0@ a
1�i�t

a
1�j�ti

Sij

1Aa0@ a
1�i�t

a
1�j�m0

H i
j

1A
via the (trivial) liftings of the gluing homeomorphism of the pieces N nWN .
This allows us to obtain a Haken manifold N1 which is a �nite covering of
N and which satis�es the hypothesis of Case 1 (see subsection 6.3.1). It is
now su�cient to apply the arguments of subsection 6.3.1 for the induced map
f1 : M1 ! N1 . This completes the proof of Proposition 1.12. By paragraph
6.1.1 and paragraph 6.1.2 this completes the proof of Theorem 1.1.

Acknowledgment The author would like to express his gratitude to his thesis
advisor, professor Bernard Perron, for his continuing help and encouragement
during the process of writing this article. The author is very grateful to profes-
sor Michel Boileau for numerous and stimulating conversations and to professor
Joan Porti for helpful conversations on deformation theory of geometric struc-
tures. I thank the referee for many useful comments and suggestions.

Algebraic & Geometric Topology, Volume 3 (2003)



A criterion for homeomorphism between closed Haken manifolds 397

References

[1] R. Benedetti, C. Petronio, Lectures on Hyperbolic Geometry, Springer-Verlag,
1992.

[2] M. Boileau, S. Wang, Non-zero degree maps and surface bundles over S1 , Dif-
ferential Geom. 43 (1996), pp. 789-806.

[3] M. Culler, P. Shalen, Varieties of group representations and splittings of 3-
manifolds, Ann. of Math. 117 (1983), pp. 109-146.

[4] P. Derbez, Un crit�ere d’hom�eomorphie entre vari�et�es Haken, Ph.D. Thesis, Uni-
verit�e de Bourgogne, 2001.

[5] A. Dold, Lectures on algebraic topology, Springer-Verlag, 1980.

[6] R. Eisenbud, Commutative algebra with a view toward algebraic geometry,
Springer-Verlag, 1995.

[7] M. Gromov, Volume and bounded cohomology, Publi. Math. I.H.E.S. 56 (1982),
pp. 5-99.

[8] J. Hempel, 3-manifolds, Ann. of Math. Studies 86 Princeton Univ. Press (1976).

[9] J. Hempel, Residual �niteness for 3-manifolds, Combinatorial group theory,
Ann. of Math. Studies 111 (1987).

[10] K. Ireland, M. Rosen, A classical introduction to modern number theory,
Springer-Verlag, 1990.

[11] W. Jaco, Lecture on three manifold topology, Conference board of the Math.
Sciences. A.M.S. 43 (1977).

[12] W. Jaco, P. Shalen, Seifert �bered space in 3-manifolds, memoirs of the A.M.S.
Vol. 21 n0 220 (1979).

[13] K. Johannson, Homotopy equivalences of 3-manifolds with boundaries, Lecture
Notes in Math. Vol. 761, Springer-Verlag (1979).

[14] J. Luecke, Finite cover of 3-manifolds, Trans. A.M.S. Vol. 310, n0 1 (1988).

[15] J. Luecke, Y.Q. Wu, Relative Euler number and �nite covers of graph manifolds,
Proceedings of the Georgia Internatinal Topology Conference (1993).

[16] D. Mumford, Algebraic Geometry I, Complex Projective Varieties, Springer-
Verlag, 1976.

[17] B. Perron, P. Shalen, Homeomorphic graph manifolds: a contribution to the �
constant problem, Topology and its Applications, n0 99 (1), 1999, pp. 1-39.

[18] V.V. Prasolov, A.B. Sossinsky, Knots, Links, Braids and 3-manifolds: An In-
troduction to the New Invariants in Low-Dimensional Topology, Trans. of Math.
Monographs, Vol 154, 1997.

[19] Y. Rong, Degree one maps between geometric 3-manifolds, Trans A.M.S. Vol.
332 n0 1 (1992).

Algebraic & Geometric Topology, Volume 3 (2003)



398 Pierre Derbez

[20] T. Soma, A rigidity theorem for Haken manifolds, Math. Proc. Camb. Phil. Soc.
(1995), 118, pp. 141-160.

[21] E. Spanier, Algebraic topology, McGraw-Hill, 1966.

[22] W.P. Thurston, Hyperbolic structures on 3-manifolds, Ann. of Math., 124 (1986),
pp. 203-246.

[23] W.P. Thurston, The geometry ant topology of three-manifolds, Princeton Uni-
versity Mathematics Department (1979).

[24] F. Waldhausen, On irreducible 3-manifolds which are su�ciently large, Ann. of
Math., Vol 87, 1968, pp. 56-88.

Laboratoire de Topologie, UMR 5584 du CNRS
Universit�e de Bourgogne, 9, avenue Alain Savary { BP 47870
21078 Dijon CEDEX { France

Email: derbez@topolog.u-bourgogne.fr

Received: 18 April 2002 Revised: 5 February 2003

Algebraic & Geometric Topology, Volume 3 (2003)


