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Abstract Let G be a �nite group and let M be a G-manifold. We intro-
duce the concept of generalized orbifold invariants of M=G associated to
an arbitrary group Γ, an arbitrary Γ-set, and an arbitrary covering space
of a connected manifold � whose fundamental group is Γ. Our orbifold
invariants have a natural and simple geometric origin in the context of
locally constant G-equivariant maps from G-principal bundles over cover-
ing spaces of � to the G-manifold M . We calculate generating functions
of orbifold Euler characteristic of symmetric products of orbifolds asso-
ciated to arbitrary surface groups (orientable or non-orientable, compact
or non-compact), in both an exponential form and in an in�nite prod-
uct form. Geometrically, each factor of this in�nite product corresponds
to an isomorphism class of a connected covering space of a manifold �.
The essential ingredient for the calculation is a structure theorem of the
centralizer of homomorphisms into wreath products described in terms
of automorphism groups of Γ-equivariant G-principal bundles over �nite
Γ-sets. As corollaries, we obtain many identities in combinatorial group
theory. As a byproduct, we prove a simple formula which calculates the
number of conjugacy classes of subgroups of given index in any group. Our
investigation is motivated by orbifold conformal �eld theory.
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Keywords Automorphism group, centralizer, combinatorial group the-
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1 Introduction and summary of results

Let G be a �nite group acting on a �nite dimensional smooth closed manifold
M . The action of G is not assumed to be free. The orbit space M=G is an
example of an orbifold. In 1980s, string physicists suggested that in the context
of orbifold conformal �eld theory the ordinary Euler characteristic �(M=G) of
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the orbit space is not the right invariant, but the correct invariant is the orbifold
Euler characteristic eorb(M ;G) de�ned by

(1-1) eorb(M ;G) =
1
jGj

X
gh=hg

�(M hg;hi);

where the summation runs over all pairs of commuting elements (g; h) in G [6].

We have started the investigation of generalized orbifold Euler characteristic
in [17]. We continue our investigation: Our idea in this paper is to study
orbifold singularities of M=G through the use of a connected manifold � as
a \probe." More precisely, we examine an in�nite dimensional mapping space
Map(�;M=G) which can be thought of as a \thickening" of the orbit space
M=G. We consider lifting maps � −! M=G to G-equivariant maps P −! M
from a G-principal bundle P over � to M . The set of equivalence classes of
these lifts is denoted by L�(M ;G). We also consider a subspace of equivalence
classes of locally constant G-equivariant maps P −!M :
(1-2)
L�(M ;G) def=

a
[P−!�]

MapG(P;M)=AutG(P ) � L�(M ;G)l.c. =
a

[�]2Hom(Γ;G)=G

�
M h�i=C(�)

�
:

Here [P −! �] runs over the set of all isomorphism classes of G-principal
bundles over � whose fundamental group is �1(�) = Γ. Recall that isomor-
phism classes of G-bundles over � are classi�ed by the G-conjugacy classes
Hom(Γ; G)=G of homomorphisms. For any � : Γ −! G, the subgroup C(�) � G
is the centralizer of the image of � denoted by Im� = h�i, and M h�i is the
�xed point subset of M under h�i. We have AutG(P ) �= C(�). Since the
space L�(M ;G) is the space of equivalence classes of lifts, there is a natural
map L�(M ;G) −! Map(�;M=G) which is a homeomorphism when G-action
on M is free. In this case, there is no need to go over the above construction,
and thus we are primarily interested in non-free G-actions on M . Note that
we have replaced the mapping space Map(�;M=G) on an orbifold M=G by
the space L�(M ;G) which is a union of orbifolds on mapping spaces. As such,
the space L�(M ;G) is, in a sense, a mild desingularization of the mapping
space Map(�;M=G). Intuitively, our manifold � is used to probe the nature
of orbifold singularities of the orbit space M=G by examining the holonomy of
all possible G-bundles on � \induced" by a map γ : � −!M=G.

The space L�(M ;G) is motivated by and is a generalization of the notion
of twisted sectors in orbifold conformal �eld theory, which corresponds to the
case � = S1 . Intuitively speaking, twisted sectors are vector spaces obtained by
\quantizing" the mapping spaces MapG(P;M), where P runs over isomorphism
classes of G-bundles over S1 . Thus the study of global topology and geometry
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of these equivariant mapping space will shed light on the nature of twisted
sectors in orbifold conformal �eld theory. Mathematically, twisted sectors have
been studied in the algebraic framework of vertex operator algebras and their
modules. The study of geometry and topology of the space L�(M ;G) when �
is S1 or Riemann surfaces may provide illuminating topological and geometric
insight into the nature of the algebraic structure of twisted sectors.

In this paper, we study the subspace of locally constant equivariant maps in-
stead of directly studying the global topology of L�(M ;G), and we de�ne our
generalized orbifold invariants as follows. Let ’(M ;G) be any (multiplicative)
invariant of (M ;G). For example, as ’(M ;G) we may use the following invari-
ants coming from the usual Euler characteristic:

(1-3) �orb(M ;G) def=
�(M)
jGj 2

1
jGjZ; �(M ;G) def= �(M=G) 2 Z:

The �rst Euler characteristic �orb is a special case of the equivariant Euler
characteristic de�ned for general (not necessarily �nite) group G [3, p.249].
The Γ-extension ’Γ(M ;G) of ’(M ;G) is de�ned in terms of the subspace of
locally constant equivariant maps given in (1-2), viewed equivariantly:

(1-4) ’Γ(M ;G) def=
X

[�]2Hom(Γ;G)=G

’
(
M h�i;C(�)

�
:

This is our generalization of physicists’ orbifold Euler characteristic eorb(M ;G).
In our previous paper [17], we considered �Γ(M ;G) for the case Γ = Zd and
Γ = (Zp)d with d 2 N, where p is any prime and Zp is the ring of p-adic
integers. In the same paper, we described an application of the result for the
case Γ = (Zp)d to the Euler characteristic of Morava K -theory of classifying
spaces of wreath products. The inductive method used for these calculations
cannot be extended to a general group Γ. The purpose of this paper is to
develop a theory and techniques which allow us to handle orbifold invariants
’Γ(M ;G) for a more general family of groups Γ, including the fundamental
groups of two dimensional surfaces which may be orientable or non-orientable,
compact or non-compact.

For more discussion on general properties of the Γ-extension of ’(M ;G), see
section 2. For example, we will show that Γ-extensions of the two orbifold Euler
characteristics in (1-3) are related by

(1-5) �Γ(M ;G) = �orb
Γ�Z(M ;G) 2 Z;

for any group Γ. Thus, �orb
Γ�Z(M ;G) is always integer valued. When Γ = Z,

the invariant �orb
Z2 (M ;G) coincides with the orbifold Euler characteristic (1-1)

considered by physicists [6], [7]. See the formula (2-4) in section 2. The above
formula says that �orb(M ;G) is more basic than �(M ;G).
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We demonstrate that orbifold invariants (1-4) is well behaved by calculating
the generating function of these invariants of symmetric products of global
quotients. Recall that an n-fold symmetric product of an orbit space M=G is
given by

(1-6) SPn(M=G) = (M=G)n=Sn = Mn=(GoSn);

where GoSn , which we also denote by Gn , is the wreath product of G and the
symmetric group Sn . For more details on wreath products, see section 3.

Let � be a real 2 dimensional surface, orientable or non-orientable, compact or
non-compact. For example, let � be a genus g + 1 orientable closed surface.
Its fundamental group Γg+1 is generated by 2g+ 2 elements with one relation:

(1-7) Γg+1 = ha1; a2; : : : ; ag+1; b1; b2; : : : ; bg+1 j [a1; b1] � � � [ag+1; bg+1] = 1i;
where g � 0. Consideration of the twisted space (1-2) associated to the map-
ping space Map

(
�; SPn(M=G)

�
from the surface � to symmetric products

is motivated by string theory literature [5]. We calculate the orbifold Euler
characteristic �orb

Γg+1
(Mn;Gn) associated to the surface group Γg+1 . It turns

out that this orbifold Euler characteristic of an n-th symmetric product can be
expressed by f�orb

H
(M ;G)gH , where H runs over subgroups of Γg+1 of index

at most n. In fact, we have the following formula of the generating function
[Theorem 5-8].

Theorem A (Higher genus orbifold Euler characteristics of symmetric orb-
ifolds) Let g � 0. With the above notations,

(1-8)
X
n�0

qn�orb
Γg+1

(Mn;GoSn) = exp
h X
r�1

qr
njr(Γg+1)

r
�orb

Γrg+1
(M ;G)

oi
;

where jr(Γg+1) is the number of index r subgroups of Γg+1 .

In this formula the genus rg + 1 surface group Γrg+1 appears since any index
r subgroup of Γg+1 is isomorphic to it, although they may not be conjugate to
each other in Γg+1 . To calculate numbers jr(Γg+1) for r � 1 and g � 0, see
the formula (5-10).

Furthermore, we can also consider non-orientable cases. Let � be a closed
genus h+ 2 non-orientable surface with h � 0. Its fundamental group �h+2 is
described by

(1-9) �h+2 = hc1; c2; : : : ; ch+2 j c21c22 � � � c2h+2 = 1i; h � 0:

Since any genus 1 non-orientable closed surface is homeomorphic to RP 2 and
�1 = Z=2Z is abelian, this case was discussed in our previous paper [17]. Here,
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we only consider non-orientable surfaces of genus 2 or higher. We have a formula
of the generating function of the orbifold invariant �orb

�h+2
(Mn;GoSn) for non-

orientable surface groups similar to the one in Theorem A. See Theorem 5-10
for details.

This formula simpli�es for the case of a genus 2 non-orientable surface which is
a Klein bottle, due to a fact that every �nite covering of a Klein bottle is either
a torus or a Klein bottle. Here we give a formula for Klein bottle orbifold Euler
characteristic [Theorem 5-11].

Theorem B (Klein bottle orbifold Euler characteristic) With the above no-
tation,
(1-10)X
n�0

qn�orb
�2

(Mn;GoSn) =
�Y
r�1

(1− q2r)
�−1

2 �orb
Γ1

(M ;G)
hY
r�1

�1 + qr

1− qr
�i 1

2�
orb
�2

(M ;G)

:

Notice the appearance of modular forms, and modular functions. Let �(q) =
q

1
24
Q
r�1(1−qr), where q = e2�i� with Im � > 0, be the Dedekind eta function.

Then, the �rst in�nite product in (1-10) is almost �(q2) and the second in�nite
product is precisely �(q2)=�(q)2 .

By specializing M = pt, we obtain a formula for jHom(�2; GoSn)j for all n.
See (5-19).

Recall that the geometry behind the above Klein bottle orbifold Euler charac-
teristic is the mapping space Map

(
K;SPn(M=G)

�
from a Klein bottle K to

n-fold symmetric product of an orbifold M=G for various n. The idea of using
nonorientable surfaces comes from unoriented strings moving on manifolds.

There is a curious relationship between orbifold Euler characteristics associated
to orientable surface groups and non-orientable surface groups. For example,
when G is a trivial group, we have �orb

Γg+1
(Mn;Sn) = �orb

�2g+2
(Mn;Sn) for any

n � 1 and g � 0. For this, see the end of section 5.

Note that the formula in Theorem A is in an exponential form. If we use
�(M ;G) = �(M=G) instead of �orb(M ;G), then the corresponding generating
function can be written in an in�nite product form. To describe this formula, we
need to introduce an extension of ’(M ;G) to an orbifold invariant ’[X](M ;G)
associated to an isomorphism class [X] of a �nite Γ-set X . When X is a
transitive Γ set of the form Γ=H for some subgroup H � Γ, we let

(1-11) ’[Γ=H](M ;G) def=
X

[�]2Hom(H;G)=(NΓ(H)�G)

’
(
M h�i; AutΓ-G(P�)

�
;
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where NΓ(H) � Γ is the normalizer of H in Γ acting on H by conjugation,
and AutΓ-G(P�) is the group of Γ-equivariant G-bundle automorphisms of a G-
bundle P� = Γ��G. The group G of course acts on Hom(H;G) by conjugation.
For an explanation and the origin of this de�nition, see Proposition 6-1 and its
proof. The above formula reduces to (1-4) when H = Γ. For an explicit
nontrivial example of ’[Γ=H](M ;G), see Lemma 6-2.
The invariant ’[X] can be de�ned for a general Γ-set X (see (6-13) for the
de�nition) in such a way that it is multiplicative in [X] in the following sense.
Let X1 and X2 be Γ-sets without common transitive Γ-sets in their Γ-orbit
decompositions, that is, MapΓ(X1;X2) = ;. Then, the orbifold invariant of
their disjoint union [X] = [X1 qX2] is a product:
(1-12) ’[X](M ;G) = ’[X1](M ;G) � ’[X2](M ;G):
For details, see Proposition 6-9.
This invariant ’[X](M ;G) has a very natural geometric origin in terms of a
twisted space similar to (1-2) using G-bundles over a covering space �0 =e� �Γ X over �, where e� is the universal cover of �. See Theorem G below.
In fact, we could start with this approach and deduce the formula (1-11).
The next theorem describes the generating function of the orbifold Euler char-
acteristic of symmetric orbifolds associated to the genus g+1 orientable surface
group Γg+1 , in terms of the orbifold Euler characteristic of (M ;G) associated
to �nite transitive Γg+1 -sets.

Theorem A 0 (Higher genus orbifold Euler characteristic: in�nite product
form) For any g � 0, we have

(1-13)
X
n�0

qn�Γg+1
(Mn;GoSn) =

Y
[H]

(
1− qjΓg+1=Hj�−�[Γg+1=H](M ;G)

;

where [H] runs overthe set of conjugacy classes of H in Γg+1 .

This is part of Theorem 6-6. As remarked above, the invariant �[Γg+1=H](M ;G)
with jΓg+1=Hj = r arises from a twisted space (1-21) de�ned in terms of G-
principal bundles over an r-fold covering space �rg+1 over �g+1 corresponding
to the conjugacy class [H].
To contrast the formulae in Theorem A and Theorem A0 , we let M = pt. We
get the following combinatorial group theoretic formulae:
(1-14) X

n�0

qn
jHom(Γg+1; Gn)j
jGjn � n!

= exp
�X
r�1

qr

r
jr(Γg+1)

jHom(Γrg+1; G)j
jGj

�
X
n�0

qnjHom(Γg+1; Gn)=Gnj =
Y
[H]

(
1− qjΓg+1=Hj�−jHom(H;G)=(NΓg+1(H)�G)j
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In the second formula, [H] runs over all conjugacy classes of �nite index sub-
groups of Γg+1 . Note that the size of the normalizer NΓg+1(H) may depend on
the conjugacy class [H], although all index r subgroups of Γg+1 are isomorphic
to Γrg+1 . See also remarks after Theorem 6-6.

Here we remark that the following formulae for the number of (conjugacy classes
of) homomorphisms are well known, and they can be easily proved using char-
acters of G. For any �nite group G, we have

(1-15)

jHom (Γg+1; G)j
jGj =

X
[V ]2Irred(G)

� jGj
dimV

�2g
;

jHom(Γg+1; G)=Gj =
X
[�]

X
[V ]2Irred(C(�))

� jC(�)j
dimV

�2g
;

where [V ] 2 Irred(G) means that [V ] runs over the set of all isomorphism classes
of irreducible representations of G, and [�] runs over the set of all conjugacy
classes of G. The subgroup C(�) � G is the centralizer of � . Similar formulae
for non-orientable surface groups �h+2 are well known, too. See (5-16) and
(5-17). In view of (1-15), to understand the left hand side of (1-14), we need
the representation theory of wreath product Gn = GoSn . For this topic, see for
example [11, Appendix B to Chapter I]. However, to prove topological Theorems
A and A 0 , we do not need the representation theory of wreath products.

Two formulae in (1-14) are closely related, although their right hand sides look
very di�erent. See (6-11) and (6-12) for group theoretic discussion on this
connection.

Theorems A,B, and A 0 are all special cases of the following more general for-
mulae which are the ones we actually prove [Theorem 5-5, Theorem 6-3]. These
are part of our main results.

Theorem C With the above notations, for any group Γ, we have

(1-16)

X
n�0

qn�orb
Γ (Mn;GoSn) = exp

hX
H

qjΓ=Hj

jΓ=Hj�
orb
H (M ;G)

i
X
n�0

qn�Γ(Mn;GoSn) =
Y
[H]

(
1− qjΓ=Hj

�−�[Γ=H](M ;G)
:

Here, in the �rst formula, H runs over all subgroups of Γ of �nite index. In the
second formula, [H] runs over conjugacy classes of all �nite index subgroups of
Γ.
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By specializing Γ, we obtain numerous corollaries. In addition to the cases
Γ = Γg+1 , �h+2 , we consider free groups on �nitely many generators, abelian
groups Zd and Zdp for d � 1, and products of these groups.

Special cases of the second formula in (1-16) have been known. When Γ is the
trivial group, this is Macdonald’s formula [10]. When Γ = Z and G = feg, this
formula is due to [7]. For Γ = Z and general �nite group G, the formula is due
to [18]. When Γ = Zd for d � 1 and G = feg, the formula was proved in [4].
Finally, for Γ = Zd and Zdp with an arbitrary �nite group G, the formula was
proved in [17].

When G is the trivial group, we have �[X](M ; feg) = �(M) for any transitive
Γ-set X (see Lemma 6-10, and a formula after Corollary 6-4). When Γ is
an abelian group Zd or Zdp , Lemma 6-2 says that �[X](M ;G) = �Γ(M ;G)
for any �nite transitive Γ-set X . For general abelian group Γ, the second
formula in (1-16) reduces to (6-5). Thus, in all the known cases described in
the above paragraph, the notion of orbifold invariants associated to Γ-sets is
not yet needed. Only in the generality of the present paper, this notion plays
a crucial role.

The main ingredient of the proof of Theorem C is a structure theorem of the
centralizer C(�) � Gn of an arbitrary homomorphism � : Γ −! Gn = G oSn
into a wreath product. When Γ = Z, the subgroup C(�) is nothing but the
centralizer of the element �(1) 2 Gn . Detailed description of the centralizer of
an element in Gn was given in section 3 of [17]. The method used there was
purely group theoretic. It is very complicated to extend this group theoretic
approach to the present context of centralizers of homomorphisms into wreath
products. We have a better approach in terms of geometry of Γ-equivariant
G-principal bundles. These are G-principal bundles P over Γ-sets such that
Γ acts on P as G-bundle automorphisms. This link between algebra and
geometry is supplied by the following theorem [Theorem 3-1]. For the next
three theorems, G does not have to be a �nite group.

Theorem D Let G and Γ be any group. Then the following bijective corre-
spondence exists:
(1-17)�

Isomorphism classes of Γ-equivariant G-principal
bundles over a Γ-set of order n

�
1:1 !

onto
Hom(Γ; Gn)=Gn:

This theorem allows us to apply geometric concepts and techniques associ-
ated to principal bundles to the study of centralizers of homomorphisms � into
wreath products. Note that this theorem is a generalization of a well-known
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bijective correspondence between the set Hom(Γ;Sn)=Sn of conjugacy classes
of homomorphisms into the n-th symmetric group Sn and the set of isomor-
phism classes of Γ-sets of order n. As an example of the above correspondence,
let H � Γ be any subgroup of index n. For any homomorphism � : H −! G,
let P� = Γ �� G −! Γ=H be a Γ-equivariant G-principal bundle over a Γ-set
Γ=H of order n. By choosing a bijection Γ=H �= f1; 2; : : : ; ng and a section of
P� −! Γ=H , we have an isomorphism AutG(P�) �= GoSn [Lemma 3-3]. Thus,
the wreath product appears naturally in the geometric context of G-bundles.
This is the reason of our use of G-bundles in studying wreath products. Now
the ready-made action of Γ on P� as G-bundle maps gives rise to a homomor-
phism � : Γ −! GoSn whose conjugacy class is independent of choices made.
For more details on this and the construction of the converse correspondence,
see the proof of Theorem 3-1.

We call a Γ-equivariant G-principal bundle over a Γ-transitive set a Γ-irreduc-
ible G-principal bundle. The following theorem classi�es Γ-irreducible G-
principal bundles [Theorem 3-6].

Theorem E (Classi�cation of Γ-G bundles) Let G and Γ be any groups.
Then there exists the following bijective correspondence:
(1-18)�

Isomorphism classes of Γ-irreducible G-
principal bundles over Γ-sets of order n

�
1:1 !

onto

a
[H]
jΓ=Hj=n

Hom(H;G)=(NΓ(H)�G);

where [H] runs over the set of conjugacy classes of index n subgroups of Γ.

Note that the expression appearing on the right hand side of the above cor-
respondence has already appeared in (1-11). From the point of view of a Γ-
irreducible G-principal bundle P −! Z , the meaning of quantities [H], NΓ(H)-
action, and G-action on Hom(H;G), appearing in the right hand side of (1-18),
is as follows: the isomorphism class of the transitive Γ-set Z is determined
by the conjugacy class [H] of an isotropy subgroup H , di�erent choices of a
base point z0 of Z with the isotropy subgroup H correspond to the action of
NΓ(H), and di�erent choices of a base point p0 of P over z0 correspond to the
conjugation action of G on Hom(H;G).

For any homomorphism � : Γ −! Gn , the corresponding Γ-equivariant G-
bundle �� : P� −! Z� is a disjoint union of Γ-irreducible G-bundles each of
which is of the form P� −! Γ=H for some subgroup H and some homomorphism
� : H −! G. Given � , let r(H; �) denote the number of Γ-irreducible G-
bundles isomorphic to [P� −! Γ=H] appearing in the irreducible decomposition
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of P� −! Z� . The number r(H; �) depends only on the conjugacy classes [H]
and [�]. Now we can describe the centralizer of the image of � in the wreath
product GoSn [Lemma 4-1, Theorem 4-2, Theorem 4-4, Theorem 4-5].

Theorem F (Structure of centralizer of homomorphisms into wreath prod-
ucts) Let � : Γ −! Gn be a homomorphism, and let fr(H; �)g[H];[�] be the
associated integers described above. Then, the centralizer of � in the wreath
product GoSn is a direct product of wreath products:

(1-19) CGn(�) �=
Y
[H]

Y
[�]

�
AutΓ-G(P�)oSr(H;�)

}
;

where [H] runs over conjugacy classes of �nite index subgroups, and [�] 2
Hom(H;G)=(NΓ(H)�G) for a given conjugacy class [H]. The group AutΓ-G(P�)
of Γ-equivariant G-bundle automorphisms of P� �ts into the following exact
sequences:

(1-20)
1 −! CG(�) −! AutΓ-G(P�) −! HnN�

Γ(H) −! 1;
1 −! H −! T� −! AutΓ-G(P�) −! 1;

where N�
Γ(H) is the isotropy subgroup at the G-conjugacy class (�) of the

NΓ(H)-action on the set Hom(H;G)=G, and T� is given in (4-4).

Here, the centralizer CGn(�) is isomorphic to AutΓ−G(P�) [Lemma 4-1].

This structure theorem can be applied to much wider context including, for
example, the calculation of generalized orbifold elliptic genus of symmetric orb-
ifolds.

Next, we describe the geometric meaning of the orbifold invariant (1-11) as-
sociated to Γ-sets. Recall that the orbifold invariant associated to the group
Γ is de�ned in terms of locally constant G-equivariant maps (1-2) from G-
principal bundles over � into M , where the fundamental group of � is Γ.
We can generalize this idea and consider locally constant G-equivariant maps
from G-principal bundles over covering spaces of � into M . More precisely, let
� : �0 −! � be a not necessarily connected covering space. Let �i : Pi −! �0 for
i = 1; 2 be G-bundles. A G-bundle isomorphism � : P1 −! P2 over a covering
space �0 are de�ned to be a G-bundle map whose induced map on the base
�0 is a deck transformation of �0 over �. Next, we introduce an equivalence
relation among G-maps P −!M . Two G-equivariant maps γ1 : P1 −!M and
γ2 : P2 −!M are said to be equivalent if there exists a G-bundle isomorphism
� : P1 −! P2 over the covering space �0 such that γ1 = γ2��. We then consider
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the space of equivalence classes of G-equivariant maps from G-bundles P over
�0 into M . This turns out to be

(1-21) L�0=�(M ;G) =
a

[P−!�0=�]

�
MapG(P;M)=AutG(P )�0=�

�
;

where [P −! �0=�] denotes an isomorphism classes of G-principal bundles over
the covering space �0 over �. We then take the subset L�0=�(M ;G)l.c. of locally
constant G-equivariant maps and de�ne the orbifold invariant associated to a
covering space �0 −! � by

(1-22) ’[�0=�](M ;G) =
X

[P−!�0=�]

’
(
MapG(P;M)l.c.; AutG(P )�0=�

�
:

The next result [Theorem 7-1] clari�es the geometric meaning of orbifold Euler
characteristic associated to Γ-sets. See (6-13) for the precise de�nition.

Theorem G Let � : �0 −! � be a covering space, and let X = �−1(x0) be a
�bre over a base point x0 2 �. Let Γ = �1(�; x0). Then X is a Γ-set and for
any G-manifold M , we have

(1-23) ’[�0=�](M ;G) = ’[X](M ;G):

Consequently, Γ-orbifold Euler characteristic of symmetric products of G-
manifold M can be expressed in terms of orbifold Euler characteristic associated
to connected covering spaces:

(1-24)
X
n�0

qn�Γ(Mn;GoSn) =
Y

[�0−!�]conn.

(1− qj�0=�j)−�[�0=�](M ;G);

where the product range over all isomorphism classes of �nite connected cover-
ing spaces �0 −! � over �, and j�0=�j denotes the order of the covering.

Note that the de�nition (1-22) is geometrically very natural and conceptually
very simple, compared with the practical de�nition (1-11) of orbifold invariants
associated to transitive Γ-sets which is suitable for calculation.

The above formula is very interesting because it explains the geometric origin of
the in�nite product (one factor for each connected covering space) and describes
each factor geometrically in terms of covering spaces.

Intuitive explanation of this identity may be given as follows. There are two
ways to lift maps in Map

(
�; SPn(M=G)

�
to equivariant maps from certain

principal bundles. One way is to lift a map γ : � −! SPn(M=G) to a GoSn -
equivariant map γ : PGoSn −! Mn , where PGoSn is a G oSn -principal bundle
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over �. The orbifold invariant using this lifting gives rise to the left hand side
of (1-24).

To describe another way of lifting, note that any map f : � −! SPn(M) into an
n-th symmetric product corresponds to a (branched) n-sheeted covering space
� : �0 −! � whose �bre over x 2 � is f(x) � M . That is, �0 is given by
�0 = f(x; y) 2 ��M j y 2 f(x)g. This is not always a covering space because
for some x 2 � the corresponding un-ordered set of n points f(x) may not
consist of n distinct points. The (branched) covering space �0 comes equipped
with a natural map f 0 : �0 −!M which is unique up to \deck transformations"
of �0 . Namely, if we have a homeomorphism h : �0 −! �0 commuting with
� , then both maps f 0 and f 0 � h induce the same map f : � −! SPn(M) by
associating to each x 2 � the �bres of f 0 and f 0 � h.

Now in our context, to any map γ : � −! SPn(M=G) we cab associate a
map γ0 : �0 −! M=G from an n-sheeted (branched) covering space �0 over �
described above. This map γ0 is determined up to \deck transformations" of
�0 . We then consider lifting this map to a G-equivariant map γ0 : PG −! M ,
where PG is a G-principal bundle over �0 . Orbifold invariants corresponding to
these lifts are the orbifold invariants associated to covering spaces in the right
hand side of (1-24). We expect the covering space formalism in (1-24) would
be valid for other orbifold invariants and also for the global topology of twisted
sectors.

We suspect that the formula (1-24) will continue to be valid for general orbifolds
which are not necessarily global quotients. We hope to come back to this
question later.

Finally, as an application to combinatorial group theory, we calculate the num-
ber ur(Γ) of conjugacy classes of index r subgroups of Γ. Our combinatorial
formulae obtained by specializing our topological formulae to the case M = pt
allow us to prove the following formula on ur(Γ) [Theorem 8-1]. This simple
formula does not seem to be known before.

Theorem H The number ur(Γ) of conjugacy classes of index r subgroups of
Γ satis�es the following recursive relation in terms of subgroups of Γ:

(1-25) jm(Γ� Z) =
X
rjm

r � ur(Γ) =
X
rjm

X
H
jΓ=Hj=m=r

jHom(Hab;Zr)j;

where Hab denotes the abelianization of H .
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If we like, instead of having a recursive formula as above, we can write down
the formula for ur(Γ) using Möbius inversion formula. See the paragraph after
Theorem 8-1. The above formula allows us to compute numbers ur(Γ) for
surface groups Γg+1 , Fs+1 , and �h+2 for g; s; h � 0 very quickly [Corollary
8-2]. Geometrically these numbers ur(Γ) are important because they count
the number of non-isomorphic connected covering spaces over surfaces. These
numbers were calculated before in [12], [13] by di�erent methods. However,
our formula (1-25) is valid for any group Γ, not just for surface groups. In
our formula, all we have to do is to count the number of homomorphisms from
abelianization of subgroups to cyclic groups. This simplicity makes our formula
useful.

The organization of this paper is as follows. In section 2, we discuss general
properties of Γ-extended orbifold invariants and explain their geometric origin.
In section 3, we study homomorphisms into wreath products in terms of Γ-
equivariant G-bundles and prove Theorems D and E. In section 4, we study
the structure of centralizers of homomorphisms into wreath products in terms of
Γ-equivariant G-automorphisms and prove Theorem F. In section 5, we prove
Theorems A and B, together with the �rst part of Theorem C. We also discuss
the cases when Γ is a free abelian group, the fundamental group of a non-
orientable surface, and a free group. In section 6, we further extend orbifold
invariants to ones associated to isomorphism classes of Γ-sets. This will be used
to prove Theorem A 0 and Theorem C. Our main results in this paper deal with
much more general cases than [17], and results in [17] follow quickly as special
cases. In section 7, we describe orbifold invariants associated to covering spaces
and prove Theorem G. Finally, in section 8, we apply our combinatorial formula
to compute the numbers ur(Γ) and prove Theorem H.

2 Orbifold invariants associated to a group Γ

In this section, we describe general properties of the Γ-extended orbifold in-
variant ’Γ(M ;G) de�ned in (1-4). In particular, properties of the Γ-extensions
of orbifold Euler characteristics de�ned in (1-3) are discussed in detail. Later
in this section, we explain twisted spaces in the context of mapping spaces into
orbifolds and motivate the de�nition of our generalized orbifold invariant (1-4).

Let G be a �nite group and let ’(M ;G) be a multiplicative invariant for a
G-manifold M . Namely, for any G1 -manifold M1 and G2 -manifold M2 , the
invariant ’ satis�es

’(M1 �M2;G1 �G2) = ’(M1;G1)’(M2;G2):
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This invariant ’(M ;G) may depend only on the topology and geometry of
the orbit space M=G. For example, Euler characteristic �(M=G), signature
Sgn(M=G), and spin index Spin(M=G), in appropriate geometric settings, are
such examples. On the other hand, the invariant ’(M ;G) may actually depend
on the way G acts on M . For example, for any group Γ, Γ-extensions of the
above geometric invariants are such examples. For convenience, we repeat the
de�nition of Γ-extension here. For any such invariant ’( � ; � ), its Γ-extension
is de�ned by

(2-1) ’Γ(M ;G) =
X

[�]2Hom(Γ;G)=G

’
(
M h�i;C(�)

�
;

where M h�i is the h�i = Im� �xed point subset, and C(�) is the centralizer
of h�i in G. Note that it can happen that two non-conjugate homomorphisms
�1; �2 : Γ −! G have the same image subgroups h�1i = h�2i. Also note that
the quantity ’

(
M h�i;C(�)

�
depends only on the G-conjugacy class of �.

Basic properties of Γ-extended orbifold invariants are the following ones.

Proposition 2-1 Let ’(M ;G) be a multiplicative invariant as above.

(1) For any group Γ, the Γ-extended orbifold invariant ’Γ(M ;G) is multi-
plicative: for any (M1;G1) and (M2;G2), we have

’Γ(M1 �M2;G1 �G2) = ’Γ(M1;G1)’Γ(M2;G2):

(2) For any groups K;L,

(2-2) ’K�L(M ;G) = (’L)K(M ;G) =
X

[�]2Hom(K;G)=G

’L
(
M h�i;C(�)

�
:

Proof The formula in (1) is straightforward using the multiplicativity of ’.
For (2), by de�nition,

(R.H.S.) =
X

�1:K−!G

1
#[�1]

n X
�2:L−!C(�1)

1
#[�2]C(�1)

’
(
(M h�1i)h�2i;CC(�1)(�2)

�o
Here, #[�1] denotes the number of elements in the conjugacy class [�1], and
[�2]C(�1) is the C(�1)-conjugacy class of �2 . Since the images of �1 and �2

commute, using the notation �1 � �2 : K � L −! G, we have

=
X

�1:K−!G

1
#[�1]

X
�2:L−!C(�1)

jC(�1 � �2)j
jC(�1)j ’

(
M h�1��2i;C(�1 � �2)

�
=
X

�1��2:K�L−!G

jC(�1 � �2)j
jGj ’

(
M h�1��2i;C(�1 � �2)

�
=
X

[�1��2]

’
(
M h�1��2i;C(�1 � �2)

�
= ’K�L(M ;G):
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In the last line, [�1��2] runs over all the conjugacy classes Hom(K�L;G)=G,
and we used a fact that the number of elements in the conjugacy class of the
image of �1 � �2 is jGj=jC(�1 � �2)j. In the above, we used a formula jGj =
#[�] � jC(�)j a few times. This completes the proof.

Recall that in section 1, we de�ned two kinds of Euler characteristics for (M ;G)
in (1-3). One of them is �orb(M ;G) = �(M)=jGj, and the other is �(M ;G) =
�(M=G). It is well known that the Euler characteristic of the orbit space M=G
of a G-manifold M can be calculated as the average of the Euler characteristic
of g -�xed point subsets (see for example [14, p.127]):

(2-3) �(M=G) =
1
jGj

X
g2G

�(M hgi):

Here are some useful formulae for Γ-extended orbifold Euler characteristics.

Proposition 2-2 (1) The invariant �orb
Γ (M ;G) can be calculated as an av-

erage over homomorphisms � : Γ −! G:

(2-4) �orb
Γ (M ;G) =

1
jGj

X
�:Γ−!G

�
(
M h�i

�
:

In particular, �orb
Z (M ;G) = �(M=G).

(2) The Γ-extensions of �orb(M ;G) and �(M ;G) are related as follows:

(2-5) �orb
Γ�Z(M ;G) = �Γ(M ;G) =

X
[�]2Hom(Γ;G)=G

�
(
M h�i=C(�)

�
:

Proof For part (1), we unravel de�nitions.

�orb
Γ (M ;G) =

X
[�]

�orb
(
M h�i;C(�)

�
=
X
�

1
#[�]

�(M h�i)
jC(�)j =

1
jGj

X
�

�(M h�i);

where [�] 2 Hom(Γ; G)=G and � 2 Hom(Γ; G). This proves formula (2-4), In
particular, when Γ = Z, we have �orb

Z (M ;G) = (1=jGj)
P

g2G �(M hgi), which
is equal to �(M=G) by (2-3).

For (2), by the product formula (2-2), we have

�orb
Γ�Z(M ;G) =

X
[�]2Hom(Γ;G)=G

�orb
Z

(
M h�i;C(�)

�
=
X
[�]

�
(
M h�i=C(�)

�
= �Γ(M ;G):

This completes the proof.

Algebraic & Geometric Topology, Volume 3 (2003)



806 Hirotaka Tamanoi

For example, when Γ = Z2 , we have

�orb
Z2 (M ;G) =

1
jGj

X
gh=hg

�(M hg;hi) =
X
[g]

�
(
M hgi=C(g)

�
;

which is the physicist’s orbifold Euler characteristic (1-1). The following corol-
lary is obvious.

Corollary 2-3 When M = pt, we have
(2-6)

�orb
Γ (pt;G) =

jHom(Γ; G)j
jGj ; �Γ(pt;G) = jHom(Γ; G)=Gj = jHom(Γ� Z; G)j

jGj :

When G is the trivial group feg, we have

(2-7) �orb
Γ (M ; feg) = �Γ(M ; feg) = �(M):

Here, the identity jHom(Γ; G)=Gj = jHom(Γ�Z; G)j=jGj comes from �Γ(pt;G)
= �orb

Γ�Z(pt;G) given in (2-5). This is a well-known and useful formula.

When �orb
Γ ( � ;G) is regarded as a function on G-CW complexes with values

in 1
jGjZ, it is an additive function. If either G or Γ is abelian, it is a complex

oriented additive function in the sense of [8]. Since an additive function de�ned
on G-CW complexes is completely determined by its values on transitive G-
sets, we calculate these values. We also do the same for �Γ( � ;G).

Proposition 2-4 Let H be a subgroup of G. Then

(2-8)
�orb

Γ (G=H;G) = �orb
Γ (pt;H) =

jHom(Γ;H)j
jHj

�Γ(G=H;G) = �Γ(pt;H) = jHom(Γ;H)=Hj:

Proof Using (2-4), we have

�orb
Γ (G=H;G) =

1
jGj

X
�:Γ−!G

�
(
(G=H)h�i

�
=

1
jGj

X
�

j(G=H)h�ij:

Here j(G=H)h�ij counts the number of elements in G=H whose isotropy sub-
groups contain �(Γ). Since there are jNG(H)=Hj elements in G=H with the
same isotropy subgroups, we have

j(G=H)h�ij =
X

�(Γ)�H0
H0�H

jNG(H)=Hj:
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Here H 0 � H means that H 0 and H are conjugate in G. Continuing our
calculation, we have

1
jGj

X
�

j(G=H)h�ij = jNG(H)=Hj
jGj

X
�

X
�(Γ)�H0
H0�H

1 =
jNG(H)j
jGj jHj

X
H0�H

X
�:Γ−!H0

1

=
jNG(H)j
jGj jHj jHom(Γ;H)j

X
H0�H

1:

since the number of subgroups H 0 conjugate to H in G is given by jGj=jNG(H)j,
the above quantity is equal to jHom(Γ;H)j=jHj.
For �Γ( � ;G), using (2-5), (2-6), and what we have already proved, we have

�Γ(G=H;G) = �orb
Γ�Z(G=H;G) = �orb

Γ�Z(pt;H) = �Γ(pt;H) = jHom(Γ;H)=Hj:
This completes the proof.

Next, we turn our attention to orbifold Euler characteristics of symmetric prod-
ucts without Γ-extension. Macdonald’s formula [10] says that

(2-9)
X
n�0

qn�(Mn;GoSn) =
X
n�0

qn�
(
SPn(M=G)

�
=

1
(1− q)�(M=G)

:

The corresponding formula for �orb( � ; � ) is given by

(2-10)
X
n�0

qn�orb(Mn;GoSn) = exp
n
q
�(M)
jGj

o
= expfq �orb(M ;G)g:

This formula follows immediately since �orb(Mn;GoSn) = �(M)n=(jGjnn!) by
de�nition. The objective of this paper is to develop a theory and a technique
to calculate orbifold invariants with Γ-extensions of symmetric products.

For the remaining part of this section, we explain the notion of twisted sectors
(or spaces) from which follows the geometric origin of our de�nition of the
orbifold invariant (2-1) associated to a group Γ. The notion of twisted sectors
arises in orbifold conformal �eld theory [6] in which strings moving in an orbifold
M=G are considered. This situation is analyzed through their lifts to M . When
lifted to M , a string may not close, but its end points are related by the action
of an element g 2 G. Thus, we are led to consider the g -twisted free loop space
LgM for g 2 G given by

LgM = fγ : R −!M j γ(t + 1) = g � γ(t) for all t 2 Rg:
On this space the centralizer C(g) acts. The g -twisted sector in orbifold con-
formal �eld theory is, intuitively, a vector space obtained by \quantizing" LgM
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(read: by taking a certain function space on LgM ), and as such C(g) acts
projectively on this vector space.

The same point of view can be applied to more general context. Let � be any
connected manifold. We consider � moving in an orbifold M=G. The basic
con�guration space is a mapping space Map(�;M=G). To analyze this situa-
tion, we consider their lifts to G-equivariant maps from G-principal bundles P
over � to M . Since the action of G on M is not assumed to be free, not all
maps γ : � −! M=G lift to G-equivariant maps from principal bundles. Even
when they do, there can be lifts from several non-isomorphic principal bundles
to M . We consider the set of all possible lifts γ of γ 2 Map(�;M=G) for all
possible G-principal bundles P over �, and we introduce an equivalence rela-
tion among lifts: two lifts γ1 : P1 −!M and γ2 : P2 −!M of γ are equivalent if
there exists a G-bundle isomorphism � : P1

�=−! P2 inducing the identity map
on � such that γ2 � � = γ1 . We denote the set of all equivalence classes by
L�(M ;G). There is a natural map from L�(M ;G) to the original mapping
space. Thus we have

(2-11) �� : L�(M ;G) =
a
[P ]

MapG(P;M)=AutG(P ) −! Map(�;M=G):

Here the union runs over all the isomorphism classes of G-principal bundles over
�. When the G-action on M is free, the above map �� is a homeomorphism.
In general, the map �� is a kind of mild resolution of orbifold singularities. Note
that L�(M ;G) is still an orbifold, although the group AutG(P ) is in general
a proper subgroup of G for any P . The part of L�(M ;G) corresponding to
[P ] is called the [P ]-twisted sector. Note that the space MapG(P;M) can be
described as the space of sections of a �bre bundle PM = P �GM −! �.

The same space can be described in a di�erent way. Since the isomorphism
class of a G-principal bundle P −! � is determined by the G-conjugacy class
of an associated holonomy homomorphism � : �1(�) −! G and since the group
of G-bundle automorphisms AutG(P ) of a G-bundle P −! � associated to � is
given by the centralizer C(�) � G, the space of total twisted sectors L�(M ;G)
can be described alternately as follows:

(2-12) L�(M ;G) =
a
[�]

Map�(e�;M)=C(�):

Here the disjoint union runs over all G-conjugacy classes of homomorphisms
� : �1(�) −! G, the space e� is the universal cover of �, and the �-twisted
mapping space Map� is de�ned by
(2-13)

Map�(e�;M) = fγ : e� −!M j γ(ph) = �(h)−1γ(p) for all p 2 e�; h 2 �1(�)g:
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We call Map�(e�;M) the �-twisted sector.

Our future goal is to investigate global topology of the in�nite dimensional
twisted space L�(M ;G). In this paper, we examine the subspace of (2-11)
consisting of locally constant G-equivariant maps. The same space can be
described as the space of constant �-equivariant maps in (2-12). Although
this is a very small portion of the space L�(M ;G), it already contains very
interesting information. This space of (locally) constant equivariant maps comes
equipped with a map to M=G:

(2-14) �� :
a
[�]

M h�i=C(�) −!M=G;

where [�] 2 Hom(Γ; G)=G, with Γ = �1(�). Note that the space correspond-
ing to the trivial � is M=G, and the map M h�i=C(�) −! M=G is the obvious
map: mapping C(�)-orbits to G-orbits in M . By considering the Euler char-
acteristic of the left hand side, we get our de�nition (2-1) of the orbifold Euler
characteristic associated to the group Γ. In this form, the group Γ can be any
group, it does not have to be the fundamental group of a manifold. This gives
our de�nition (2-1) for any group Γ. However, interesting cases are for those
groups Γ arising as fundamental groups of manifolds.

3 Geometry of homomorphisms into wreath prod-
ucts

For results in this section and the next, the group G does not have to be �nite.
We assume �niteness only in the orbifold context.

Let M be a G-manifold. On the n-fold Cartesian product Mn , the direct
product Gn acts coordinate-wise, and also the n-th symmetric group Sn acts
by permuting factors. Combining these two actions, we have an action of the
wreath product Gn = GoSn on Mn , which is formally de�ned as follows. Let
n = f1; 2; : : : ; ng for n � 1. The n-th symmetric group Sn is, by de�nition,
the totality of bijections of n to itself. The wreath product GoSn is de�ned as
a semi-direct product

(3-1) GoSn = Map(n; G) oSn;

where � 2 Sn acts on f 2 Map(n; G) by (� �f)(k) = f
(
�−1(k)

�
for k 2 n. The

product and inverse in GoSn is given by (f1; �1)(f2; �2) = (f1 ��1f2; �1�2) and
(f; �)−1 = (�−1f−1; �−1) for any f1; f2; f 2 Map(n; G) and �1; �2; � 2 Sn .
When n = 0, we set Gn to be the trivial group.
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The left action of (f; �) 2 GoSn on (x1; x2; : : : ; xn) 2Mn is given by
(3-2)

(f; �)(x1; x2; : : : ; xn) =
(
f(1)x�−1(1); f(2)x�−1(2); : : : ; f(n)x�−1(n)

�
2Mn:

In the calculation of the Γ-extended orbifold invariant ’Γ(Mn;G oSn) of the
n-th symmetric product of an orbifold (see (5-1) for an explicit expression), we
have to deal with homomorphisms into wreath products. Let � : Γ −! GoSn
be such a homomorphism. Let �(u) =

(
f(u; � ); �(u)

�
, where f(u; � ) 2

Map(n; G), and � : Γ −! Sn is the composition of � and the canonical pro-
jection map GoSn −! Sn . Through �, any � induces a Γ-set structure on n.
That � is a homomorphism immediately implies that the two variable function
f( � ; � ) : Γ� n −! G satis�es the following identities:

(3-3)
f(u1u2; ‘) = f(u1; ‘)f

(
u2; �(u1)−1(‘)

�
f(1; ‘) = 1

f(u; ‘)−1 = f
(
u−1; �(u)−1(‘)

�
for any u1; u2 2 Γ, and ‘ 2 n.

Recall that there is a bijective correspondence between the conjugacy classes of
homomorphisms Hom(Γ;Sn)=Sn and the set of isomorphism classes of Γ-sets
of order n. We prove a similar correspondence for homomorphisms into wreath
products. Namely,

Theorem 3-1 Let G and Γ be any group. Then the following bijective cor-
respondence exists:
(3-4)�

Isomorphism classes of Γ-equivariant G-principal
bundles over a Γ-set of order n

�
1:1 ! Hom(Γ; Gn)=Gn:

Before proving this theorem, we discuss some generalities on Γ-equivariant G-
principal bundles. These objects arise naturally in the context of G-bundles
over �nite covering spaces. See section 7 for details. Let � : P −! Z be such a
bundle. Then P −! Z is a (right) G-principal bundle over a left Γ-set Z and
Γ acts G-equivariantly on P from the left, inducing the Γ-action on Z . Thus,
the left Γ action and the right G action on P commute. We can also let Γ�G
act on P from the right by setting p � (u; g) = u−1pg 2 P for any p 2 P , u 2 Γ
and g 2 G. We use both of these two view points on group actions on P .

For p 2 P , let x = �(p) 2 Z and let Hx be the isotropy subgroup at x 2 Z
of the Γ action on Z . Since any h 2 Hx preserves the �bre �−1(x), for any
point p 2 �−1(x) we may write h � p = p � �p(h) for some unique �p(h) 2 G.
Since left Γ action and the right G action commute, it can be easily checked
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that �p : Hx −! G is a homomorphism. Thus, to each point p 2 P , there is an
associated homomorphism �p . At any two points p and p0 of P over the same
Γ-orbit in Z , we can easily check that the corresponding homomorphisms �p
and �p0 are related by

(3-5) �p0(uhu−1) = g−1�p(h)g; p0 = upg;

for some u 2 Γ and g 2 G. Here h 2 H�(p) so that uhu−1 2 H�(p0) .

The basic structure of a Γ-equivariant G-principal bundle over a Γ-transitive
set is simple.

Lemma 3-2 Let � : P −! Z be a Γ-equivariant G-principal bundle over a
transitive Γ-set Z . For any point p0 2 P , let � : H −! G be the homomorphism
associated to p0 2 P , where H � Γ is the isotropy subgroup at �(p) 2 Z so
that Z �= Γ=H as Γ-sets. Then, we have a Γ-equivariant G-principal bundle
isomorphism Γ �� G �= P , where [u; g] 2 Γ �� G corresponds to up0g 2 P .
Here, the equivalence relation in P� = Γ��G is given by [u; g] = [uh; �(h)−1g]
for all h 2 H .

The proof is straightforward. One notes that Γ�G acts transitively on P from
the right whose isotropy subgroup at p0 2 P is f(h; �(h)) j h 2 Hg �= H .

The reason of our use of G-bundles in our study of wreath products is that
wreath products arise naturally as the full automorphisms groups of G-bundles
over �nite sets.

Lemma 3-3 The group of G-bundle automorphisms of the trivial G-bundle
over the set n is the wreath product GoSn . That is, AutG(n � G) = GoSn .
Here, the action of (f; �) 2 GoSn given in (3-1) on (‘; g) 2 n�G is given by
(f; �) � (‘; g) =

(
�(‘); f(�(‘))g

�
.

One can easily check that this de�nes an action. This action is compatible
with the action (3-2) in the following way. Through the identi�cation Mn �=
MapG(n � G;M) given by the evaluation of G-equivariant maps at 1 2 G,
the action of (f; �) on Mn given in (3-2) corresponds exactly to the action(
(f; �)−1

�� on MapG(n�G;M).

Lemma 3-3 gives a geometric characterization of wreath products. This is
the very reason why G-principal bundles are relevant to our study of wreath
products.

We are ready to prove Theorem 3-1.
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Proof of Theorem 3-1 First we describe the correspondence (3-4) and show
that it is well de�ned.

For a given Γ-equivariant G-principal bundle � : P −! Z with jZj = n, we
choose a section s : Z −! P and a bijection t : n

�=−! Z . We then have a
G-bundle isomorphism n � G

�=−!
t
Z � G

�=−!
s

P . We transfer the Γ action

on P to an action on n � G through this isomorphism. Since the action of
γ 2 Γ on P is G-equivariant, the corresponding action �(γ) on n � G is
also G-equivariant. Since AutG(n � G) = G oSn by Lemma 3-3, we have a
homomorphism � : Γ −! GoSn .

We show that the conjugacy class [�] is independent of the choices (s; t) and
depends only on the isomorphism class of � : P −! Z as a Γ-equivariant G-
bundle. Let �1 : P1 −! Z1 and �2 : P2 −! Z2 be two isomorphic Γ-equivariant
G-bundles. Let ’ : P1

�=−! P2 be an isomorphism. Let (s1; t1) and (s2; t2)
be the choices as above for P1 and P2 . We have the following commutative
diagram.

n�G
�=−−−−!

(s1;t1)
P1

�=−−−−!
’

P2

�= −−−−
(s2;t2)

n�G

�=
??y�1(γ) �=

??yγ �=
??yγ �=

??y�2(γ)

n�G
�=−−−−!

(s1;t1)
P1

�=−−−−!
’

P2

�= −−−−
(s2;t2)

n�G

The composition of horizontal maps is a G-bundle isomorphism � of n � G,
and hence � 2 GoSn , and the commutativity of the diagram shows that �2(γ) =
��1(γ)�−1 . Thus, �1; �2 : Γ −! GoSn are conjugate in GoSn . This proves that
the correspondence (3-4) is well de�ned.

Next we show that the correspondence (3-4) is onto. Let � : Γ −! G oSn
be a homomorphism. Let P� be n � G with Γ-action induced by � : Γ −!
AutG(P�) = GoSn . Since the left Γ-action commutes with the right G-action
on P� , this Γ-action induces a Γ-action on n. Hence P� −! n is a Γ-equivariant
G-bundle. With the obvious choice of (s; t), the homomorphism corresponding
to P� −! n is clearly � : Γ −! GoSn . Hence the correspondence (3-4) is onto.

We give another proof of surjectivity. In this proof, a bundle P −! Z cor-
responding to � is constructed from a di�erent point of view as a union of
Γ-irreducible G-bundles. This description clari�es the detailed internal struc-
tures of the bundle P −! Z , and it will be useful for later sections. Let
� : Γ −! G o Sn be a homomorphism. Let � : Γ �−! G o Sn

proj−−! Sn be
a composition. Let �(u) =

(
f(u; � ); �(u)

�
for u 2 Γ. Let n =

‘
�X� be

the orbit decomposition of n under the Γ-action on n de�ned by �. We

Algebraic & Geometric Topology, Volume 3 (2003)



Generalized Orbifold Euler Characteristics 813

choose a base point x� 2 X� from each orbit, and let H� be the isotropy sub-
group at x� . Now � decomposes as � =

Q
� �� : Γ −!

Q
� G oS(X�), where

�� : Γ −! GoS(X�), and S(X�) is the group of permutations of X� . For each
� , let �� : H� −! G be de�ned by ��(u) = f(u; x�) for u 2 H� . Since H�

�xes x� , the �rst formula in (3-3) shows that �� is a homomorphism. Now
set P =

‘
�(Γ ��� G −! X�). This P is a Γ-equivariant G-principal bundle

over n. We show that by choosing sections for these bundles appropriately,
the homomorphism corresponding to P is precisely � we started with. Now
a section s� for P� = Γ ��� G −! X� is the same as a �� -equivariant map
s� : Γ −! G. Let s�(u) = f(u−1; x�) for u 2 Γ. By (3-3), for h 2 H� we have
s�(uh) = f(h−1u−1; x�) = f(h−1; x�)f(u−1; �(h)x�) = ��(h)−1s�(u), where
�(h)x� = x� since h 2 H� . This shows that s� is �� -equivariant. Thus, a
map �� : X� −! Γ ��� G given by ��(�(u)x�) = [u; s�(u)] for u 2 Γ is a well
de�ned section of P� −! X� . Using this section, we have a G-bundle isomor-
phism X� � G −! Γ ��� G mapping (�(u)x� ; g) to ��(�(u)x�)g = [u; s�(u)g].
We transfer the Γ action on Γ ��� G to X� � G using this isomorphism.
Let ��(γ) be the action on X� � G corresponding to the action of γ on
Γ ��� G, in which the action of Γ is given by γ[u; s�(u)g] = [γu; s�(u)g]. Let
��(γ)(�(u)x� ; g) = (�(γu)x� ; g0) for some g0 2 G. The corresponding element
in Γ���G is [γu; s�(γu)g0] which must be equal to [γu; s�(u)g]. Using (3-3), we
have s�(γu) = s�(u)f(γ; �(γu)x�)−1 , hence g0 = f(γ; �(γu)x�)g . This means
that ��(γ)

(
�(u)x�; g

�
=
(
�(γu)x� ; f(γ; �(γu)x�)g

�
=
(
f(γ; ); �(γ)

�
�(�(u)x� ; g)

by the description of the action of Gn on n � G given in Lemma 3-3. This
shows that the Γ-action �0� on X��G is given by �0�(γ) =

(
f(γ; ); �(γ)

�
, which

is the original � restricted to the bundle over X� , namely �� : Γ −! GoS(X�).
Hence the homomorphism

Q
�0� corresponding to the Γ-equivariant G-bundle

P =
‘
�(Γ���G −! X�) with chosen sections f��g� is precisely � : Γ −! GoSn .

This proves that the correspondence (3-4) is onto.

Finally, we show that the correspondence (3-4) is injective. Let �i : Pi −! Zi
for i = 1; 2 be two Γ-equivariant G-bundles such that corresponding homomor-
phisms �1 and �2 , after making some choices (si; ti) for i = 1; 2, are conjugate
by an element � 2 GoSn . We then have the following commutative diagram.

P1

�= −−−−
(s1;t1)

n�G
�=−−−−!
�

n�G
�=−−−−!

(s2;t2)
P2

�=
??yγ �=

??y�1(γ) �=
??y�2(γ) �=

??yγ
P1

�= −−−−
(s1;t1)

n�G
�=−−−−!
�

n�G
�=−−−−!

(s2;t2)
P2

The composition ’ of the horizontal maps is a G-bundle isomorphism. The
commutativity of the diagram shows that ’ : P1 −! P2 is a G-bundle map
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commuting with the action of Γ. Hence ’ is a Γ-equivariant G-bundle isomor-
phism. This shows that the correspondence in (3-4) is injective. This completes
the proof.

Next we discuss isomorphisms between Γ-equivariant G-principal bundles. Re-
call that for any point p 2 P , we can associate a homomorphism �p : H�(p) −!
G. This homomorphism completely characterize the Γ-G bundle P −! Z when
the base is a transitive Γ-set.

Proposition 3-4 (1) Let �i : Pi −! Zi be Γ-equivariant G-bundles for

i = 1; 2. Let ’ : P1

�=−! P2 be Γ-equivariant G-bundle isomorphism. Then for
every p1 2 P1 , letting p2 = ’(p1), we have

(3-6) �p1 = �p2 : H −! G;

where H = H�1(p1) = H�2(p2) � Γ is the isotropy subgroup at �1(p1) 2 Z1 and
�2(p2) 2 Z2 .

(2) Conversely, if there exists p1 2 P1 and p2 2 P2 such that �p1 = �p2 and
if Z1 and Z2 are transitive Γ-sets, then there exists a unique Γ-equivariant

G-bundle isomorphism ’ : P1

�=−! P2 such that ’(p1) = p2 .

Proof The Γ-equivariant G-bundle isomorphism ’ induces a Γ-isomorphism
’ : Z1 −! Z2 on the base sets. Hence isotropy subgroups at x1 = �1(p1) and
x2 = �2(p2) = ’(x1) must be the same subgroup of Γ which we call H . Let
the homomorphisms associated to points p1 and p2 be �1; �2 : H −! G. For
any h 2 H , Γ-equivariance of ’ and the de�nition of �2 imply that ’(hp1) =
h’(p1) = hp2 = p2�2(h). On the other hand, G-equivariance implies that
’(hp1) = ’

(
p1�1(h)

�
= ’(p1)�1(h) = p2�1(h). Since the G-action on P2 is

free, we have �1(h) = �2(h) for all h 2 H . This proves the �rst part.

For the second part, we �rst show uniqueness of ’. Suppose a Γ-equivariant
G-bundle isomorphism ’ : P1 −! P2 such that ’(p1) = p2 exists. Then it must
have the property ’(up1g) = up2g for all u 2 Γ and g 2 G. Since Z1 and Z2

are transitive Γ-sets, the actions of Γ�G on P1 and P2 are transitive. Thus
the above identity uniquely determines ’. This proves uniqueness of ’.

For existence, since �p1 = �p2 = �, say, we have P1

�= −
’1

Γ��G
�=−!
’2

P2 , where ’i

are Γ-equivariant G-bundle isomorphisms in Lemma 3-2 such that ’i([1; 1]) =
upig for i = 1; 2. Then ’ = ’2 � ’−1

1 is the desired Γ-G isomorphism. This
completes the proof.
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Next, we classify Γ-equivariant G-bundles over transitive Γ-sets. Let � : P −!
Z be such a bundle. For z 2 Z , let Hz be the isotropy subgroup at z . Then the
collection of homomorphisms �p : Hz −! G for all p 2 �−1(z) forms a complete
G-conjugacy class, that is, an element in Hom(Hz; G)=G in view of (3-5). The
normalizer NΓ(Hz) acts on this set of conjugacy classes by conjugating Hz .
For each point z 2 Z , we consider the set of NΓ(Hz)-orbits in Hom(Hz; G)=G.
This gives us a bundle of sets:

(3-7) ! :
a
z2Z

Hom(Hz; G)=(NΓ(Hz)�G) −! Z:

This bundle ! depends only on the Γ-set Z . The above argument shows that
for any Γ-equivariant G-bundle P over Z , we have an associated section �P
of ! whose value at z 2 Z is the NΓ(Hz)-orbit of the G-conjugacy class
[�p] 2 Hom(Hz; G)=G for any p 2 �−1(z). Note that for any P over a Γ-
transitive set Z , this section �P is determined by its value at any single point
z 2 Z , since �p for p 2 �−1(z) determines �0p for any other point p0 2 P when
Z is Γ-transitive by (3-5). We show that this section �P of the bundle ! , or
equivalently, its value at any point of Z , determines the Γ-G isomorphism class
of the bundle � : P −! Z for a Γ-transitive set Z .

Proposition 3-5 Let �i : Pi −! Z be Γ-equivariant G principal bundles over
the same transitive Γ-set Z for i = 1; 2. Then the following statements are
equivalent:

(1) Two bundles P1 and P2 are isomorphic as Γ-equivariant G-principal bun-
dles.

(2) For some z0 2 Z , we have �P1
(z0) = �P2

(z0) 2 Hom(Hz0 ; G)=(NΓ(Hz0) �
G).

(3) For all z 2 Z , we have �P1
(z) = �P2

(z) 2 Hom(Hz; G)=(NΓ(Hz)�G).

Proof (1)) (3): Let ’ : P1 −! P2 be a Γ-equivariant G-bundle isomorphism.
For any p1 2 P1 , let p2 = ’(p1), and �1(p1) = z1 , �2(p2) = z2 . Since
the induced Γ-isomorphism ’ on Z is such that ’(z1) = (z2), the isotropy
subgroups at these points are the same Hz1 = Hz2 , and since Γ acts transitively
on Z , we must have z2 = uz1 for some u 2 NΓ(Hz1). To compare �P1

and
�P2

over the same point z1 , let p02 = u−1p2g
−1 2 P2 for any g 2 G. Then

both p02 and p1 are points above z1 . Let �i = �pi for i = 1; 2, and �02 =
�p02 . Then by (3-5), we have �2(uhu−1) = g−1�02(h)g for all h 2 Hz1 . Since
’(p1) = p2 , by Proposition 3-6 we have �1 = �2 . Thus, we have �1(uhu−1) =
g−1�02(h)g for all h 2 Hz1 . This means that �P1

(z1) = [�1] = [�02] = �P2
(z1)
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in Hom(Hz1 ; G)=(NΓ(Hz1) �G). Since p1 2 P1 can be an arbitrary point, we
have �P1

= �P2
as sections of the bundle ! . This proves (3).

(3)) (2): This is obvious.

(2) ) (1): Suppose for some z0 2 Z , we have �P1
(z0) = �P2

(z0). this means
that for any choices of points p1 2 �−1

1 (z0) and p2 2 �−1
2 (z0), there exists

u 2 NΓ(Hz0) and g 2 G such that �1(uhu−1) = g−1�2(h)g for all h 2 Hz0 .
Here we put �i = �pi for i = 1; 2. Let p02 = up2g 2 P2 . Then, letting �02 = �p02 ,
we have �02(uhu−1) = g−1�2(h)g for all h 2 Hz0 by (3-5). Thus, we have
�1 = �02 : Hz0 −! G. By the second part of Proposition 3-4, there exists a
unique Γ-equivariant G-bundle map ’ : P1 −! P2 such that ’(p1) = p02 . Note
that the induced Γ-map ’ on Z is such that ’(z0) = uz0 , and z0 and uz0

have the same isotropy subgroups. This completes the proof.

Remark We can also think of the above situation in the following (better)
way. When Z is a transitive Γ-set, we consider a bundle over Z :

(3-8)
a
z2Z

Hom(Hz; G)=G −! Z:

Any Γ-equivariant G bundle � : P −! Z gives rise to a section sP whose
value at z 2 Z is the G-conjugacy class f�pgp2�−1(z) . Now this section sP
is Γ-equivariant. Here the result of an action of u 2 Γ on f 2 Hom(H;G) is
given by uf 2 Hom(uHu−1; G) de�ned by (uf)(uhu−1) = f(h) for any h 2 H .
Thus dividing by the action of Γ, each bundle P determines a unique element
[sP ] whose representative is given by �P (z) 2 Hom(Hz; G)=(NΓ(Hz) � G) for
any z 2 Z . Proposition 3-5 says that this element classi�es the Γ-equivariant
G-bundle isomorphism class of � : P −! Z .

Reformulating this proposition, we have the classi�cation theorem of Γ-equivar-
iant G-principal bundles over transitive Γ-sets.

Theorem 3-6 (Classi�cation of Γ-G bundles) Let G and Γ be any groups.
Then there exists the following bijective correspondence:
(3-9)�

Isomorphism classes of Γ-irreducible G-
principal bundles over Γ-sets of order n

�
1:1 !
a
[H]n

Hom(H;G)=(NΓ(H)�G);

where [H]n runs over the set of conjugacy classes of index n subgroups of Γ.

If we allow Γ-irreducible G-bundles over arbitrary not necessarily �nite Γ-sets,
then the bijective correspondence is still valid without the �niteness restriction
on jΓ=Hj on the right hand side.
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4 Centralizers of homomorphisms into wreath prod-
ucts

Let � : Γ −! GoSn = Gn be a homomorphism into a wreath product. In this
section, we determine the structure of the centralizer of the image of � in Gn .
Of course this is a purely group theoretic problem, but we found it illuminating
and simpler to consider this problem from a geometric point of view.

From the proof of Theorem 3-1, given � as above, there exists a Γ-equivariant
G-principal bundle � : P −! Z over a Γ-set Z of order n such that for appro-
priate choices of a section s : Z −! P and a bijection t : n

�=−! Z , we have the
following commutative diagram of groups and homomorphisms.

Γ Γ

�P

??y ??y�
AutG(P )

�=−−−−!
(s;t)�

GoSn

Here the bottom arrow is the one induced by a trivialization (s; t) : n�G �= P .
Now any element in the centralizer C(�) � Gn corresponds, under (s; t)� , to
a G-bundle automorphism of P which commutes with the action �P of Γ on
P . These are Γ-equivariant G-bundle automorphisms of P which we denote
by AutΓ-G(P ). This proves the following lemma.

Lemma 4-1 Let � : Γ −! G oSn be a homomorphism. Let � : P −! Z
be any Γ-equivariant G-bundle whose isomorphism class corresponds to the
Gn -conjugacy class [ � ]. Then we have C(�) �= AutΓ-G(P ).

When the base Z is a transitive Γ-set, we have called � : P −! Z a Γ-irreducible
G-bundle. In this case, the group Γ�G acts transitively on the total space P .
Our next task is to describe Γ-G automorphisms of a Γ-irreducible G-bundle.
By Lemma 3-2, such a bundle is of the form �� : P� = Γ �� G −! Z = Γ=H
for some subgroup H � Γ and some homomorphism � : H −! G. We have the
following obvious exact sequence:

1 −! AutΓ-G(P�)Z −! AutΓ-G(P�) −! AutPΓ (Z) −! 1:

Here AutΓ-G(P�)Z is a subgroup of AutΓ-G(P�) inducing the identity map on
Z . The group AutPΓ (Z) is a subgroup of the group AutΓ(Z) �= HnNΓ(H) of
Γ-automorphisms of Z which extend to Γ-G automorphisms of P� .
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Remark Since H is a normal subgroup of NΓ(H), it does not matter whether
we use right cosets HnNΓ(H) or left cosets NΓ(H)=H : they are the same group.
We use right cosets notation here only because it is more appropriate due to the
formula of the isomorphism � : HnNΓ(H) �= AutΓ(Z) in the proof of Theorem
4-2.

For � : H −! G as above and u 2 NΓ(H), let �u : H −! G be a homomorphism
de�ned by conjugation by u, that is, �u(h) = �(uhu−1) for h 2 H . Let

(4-1) N�
Γ(H) = fu 2 NΓ(H) j �u and � are G-conjugateg:

This subset of NΓ(H) is easily seen to be a subgroup of NΓ(H). Another way
to think about N�

Γ(H) is as the isotropy subgroup at [�] of the NΓ(H)-action
on Hom(H;G)=G.

Theorem 4-2 For � : H −! G, let �� : P� −! Z(= Γ=H) be the associated Γ-
irreducible G-bundle. Then AutΓ-G(P�)Z �= CG(�) and AutPΓ (Z) �= HnN�

Γ(H).
Thus, the group of Γ-G automorphisms of P� �ts into the following exact
sequence:

(4-2) 1 −! CG(�) −! AutΓ-G(P�) −! HnN�
Γ(H) −! 1:

Let p0 = [1; 1] 2 P� . For any g0 2 CG(�), the corresponding Γ-G automor-

phism ’g0 of P� is given by ’g0 (up0g) = up0g
0−1

g for any u 2 Γ and g 2 G.

Proof First note that when g0 2 C(�), we have �p0g0−1 = g0�p0g
0−1 = �p0 ,

where �p0 = �. Hence by Proposition 3-4, the map ’g0 given above is indeed a
Γ-equivariant G-bundle isomorphism inducing the identity map on the base Z .
This gives us a map C(�) −! AutΓ-G(P�)Z . This can be easily checked to be an
injective homomorphism directly from the de�nition of ’g0 . To see that this is
a surjective map, let ’ : P� −! P� be a Γ-equivariant G-bundle automorphism
of P� inducing the identity map on Z . Then ’(p0) is a point in the same �bre.
So ’(p0) = p0g

0−1 for some unique g0 2 G. By Proposition 3-4, we must have
�p0 = �p0g0−1 . By (3-5), this means that g0�p0(h)g0−1 = �p0(h) for any h 2 H .
Thus, g0 2 C(�). This proves that C(�) �= AutΓ-G(P�)Z .

Let z0 = [H] 2 Γ=H . Recall that the isomorphism � : HnNΓ(H)
�=−! AutΓ(Z)

is given by �(Hu0)(uz0) = uu0
−1
z0 . If u0 2 N�

Γ(H), then by de�nition (4-1)
there exists g0 2 G such that �(u0−1

hu0) = g0
−1
�(h)g0 for any h 2 H . This

means �p0 = �u0−1p0g0 by (3-5), where p0 = [1; 1] 2 P� . Then by Proposition
3-4, there exists a unique Γ-equivariant G-bundle isomorphism ’ : P −! P
such that ’(up0g) = u(u0−1

p0g
0)g for u 2 Γ and g 2 G. The induced Γ-

map on the base Z is ’(uz0) = uu0
−1
z0 . Thus, any element in the image of
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the subgroup HnN�
Γ(H) under � lifts to a Γ-G-map of P . There are jC(�)j

many choices of such lifts. Thus by restriction, we have a well de�ned injective
homomorphism �0 : HnN�

Γ(H) −! AutPΓ (Z). To see that this map is surjective,
let ’ : Z −! Z be a Γ-equivariant isomorphism induced from a Γ-G map
’ : P� −! P� . Suppose ’(p0) = u0

−1
p0g
0 for some u0 2 Γ and g0 2 G.

Then the Γ-map ’ on Z is given by ’(uz0) = uu0
−1
z0 . By Proposition 3-4,

�p0 = �u0−1p0g0 . This means �(u0−1
hu0) = g0

−1
�(h)g0 for all h 2 H by (3-5).

This in turn means that u0 2 N�
Γ(H) by (4-1). Hence we have ’ = �0(Hu0),

and this shows that �0 is surjective. Thus �0 is an isomorphism of groups.
This completes the proof.

We give another description of AutPΓ (Z). Recall that given a Γ-equivariant
G-bundle � : P −! Z , we have a section sP of the bundle (3-8) over Z . Let
DP (Z) be the set of all Γ-automorphisms of Z which leaves sP invariant:

(4-3) DP (Z) = f� : Z −! Z j � is Γ-equivariant bijection and sP � � = sP g:
We show that any element in DP (Z) extends to a Γ-equivariant G-bundle map
of P . For the next proposition, we do not have to assume that Z is a transitive
Γ-set.

Proposition 4-3 Let � : P −! Z be a Γ-equivariant G-principal bundle
over a (not necessarily transitive) Γ-set Z . With the above notations, we have
AutPΓ (Z) = DP (Z).

Proof Let ’ : P
�=−! P be a Γ-equivariant G-bundle automorphism. We show

that the induced map ’ on the base is in DP (Z). Since ’ is a Γ-map, for any
p 2 P , isotropy subgroups at �(’(p)) and �(p) are the same. By Proposition
3-4 we have �’(p) = �p . Now, sP � ’(�(p)) = [�’(p)] = [�p] = sP (�(p)) for any
p 2 P . Thus sP � ’ = sP , and ’ 2 DP (Z). This proves AutPΓ (Z) � DP (Z).

For the other direction of inclusion, let � : Z −! Z be a Γ-map such that
sP � � = sP . Let Z =

‘
� Z� be the Γ-orbit decomposition of Z , and let the

corresponding decomposition of Γ-G bundles be (P −! Z) =
‘
�(P� −! Z�).

The Γ-map � permutes orbits of the same type. We pick any point z 2 Z ,
say, z 2 Z� . Let �(z) = z0 2 Z�0 . Thus isotropy subgroups at z and z0

are the same, say H . Since sP � �(z) = sP (z), for any points p 2 �−1(z)
and p0 2 �−1(z0) we have [�p] = [�p0 ] in Hom(H;G)=G. Thus there exists
g 2 G such that �p0 = g�pg

−1 . By (3-5), letting p00 = p0g we have �p00 = �p .
Hence by Proposition 3-4, there exists a unique Γ-equivariant G-bundle map
’� : P� −! P�0 such that ’�(p) = p00 . Since the induced Γ-map on the base
is such that ’�(z) = �(p00) = z0 = �(z) and both Z� and Z�0 are transitive
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Γ-sets, we have ’� = � jZ� : Z� −! Z�0 . We repeat this construction for the
remaining Z� ’s, and we get a Γ-equivariant G-bundle map ’ : P −! P lifting
� . Hence � 2 AutPΓ (Z). This completes the proof.

Next we give an alternate description of the structure of the group AutΓ-G(P�)
when the base set of P is a transitive Γ-set. This description is more direct
than the one in Theorem 4-2. We take the point of view that (u; g) 2 Γ � G
acts on p 2 P� from the right by p � (u; g) = u−1pg . The isotropy subgroup
at p0 = [1; 1] 2 P� is f(h; �(h)) j h 2 Hg �= H , so that as a right Γ � G-set,
P� �= Hn(Γ�G) using right cosets.

By Proposition 3-4, we have a bijection P� � fp 2 P� j �p = �g
�=−! AutΓ-G(P�)

as sets. When p = u−1p0g , by (3-5) we have �p(h) = g−1�(uhu−1)g for all
h 2 H . We consider a subset T� of NΓ(H) � G � Γ � G consisting of pairs
(u; g) such that the corresponding point p = u−1p0g has the property that
�p = �. Namely, let

(4-4) T� = f(u; g) 2 NΓ(H)�G j g−1�(uhu−1)g = �(h); for all h 2 Hg:

From this de�nition, we see that if (u; g) 2 T� , then it follows that u 2 N�
Γ(H),

in view of its de�nition (4-1). We can easily check that T� is a subgroup of
NΓ(H)�G.

Another way to look at T� is as follows. Let (u; g) 2 NΓ(H) � G act from
the right on an element f 2 Hom(H;G) by [f � (u; g)](h) = g−1f(uhu−1)g for
h 2 H . Then, T� � NΓ(H) �G is the isotropy subgroup at �. This makes it
clear that T� is indeed a subgroup.

We have the following diagram:

Γ�G onto−−−−!
Hn

P�x?? x??
T�

onto−−−−!
Hn

fp 2 P j �p = �g
�=−−−−!

as sets
AutΓ-G(P�)

where all vertical maps are inclusions. This shows that HnT� �= AutΓ-G(P�) as
sets. The correspondence is the following one. For (u; g) 2 T� , it corresponds to
a point u−1p0g 2 P� . This point corresponds to a Γ-equivariant G-bundle au-
tomorphism ’(u;g) of P� characterized by ’(u;g)(p0) = u−1p0g by Proposition
3-4. In fact, this bijective correspondence is as groups.
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Theorem 4-4 Let an injective homomorphism � : H −! T� be given by
�(h) =

(
h; �(h)

�
for h 2 H . Then, Im � is a normal subgroup of T� , and the

group of Γ-equivariant G-bundle automorphism of P� �ts into the following
exact sequence of groups:

(4-5) 1 −! H
�−! T�

j−! AutΓ-G(P�) −! 1:

Here, for (u; g) 2 T� , its image j
(
(u; g)

�
= ’(u;g) is a Γ-equivariant G-bundle

automorphism of P� given by ’(u;g)([v; k]) = [vu−1; gk] for any v 2 Γ and
k 2 G. In particular, HnT� �= AutΓ-G(P�) as groups.

Proof For the �rst part, for any h 2 H and any (u; g) 2 T� , we have

(u; g)
(
h; �(h)

�
(u; g)−1 = (uhu−1; g�(h)g−1) =

(
uhu−1; �(uhu−1)

�
;

where the second equality holds because (u; g) 2 T� . Since u 2 NΓ(H), we
have uhu−1 2 H . This proves that the isomorphic image of H under � in T�
is a normal subgroup.
For the second part, it is straightforward to check that the map j described
above is a homomorphism with kernel �(H). Since the bijective correspondence
HnT� �= AutΓ-G(P�) described earlier is precisely the one induced by j above,
this correspondence is an isomorphism of groups. This completes the proof.

We also have a related exact sequence involving T� . Almost by de�nition (4-4),
we have T� � N�

Γ(H) � G. Projection to N�
Γ(H) is onto by de�nition (4-1),

and we have the following exact sequence of groups:

(4-6) 1 −! CG(�) −! T� −! N�
Γ(H) −! 1:

Dividing by the left action by H , we recover (4-2). Here, note that H \ C(�)
is trivial in T� .

Theorem 4-2 and Theorem 4-4 deal with the group of Γ-equivariant G-bundle
automorphisms of a Γ-irreducible G-bundle P� . Next we describe the Γ-G-
automorphism group of a general Γ-equivariant G-bundle � : P −! Z , where
the base set Z is not necessarily a transitive Γ-set, nor a �nite Γ-set. Any such
bundle decomposes into a disjoint union of Γ-irreducible G-bundles, and these
irreducible bundles are classi�ed by Theorem 3-6. For each conjugacy class [H]
of subgroups of Γ, and for each conjugacy class [�] 2 Hom(H;G)=(NΓ(H)�G),
let r(H; �) be the number of isomorphic copies of P� = Γ��G −! Γ=H appearing
in the decomposition of � : P −! Z . Let P [H; �] be the sub-bundle of P of type
([H]; [�]). Thus P [H; �] is isomorphic to a disjoint union of r(H; �) copies of
�� : P� −! Γ=H . If ([H]; [�]) 6= ([H 0]; [�0]), then there are no Γ-G isomorphisms
between P [H; �] and P [H 0; �0]. Furthermore, it is elementary that

AutΓ-G(P [H; �]) �= AutΓ-G(P�)oSr(H;�):

Combining these results, we �nally obtain the structure theorem for AutΓ-G(P ).
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Theorem 4-5 (Structure of Γ-G automorphism groups and centralizers) Let
� : P −! Z be a Γ-equivariant G-principal bundle over a Γ-set Z . Let r(H; �)
be the number of isomorphic copies of P� = Γ �� G −! Γ=H appearing in the
irreducible decomposition of P −! Z . Then,

(4-7) AutΓ-G(P ) �=
Y
[H]

Y
[�]

AutΓ-G(P�)oSr(H;�);

where [H] runs over all conjugacy classes of subgroups of Γ, and for a given [H],
[�] runs over the set Hom(H;G)=(NΓ(H) � G). The structure of AutΓ-G(P�)
is described in Theorem 4-2 and Theorem 4-4.

For a given homomorphism � : Γ −! GoSn , let � : P −! Z be a Γ-G bundle
whose isomorphism class corresponds to [�] under the correspondence (3-4).
Then the centralizer CGn(�) is isomorphic to AutΓ-G(P ) given in (4-7).

5 Generating functions of orbifold Euler character-
istics of symmetric products: exponential formulae

In this section, we let G be a �nite group and let M be a G-manifold. Let
’(M ;G) be an arbitrary multiplicative orbifold invariant of (M ;G). Let Γ
be an arbitrary group. We are interested in calculating the generating func-
tion

P
n�0 q

n’Γ(Mn;Gn) of the Γ-extended orbifold invariant of symmetric
products of an orbifold. Here Gn = GoSn is a wreath product and

(5-1) ’Γ(Mn;Gn) =
X

[�]2Hom(Γ;Gn)=Gn

’
(
(Mn)h�i;CGn(�)

�
:

Let � : Γ −! Gn = GoSn be a homomorphism. Calculating the above invariant
involves identifying �xed point subset (Mn)h�i , and calculating the centralizer
CGn(�) together with its action on the �xed point subset. These tasks can be
done geometrically using Γ-equivariant G-principal bundles.

Given � as above, let �� : P −! n be a Γ-equivariant G-bundle over a set
n = f1; 2; : : : ; ng equipped with a section s� : n −! P such that the natural
action �P of Γ on P corresponds to � through the G-bundle trivialization
s : n � G

�=−! P induced by s� . Note that the Γ-action on n comes from �
via the composition with a projection Γ −! G oSn −! Sn = Aut(n). Such
a Γ-G bundle �� : P −! n together with section s� was constructed in the
proof of Theorem 3-1 in two di�erent ways. Let S[P �G M ] be the set of
sections of the �bre bundle �M : P �GM −! n. This set can be identi�ed with
the set of G-equivariant maps � 2 MapG(P;M) satisfying �(pg) = g−1�(p)
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for all g 2 G and p 2 P . A G-automorphism ’ 2 AutG(P ) acts on � 2
MapG(P;M) by ’(�) = (’−1)�(�) = � � ’−1 . Thus, through �P , u 2 Γ acts
on MapG(P;M) = S[P �G M ] as �P (u−1)� . On the other hand, we have an
identi�cation MapG(n � G;M)

�=−! Mn by evaluation at 1 2 G. Since u 2 Γ
acts on n � G as �(u), the action of u 2 Γ on MapG(n � G;M) �= Mn is
given by �(u−1)� . As we remarked earlier after Lemma 3-3, this action of Γ on
Mn is precisely the one given in (3-2). Since s : P −! n� G is Γ-equivariant
with respect to �P and � , we see that the Γ action on S[P �GM ] corresponds
precisely to the Γ action on Mn . The situation can be summarized by the
following diagrams.

S[P �GM ] �= MapG(P;M)
�=−−−−−−!

�P (u−1)�
MapG(P;M) �= S[P �GM ]

�=
??ys� �=

??ys�
Mn �= MapG(n�G;M)

�=−−−−−−−!
�(u−1)�=u�

MapG(n�G;M) �= Mn

Here, horizontal arrows denote actions of u 2 Γ. From this, the �rst part of
the next proposition is clear.

Proposition 5-1 Let � : Γ −! GoSn be a homomorphism. Let � : P −! Z
be a Γ-equivariant G-principal bundle whose isomorphism class corresponds to
the conjugacy class [�]. Then we have (Mn)h�i �= S[P �GM ]Γ , where the right
hand side is the set of Γ-�xed sections.

Let �� : P� = Γ �� G −! Γ=H be an irreducible Γ-G-bundle. Then we have
S[P� �GM ]Γ �= M h�i .

Proof We only have to prove the second part. Any section of P��GM −! Γ=H
is represented by a G-equivariant map � : P� −!M satisfying �(pg) = g−1�(p)
for all p 2 P� and g 2 G. This section is Γ-invariant if �(u−1p) = �(p) for all
u 2 Γ and p 2 P� . Since Γ acts transitively on the base Γ=H , such a Γ-invariant
G-equivariant map � is uniquely determined by its value at p0 = [1; 1] 2 P� .
This value �(p0) 2 M cannot be any point in M . For any h 2 H � Γ, using
Γ-invariance of �, we must have �(p0) = �(hp0) = �

(
p0�(h)

�
= �(h)−1�(p0).

Thus, �(p0) must belong to �(H)-invariant subset of M . This gives us an
injective map S[P� �GM ]Γ −!M h�i .

To see that this map is surjective, let x 2 M h�i be any h�i-�xed point in M .
Let a Γ-invariant G-equivariant map �x : P� −! M be de�ned by a formula
�x(u−1p0g) = g−1x for all u 2 Γ and g 2 G. To see that this well de�ned,
let u−1

1 p0g1 = u−1
2 p0g2 . Then there exists a unique h 2 H such that u2 = hu1
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and g2 = �(h)g1 . Then g−1
2 x = g−1

1 �(h)−1x = g−1
1 x, since x 2 M h�i . This

proves that �x is well de�ned and the above correspondence is a bijection. This
completes the proof.

From this proposition, the next corollary is straightforward.

Corollary 5-2 Let r(H; �) be the number of isomorphic copies of �� : P� −!
Γ=H appearing in the irreducible decomposition of a Γ-equivariant G-principal
bundle � : P −! Z . Then

(5-2) S[P �GM ]Γ �=
Y
[H]

Y
[�]

(
M h�i

�r(H;�)
:

Furthermore, the action of AutΓ-G(P ) on the above set respects [H]-[�] product
decomposition described in (4-7).

Proof Let [P −! Z] =
‘
[H]

‘
[�]

r(H;�)‘
[P� −! Γ=H] be the irreducible decomposition

of P −! Z . Since the Γ-action respects the decomposition of P −! Z into
irreducible bundles, we have

S[P �GM ]Γ �=
Y
[H]

Y
[�]

r(H;�)Y
S[P� �GM ]Γ:

From the second part of Proposition 5-1, the isomorphism (5-2) follows.

Since there are no Γ-G isomorphisms between P� −! Γ=H and P�0 −! Γ=H 0 if
([H]; [�]) 6= ([H 0]; [�0]) by Classi�cation Theorem 3-6, the action of the Γ-G au-
tomorphism group AutΓ-G(P ) respects [H]-[�] decomposition. This completes
the proof.

Next we describe the action of AutΓ-G(P�) on M h�i . By Theorem 4-4, an
arbitrary element in AutΓ-G(P�) is of the form ’(u;g) for some (u; g) 2 T� .
This pair (u; g) is unique up to the left action by H , in view of Theorem 4-4.

Proposition 5-3 The left action of ’(u;g) 2 AutΓ-G(P�) on x 2 M h�i �=
S[P� �GM ]Γ is given by ’(u;g)(x) = gx.
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Proof By de�nition, the left action of ’ 2 AutΓ-G(P�) on � 2 MapG(P�;M) �=
S[P� �GM ] is given by the composition ’(�) = � � ’−1 . For any x 2 M h�i ,
let �x : P� −!M be the Γ-invariant G-equivariant map such that �x(p0) = x.
When (u; g) 2 T� , we have g−1�(uhu−1)g = �(h) for any h 2 H . Since
u 2 NΓ(H), we have uhu−1 2 H . Since the correspondence MapG(P�;M) �=
M h�i is given by evaluation at p0 2 P� , we evaluate ’(u;g)(�x) = �x � ’−1

(u;g)

at p0 . Here Γ-G map ’(u;g) is characterized by ’(u;g)(p0) = u−1p0g . Thus
’−1

(u;g)(p0) = up0g
−1 . Now, �x � ’−1

(u;g)(p0) = �x(up0g
−1) = g�x(p0) = gx.

Hence the action of ’(u;g) on x is given by ’(u;g)(x) = gx. Indeed, gx 2M h�i
because for any h 2 H , �(h)(gx) = g

(
g−1�(h)g

�
x = g�(u−1hu)x = gx, since

x 2M h�i . This completes the proof.

Note that when (u; g) 2 T� , the element g 2 G is not necessarily in C(�),
rather it is in the normalizer NG

(
�(H)

�
, which can be seen from the de�nition

(4-4) of T� . In general, the subgroup fg 2 G j (u; g) 2 T�g is a proper subgroup
of NG

(
�(H)

�
. The last part of the above proof says that NG

(
�(H)

�
acts on

the h�i-�xed point subset M h�i .

We now calculate the generating function of the invariants ’Γ(Mn;Gn) given
in (5-1) for n � 0. An actual explicit concise formula depends on individual
properties of ’. However, the next formula applies to any ’.

Proposition 5-4 Let ’(M ;G) be a multiplicative orbifold invariant of a G-
manifold M . Then

(5-3)
X
n�0

qn’Γ(Mn;GoSn) =
Y
[H]

Y
[�]

hX
r�0

qjΓ=Hjr’
(
(M h�i)r; AutΓ-G(P�)oSr

�i
;

where [H] runs over the set of all the conjugacy classes of subgroups of Γ, and
for each given [H], [�] runs over the set Hom(H;G)=(NΓ(H)�G).

Proof First, we rewrite the right hand side of (5-1) in terms of Γ-equivariant
G-bundles. By Theorem 3-1, each conjugacy class [�] 2 Hom(Γ; Gn)=Gn corre-
sponds to an isomorphism class of Γ-equivariant G-principal bundle P over a
Γ-set Z of order n. Furthermore, using Lemma 4-1, Theorem 4-5, Proposition
5-1, and Corollary 5-2, we have

’Γ(Mn;Gn) =
X
[P ]
jZj=n

’
(
S[P �GM ]Γ; AutΓ-G(P )

�
=
X

fr(H;�)g

Y
[H]

Y
[�]

’
(
(M h�i)r(H;�); AutΓ-G(P�)oSr(H;�)

�
;
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where the second summation is over all possible sets of non-negative integers
fr(H; �)g[H];[�] such that

P
[H];[�] jΓ=Hjr(H; �) = n. Taking the summation

over all n � 0, we haveX
n�0

qn’Γ(Mn;Gn) =
X

r(H;�)�0

Y
[H]

Y
[�]

qjΓ=Hjr(H;�)’
(
(M h�i)r(H;�); AutΓ-G(P�)oSr(H;�)

�
=
Y
[H]

Y
[�]

hX
r�0

qjΓ=Hjr’
(
(M h�i)r; AutΓ-G(P�)oSr

�i
:

This completes the proof.

Recall that we have two kinds of orbifold Euler characteristics given in (1-3).
We apply formula (5-3) with ’(M ;G) = �orb

Γ (M ;G), for various Γ arising as
fundamental groups of real 2-dimensional surfaces which are orientable or non-
orientable, compact or non-compact. In the next section, we apply formula
(5-3) to �Γ(M ;G) [Theorem 6-3]. We will see that these formulae are closely
related but very di�erent.

Theorem 5-5 Let G be a �nite group, and let M be a G-manifold. For any
group Γ, we have

(5-4)
X
n�0

qn�orb
Γ (Mn;GoSn) = exp

hX
r�1

qr

r

nX
H
jΓ=Hj=r

�orb
H

(M ;G)
oi
;

where the second summation on the right hand side runs over all index r sub-
groups of Γ.

Proof We apply formula (5-3) with ’ = �orb: By de�nition of �orb(M ;G) in
(1-3), we haveX
n�0

qn�orb
Γ (Mn;GoSn) =

Y
[H]

Y
[�]

hX
r�0

qjΓ=Hjr�orb
(
(M h�i)r; AutΓ-G(P�)oSr

�i
=
Y
[H]

Y
[�]

�X
r�0

qjΓ=Hjr
�(M h�i)r

jAutΓ-G(P�)jrr!

�

=
Y
[H]

Y
[�]

exp
�
qjΓ=Hj

�(M h�i)
jAutΓ-G(P�)j

�

= exp
�X
r�1

qr
X
[H]
jΓ=Hj=r

X
[�]

�(M h�i)
jAutΓ-G(P�)j

�
:
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In the last formula, [H] runs over all conjugacy classes of index r subgroups of
Γ, and for a given [H], [�] runs over the set Hom(H;G)=(NΓ(H)�G).

Since the centralizer C(�) is the isotropy subgroup of the conjugation action
by G on Hom(H;G) at �, we have #(�) � jC(�)j = jGj, where (�) is the G-
conjugacy class of �. Similarly, since N�

Γ (H)=H is the isotropy subgroup of the
NΓ(H)=H -action on the set of G-conjugacy classes Hom(H;G)=G at (�), the
length of the NΓ(H)=H -orbit through (�) is jNΓ(H)=N�

Γ (H)j. Now we continue
our calculation. By Theorem 4-2, jAutΓ-G(P�)j = jC(�)jjN�

Γ (H)=Hj. Thus, for
a �xed [H], we haveX
[�]

�(M h�i)
jAutΓ-G(P�)j

=
X
[�]

�(M h�i)
jC(�)jjN�

Γ (H)=Hj =
X
(�)

jN�
Γ (H)=Hj

jNΓ(H)=Hj
�(M h�i)

jC(�)jjN�
Γ (H)=Hj

=
1

jNΓ(H)=Hj
X
(�)

�(M h�i)
jC(�)j =

1
jNΓ(H)=Hj

X
�

�(M h�i)
#(�) � jC(�)j

=
1

jNΓ(H)=Hj
1
jGj

X
�

�(M h�i) =
1

jNΓ(H)=Hj�
orb
H

(M ;G):

Here, [�] runs over the set Hom(H;G)=(NΓ(H)�H), (�) runs over the set of G-
conjugacy classes Hom(H;G)=G, and � runs over the set of all homomorphisms
Hom(H;G). The last equality is due to formula (2-4).

We convert the summation over the conjugacy classes [H] of index r subgroups
to a summation over index r subgroups H . Since there are jΓ=NΓ(H)j elements
in the Γ-conjugacy class [H],X

[H]
jΓ=Hj=r

1
jNΓ(H)=Hj�

orb
H (M ;G) =

X
H
jΓ=Hj=r

1
jΓ=NΓ(H)jjNΓ(H)=Hj�

orb
H (M ;G)

=
X
H
jΓ=Hj=r

1
jΓ=Hj�

orb
H

(M ;G) =
1
r

X
H
jΓ=Hj=r

�orb
H

(M ;G):

This completes the proof of formula (5-4).

The above formula implies that to calculate the orbifold Euler characteristic
�orb

Γ (Mn;G oSn) of the n-fold symmetric product of an orbifold, we need to
know �orb

H (M ;G) for every subgroup H of Γ whose index is at most n.

We specialize this formula. Letting M = pt, we obtain the following combina-
torial formula:

(5-5)
X
n�0

qn
jHom(Γ; GoSn)j

jGjnn!
= exp

�X
r�1

qr

r

nX
H
jΓ=Hj=r

jHom(H;G)j
jGj

o�
:
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This formula can be used to compute the number of homomorphisms into
wreath products.

Next, we let G be a trivial group in (5-4). Then we get

(5-6)
X
n�0

qn�orb
Γ (Mn;Sn) =

�
exp
hX
r�1

qr

r
jr(Γ)

i��(M)

;

where jr(Γ) is the number of index r subgroups of Γ. This formula shows that
when M varies, �orb

Γ (Mn;Sn) depends only on the Euler characteristic �(M).
Further specializing this formula to the case M = pt, we get a well-known
combinatorial formula [15, p.76]:

(5-7)
X
n�0

qn
jHom(Γ;Sn)j

n!
= exp

hX
r�1

qr

r
jr(Γ)

i
:

A related combinatorial formula can be found in physics literature in the context
of partition functions of permutation orbifolds [1].

We apply formula (5-4) to various groups Γ to deduce numerous consequences.

(i) Higher order (p-primary) orbifold Euler characteristic

These are orbifold Euler characteristics associated to Γ = Zd or Γ = Zdp , where
Zp is the ring of p-adic integers. The case Γ = Zd corresponds to the case
in which the manifold � is a d-dimensional torus T d in our consideration of
twisted sectors (2-11) and (2-12).

We need to know the number jr(Γ) of index r subgroups for these groups
Γ. This is well known, and we discussed these numbers in our previous paper
[17, Lemma 4-4, Lemma 5-5].

Lemma 5-6 (1) For any r � 1 and d � 1, we have

jr(Zd) =
X

r1r2���rd=r

r2r
2
3 � � � rd−1

d ; and jr(Zd) =
X
mjr

m � jm(Zd−1):

(2) For any r � 0 and d � 1, we have

jpr (Zdp) =
X

‘1+‘2+���+‘d=r

p‘2p2‘3 � � � p(d−1)‘d ; and jpr (Zdp) =
X

0�‘�r
p‘ � jp‘(Zd−1

p ):

One of the main results in [17] was the inductive calculation of the generating
function of �Γ(Mn;G oSn) for Γ = Zd;Zdp . (See Theorem 6-5.) Now with
our general formula (5-4), the proof of the formula of generating functions for
f�orb

Γ (Mn;G oSn)gn�0 with Γ = Zd;Zdp is a straightforward corollary. Note
that our proof of (5-4) was by a direct proof, not inductive proof.
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Theorem 5-7 Let G be a �nite group and let M be a G-manifold. For d � 1,

(5-8)

X
n�0

qn�orb
Zd (Mn;GoSn) =

hY
r�1

(1− qr)−jr(Zd−1)
i�orb
Zd

(M ;G)

X
n�0

qn�orb
Zdp

(Mn;GoSn) =
hY
r�0

(1− qpr )−jpr (Zd−1
p )

i�orb
Zdp

(M ;G)

:

Proof First note that for any r � 1, every index r subgroup of Zd is isomor-
phic to Zd , and any subgroup of Zdp has index a power of p and any index pr

subgroup of Zdp is again isomorphic to Zdp . Thus, by (5-4),X
n�0

qn�orb
Zd (Mn;GoSn) = exp

hX
r�1

qr

r
jr(Zd)�orb

Zd (M ;G)
i

=
�

exp
hX
r�1

qr

r
jr(Zd)

i��orb
Zd

(M ;G)

:

For the remaining part, using the inductive formula in Lemma 5-6, we have

exp
hX
r�1

qr

r
jr(Zd)

i
= exp

hX
r�1

qr

r

X
mjr

m � jm(Zd−1)
i

= exp
hX
m�1

jm(Zd−1)
�X
‘�1

qm‘

‘

�i
=
Y
m�1

(1− qm)−jm(Zd−1):

Similarly for the p-adic case. This completes the proof.

The d = 0 case in the above is elementary, and the formula was given in (2-10).

(ii) Higher genus orbifold Euler characteristic (orientable case)

Let �g+1 be a real 2-dimensional closed orientable genus g + 1 surface. Its
fundamental group is the surface group Γg+1 described in (1-7). By covering
space theory, conjugacy classes of index r subgroups of Γg+1 are in 1 : 1 cor-
respondence with the isomorphism classes of r-fold covering spaces over �g+1 .
By Hurwitz’s Theorem, or by a simple argument using Euler characteristic, we
see that any such r-fold covering space of �g+1 is a closed orientable surface
of genus rg + 1. Hence any index r subgroup of Γg+1 is always isomorphic
to Γrg+1 , although they may sit inside of the group Γg+1 di�erently, and their
conjugacy classes can be di�erent. A direct application of Theorem 5-5 gives
the next theorem.
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Theorem 5-8 Let g � 0. The generating function of the genus g+ 1 orbifold
Euler characteristic of the n-th symmetric orbifold is given by

(5-9)
X
n�0

qn�orb
Γg+1

(Mn;GoSn) = exp
hX
r�1

qr
njr(Γg+1)

r
�orb

Γrg+1
(M ;G)

oi
:

The above formula requires that we know the numbers jr(Γg+1) for g � 0.
By letting M = pt, we get the �rst combinatorial formula in (1-14). Further
letting G be trivial, we get

(5-10)
X
n�0

qn
Hom(Γg+1;Sn)j

n!
= exp

hX
r�1

jr(Γg+1)
r

qr
i
:

The left hand side was given in (1-15) in terms of the character theory of Sn .
Thus, jr(Γg+1) is, in principle, calculable.

(iii) Orbifold Euler characteristic associated to free groups

Let Γ = Fs+1 be a free group generated by s + 1 elements, s � 0. Any index
r subgroup is isomorphic to Frs+1 , a free group with rs+ 1 generators. This
can be most easily seen geometrically using covering spaces, as follows. Let
S be a torus with s disjointly embedded discs removed with s � 1. Then
�1(S) �= Fs+1 . Any conjugacy class of an index r subgroup corresponds to
an isomorphism class of an r-fold covering space ~S which is a torus with rs
disjointly embedded discs removed. Hence �1( ~S) �= Frs+1 . Thus, any index r
subgroup of Fs+1 is again a free group isomorphic to Frs+1 . Note that any
two index r subgroups of Fs+1 are not necessarily conjugate to each other,
although they are abstractly isomorphic. Again applying Theorem 5-5 directly,
we get

Theorem 5-9 Let s � 0. Then

(5-11)
X
n�0

qn�orb
Fs+1

(Mn;GoSn) = exp
hX
r�1

n jr(Fs+1)
r

�orb
Frs+1

(M ;G)
o
qr
i
:

Now we let M = pt in the above formula. Since Hom(Fr; G) �= Gr , we have a
following combinatorial formula

(5-12)
X
n�0

qn(jGjnn!)s = exp
hX
r�1

qr
jr(Fs+1)

r
jGjrs

i
:

Algebraic & Geometric Topology, Volume 3 (2003)



Generalized Orbifold Euler Characteristics 831

How do we calculate jr(Fs+1), the number of index r subgroups of a free group
Fs+1 ? Letting jGj = 1 in (5-12), we get a well known formula [15, p.76]

(5-13)
X
n�0

qn(n!)s = exp
hX
r�1

qr
jr(Fs+1)

r

i
:

This formula determines jr(Fs+1) from known quantities. Actually, the formu-
lae (5-12) and (5-13) are easily seen to be equivalent.

(iv) Higher genus orbifold Euler characteristic (non-orientable case)

Let Nh+2 be a closed non-orientable (real 2-dimensional) surface of genus h+2
for h � 0. The fundamental group �h+2 = �1(Nh+2) is described by (1-9).
We apply Theorem 5-5 with Γ = �h+2 . Since N1 = RP 2 has fundamental
group Z=2, this case directly follows from (5-4). Here we only consider non-
orientable surface groups of genus 2 or greater. First we need to know more
about subgroups of �h+2 . We discuss this using covering spaces of Nh+2 .

For r � 1, by examining Euler characteristic, we can easily see that any r-
fold connected covering space of Nh+2 is either non-orientable (�= Nrh+2 ) or
orientable (�= � rh

2 +1 ), and orientable covering spaces can occur only when r

is even. We call subgroups of �h+2 corresponding to connected orientable
covering spaces orientable subgroups. Let jr(�h+2)+ denote the number of
index r orientable subgroups of �h+2 . Similarly, let jr(�h+2)− denote the
number of index r non-orientable subgroups. The surface Nh+2 has a unique
orientable double cover �h+1 , and any orientable cover of Nh+2 is a cover of
�h+1 . This means that jodd(�h+2)+ = 0 and j2r(�h+2)+ = jr(Γh+1) for all
r � 1 and h � 0. Now we apply Theorem 5-5.

Theorem 5-10 Let h � 0. Then

(5-14)
X
n�0

qn�orb
�h+2

(Mn;GoSn) = exp
hX
r�1

qr

r
jr(�h+2)�orb

�h+2
(M ;G)

+
X
r�1

q2r

2r
jr(Γh+1)

�
�orb

Γrh+1
(M ;G) − �orb

�2rh+2
(M ;G)

}i
:

Proof Theorem 5-5 implies thatX
n�0

qn�orb
�h+2

(Mn;GoSn)

= exp
hX
r�1

qr

r

�
jr(�h+2)+�orb

Γ rh
2 +1

(M ;G) + jr(�h+2)−�orb
�rh+2

(M ;G)
}i
:

We only have to rewrite this formula using jr(�h+2)− = jr(�h+2)−jr(�h+2)+ ,
and a fact that jr(�h+2)+ = j r

2
(Γh+1) when r is even and jr(�h+2)+ = 0

when r is odd.
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How do we calculate the number jr(�h+2)? We let M = pt and let G be a
trivial group. Then the above formula reduces to

(5-15)
X
n�0

qn
jHom(�h+2;Sn)j

n!
= exp

hX
r�1

qr

r
jr(�h+2)

i
:

By using the character theory of Sn , one can show that for all h � −1,

(5-16)
jHom(�h+2;Sn)j

n!
=
X

[V ]2Irred(Sn)

� n!
dimV

�h
:

The above two formulae determine jr(�h+2). The formula (5-16) is a special
case of Kerber-Wagner Theorem [9]. Their formula for a general �nite group
G, instead of Sn , is

(5-17)
jHom(�h+2; G)j

jGj =
X

�2Irred(G)

� jGj
dim�

�h
"2(�)h+2;

where "2(�) is the Schur indicator de�ned by "2(�) =
P
g2G �(g2)=jGj. It is

well known that "2(�) = 1 if � is of real type, "2(�) = 0 if � is of complex
type, and "2(�) = −1 if � is of quaternionic type. For details of this fact, see
[2, p.100]. It is well known that any representation of Sn is of real type so that
"(�) = 1 for any irreducible character � of Sn .

Remark The formulae (5-10) and (1-15), and formulae (5-15) and (5-16) are
very similar. By comparing these formulae it is immediate that jr(Γh+1) =
jr(�2h+2) for all r � 1 and h � 0. However, this does not necessarily mean that
�orb

Γg+1
(M ;G) = �orb

�2g+2
(M ;G). In fact, they are in general di�erent, although in

some cases they coincide. See (5-22) for an example of such a case.

(v) Klein bottle orbifold Euler characteristic

We specialize our formula (5-14) to h = 0 case. The corresponding non-
orientable closed surface N2 is the Klein bottle. By the remark above, we
have jr(Γ1) = jr(�2) for all r � 1. Since by Theorem 5-6, jr(Γ1) = jr(Z2) =P
‘jr ‘ = �1(r), the sum of positive divisors of r , the formula (5-14) reduces toX
n�0

qn�orb
�2

(Mn;GoSn)

= exp
hX
r�1

qr

r
�1(r)�orb

�2
(M ;G) +

X
r�1

q2r

2r
�1(r)

�
�orb

Γ1
(M ;G) − �orb

�2
(M ;G)

}i
:

Rewriting exponentials in terms of in�nite products as in the proof of Theorem
5-7, we obtain
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Theorem 5-11 Let G be a �nite group and let M be a G-manifold. Then
(5-18)X
n�0

qn�orb
�2

(Mn;GoSn) =
hY
r�1

(1− q2r)
i−1

2 �orb
Γ1

(M ;G)hY
r�1

�1 + qr

1− qr
�i 1

2�
orb
�2

(M ;G)

:

Letting M = pt, we obtain a combinatorial formula for the number of homo-
morphisms from the fundamental group of a Klein bottle into a wreath product:

(5-19)
X
n�0

qn
jHom(�2; GoSn)j

jGjnn!

=
hY
‘�1

(1− q2‘)
i− 1

2 jHom(Γ1;G)j=jGj
�Y
‘�1

�
1 + q‘

1− q‘

�� 1
2 jHom(�2;G)j=jGj

:

Letting G be trivial in (5-18), we get

(5-20)
X
n�0

qn�orb
�2

(Mn;Sn) =
hY
‘�1

(1− q‘)
i−�(M)

:

On the other hand, when d = 2 and G is trivial, formula (5-8) reduces to

(5-21)
X
n�0

qn�orb
Z2 (Mn;Sn) =

�Y
r�1

(1− qr)
�−�(M)

:

Comparing the above two formula, we see that �orb
Γ1

(Mn;Sn) = �orb
�2

(Mn;Sn)
for all n � 0, since Γ1 = Z2 . This is no coincidence. In general, using (5-6)
and a fact that jr(Γg+1) = jr(�2g+2) for g � 0, r � 1 (see the remark at the
end of (iv) in this section), we get

(5-22)
X
n�0

qn�orb
Γg+1

(Mn;Sn) =
X
n�0

qn�orb
�2g+2

(Mn;Sn); g � 0:

6 Orbifold invariants associated to Γ-sets and gen-
erating functions: in�nite product formulae

In section 5, we calculated the generating function
P
n�0 q

n’Γ(Mn;GoSn) for
’(M ;G) = �orb(M ;G), where G is a �nite group, M is a G-manifold, and
Γ is any group. In this section, we investigate the generating function with
’(M ;G) = �(M ;G) = �(M=G). The latter orbifold Euler characteristic is
more closely tied to geometry of G-action than the former.

To describe the generating function
P
n�0 q

n�Γ(Mn;GoSn), we need to intro-
duce a notion of generalized orbifold invariants associated to transitive Γ-sets.
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Orbifold invariants associated to general Γ-sets will be described later in this
section in (6-13). Let H � Γ be a subgroup of �nite index. Then the ’-
orbifold invariant associated to the Γ-isomorphism class of a Γ-transitive set
Γ=H is de�ned by

(6-1) ’[Γ=H](M ;G) def=
X

[�]2Hom(H;G)=(NΓ(H)�G)

’
(
M h�i; AutΓ-G(P�)

�
;

where �� : P� = Γ��G −! Γ=H is a Γ-irreducible G-bundle, and AutΓ-G(P�) is
the group of Γ-equivariant G-bundle automorphisms of P� described in Theo-
rem 4-2 and Theorem 4-4.

When H = Γ, the conjugation on homomorphisms � : Γ −! G by NΓ(Γ) = Γ is
absorbed by the conjugation by G. Hence we have Hom(Γ; G)=(NΓ(Γ)�G) =
Hom(Γ; G)=G. Also in this case, AutΓ-G(P�) reduces to CG(�): see (4-2) for
example. Hence ’[Γ=Γ](M ;G) = ’Γ(M ;G), recovering the Γ-extended orbifold
invariant.

When G is a trivial group feg, � is the trivial homomorphism and AutΓ-G(P�)
reduces to the group of Γ-automorphisms of the Γ-set Γ=H , that is HnNΓ(H).
Thus, ’[Γ=H](M ; feg) = ’

(
M ;HnNΓ(H)

�
, where HnNΓ(H) acts trivially on M

by Proposition 5-3.

The above de�nition (6-1) may seem rather unusual, but it is the correct one.
For example, the set over which [�] runs has already appeared in the classi-
�cation theorem of Γ-irreducible G-bundles in Theorem 3-6, and the above
de�nition is closely related to this theorem.

To explain the origin of the de�nition, we consider the map

� : Hom(Γ; Gn)=Gn −! Hom(Γ;Sn)=Sn;

induced by the projection map Gn −! Sn . Since the set Hom(Γ;Sn)=Sn can
be regarded as the set of isomorphism classes of Γ-sets of order n, for any index
n subgroup H of Γ, we may regard [Γ=H] 2 Hom(Γ;Sn)=Sn . The meaning of
’[Γ=H](M ;G) is clari�ed by the next proposition.

Proposition 6-1 For any subgroup H of index n in Γ, we have

(6-2) ’[Γ=H](M ;G) =
X

[�]2�−1([Γ=H])

’
(
(Mn)h�i;CGn(�)

�
;

where � : Hom(Γ; Gn)=Gn −! Hom(Γ;Sn)=Sn is the obvious map.
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Proof We rewrite the quantity in the right hand side in terms of Γ-equivariant
G-bundles. By Theorem 3-1, any element in �−1([Γ=H]) is an isomorphism
class of a Γ-irreducible G-bundle over the Γ-set Γ=H . By the Classi�cation
Theorem 3-6 this set is in 1:1 correspondence with Hom(H;G)=(NΓ(H) �G),
and the isomorphism class of the Γ-irreducible G-bundle corresponding to [�] 2
�−1([Γ=H]) is the isomorphism class of �� : P� −! Γ=H , where � : H −! G is
constructed from � (see the proof of Theorem 3-1), essentially by restriction to
the isotropy subgroup H � Γ. Using Lemma 4-1 and Proposition 5-1, we haveX

[�]2�−1([Γ=H])

’
(
(Mn)h�i;CGn(�)

�
=
X
[�]

’
(
M h�i; AutΓ-G(P�)

�
;

where [�] runs over the set Hom(H;G)=(NΓ(H) � G). Then formula (6-1)
completes the proof.

Note that ’[Γ=H](M ;G) is a partial sum of the summation de�ning ’Γ(Mn;Gn)
in (5-1). The situation here will be clari�ed in (6-14) after we de�ne ’[X](M ;G)
for general Γ-set X .

We calculate an example of an orbifold invariant associated to a Γ-set. We
denote an orbifold invariant �Zd(M ;G) by �(d)(M ;G). This is the d-th order
orbifold Euler characteristic of (M ;G) discussed in [17].

Lemma 6-2 Let Γ be an abelian group, and let d � 0. Let (M ;G) be as
before. Then for any subgroup H of �nite index in Γ, we have

(6-3) �(d)
[Γ=H](M ;G) = jΓ=Hjd � �(d)

H
(M ;G):

In particular, �[Γ=H](M ;G) = �H(M ;G), if Γ is abelian.

Proof Let � : H −! G. To calculate �(d)
[Γ=H](M ;G) de�ned in (6-1), we need to

understand the group AutΓ-G(P�). The group T� given in (4-4) is, in our case,
isomorphic to Γ � CG(�) since Γ is abelian. Then, by Theorem 4-4 we have
AutΓ-G(P�) �= HnT� �= Γ�� C(�). From this, jAutΓ-G(P�)j = jΓ=HjjC(�)j and

�(d)
[Γ=H](M ;G) =

X
[�]

�(d)
(
M h�i; Γ�� C(�)

�
=
X
[�]

1
jΓ=HjjC(�)j

X
�:Zd+1−!Γ��C(�)

�
(
(M h�i)h�i

�
;

where the last equality is due to (2-4) and (2-5), and [�] runs over the set
Hom(H;G)=G, where H is abelian. By Proposition 5-3, the image of the
natural map � : Γ −! Γ �� C(�) acts trivially on M h�i . Let fγigi2Γ=H � Γ be
the representatives of of the coset Γ=H . Then Γ �� C(�) =

‘
i2Γ=H �(γi)C(�).

Note that two elements �(γi1)g1 and �(γi2)g2 in Γ��C(�), where g1; g2 2 C(�),
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commute if and only if g1 and g2 commute in C(�). Thus the above summation
becomesX

[�]

1
jΓ=HjjC(�)j jΓ=Hj

d+1
X

�0:Zd+1−!C(�)

�
(
(M h�i)h�

0i� = jΓ=Hjd
X
[�]

�(d)
(
M h�i;C(�)

�
= jΓ=Hjd�(d)

H (M ;G):

Letting d = 0, we obtain the last statement. This completes the proof.

Now we calculate the generating function
P
n�0 q

n�Γ(Mn;GoSn).

Theorem 6-3 Let G be a �nite group and let M be a G-manifold. For any
group Γ, we have

(6-4)

X
n�0

qn�Γ(Mn;GoSn) =
Y
r�1

(1− qr)
−
P
[H]r

�[Γ=H](M ;G)

;

where �[Γ=H](M ;G) =
X

[�]2Hom(H;G)=(NΓ(H)�G)

�
(
M h�i=AutΓ-G(P�)

�
:

Here in the summation in the right hand side of the �rst identity, [H]r means
that H runs over all the conjugacy classes of index r subgroups of Γ, and the
action of AutΓ-G(P�) on M h�i in the second formula is described in Proposition
5-3.

When Γ is an abelian group,

(6-5)
X
n�0

qn�Γ(Mn;GoSn) =
Y
r�1

(1− qr)
−
P
Hr

�H (M ;G)

;

where in the summation in the right hand side, Hr means that H runs over all
index r subgroups in Γ.

Proof For (6-4), by Proposition 5-4 and Macdonald’s formula (2-9), we haveX
n�0

qn�Γ(Mn;GoSn) =
Y
[H]

Y
[�]

hX
r�0

qjΓ=Hjr�
(
(M h�i)r; AutΓ-G(P�)oSr

�i
=
Y
[H]

Y
[�]

hX
r�0

qjΓ=Hjr�
(
SP r

(
M h�i=AutΓ-G(P�)

��
=
Y
[H]

Y
[�]

(1−qjΓ=Hj)−�(Mh�i=AutΓ-G(P�)) =
Y
r�1

(1− qr)
−
P
[H]r

P
[�]

�(Mh�i;AutΓ-G(P�))

;

where in the last summation [H]r runs over all the conjugacy classes of �nite
index in Γ, and [�] runs over the set Hom(H;G)=(NΓ(H)�G). Notice that the
summation over [�] in the exponent in the last line exactly gives �[Γ=H](M ;G).
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When Γ is an abelian group, the formula (6-5) follows from (6-4) in view of
Lemma 6-2 with d = 0. Since Γ is abelian, each subgroup H is its own
conjugacy class [H]. This completes the proof.

Note that in the corresponding formula for �orb
Γ given in (5-4), the summation

there was over subgroups H rather than conjugacy classes [H] used in (6-4).

Remark From the above proof, one might think that the concept of orbifold
invariant associated to a �nite Γ-set is just a convenient symbol representing
a complicated summation given in the right hand side of (6-1). However, as
we will see in section 7, this concept has a de�nitely natural geometric origin
analogous to twisted sectors discussed in section 2.

Letting M = pt or letting G be trivial, we immediately have the following
corollary.

Corollary 6-4 (1) For any group Γ and any �nite group G, we have

(6-6)
X
n�0

qnjHom(Γ; Gn)=Gnj =
Y
r�1

(1− qr)
−
P
[H]r

jHom(H;G)=(NΓ(H)�G)j
:

Furthermore, when Γ is abelian, we may omit the term NΓ(H) from the above
expression.

(2) For any Γ and any manifold M , we have

(6-7)
X
n�0

qn�Γ(Mn;Sn) =
hY
r�1

(1− qr)−ur(Γ)
i�(M)

;

where ur(Γ) is the number of conjugacy classes of index r subgroups of Γ.

The proof for (1) is straightforward. For (2), all we need to note is that when the
group G is trivial, (6-1) gives that �[Γ=H](M ; feg) = �(M ;HnNΓ(H)) = �(M),
since the group HnNΓ(H) acts trivially on M by Proposition 5-3.

If we further specialize (6-7) to the case M = pt or if we let G = feg in (6-6),
then we obtain the following well known formula [15, p.76]:

(6-60 )
X
n�0

qnjHom(Γ;Sn)=Snj =
Y
r�1

(1− qr)−ur(Γ):

Recall that jHom(Γ;Sn)=Snj = jHom(Γ� Z;Sn)j=n!. The above formula can
be used to calculate the number of conjugacy classes of a given index in the
orientable surface group Γg+1of genus g + 1, in the free group Fs+1 on s + 1
generators, and in the non-orientable surface group �h+2 of genus h + 2. We
discuss details in section 8, where a general formula to calculate ur(Γ) is proved.

We apply Theorem 6-3 to various groups Γ to obtain various results.
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(i) Higher order (p-primary) orbifold Euler characteristic of sym-
metric orbifolds

Suppose Γ = Zd or Zdp for d � 0. Then the corresponding Γ-extended orbifold
Euler characteristic is what we call higher order (p-primary) orbifold Euler
characteristic denoted by �(d)(M ;G) or �(d)

p (M ;G), respectively, in [17]. Since
any index r subgroup H of Zd is isomorphic to Zd for any r � 1, we get the fol-
lowing theorem as a direct consequence of Theorem 6-3 for abelian Γ. Similarly
for the case Γ = Zdp . In [17], the same theorem was proved by induction.

Theorem 6-5 For any d � 0, we have

(6-8)

X
n�0

qn�(d)(Mn;GoSn) =
hY
r�1

(1− qr)−jr(Zd)
i�(d)(M ;G)

X
n�0

qn�(d)
p (Mn;GoSn) =

hY
r�0

(1− qpr)−jpr (Zdp)
i�(d)

p (M ;G)

:

Proof All we need to note is that since Γ = Zd is abelian, we can apply
formula (6-5), and that the number ur(Zd) of conjugacy classes of index r
subgroups of Zd is the same as the number jr(Zd) of index r subgroups. The
corresponding statement for Zdp is also valid.

(ii) Higher genus orbifold Euler characteristic of symmetric orbifolds

A direct application of Theorem 6-3 to the case Γ = Γg+1 for g � 0 gives the
following.

Theorem 6-6 Let g � 0. Then, with [H]r as before,

(6-9)
X
n�0

qn�Γg+1
(Mn;GoSn) =

Y
r�1

(1− qr)
−
P
[H]r

�[Γg+1=H](M ;G)

:

Although all index r subgroups of Γg+1 are isomorphic to each other (�= Γrg+1 ),
they may not be conjugate to each other. This is why we cannot be any more
concrete than the above expression. In the formula (6-6) with Γ = Γg+1 ,
normalizers of index r subgroups appear. The size of the normalizer NΓg+1(H)
can be di�erent for di�erent [H] of the same index. Geometrically, the group
NΓ(H)=H is the group of deck transformations of the covering space �rg+1 −!
�g+1 corresponding to the conjugacy class of the index r subgroup H . Thus
�[Γg+1=H](M ;G) really depends on the conjugacy class [H].
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The summation in the exponent of the right hand side of (6-9) can be thought
of as a summation over all isomorphism classes of index r covering spaces over
�g+1 . See section 7 for details.

A similar formula is valid when Γ is the fundamental group �h+2 of non-
orientable genus h+ 2 closed surface, or a free group Fs+1 on s+ 1 generators.
We omit their explicit expressions here. Again, any further analysis requires
information on normalizers of subgroups.

(iii) Higher order higher genus orbifold Euler characteristic of sym-
metric orbifolds

We combine the previous two cases and consider the generating function for
the invariant �(d)

Γ (M ;G) = �Zd�Γ(M ;G). This equality is due to (2-2). We also
consider the case for �(d)

p;Γ .

Theorem 6-7 For any d � 0 and any Γ, with [H]‘ as before, we have

(6-10)

X
n�0

qn�(d)
Γ (Mn;GoSn) =

Y
r;‘�1

h
(1− qr‘)−jr(Zd)

iP
[H]‘

�
(d)
[Γ=H](M ;G)

X
n�0

qn�(d)
p;Γ(Mn;GoSn) =

Y
r�0
‘�1

h
(1− qpr‘)−jpr (Zdp)

iP
[H]‘

�
(d)
p;[Γ=H](M ;G)

:

Proof By Proposition 5-4 and Theorem 6-5, we haveX
n�0

qn�(d)
Γ (Mn;GoSn) =

Y
[H]

Y
[�]

hX
r�0

qjΓ=Hjr�(d)
(
(M h�i)r; AutΓ-G(P�)oSr

�i
=
Y
[H]

Y
[�]

hY
r�1

(1− qrjΓ=Hj)−jr(Zd)
i�(d)(Mh�i;AutΓ-G(P�))

=
Y
[H]

hY
r�1

(1− qrjΓ=Hj)−jr(Zd)
i�(d)

[Γ=H](M ;G)

=
Y
‘�1

hY
r�1

(1− qr‘)−jr(Zd)
iP

[H]‘

�
(d)
[Γ=H](M ;G)

;

here, for the third equality, we summed over [�] 2 Hom(H;G)=(NΓ(H) � G),
and for the fourth equality, we �rst summed over conjugacy classes of index ‘
subgroups of Γ. The case for �(d)

p;Γ is similar. This completes the proof.
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The generating functions of two types of orbifold Euler characteristics of sym-
metric orbifolds given in Theorem 5-5 and Theorem 6-3 seem very di�erent.
But by (1-5), these two orbifold Euler characteristics are related by a simple
formula �orb

Γ�Z(M ;G) = �Γ(M ;G). Thus we expect to get a nontrivial identity
by comparing these two formulae of generating functions. We compare these
two formulae for M = pt. The corresponding formulae are (5-5) and (6-6).

Now, applying (2-6) to the wreath product Gn , we obtain

jHom(Γ� Z; Gn)j
jGnj

= jHom(Γ; Gn)=Gnj:

This is the link between (5-5) and (6-6). By directly comparing the right hand
sides of corresponding formulae, we obtain the identity:
(6-11)

exp
�X
r�1

qr

r

nX
K

[Γ�Z:K]=r

jHom(K;G)j
jGj

o�
=
Y
r�1

(1− qr)
−
P
[H]r

jHom(H;G)=(NΓ(H)�G)j
:

Expanding this identity, we see that the following proposition must hold. Al-
though the identity (6-11) is its proof, we also give a group theoretic proof to
show what kind of group theoretic ingredients are involved.

Proposition 6-8 Let G be a �nite group and let Γ be an arbitrary group.
For any r � 1, we have

(6-12)
X

[Γ�Z;K]=r

jHom(K;G)j
jGj =

X
‘jr

‘
nX

[H]
jΓ=Hj=‘

jHom(H;G)=(NΓ(H)�G)j
o
:

When G is trivial, this formula reduces to a well-known formula jr(Γ � Z) =P
‘jr
‘ � u‘(Γ).

Proof Let ‘jr . For an index ‘ subgroup H � Γ and z 2 NΓ(H)=H , let

K(H;z) = f(w; ra=‘) 2 NΓ(H)� Z j w = za in NΓ(H)=Hg � Γ� Z:
Then K(H;z) is a subgroup of index r in Γ�Z, and any index r subgroup of Γ�Z
is of this form [16, p.140]. Thus, index r subgroups of Γ�Z are parametrized by
the pair (H; z), where the index of H divides r and z is an arbitrary element in
NΓ(H)=H . Let z 2 NΓ(H) be any element whose reduction mod H is z . Then
any element in K(H;z) is of the form (z; r=‘)a � (h; 0) 2 NΓ(H) � Z for some
unique a 2 Z and h 2 H . Now let � : K(H;z) −! G be a homomorphism. Let
� = �jH : H −! G be its restriction. Let �

(
(z; r=‘)

�
= g 2 G. Since we have

(z; r=‘)(h; 0)(z; r=‘)−1 = (zhz−1; 0) in K(H;z) , we have g�(h)g−1 = �(zhz−1)
in G. This means that �z , de�ned by �z(h) = �(zhz−1) for h 2 H , and � are
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G-conjugate, which we denote by �z � �. Conversely, given any � : H −! G
and any g 2 G satisfying a relation g�(h)g−1 = �z(h) for any h 2 H , we can
de�ne a homomorphism � : K(H;z) −! G by �

(
(zah; ra=‘)

�
= ga�(h). Since

for a given � : H −! G such that �z � �, there are jC(�)j choices of g 2 G
satisfying g�g−1 = �z , we see that jHom(K(H;z); G)j =

P
� jC(�)j, where the

summation runs over all � : H −! G such that �z � �. Hence,X
z2NΓ(H)=H

jHom(K(Hz); G)j
jGj =

X
z2NΓ(H)=H

X
�:H−!G
�z��

jC(�)j
jGj =

X
�:H−!G

jC(�)j
jGj

X
z2NΓ(H)=H
�z��

1

=
X

�:H−!G

jC(�)j
jGj jN

�
Γ(H)=Hj =

X
�:H−!G

1
#(�)

jN�
Γ(H)=Hj =

X
(�)2Hom(H;G)=G

jN�
Γ(H)=Hj:

Here (�) denotes the G-conjugacy class of �. The third equality above is by
de�nition of N�

Γ (H) in (4-1). On the other hand, jHom(H;G)=(NΓ(H)�G)j is
equal to the number of orbits under the NΓ(H)-action on Hom(H;G)=G. At
(�) 2 Hom(H;G)=G, the isotropy subgroup of NΓ(H)-action is N�

Γ(H). Thus,

jHom(H;G)=(NΓ(H)�G)j =
X

(�)2Hom(H;G)=G

1=j(�)-orbitj =
X

(�)2Hom(H;G)=G

jN�
Γ(H)=NΓ(H)j

= (1=jNΓ(H)=Hj)
X

(�)2Hom(H;G)=G

jN�
Γ(H)=Hj = #[H]

‘

X
z2NΓ(H)=H

jHom(K(H;z); G)j
jGj ;

where j(�)-orbitj denotes the length of the NΓ(H)-orbit in Hom(H;G)=G
through (�). The last equality is by the above calculation. Since index r
subgroups of Γ � Z are parametrized by pairs (H; z), where H is a subgroup
of Γ whose index divides r and z 2 NΓ(H)=H , we haveX

[Γ�Z:K]=r

jHom(K;G)j
jGj =

X
‘jr

X
H‘

X
z2NΓ(H)=H

jHom(K(H;z); G)j
jGj

=
X
‘jr

X
H‘

‘

#[H]
jHom(H;G)=(NΓ(H)�G)j

=
X
‘jr

X
[H]‘

‘ jHom(H;G)=(NΓ(H)�G)j:

This completes the proof.

From the proof, it is clear that K(H;z) is a semi-direct product H o Z, where
Z � K(H;z) is a subgroup generated by the element (z; r=‘) 2 K(H;z) .
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We next describe orbifold invariants associated to general Γ-sets. Let X be
any Γ-set of order n. Then for any given multiplicative invariant ’(M ;G), we
de�ne the orbifold invariant associated to the Γ-isomorphism class [X] by
(6-13)
’[X](M ;G) def=

X
[P−!X]

’
(
S[P �GM ]Γ; AutΓ-G(P )

� �= X
[�]2�−1([X])

’
(
(Mn)h�i;CGn(�)

�
;

where the �rst summation is over all isomorphism classes of Γ-equivariant G-
principal bundles P over X , and � : Hom(Γ; Gn)=Gn −! Hom(Γ;Sn)=Sn is
as before. When X is an empty set ;, we let ’;(M ;G) = 1. The second
isomorphism is due to Theorem 3-1, Lemma 4-1 and Proposition 5-1. The
details of the proof are similar to the proof of Proposition 6-1. We could de�ne
’[Γ=H](M ;G) by the above conceptual formula instead of (6-1), but (6-1) is more
explicit. The geometric de�nition (6-13) in terms of Γ-equivariant G-principal
bundles has an advantage in its simplicity.

In view of Theorem 3-1 and (6-13), generating functions for ’Γ and ’[X] are
related by

(6-14)
X
n�0

qn’Γ(Mn;GoSn) =
X
[X]

qjXj’[X](M ;G);

where on the right hand side, [X] runs over the set of all the isomorphism
classes of �nite Γ-sets.

Next we discuss multiplicativity of ’[X](M ;G) with respect to [X]. It is not true
that we have ’[X](M ;G) = ’[X1](M ;G) �’[X2](M ;G) whenever X = X1

‘
X2 .

However, when X1 and X2 are \prime" to each other, namely when X1 and
X2 do not contain the same Γ-transitive sets in common in their decomposition
into Γ-orbits, the above multiplicativity is valid.

Proposition 6-9 Let ’(M ;G) be a multiplicative orbifold invariant for
(M ;G). Let Γ be a group. For any �nite Γ-set X , let X =

‘
[H]r(H) �Γ=H be

its decomposition into Γ-orbits, where r(H) is the number of Γ-orbits which
are isomorphic to Γ=H . Then

(6-15) ’[X](M ;G) =
Y
[H]

’r(H)[Γ=H](M ;G):

Consequently, the generating function (6-14) decomposes into a product

(6-16)
X
n�0

qn’Γ(Mn;GoSn) =
Y
[H]

nX
r�0

qjΓ=Hjr’r[Γ=H](M ;G)
o
:
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Furthermore, the generating function of ’r[Γ=H](M ;G) for r � 0 is given by

(6-17)
X
r�0

qr’r[Γ=H](M ;G) =
Y
[�]

nX
r�0

qr’
(
(M h�i)r; AutΓ-G(P�)oSr

�o
;

where [�] runs over the set Hom(H;G)=(NΓ(H)�G).

Proof For any Γ-equivariant G-bundle P over X , let PH be the part of P
above r(H)[Γ=H]. Then, using the multiplicativity of ’( � ; � ), we have

’[X](M ;G) =
X

[P−!X]

’
(
S[P �GM ]Γ; AutΓ-G(P )

�
=
X

[P−!X]

Y
[H]

’
(
S[PH �GM ]Γ; AutΓ-G(PH)

�
=
Y
[H]

X
[PH−!r(H)�Γ=H]

’
(
S[PH �GM ]Γ; AutΓ-G(PH)

�
=
Y
[H]

’r(H)[Γ=H](M ;G);

where in the fourth expression, [PH ] rums over the set of all isomorphism classes
of Γ-G bundles over the Γ-set r(H)[Γ=H]. The formula (6-16) follows from this.

The proof of (6-17) is analogous to the argument in the proof of Proposition
5-4, and goes as follows. For any Γ-equivariant G-bundle over qrΓ=H , let r� be
the number of Γ-irreducible G-bundle P� −! Γ=H appearing in the irreducible
decomposition of P , where [�] 2 Hom(H;G)=(NΓ(H)�G). Then, decomposing
Γ-equivariant G-bundles P −! r � Γ=H according to [�], we haveX

r�0

qr’r[Γ=H](M ;G) =
X
r�0

qr
XP

[�]

r�=r

Y
[�]

’
(
(M h�i)r� ; AutΓ-G(P�)oSr�

�

=
X
r��0

Y
[�]

qr�’
(
(M h�i)r� ; AutΓ-G(P�)oSr�

�
=
Y
[�]

nX
r�0

qr’
(
(M h�i)r; AutΓ-G(P�)oSr

�o
:

This completes the proof.

Note that formulae (6-14), (6-16), and (6-17) essentially give a proof of Propo-
sition 5-4, from the point of view of Γ-sets.

Next we examine the case in which G is the trivial group. We have already
discussed this case for a transitive Γ-set X . The proof of the following lemma
is straightforward.
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Lemma 6-10 With the same notations as above, suppose G = feg, the trivial
group. Then

(6-18) ’[X](M ; feg) =
Y
[H]

’
(
Mr(H);

(
HnNΓ(H)

�
oSr(H)

�
;

where HnNΓ(H) acts trivially on M . For the case of the orbifold Euler char-
acteristic, we have

(6-19) �[X](M ; feg) =
Y
[H]

�
(
SP r(H)(M)

�
:

In particular, if X is a transitive Γ-set, then �[X](M ; feg) = �(M).

7 Orbifold invariants associated to covering spaces

Let � be a connected manifold and let M be a G-manifold where G is a �nite
group. In section 2, we considered a twisted space L�(M ;G) de�ned by

(7-1) L�(M ;G) =
a
[P ]

�
MapG(P;M)=AutG(P )

�
;

where [P ] runs over the set of isomorphism classes of G-principal bundles over
�, and AutG(P ) is the group of G-bundle automorphisms inducing the identity
map on the base �. Let Γ = �1(�). We de�ned the orbifold invariant associ-
ated to a group Γ in (2-1) as the orbifold invariant of the subset of L�(M ;G)
consisting of locally constant G-equivariant maps described in (2-14):

(7-2) ’Γ(M ;G) = ’orb

(
L�(M ;G)l.c.

�
=
X

[�]2Hom(Γ;G)=G

’
(
M h�i;C(�)

�
;

where l.c. stands for \locally constant."

We generalize the above construction of the twisted space L�(M ;G) associated
to � to twisted spaces associated to �nite covering spaces of �. Let ��0=� :
�0 −! � be a (not necessarily connected) �nite covering space of �. The idea
of constructing twisted spaces in this new context is the same as before: we
consider liftings of maps Map(�0;M=G) to maps from G-principal bundles P
over �0 to M . So let � : P −! �0 be a G-principal bundle over �0 and
consider the set MapG(P;M) of G-equivariant maps from P to M . Now the
equivalence relation we introduce among these maps is di�erent from the one
in section 2. Given two G-maps γ1 : P1 −! M and γ2 : P2 −! M , γ1 and
γ2 are said to be equivalent in the present context if there exists a G-bundle
isomorphism � : P1 −! P2 inducing a deck transformation of �0 over � such
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that γ2 � � = γ1 . We call such � a G-bundle isomorphism over a covering
space �0=�.

Let AutG(P )�0=� be the group of G-automorphisms of P over the covering
space �0=�. The set of equivalence classes denoted by L�0=�(M ;G) is our new
twisted space associated to the covering space �0=�. Thus,

(7-3) L�0=�(M ;G) =
a

[P−!�0=�]

�
MapG(P;M)=AutG(P )�0=�

�
:

Here the disjoint union runs over the set of all G-bundle isomorphism classes
over the covering space �0=� in the above sense. We consider the subset of
locally constant G-equivariant maps:

(7-4) L�0=�(M ;G)l.c.=
a

[P−!�0=�]

�
MapG(P;M)l.c.=AutG(P )�0=�

�
:

Here note that the group AutG(P )�0=� still acts on the space MapG(P;M)l.c.

of locally constant G-equivariant maps. By de�nition, the orbifold invariant
associated to a �nite covering �0 −! � is the ’-invariant of L�0=�(M ;G)l.c. ,
viewed equivariantly rather than as a quotient:
(7-5)
’[�0=�](M ;G) = ’orb

(
L�0=�(M ;G)l.c.

�def=
X

[P−!�0=�]

’
(
MapG(P;M)l.c.; AutG(P )�0=�

�
:

We analyze quantities appearing in the above formula to prove the following
theorem, which is the main result of this section.

Theorem 7-1 Let ��0=� : �0 −! � be a �nite (not necessarily connected) cover-
ing space over a connected manifold � with a base point x0 . Let Γ = �1(�; x0).
Let X = �0x0

be the �bre over x0 2 �, and let [X] be its isomorphism class as
a Γ-set. Then, the orbifold invariant associated to the covering �0=� de�ned in
(7-5) is equal to the orbifold invariant associated to the isomorphism class of
the Γ-set [X] de�ned in (6-13):

(7-6) ’[�0=�](M ;G) = ’[X](M ;G):

The invariant ’[�0=�](M ;G) is multiplicative in the following sense. Let �1 :
�01 −! � and �2 : �02 −! � be two coverings over �. Suppose �01 and �02 do
not contain any isomorphic connected coverings in common. Then

(7-7) ’[(�01[�02)=�](M ;G) = ’[�01=�](M ;G)’[�02=�](M ;G):
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Since any �nite Γ-set X can be a �bre of some �nite covering space �0 =e��Γ X −! �, where e� is the universal covering space of �, the identity (7-6)
gives a geometric meaning of orbifold invariants associated to Γ-sets in terms
of covering spaces. The formula (7-7) corresponds to the formula (6-15) for
orbifold invariants associated to Γ-sets.

To prove Theorem 7-1, we �rst recall some basic facts on (universal) covering
spaces. Let e� : e� −! � be the universal covering space of �, and let x0 2 �
be a base point. Let Γ = �1(�; x0) be the fundamental group of �. One
convenient description of ~� is the following one:
(7-8)e� = f(x; [γ]) j x 2 � and [γ] is the homotopy class of a path γ from x to x0g:

We can introduce a suitable topology on e� so that the projection map e� −! �
is a covering map. In this description, the point (x; [γ]) 2 e� is the end point
of the lift in e� of γ−1 starting at the natural base point y0 = (x0; [cx0 ]) of e�,
where cx0 is the constant path at x0 2 �. The fundamental group Γ acts from
the right on e� as deck transformations by

(7-9)
e�� Γ −−−! e�(

(x; [γ]); [�]
�
7! (x; [γ][�]);

where [�] 2 Γ. This action is well de�ned because γ is a path from x to the
base point x0 and � is a loop at x0 . Here, we regard e� as a right Γ-principal
bundle. This is the reason why we let Γ act on e� on the right. On the other
hand, the group Γ also acts on the �bre eFx0 = e�−1(x0) from the left by

(7-10)
Γ� eFx0 −−−! eFx0(

[�]; (x0; [γ])
�
7! (x0; [�][γ]):

Again, this is well de�ned because the path γ is now a loop based at x0 . Note
that for a given y = (x0; [γ]), the result of the action of [�] on y , [�] � y , is
the end point of the lift in e� of �−1 starting at y . Obviously, the left action
of Γ on eFx0 , and the right action of Γ as deck transformations restricted toeFx0 , commute. In some literature, the action of Γ on the �bre is de�ned from
the right. We decided to use the above left action in this paper to make it
explicit that the action of Γ on the �bre commutes with its action on e� as deck
transformations.

The story is similar for any connected covering space ��0=� : �0 −! �. Any
such �0 is isomorphic to a covering space of the form e�=H for some subgroup
H � Γ, determined up to conjugacy, and can be described as �0 = f(x; [γ]H)g
where x 2 � and [γ] is the homotopy class of paths from x to the base point
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x0 . The point y0 = (x0;H) 2 �0 can be used as the natural base point of
�0 �= e�=H . The group of deck transformations for the covering space �0 −! �
given by G(�0=�) �= NΓ(H)=H acts on �0 from the right, and Γ acts on the
�bre Fx0 = �−1

�0=�(x0) over x0 from the left in the same way as for e�:

(7-11)
Γ� Fx0 −−−! Fx0(

[�]; (x0; [γ]H)
�
7! (x0; [�][γ]H);

�0 � (NΓ(H)=H) −−−! �0(
(x; [γ]H); [�]H

�
7! (x; [γ][�]H):

For any y 2 Fx0 , the point [�] � y 2 Fx0 is obtained as the end point of the
lift in �0 of �−1 starting at y 2 Fx0 . Similarly, given y = (x; [γ]H) 2 �0 , the
result of the action of the deck transformation by [�]H on y is the point y � [�]H
obtained as the end point of the lift in �0 of γ−1 starting at [�]�y0 = (x0; [�]H).

If �0 is not connected, the above facts apply to each connected component.
Note that the intersection of a connected component of �0 with the �bre Fx0

is a single Γ-orbit.

Next we study basic properties of G-principal bundles over covering spaces. Let
�0 : P −! �0 be a G-principal bundle over a not necessarily connected covering
space �0 over �. Let � = ��0=� � �0 : P −! �. This is a covering space over
� on which G acts as a group of deck transformations. Let Px0 = �−1(x0)
and �0x0

= �−1
�0=�(x0) be �bres over x0 . Then Px0 has the structure of a Γ-

equivariant G-principal bundle over �0x0
. It is easy to see that the bundle P

is completely determined by its �bre Px0 , in the following way.

Proposition 7-2 Let �0 : P −! �0 be a G-principal bundle over a covering
space ��0=� : �0 −! �, where � is a connected manifold with a base point x0 .
The the �bre Px0 has the structure of a Γ-equivariant G-principal bundle over
�0x0

, and �0 : P −! � is determined by the Γ-equivariant G-bundle structure
of the �bre Px0 −! �0x0

. That is, we have the following commutative diagram:

(7-12)

e��Γ Px0

�=−−−−!
G

P??y ??ye��Γ �0x0

�=−−−−−−!
NΓ(H)=H

�0??y ??ye��Γ fx0g
�=−−−−! �

Here the top horizontal map is a G-equivariant map sending
�
(x; [γ]); p

�
to

p0 2 P over x 2 � obtained as the end point of the lift in P of γ−1 starting
at p 2 P . The middle horizontal map is NΓ(H)=H -equivariant map sending�
(x; [γ]); (x0; [�]H)

�
to
(
x; [γ][�]H

�
.
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Proof The proof is routine. So we only give a brief proof for the top horizontal
map. First we check that this correspondence is well de�ned. For any [�] 2 Γ,
we consider two pairs

(
(x; [γ][�]); p

�
and

(
(x; [γ]); [�]p

�
in e��Px0 , and compare

the corresponding points in P given by the procedure described above. The
point p0 corresponding to the �rst pair is the end point of the lift in P of
(γ�)−1 = �−1γ−1 starting at p. Since [�] � p is the end point of the lift in P of
�−1 starting at p, the point p0 is the same as the end point p00 of the lift in P
of γ−1 starting at [�] � p. But p00 is also the point corresponding to the second
pair above. This proves that the top horizontal correspondence is well de�ned.

For G-equivariance, the point corresponding to [(x; [γ]); p] is the end point p1

of the lift eγ−1
1 in P of γ−1 starting at p. Now the point corresponding to

[(x; [γ]); pg] for g 2 G is the end point p2 of the lift eγ−1
2 of γ−1 starting at pg .

Since both paths eγ−1
1 � g and eγ−1

2 are lifts of γ−1 and have the same starting
point, they must coincide. Hence their end points are the same points and we
have p2 = p1g . Hence this correspondence is right G-equivariant.

To see surjectivity, for any point p0 2 P over x 2 �, we choose any path eγ
in P from p0 to a point p in the �bre Px0 over x0 . Let γ be the path in �
obtained by projecting eγ into �. So γ is a path from x to x0 . Then p0 2 P is
the point corresponding to [(x; [γ]); p] 2 e��Γ Px0 .

For injectivity, suppose two points [(x1; [γ1]); p1] and [(x2; [γ2]); p2] in e��ΓPx0

correspond to the same point p0 in P . We �rst note that x1 = �(p0) = x2 .
Next, let eγ1 and eγ2 be lifts in P of γ1; γ2 starting at the same point p0 and
ending at p1 and p2 in Px0 , respectively. Then a path eγ−1

2 � eγ1 is the lift of a
loop � = γ−1

2 γ1 based at x0 . So [γ1] = [γ2][�] and p2 = [�] � p1 . This implies
that [(x1; [γ1]); p1] = [(x1; [γ2][�]); p1] = [(x2; [γ2]); [�]�p1] = [(x2; [γ2]); p2]. This
proves injectivity.

The proof for the middle horizontal map is similar.

This proposition reduces the comparison of G-bundles over covering spaces to
the comparison of �bres as Γ-equivariant G-bundles.

Proposition 7-3 Let �0 −! � be a covering space over a connected manifold �
with a base point x0 . Two G-principal bundles �01 : P1 −! �0 and �02 : P2 −! �0

are isomorphic as G-bundles over the covering space �0=� by an isomorphism

� : P1

�=−! P2 inducing a deck transformation of �0=� if and only if its restriction

to �bres �x0 : P1;x0

�=−! P2;x0 is an isomorphism as Γ-equivariant G-bundles
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over the Γ-set �0x0
. Thus, we have the following bijective correspondence:

(7-13)
�

Isomorphism classes of G-principal bundles
� : P −! �0 over a covering space �0=�

�
1:1 !

onto

�
Isomorphism classes of Γ-equivariant
G-principal bundles Px0 −! �0x0

�
:

In terms of isomorphisms, we have the following correspondences:

IsoG(P1; P2)�0=�
1:1 !

onto
IsoΓ-G(P1;x0 ; P2;x0);(7-14)

AutG(P )�0=�
1:1 !

onto
AutΓ-G(Px0):(7-15)

Proof The correspondence (7-15) is a special case of (7-14) with P1 = P2 . The
correspondence (7-13) follows immediately from (7-14) by checking whether the
sets are empty or not. Thus it su�ces to prove bijectivity of the correspondence
in (7-14).

Let � : P1 −! P2 be a G-bundle isomorphism over the covering space �0=�.
Since � is an isomorphism of covering spaces over �, it induces a Γ = �1(�)-
isomorphism of �bres P1;x0 and P2;x0 . Since � is also a �bre preserving G-
equivariant map, the restriction �x0 : P1;x0 −! P2;x0 is a Γ-equivariant G-
bundle isomorphism. This de�nes the correspondence in (7-14) in one direction.

Conversely, suppose we are given two G-principal bundles �i : Pi −! �0 for
i = 1; 2 together with a Γ-equivariant G-bundle isomorphism � : P1;x0

�=−! P2;x0

between the �bres over x0 . By Proposition 7-2, we have the following G-bundle
isomorphisms over the covering space �0=� between P1 and P2 :

P1

�= − e��Γ P1;x0

�=−−−!
1�Γ�

e��Γ P2;x0

�=−! P2:

This de�nes the correspondence in the other direction in (7-14). It is straight-
forward to check that the above two correspondences are inverse to each other.
This completes the proof.

Combining with Classi�cation Theorem 3-6, Theorem 4-2, and Theorem 4-4,
we obtain the following corollary for the case of a connected covering space
�0 −! �.
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Corollary 7-4 Let ��0=� : �0 −! � be a connected �nite covering space corre-
sponding to the conjugacy class [H] in Γ = �1(�; x0), where x0 2 � is a base
point.

(1) We have the following bijective correspondence:
(7-16)�

Isomorphism classes of G-principal bundles
�0 : P −! �0 over the covering space �0=�

�
1:1 !

onto
Hom(H;G)=(NΓ(H)�G):

(2) Let �0 : P −! �0 be a G-principal bundle over a connected covering space
�0=� whose holonomy homomorphism is given by a homomorphism � : H −! G,
unique up to conjugation by G. Then the group of G-automorphisms of P over
the covering space �0=� (inducing deck transformations on �0 ) is given by

(7-17) AutG(P )�0=�
�= AutΓ-G(P�) = AutΓ-G(Γ�� G);

where the structure of the group in the right hand side is described in (4-2) and
(4-5).

Now we go back to (7-5) and examine the space MapG(P;M)l.c. of locally
constant G-equivariant maps from a G-bundle P over �0 into M .

Lemma 7-5 Let �0 : P −! �0=� be a G-bundle over a covering space. Then
for any G-manifold M , restriction of any locally constant G-map � : P −!M
to the �bre �x0 : Px0 −! M over x0 2 � is a Γ-invariant G-map. This
correspondence gives rise to the following bijective correspondences:

(7-18) MapG(P;M)l.c.
1:1−−!

onto
MapG(Px0 ;M)Γ 1:1 !

onto
S[Px0 �GM ]Γ;

where Γ acts on M trivially and, S[Px0 �GM ] denotes the set of sections of
the �bre bundle Px0 �GM −! �0x0

with �bre M .

Proof First, we show that the correspondence is well de�ned. Let � : P −!M
be a locally constant G-equivariant map. Thus, � is constant on each connected
component of P . Since the connected component of P is in bijective correspon-
dence with Γ-orbits in the �bre Px0 over x0 2 � (the Γ-orbit corresponding to
a connected component of P is obtained by intersecting the component with
the �bre Px0 ), the restriction �x0 : Px0 −! M is constant on each Γ-orbit.
Hence �x0 is Γ-invariant. This shows that the correspondence in (7-18) is well
de�ned.
The reverse correspondence is given as follows. For any Γ-invariant G-map
� : Px0 −! M , �rst we note that � is constant on each Γ-orbit in Px0 . Then,
we can de�ne a locally constant G-map �� : P −! M by letting the value of
�� on a connected component C of P to be �(C \ Px0). We can easily check
that the above two correspondences are inverse to each other. This completes
the proof.
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In the above correspondence, note that the topological condition of local con-
stancy of a G-map � : P −! M translates to an algebraic condition of Γ-
invariance of its restriction �x0 : Px0 −!M to a �bre. Note that �−1(x0) = �x0 ,
where � : �0 −! �, is a Γ-set.

(Proof of Theorem 7-1) By (7-5), Proposition 7-3, and Lemma 7-5, we can
rewrite quantities appearing in the de�nition of ’[�0=�](M ;G) in terms of their
restrictions to the �bre over x0 2 �:

’[�0=�](M ;G) =
X

[P−!�0=�]

’
(
MapG(P;M)l.c.; AutG(P )�0=�

�
=
X

[Px0−!X]Γ-G

’
(
MapG(Px0 ;M)Γ; AutΓ-G(Px0)

�
;

where [Px0 −! X]Γ-G runs over all isomorphism classes of Γ-equivariant G-
principal bundles over a Γ-set X . But this is precisely our de�nition of
’[X](M ;G) given in (6-13).

Next, we prove the multiplicativity of ’[�0=�](M ;G). Let P −! �01
‘

�02 be a
G-bundle over a disjoint union of two covering spaces of �. Let P1 and P2

be the restrictions of P to �01 and �02 , respectively. Then the mapping space
splits into a product MapG(P;M)l.c. = MapG(P1;M)l.c. � MapG(P2;M)l.c. .
When �01 and �02 do not have common isomorphic component as a cover-
ing space over �, the automorphism group also splits: AutG(P )(�01[�02)=� =
AutG(P1)�01=�

�AutG(P2)�02=�
, because there are no nontrivial G-bundle maps

between a connected component of P1 and a connected component of P2 . Thus,

’[(�01[�02)=�](M ;G) =
∑

[P1qP2−!�01q�02]

’
(

MapG(P1 q P2;M)l.c.; AutG(P1 q P2)(�01[�02)=�

)

=

[∑
[P1−!�01]

’
(

MapG(P1;M)l.c.; AutG(P1)�01=�

)][∑
[P2−!�02]

’
(

MapG(P2;M)l.c.; AutG(P2)�02=�

)]
= ’[�01=�](M ;G) � ’[�02=�](M ;G):

This completes the proof.

Theorem 7-1 allows us to rewrite identities (6-14) and (6-4) in terms of covering
spaces over �.

Corollary 7-6 Let � be a connected manifold and let M be a G-manifold for
a �nite group G. Then, �-associated orbifold invariant of the n-fold symmetric
orbifold ’Γ(Mn;GoSn), where Γ = �1(�), can be written in terms of orbifold
invariants of (M ;G) associated to up to n-fold (not necessarily connected)
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covering spaces �0 −! � of �. In fact, we have the following identity between
two generating functions:

(7-19)
X
n�0

qn’Γ(Mn;GoSn) =
X

[�0−!�]

qj�
0=�j’[�0=�](M ;G):

Here ’Γ(Mn;GoSn) corresponds to trivial covering ’[�=�](Mn;GoSn), and the
second summation is over all isomorphism classes of (not necessarily connected)
covering spaces �0 over �.

For the case of orbifold Euler characteristics, we even have an in�nite product
expansion:
(7-20)X
n�0

qn�Γ(Mn;GoSn) =
X

[�0−!�]

qj�
0=�j�[�0=�](M ;G) =

Y
[�00−!�]conn.

(1− qj�00=�j)−�[�00=�](M ;G);

where the product is over all isomorphism classes of �nite connected covering
spaces �00 over �.

The above identity reveals a close and precise connection between symmetric
products and covering spaces in our particular context.

8 Number of conjugacy classes of subgroups of a
given index

As before, let ur(Γ) be the number of conjugacy classes of subgroups of index
r in Γ and let jr(Γ) be the number of index r subgroups of Γ. In this section,
we use our combinatorial formulae obtained as corollaries of our topological
formulae to compute ur(Γ) for various Γ. Formulae for ur(Γ) are known for
the genus g + 1 orientable surface group Γg+1 [12], the free group on s + 1
generators Fs+1 , and the genus h+ 2 non-orientable surface group �h+2 [13].
However, our method quickly gives the same result in a uniform way. In fact,
we prove a formula which applies to any group Γ to calculate ur(Γ).

First we recall the formula (6-60 ) which relates the numbers ur(Γ) to the num-
ber of conjugacy classes of homomorphisms into symmetric groups:

(8-1)
X
n�0

qnjHom(Γ;Sn)=Snj =
Y
r�1

(1− qr)−ur(Γ):

We study the left hand side in detail using our formula (5-5) on the number of
homomorphisms into wreath product:

(8-2)
X
n�0

qn
jHom(Γ; GoSn)j

jGjnn!
= exp

�X
r�1

qr

r

nX
H
jΓ=Hj=r

jHom(H;G)j
jGj

o�
:
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The main result in this section is the following formula. Let Zr = Z=rZ.

Theorem 8-1 (1) For any group Γ, the generating function of the number
of conjugacy classes of homomorphisms into symmetric groups is described in
terms of subgroups of Γ as follows:

(8-3)
X
n�0

qnjHom(Γ;Sn)=Snj = exp
hX
m�0

qm

m

nX
rjm

X
H
jΓ=Hj=m=r

jHom(H;Zr)j
oi
:

(2) The number ur(Γ) of conjugacy classes of index r subgroups of Γ satis�es
the following recursive relation in terms of subgroups of Γ:

(8-4) jm(Γ� Z) =
X
rjm

r � ur(Γ) =
X
rjm

X
H
jΓ=Hj=m=r

jHom(Hab;Zr)j;

where Hab denotes the abelianization of H .

Proof Using the second formula in (2-6), we have

jHom(Γ;Sn)=Snj =
jHom(Γ� Z;Sn)j

jSnj
=
X
�2Sn

jHom
(
Γ; C(�)

�
j

jSnj

=
X

[�]2Sn�

jHom
(
Γ; C(�)

�
j

jC(�)j ;

where Sn� denotes the set of conjugacy classes in Sn . It is well known that
the conjugacy class [�] in Sn depends only on the cycle type of � . Suppose
the cycle type of � is given by

Q
r�1(r)mr with

P
r rmr = n, then it is well

known that its centralizer is a product of wreath products given by C(�) �=Q
r�1(Zr oSmr

) [11]. Then the above formula becomes

jHom(Γ;Sn)=Snj =
X
mr�0P
rmr=n

Y
r�1

jHom(Γ;Zr oSmr
)j

jZr oSmr
j :

Now we form a generating function. Using the above formula, we haveX
n�0

qnjHom(Γ;Sn)=Snj =
X
mr�0

Y
r�1

qrmr
jHom(Γ;Zr oSmr

)j
jZr oSmr

j

=
Y
r�1

X
m�0

qrm
jHom(Γ;Zr oSmr

)j
jZr oSmr

j
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Next, we use our crucial ingredient, namely the formula (8-2). Continuing our
calculation, we get

=
Y
r�1

exp
hX
d�1

qrd

d

nX
H
jΓ=Hj=d

jHom(H;Zr)j
r

oi
= exp

hX
r;d�1

qrd

rd

nX
H
jΓ=Hj=d

��Hom(H;Zr)
��oi

= exp
hX
m�1

qm

m

nX
rjm

� X
H

jΓ=Hj=m=r

��Hom(H;Zr)
���oi:

This proves (1). For (2), we simply take logarithm of the right hand side of (8-1),
and compare it with (8-3). Here we may replace Hom(H;Zr) by Hom(Hab;Zr)
since Zr is abelian. The equality jm(Γ � Z) =

P
rjm r � ur(Γ) is a well known

identity. For example, see [15, p.112]. This completes the proof

Note that once we have (8-4), we can write down the formula for ur(Γ) using
Möbius inversion formula. This formula says that if g is a function de�ned on
N and f(m) =

P
rjm g(r), then g(m) =

P
rjm �(r)f(m=r), where �(r) is the

Möbius function given by �(1) = 1, �(n) = (−1)t if n is a product of t distinct
primes, and �(n) = 0 if n is divisible by the square of a prime. We leave the
formula (8-4) in the above form because it is simpler.

The numbers ur(Γg+1) and ur(�h+2) were calculated in [12], [13] around mid
1980s. Our formula (8-4) immediately proves their results which were expressed
using Möbius inversion formula. But they are equivalent to the formulae below.

Corollary 8-2 The numbers ur(Γ) for Γ = Γg+1; Fs+1;�h+2 are given in the
following recursive relation:X

rjm
r � ur(Γg+1) =

X
rjm

jm
r

(Γg+1)r2( gmr +1)(8-5)

X
rjm

r � ur(Fs+1) =
X
rjm

jm
r

(Fs+1)r
sm
r +1(8-6)

(8-7)∑
rjm

r � ur(�h+2) =
∑
rjm

[{
jm
r

(�h+2)− jm
r

(�h+2)+
}

(2; r)r
mh
r

+1 + jm
r

(�h+2)+r
mh
r

+2
]
;

where jr(�h+2)+ is the number of index r orientable subgroups, and (2; r)
denotes the greatest common divisor.
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The proof of this corollary is a straightforward application of (8-4). We simply
note that the abelianizations are given by (Γg+1)ab

�= Z2g+2 , (Fs+1)ab
�= Zs+1 ,

and (�h+2)ab
�= Zh+1 � Z2 , and that among index m=r subgroups of �h+2 ,

there are jm
r

(�h+2)+ subgroups which are isomorphic to Γmh
2r +1 , and there are

jm
r

(�h+2)− jm
r

(�h+2)+ subgroups isomorphic to �mh
r +2 .
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