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Geometric construction of spinors

in orthogonal modular categories

Anna Beliakova

Abstract A geometric construction of Z2 {graded odd and even orthogo-
nal modular categories is given. Their 0{graded parts coincide with cate-
gories previously obtained by Blanchet and the author from the category
of tangles modulo the Kau�man skein relations. Quantum dimensions and
twist coe�cients of 1{graded simple objects (spinors) are calculated. We
show that invariants coming from our odd and even orthogonal modular
categories admit spin and Z2 {cohomological re�nements, respectively. The
relation with the quantum group approach is discussed.

AMS Classi�cation 57M27; 57R56

Keywords Modular category, quantum invariant, Vassiliev{Kontsevich
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Introduction

In 1993, Lickorish gave a simple geometric construction of 3{manifold invariants
based on the Kau�man brackets. The same invariants were obtained earlier by
Reshetikhin and Turaev from the representation category of the quantum group
Uq(sl2). The method of Lickorish was so much easier than the quantum group
theoretical one that it inspired many researchers to work on its generalizations.

Recall that a quantum group Uq(g) for any semi{simple Lie algebra g and some
root of unity q provides 3{manifold invariants. In many cases a representation
category of the quantum group is modular (or modularizable), i.e. a functor
from the category of 3{cobordisms to the representation category can be con-
structed (see [8]). This functor is called a Topological Quantum Field Theory
(TQFT).
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In order to get a geometric construction of 3{manifold invariants or TQFT’s
coming from quantum groups of type A (g = slm ), a replacement of the Kau�-
man bracket in Lickorish’s approach by the HOMFLY polynomial is needed.
This was successfully done in papers of Yokota, Aiston{Morton and Blanchet.

In [4], Blanchet and the author constructed (pre{)modular categories from the
category of tangles modulo the Kau�man skein relations. We recovered the
invariants of symplectic quantum groups (g = spm type C ), but only \half" of
the invariants for orthogonal groups (g = som types B and D). Our approach
did not provide objects corresponding to spin representations.

In this article we give a geometric construction of two series of orthogonal
modular categories which include spinors. We consider the category of framed
tangles where colors from the set f1; 2g are attached to lines. We add the
relations given by the kernel of the (som; V; S) weight system pulled back by the
Vassiliev{Kontsevich invariant. The standard representation V and the spinor
representation S are used for 1{colored and 2{colored lines, respectively. The
resulting category admits a natural Z2{grading. The 0{graded part has the
same set of simple objects as the category studied in [4].

We consider two series of parameter specializations for which this 0{graded part
is pre{modular. Then we give a recursive construction of idempotents for the 1{
graded parts of these pre{modular categories. The key point is the observation
that encircling any 1{graded object with a line colored with a special 0{graded
object, given by a rectangular Young diagram, yields a projector. We calculate
quantum dimensions and twist coe�cients of 1{graded simple objects (spinors).
We show that invariants coming from our odd and even orthogonal modular
categories admit spin and Z2{cohomological re�nements, respectively.

This paper is organized as follows. In the �rst section we de�ne the category
we will work in. In the second and third sections we construct odd and even
orthogonal modular categories. Relations with quantum groups are discussed
in the last section.

The author wishes to thank Christian Blanchet for many stimulating discus-
sions.
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Figure 1: Diagram of a two colored tangle

1 Basic category

In this section we de�ne the category which will be studied subsequently. We
also analyze its 0{graded part.

1.1 Category of two colored tangles

Let us �x an oriented 3{dimensional Euclidean space R3 with coordinates
(x; y; t).

De�nition 1.1 A two colored tangle T is a 1{dimensional compact smooth
sub{manifold of R3 equipped with a normal vector �eld and lying between two
horizontal planes ft = ag, ft = bg, a > b, called the top and the bottom
planes. The boundary of T lies on two lines ft = a; y = 0g and ft = b; y = 0g.
The normal vector �eld has coordinates (0; 1; 0) in boundary points. The map
c from the set of connected components of T to the set of colors f1; 2g is given.

Two colored tangles T and T 0 are equivalent if there is an isotopy sending T

to T 0 which respects horizontal planes and colorings.

Connected components of T will be called lines. We represent T by drawing
its generic position diagram in blackboard framing. Lines of the second color
are drawn bold. An example is given in Figure 1.

An intersection of a two colored tangle with the top and the bottom planes
de�nes a word in the alphabet f�; �g, where � and � denote the points of
the �rst and the second color, respectively. For two such words u and v , let
(T ; u; v) be the set of two colored tangles whose intersection with the top and
the bottom planes are given by u and v , respectively.
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De�nition 1.2 Let T be the monoidal category whose objects are words in
the alphabet f�; �g. For u; v 2 Ob(T ), the set of morphisms Hom(u; v) from u

to v is given by (T ; u; v). The composition of (T ; u; v) with (T ; v; w) is de�ned
by gluing of horizontal planes identifying points corresponding to v . Moreover,
u⊗ v := uv .

De�nition 1.3 Let f be a �eld. Let Tf be a linearization of T , where formal
f {linear combinations of tangles are allowed as morphisms. The composition
and tensor product are bilinear.

1.2 Kontsevich integral

In [9], the category of q{tangles was considered. The objects of this category
are non{associative words in the alphabet f+;−g. The morphisms are framed
oriented tangles. It was shown that the universal Vassiliev{Kontsevich invariant
extends to a functor from this category to the category of chord diagrams. An
analogous construction applies to colored q{tangles.

Let us orient all lines of two colored tangles from the top to the bottom. Let
us map a word u 2 Ob(T ) with n letters to the non{associative word of length
n in the alphabet f+; +g beginning with n left brackets, e.g., � � � maps
to ((++)+). This de�nes a functor from T into the category of two colored
q{tangles. Now the universal Vassiliev{Kontsevich invariant constructed in [9]
de�nes a functor from this category to the category A of chord diagrams with
two colored support. We denote by Z : T ! A the composition.

Let us consider the Lie algebra g = som . Let V be the standard and S the
spin representation of g. Let t 2 g� ⊗ g� be its Killing form.

Theorem 1.1 There exists a unique C{linear monoidal functor Fg;V;S (called

weight system) from A to the category Modg of the representations of g such

that it is uniquely characterized by its values on the following elementary mor-

phisms.
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The �rst three diagrams correspond to the morphisms g⊗ g! C, V ⊗ V ! C
and S ⊗ S ! C in Modg given by the Killing form. The next three are their

transposes. The �rst morphism in the second row is given by the Lie bracket.

The next two correspond to the g{action on V and S . The third row describes

flips x⊗y 7! y⊗x in g⊗g, g⊗V , g⊗S , V ⊗V , V ⊗S and S⊗S , respectively.

The proof of Bar{Natan [1] can be adapted. An essential point is that the
invariant tensors %(t) for any representation % satisfy the classical Yang{Baxter
equation, which corresponds to the 4{term relation in A.

Remark For g = so2n , the construction can be modi�ed by orienting 2{
colored lines and by using the spin representations S� in the weight system,
according to the orientation.

1.3 Category Tq(som)

The central object of our study is the category Th(som) de�ned as TC modulo
the relations given by the kernel of Fsom;V;S(Z(TC)). The relations are de�ned
a priori over C[[h]], where h is the formal parameter of the Kontsevich integral.
An explicite description of the relations is not known except if we restrict to
1{colored framed tangles or to 2{colored ones and use Fso7;S weight system.
The �rst case was considered in [10] and the relations are just the Kau�man
skein relations. The second case was studied in [12], where a set of relations
su�cient to calculate link invariants is given.

Algebraic & Geometric Topology, Volume 3 (2003)
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The proof of Le and Murakami in [9] can be used to show that link invariants
provided by Th(som) and the quantum group Uq(som) coincide for odd m if
q = exph and for even m if q = exp 2h. The invariant associated by Uq(som)
with a colored link is de�ned over the ring R = Q[q�

1
2D ], where D = 2 if m

is odd and D = 4 for even m.� This allows to de�ne Th(som) over R and to
use the notation Tq(som) for Th(som), where q = exph if m = 2n + 1 and
q = exp 2h if m = 2n.

Let us de�ne a Z2{grading in Tq(som) as follows. A grading of u 2 Ob(Tq(som))
is given by the number of symbols � in u modulo 2. All morphisms in the
category are 0{graded.

1.4 0{graded idempotents

Let u 2 Ob(Tq(som)). A nonzero morphism T 2 EndTq(som)(u) is called a
minimal idempotent if T 2 = T and for any X 2 EndTq(som)(u) there exists a
constant c 2 R, such that TXT = cT . A standard procedure called idempotent
completion allows to add idempotents as objects into the category. Objects
given by minimal idempotents are called simple. The idempotent completion
of Tq(som) is denoted by the same symbol. Let us equip Tq(som) with a direct
sum of objects in a formal way.

In [5], we gave a geometric construction of minimal idempotents in the category
of (framed non{oriented) tangles modulo the Kau�man skein relations.

= (s− s−1)
� �

= � ; = �−1

L q © =
�
�− �−1

s− s−1
+ 1
�

L

Figure 2: Kau�man relations

The idempotents were numbered by integer partitions or Young diagrams � =
�The integrality result of T. Le shows that even a smaller ring can be considered.
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(�1 � �2 � ::: � �k). Their twist coe�cients and quantum dimensions were
calculated.

Lemma 1.2 After the substitution � = sm−1 , s = exph, the idempotents

constructed in [5] give the whole set of minimal idempotents of the 0{graded

part of Th(som).

Proof Let us �rst consider 1{colored tangles. The set of relations in Th(som)
for 1{colored tangles coincides with the Kau�man skein relations, where � =
sm−1 , s = exph (see [10] for the proof, { attention, { Le and Murakami use a
di�erent normalization for the trivial knot). Minimal idempotents for tangles
modulo the Kau�man skein relations are constructed in [5].

From the representation theory of the classical orthogonal Lie algebras (see e.g.
[7] p. 291{296) we know that S ⊗ S decomposes into a direct sum of simple
objects numbered by integer partitions. This implies that the addition of an
even number of 2{colored lines to 1{colored tangles does not create new minimal
idempotents.

In [4], we found seven series of specializations of parameters � and s, such that
the category of tangles modulo the Kau�man skein relations with these specia-
lizations becomes pre{modular (after idempotent completion and quotienting
by negligible morphisms). In all cases, s is a root of unity and � is a power of
s. The specializations � = s2n , s4n+4k = 1 and � = s2n−1 , s4n+4k−4 = 1 lead
to odd and even orthogonal categories Bn;−k and Dn;k , respectively.

In the remainder of the paper we will complete Bn;−k and Dn;k with 1{graded
simple objects. The odd and even orthogonal cases will be treated separately.

2 Odd orthogonal modular categories

This section is devoted to the construction of odd orthogonal modular catego-
ries. We show that these categories lead to spin TQFT’s and calculate spin
Verlinde formulas.

Algebraic & Geometric Topology, Volume 3 (2003)
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2.1 0{graded objects

Let us use the standard notation Bn for so2n+1 . We �x a primitive (4n+4k)th
root of unity q and choose v with v2 = q . In this specialization, the set of
0{graded simple objects of Tq(Bn) (modulo negligible morphisms) is given by
Young diagrams (or integer partitions) from the set

~Γ = f� : �1 + �2 � 2k + 1; �_1 + �_2 � 2n+ 1g

(see [4] p. 487 for the proof, put s = q). Here �_i denotes the number of cells
in the ith column of �.

The set ~Γ admits an algebra structure with the multiplication given by the
tensor product and the addition given by the direct sum. The empty partition
is the one in this algebra and it will be denoted by 1. (Please not confuse with
the partition V = (1) corresponding to the object �.)

The set ~Γ has two invertible objects of order two. The object J = (2k + 1),
given by the one row Young diagram with 2k + 1 cells in it, and the object
12n+1 given by the one column Young diagram with 2n+1 cells in it. They are
0{transparent, i.e. they have trivial braiding with any other 0{graded object.
The tensor square of each of them is the trivial object. The twist coe�cient of
J is minus one and of 12n+1 is one. Let us consider the following set

Γ0 = f� : �1 + �2 � 2k + 1; �_1 � ng:

Any � 2 ~Γ is either contained in Γ0 or is isomorphic to 12n+1⊗� with � 2 Γ0 ,
where 12n+1 ⊗ � and � are both simple with the same quantum dimensions,
braiding and twist coe�cients. There exists a standard procedure called mo-
dularization (or modular extension), which allows to path to a new category,
where 12n+1 ⊗ � and � are identi�ed. We will denote by Tq( ~Bn) this new
category. Its set of simple 0{graded objects is Γ0 . The existence criterion for
such modularization functors was developed by Brugui�eres. In [4], a geometric
construction of these functors is given.

2.2 Recursive construction of 1{graded idempotents

The rectangular 0{graded object A = kn 2 Γ0 , consisting of n rows with k

cells in each, plays a key role in our construction of 1{graded idempotents. Let
us de�ne P� = 1

2 (1�A).
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Let us enumerate 1{graded simple objects by partitions consisting of n non{
increasing half{integers. The partition S = (1=2; :::; 1=2) is used for the object
�.y The �rst step in the recursive construction of minimal 1{graded idempotents
is given by the following proposition.

Proposition 2.1 Let � = (�1) be a one row Young diagram with 1 � �1 � 2k .

The tangles

~P+(�) = +P

λ
~P−(�) = P_

λ

are minimal idempotents projecting into simple objects (�1 + 1=2; 1=2; :::; 1=2)
and (�1−1=2; 1=2; :::; 1=2). Here ~P+(�) projects into the �rst partition if �1 = 0
mod 2, otherwise into the second.

Proof Let us decompose the identity of �⊗ S as follows.

+P P_

λλλ

(1)

From the representation theory of Bn we know that

�⊗ S = (�1 + 1=2; 1=2; :::; 1=2) � (�1 − 1=2; 1=2; :::; 1=2) :

Therefore, dim EndTq( ~Bn)(� ⊗ S) is maximal two. Note that J ⊗ S is simple,
because J = (2k + 1) is invertible. Using the equality of the colored link
invariants in Tq( ~Bn) and Uq(Bn), semi{simplicity of the modular category for
Uq(Bn) and Lemma 5.1 in the Appendix, we see that

~P�(�) ~P�(�) = ~P�(�) ~P�(�) ~P�(�) = 0

for any � 2 Γ0 . Furthermore, these morphisms are non{negligible. The claim
follows.

Remark 2.2 In the proof we use the quantum group formulas for the quantum
dimension and the S{matrix. These formulas can also be obtained by applying
an appropriate weight system to the Kontsevich integral of the unknot and
of the Hopf link, which were calculated recently in [2]. This will make our
approach completely independent from the quantum group theoretical one.
yThe relation between such partitions and dominant weights of Bn is explained in

the appendix.
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Let � = (�1; :::; �p) be a Young diagram with �1 + �2 � 2k and 2 � p � n.
Let � be obtained by removing one cell from the last row of �. Let us assume
per induction that we can construct an idempotent p�S� projecting � ⊗ S into
a simple component �. We know from the classical theory that the tensor
product �⊗ S decomposes into simple objects as follows:

�⊗ S = �(�1 � 1=2; �2 � 1=2; :::; �p � 1=2; 1=2; :::; 1=2) (2)

Contributions not corresponding to non{increasing partitions do not appear in
this decomposition. A quasi{idempotent ~p�S� projecting to a partition � from
the set I = f(�1 � 1=2; �2 � 1=2; :::; �p − 1=2; 1=2; :::; 1=2)g can be obtained as
follows:

(~y� ⊗ idS)(idj�j−1 ⊗ ~P+)p�S� (idj�j−1 ⊗ ~P+)(~y� ⊗ idS) :

Here where ~y� is the 0{graded minimal idempotent de�ned in [5], ~P+ is the
idempotent pV SS given by encircling the 2{colored line and the 1{colored line
starting from the last cell in the last row of � with a line colored by P+ .
Normalizing (if necessary) this quasi{idempotent we get p�S� . The projector
onto (�1 + 1=2; :::; �p + 1=2; 1=2; :::; 1=2) is given by ~y� ⊗ idS −

P
�2I p

�S
� . It

remains to show that p�S� is not negligible. The trace of the morphism (~y(1;1)⊗
idS)(idV ⊗ ~P+) is nonzero. Here we use that dimS 6= 0 (see next subsection).
Analogously, the trace of (idV ⊗ ~P+)(~y(2) ⊗ idS) is nonzero. Therefore, p�S� is
a composition of non{negligible morphisms.

As a result, we can construct 1{graded simple objects numbered by partitions
consisting of n non{increasing half{integers from the set

Γ = f� : �1 + �2 � 2k + 1g:

We hope to be able to prove the following statement in the future.

Conjecture 2.3 Let � = (�1; :::; �p) be a Young diagram with �1 + �2 � 2k ,

p � n. For b = (�1 + 1=2; :::; �p + 1=2; 1=2; :::; 1=2) we have

p�Sb = (~y� ⊗ idS)( ~P1(�1)⊗ id):::(id ⊗ ~Pp(�p))(~y� ⊗ idS) ;

where

~Pi(�i) =

(
~P+(�i) : �i = 0 mod 2
~P−(�i) : �i = 1 mod 2

Algebraic & Geometric Topology, Volume 3 (2003)
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An example of such projection onto (7=2; 5=2; 3=2) for � = (3; 2; 1) is drawn
below.

P

P

P

−

+

−

2.3 Quantum dimensions.

By applying the (Bn; S) weight system to the Kontsevich integral of the 2{
colored unknot we getz

dimS = (v + v−1)(v3 + v−3):::(v2n−1 + v−2n+1)

Here q = v2 . By closing (1) with � = (1) we get dimV dimS = dimS+dimX ,
which allows to calculate dimX . We conclude that it is given by formula (7)
in the Appendix with � = (3=2; 1=2; :::; 1=2).

Proposition 2.4 The quantum dimension of a simple object � 2 Γ is given

by formula (7).

Proof For integer partitions, the claim was proved in [4]. In fact, (7) coincides
with the formula given in Proposition 3.3 of [4]. Let us assume per induction
that the quantum dimensions of 1{graded simple objects are given by this for-
mula. We are �nished if we can show that for a p row Young diagram �

dimS dim� =
X
~s2Zp2

dim(�+ ~s) ;

where Zp2 = f(�1=2; :::;�1=2; 1=2; :::; 1=2)g. Note that if �i = �i+1 ,

dim(�1 �
1
2
; :::; �i −

1
2
; �i +

1
2
; :::; �n �

1
2

) = 0 ;

zThis computation will be published elsewhere.
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because terms in (7) corresponding to w and �iw cancel with each other. Here
�i interchanges the ith and (i+ 1)th coordinates. Using

dimS =
X
~s2Zn2

v2(~sj�)

we get

dimS dim� =
1
 

X
w2W;~s2Zn2

sn(w)v2(w−1(�+�)+~sj�)

=
1
 

X
w2W;w02Zn2

sn(w)v2(w−1(�+�)+w−1w0(S)j�)

=
1
 

X
w02Zn2

X
w2W

sn(w)v2(�+�+w0(S)jw(�))

=
X
~s2Zp2

dim(�+ ~s)

2.4 Twist coe�cients

Let us denote by t� the twist coe�cient of the simple object �. Then by
twisting (2) we have the following identity

t�tS

Sλ

=
X
~s2Zp2

t�+~s
λ + s~

Sλ

λ S

:

Replacing the positive twist with the negative one we get a similar identity
involving inverse twist coe�cients. By closing the �{colored line in these two
identities we obtain

t�tS
λ

S

=
X

~s

t�+~s
dim(�+ ~s)

dim S

S

;

t−1
� t−1

S

λ

S

=
X

~s

t−1
�+~s

dim(�+ ~s)
dim S

S

:
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This implies the following formula:X
~s2Zn2

(t−1
S t−1

� t�+~s − tSt�t−1
�+~s) dim(�+ ~s) = 0 (3)

Using (3) and the formulas for the quantum dimension we can calculate twist
coe�cients of simple 1{graded objects recursively. Note that tS = vn

2+n=2 is
determined by the action of the Casimir on the spin representation.

Proposition 2.5 The twist coe�cient of a simple object � 2 Γ is given by

the following formula:

t� = v(�+2�j�) (4)

Proof In [4] it was shown that the twist coe�cients of 0{graded objects are
given by this formula. Now let us assume per induction that this formula holds
for 1{graded objects. We are �nished if we can prove (3) with this induction
hypothesis.

Substituting (4) and quantum dimensions in (3), we get:

v−(4�js)
X
~s2Zn2

X
w2W

sn(w)v2(�+~s+�jw(�))v2(�+�j~s)

=
X
~s2Zn2

X
w2W

sn(w)v2(�+~s+�jw(�))v−2(�+�j~s) (5)

Using the fact that the Weyl group W is a semi{direct product of the symmetric
group Sn and Zn2 (acting on Rn by changing signs of coordinates), we write
w = g0� and ~s = g(S) with g; g0 2 Zn2 and � 2 Sn . With this notation, (5)
follows from the following two identities:X

g;g02Zn2 ;�2Sn

sn(g0�)v2(�+�jg0�(�)+g(S))v�2(g0g(S)−Sj�(�))

=
X

g2Zn2 ;�2Sn
sn(g�)v2(g(�+�)j�(�)+S) (6)

To get the second one we replace ~s by −~s. In the rest of the proof we will
show (6). The idea is that terms with g 6= g0 cancel in pairs. Let us �rst
consider the simplest case, when g0(x) di�ers from g(x) only by a sign of the
ith coordinate. We write g0 = gig . Let us denote by t the ith half{integer
coordinate of �(�), i.e. (�(�))i = t. Then there are two possibilities: (a) there
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exists j with (�(�))j = t− 1 or (b) t = 1=2. In the �rst case, we put ~� = �ij�

and ~g = gigjg , where �ij interchange the ith and j th coordinates. Analyzing
the four possibilities g(xi) = �xi , g(xj) = �xj , we see that

g0�(�) + g(S) = g0~�(�) + ~g(S) :

The claim then follows from the fact that sn(g0�) = −sn(g0~�) and (g0g(S) −
Sj�(�)) = (g0~g(S)− Sj~�(�)).

In case (b), we put ~g0 = gig
0 , ~g = gig and ~� = � . Case by case checking shows

that terms in (6) corresponding to g; g0; � and ~g; ~g0; ~� cancel with each other.
Note that if g0(x) and g(x) are di�erent for all n coordinates, then we can
proceed as in case (b).

Let us assume that g0(x) and g(x) di�ers in less than n coordinates. Then
there exists j with (�(�))j = 1=2. If g(xj) = −g0(xj), then we �nish with (b),
if not, we compare g0(xi) and g(xi) with (�(�))i = 3=2; 5=2; :::. Proceeding
in this way we will �nd a pair of indices i; j , such that (�(�))i − (�(�))j = 1,
g(xj) = g0(xj), but g(xi) = −g0(xi). Then we continue as in case (a).

2.5 Modular category Bk
n

The previous results imply that the category Tq( ~Bn) de�ned on a (4n + 4k)th
root of unity q is pre{modular. Its simple objects are numbered by integer or
half{integer partitions � = (�1; :::; �n) with �1 � ::: � �n � 0 from Γ = f� :
�1 + �2 � 2k + 1g: Let us call this category Bk

n .

Theorem 2.6 The category Bk
n is modular.

Proof It remains to prove that Bk
n has no nontrivial transparent objects. Let

b = (b1+1=2; b2+1=2; :::; bn+1=2) be a 1{graded simple object. The object J⊗b
is simple and is given by partition b0 = (2k+ 1− b1−1=2; b2 + 1=2; :::; bn + 1=2).
This is because J is invertible and b0 is the only object in Γ with the correct
twist coe�cient and quantum dimension. It follows

tJ tb

bJ

= tb0

b’

:
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Inserting twist coe�cients we obtain that the braiding coe�cient of J and b

is (−1). This implies that J is not transparent in Bk
n and that no 1{graded

simple object can be transparent. But the 0{graded part of Bk
n has not even a

further nontrivial 0{transparent object.

2.6 Re�nements

It was shown by Blanchet in [6] that any modular category with an invertible
object J of order 2 (i.e. J2 = 1), whose twist coe�cient is (−1) and quantum
dimension is 1, provides invariants of 3{manifolds equipped with spin structure.
The Z2{grading de�ned in [6] by means of J coincides with the one used in this
paper. The Kirby color decomposes as Ω = Ω0 + Ω1 according to this grading.
The invariants of closed 3{manifolds equipped with spin structure are de�ned by
putting the 1{graded Kirby color on the components of a surgery link belonging
to the so{called characteristic sublink (de�ned by the spin structure) and the 0{
graded Kirby color on the other components. The ordinary 3{manifold invariant
decomposes into a sum of re�ned invariants over all spin structures. A spin
TQFT can also be constructed (see e.g. [3]). It associates a vector space V (�g; s)
to a genus g surface �g with spin structure s.

Proposition 2.7 The category Bk
n provides a spin TQFT. Furthermore,

4g

hΩig−1
dimV (�g; s) =

X
�2ΓnΓ1

(dim �)2−2g

+ (−1)Arf(s) 2g
X
�2Γ1

(dim �)2−2g

where hΩi is the invariant of the Kirby{colored unknot, Arf(s) is the Arf inva-

riant and Γ1 = f� 2 Γ : �1 = k + 1=2g.

Proof A spin Verlinde formula was computed by Blanchet in [6, Theorem 3.3].
It uses the action of J on Γ given by the tensor product. In our case,

J ⊗ (�1; �2; :::; �n) = (2k + 1− �1; �2; :::; �n)

(compare [4] and the proof of Theorem 2.6.)

Therefore, there are only two di�erent cases. If �1 6= k+1=2, then #orb(�) = 2,
jStab(�)j = 1. If �1 = k + 1=2, then #orb(�) = 1, jStab(�)j = 2. The result
follows by the direct application of the Blanchet formula.
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3 Even orthogonal modular categories

In this section we construct even orthogonal modular categories. We show
that corresponding invariants admit cohomological re�nements and calculate
the re�ned Verlinde formulas.

3.1 0{graded objects

Let us use the standard notation Dn for so2n . We �x a primitive (2k+2n−2)th
root of unity q and v with v2 = q . According to [4], the category Tq(Dn) has
the following set of 0{graded simple objects

~Γ = f� : �1 + �2 � 2k; �_1 + �_2 � 2ng :

This set contains two invertible objects of order two: 12n and 2k . They are
0{transparent, with twist coe�cients and quantum dimensions are equal to 1.
This implies that the 0{graded part of Tq(Dn) is modularizable. After modular
extension by the group generated by 12n we get a new category, which will be
denoted by Tq( ~Dn). The objects 12n ⊗ � and � are isomorphic there for any
� 2 ~Γ. The 0{graded objects � with �_1 = n do not remain simple in Tq( ~Dn)
and decompose as � = �− + �+ . The objects �� have the same quantum
dimensions and twist coe�cients. We will use the partitions (�1; :::;��n) for
�� . The set of 0{graded simple objects of Tq( ~Dn) is

Γ0 = f� : �1 + �2 � 2k; �_1 < ng [ f�� : �1 + �2 � 2k; �_1 = ng :

Let A+ be the simple 0{graded object of Tq( ~Dn) obtained after splitting of A =
(k; k; :::k) = kn . Let i = vn+k−1 and P� = 1

2(1� (−i)nA+). Then analogously
to the odd orthogonal case, encircling of a spinor b = (2b1+1

2 ; :::; 2bn+1
2 ) by P+

gives the identity morphism if
P

i bi = 0 mod 2 and is zero otherwise. The
proof is given in the appendix.

3.2 Recursive construction of 1{graded idempotents

The group Dn has two spin representations S� given by the highest weights
(1=2; :::;�1=2). In order to distinguish them we put an orientation on the
2{colored lines.

Algebraic & Geometric Topology, Volume 3 (2003)



Geometric construction of spinors 985

Let w 2 Zp2 act on coordinates of Rp by sign changing. We put sn(w) = 1 if it
changes the signs of an even number of coordinates and sn(w) = −1 otherwise.
Let s = (1=2; :::; 1=2) 2 Rp . For any highest weight � = (�1; :::; �p; 0; :::; 0), the
tensor product �⊗ S� decomposes in Dn as follows:

�⊗ S� =
M
w2Zp2

(�1 + w(s1); :::; �p + w(sp); 1=2; :::;�sn(w)1=2)

If p = n, we have

�⊗ S� =
M

w2Zn−1
2

(�1 + w(s1); �2 + w(s2); :::; �n � sn(w)1=2) :

In particular,

V ⊗ S+ = S− + (3=2; 1=2; :::; 1=2) ; V ⊗ S− = S+ + (3=2; 1=2; :::;−1=2) :

The corresponding idempotents are given by ~P�(V ).

Suppose that we can decompose � ⊗ S� into simple objects if � is obtained
by removing one cell from the last row of �. Then the projection p

�S+
� to

� � �⊗S+ (with � 6= h = (�1 + 1=2; :::; �k + 1=2; 1=2; :::; 1=2)) can be obtained
by normalizing the following morphism

(~y� ⊗ idS+)(idj�j−1 ⊗ ~P+)p�S−� (idj�j−1 ⊗ ~P+)(~y� ⊗ idS+) ;

where ~P+ is given by encircling the 2{colored line and the 1{colored line starting
from the last cell in the last row of � with a line colored by P+ . The idempotent
p
�S+

h is given by ~y� ⊗ idS+ −
P

� p
�S+
� . The case �⊗ S− is similar.

3.3 Modular category Dk
n

Analogously to the odd orthogonal case, one can show that the quantum di-
mensions of spinors are given by the formula (7) and the twist coe�cient of a
simple object � of Tq( ~Dn) is v(�+2�j�) .

We conclude that the category Tq( ~Dn) at a (2n + 2k − 2)th root of unity q is
pre{modular. Its simple objects are given by integer or half{integer partitions
� = (�1; :::; �n−1;��n) with �1 � �2 � ::: � �n � 0 from the set Γ = f� :
�1 + �2 � 2kg. Let us denote this category by Dk

n . Taking into account that
the object 2k has the braiding coe�cient (−1) with any spinor, we derive that
Dk
n is modular.
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3.4 Re�nements

The category Dk
n has an invertible object J of order 2, whose twist coe�cient

and quantum dimension are equal to 1. It was shown in [6] that any such
modular category provides an invariant of a 3{manifold M equipped with a
�rst Z2{cohomology class. More precisely, the object J de�nes a grading in
the category, which coincides with the Z2{grading used above. For a closed 3{
manifold M , any h 2 H1(M;Z2) can be represented by a sublink of a surgery
link for M belonging to the kernel of the linking matrix modulo 2. The inva-
riant of a pair (M;h) is then de�ned by putting 1{graded Kirby colors on this
sublink and 0{graded ones on the other components. This construction can be
extended to manifolds with boundary (see [3]) and leads to a cohomological
TQFT (compare [11]).

Proposition 3.1 The category Dk
n leads to a cohomological TQFT. The di-

mension of the TQFT module associated with a pair (�g; h), h 2 H1(�g), is

given by the following formulas. For h 6= 0,

dimV (�g; h) =
hΩig−1

4g
X

�2ΓnΓ1

(dim �)2−2g

where Γ1 = f� 2 Γ : �1 = k; �_1 < ng. For h = 0,

dimV (�g; h) =
hΩig−1

4g

0@ X
�2ΓnΓ1

(dim �)2−2g + 4g
X
�2Γ1

(dim �)2−2g

1A
Proof In [6, Theorem 5.1] Blanchet give a re�ned Verlinde formula for coho-
mological TQFT’s. In our case, J acts on Γ as follows:

J ⊗ (�1; �2; :::; �n) = (2k − �1; �2; :::;−�n)

This is because, �⊗ J is simple and it contains the object from the right hand
side of the above formula by classical representation theory.

Therefore, we have only two cases. If � 2 ΓnΓ1 , then #orb(�) = 2, jStab(�)j =
1. If � 2 Γ1 , then #orb(�) = 1, jStab(�)j = 2. The result follows by the direct
application of the Blanchet formula.

Algebraic & Geometric Topology, Volume 3 (2003)



Geometric construction of spinors 987

4 Relation with quantum groups

We show that our orthogonal modular categories are equivalent to the quantum
group theoretical ones. Further, we compare results about re�nements and
level{rank duality.

4.1 Equivalence

Let us call two modular categories equivalent if there exists a bijection between
their sets of simple objects providing an equality of the corresponding colored
link invariants. This implies that the associated TQFT’s are isomorphic (see
[13, III, 3.3]).

Theorem 4.1 i) The category Bk
n is equivalent to the modular category

de�ned for Uq(Bn) at a (4n + 4k)th root of unity q .

ii) The category Dk
n is equivalent to the modular category de�ned for Uq(Dn)

at a (2n + 2k − 2)th root of unity q .

Proof The construction of modular categories from quantum groups is given
in [8]. Let us recall the main results.

Let g be a �nite{dimensional simple Lie algebra over C. Let d be the maximal
absolute value of the non{diagonal entries of its Cartan matrix. Let us denote
by C the set of the dominant weights of g. We normalize the inner product
( j ) on the weight space, such that the square length of any short root is 2.
Finally, we denote by �0 the long root in C .

The quantum group Uq(g) at a primitive root of unity q of order r provides a
modular category if r � dh_ , where h_ is the Coxeter number. This modular
category has the following set of simple objects.

CL = fx 2 C : (xj�0) � dLg

Here L := r=d− h_ is the level of the category.

i) Let g = Bn . Then we have �0 = (1; 1; 0; :::; 0) in the basis chosen in the
appendix, d = 2 and h_ = 2n − 1. For r = 4n + 4k , CL is in bijection with
the set Γ = f� : �1 + �2 � 2k + 1g of simple objects of Bk

n . Moreover, this
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bijection induces an equality of the colored link invariants due to the result of
Le{Murakami [9].

iI) Let g = Dn . Then �0 = (1; 1; 0; :::; 0) in the basis chosen in the appendix,
d = 1 and h_ = 2n − 2. For r = 2n + 2k − 2, CL coincides with the set of
simple objects of Dk

n . The claim follows then as above from [9].

4.2 Re�nements

Cohomological re�nements in categories obtained from quantum groups were
studied in [11]. For type D , Le and Turaev consider cohomology classes with
coe�cients in Z4 or Z2�Z2 . The statements about existence of spin re�nements
in modular categories of type B and about Z2{cohomological re�nements for
type D seem to be new.

4.3 Level{rank duality

It was shown in [4] that the categories Bn;−k and Dn;k have their level{rank
dual partners. For quantum groups this means the following. Let us denote
by ~Dn;k the modular category for Uq(Dn) at a (2n + 2k − 2)th root of unity
quotiented by spinors and the action of the transparent object 2k . Then ~Dn;k

is isomorphic to ~Dk;n . The isomorphism is given by sending v to −v−1 and
by ‘transposing’ the partitions. (It is helpful to use the geometric approach to
modularization functors in order to construct the isomorphism.) In the odd
orthogonal case this duality does not exist on the quantum group level, because
the corresponding quotients can not be constructed. Transparent objects have
twist coe�cients (−1).

Unfortunately, this level{rank duality between 0{graded parts of Bk
n and Dk

n

does not extend to the full categories. Even the cardinalities of the sets of
simple objects in Bk

n and Bn
k as well as in Dk

n and Dn
k are di�erent in general.

This suggests the existence of bigger categories with more symmetric sets of
objects admitting level{rank duality. One possibility to construct them would
be to take the 0{graded part of Bk

n and to add two di�erent spin representations
using the Bn and Bk weight systems. This will be studied in the forthcoming
paper with C. Blanchet.
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5 Appendix

5.1 Odd orthogonal case

Let feigi=1;2;:::;n be the standard base of Rn with the scalar product (eijej) =
2�ij . Any weight of Bn has all integer or all half{integer coordinates in this
base. We write � = (�1; :::; �n) if � =

Pn
i=1 �iei . Any weight � with �1 �

�2 � ::: � �n � 0 is a highest weight of an irreducible representation of Bn
or a dominant weight. The half sum of all positive roots of Bn we denote by
� = (n− 1=2; n − 3=2; :::; 1=2).

Let us consider the quantum group Uq(Bn), where q = v2 is a primitive (4n+
4k)th root of unity. The set of simple objects (or dominant weights) of the
corresponding modular category is Γ = f� : �1 + �2 � 2k + 1g, where � is a
highest weight of Bn [8]. The quantum dimension of a simple object � 2 Γ is
given by the following formula:

dim � =
1
 

X
w2W

sn(w)v2(�+�jw(�)) (7)

 =
X
w2W

sn(w)v2(�jw(�)) =
Y

positive roots �

v(�j�) − v−(�j�)

Here W = Zn2 / Sn is the Weyl group of Bn generated by reflections on
the hyperplanes orthogonal to the roots �ei � ej ;�ei . Furthermore, for the
invariant of the Hopf link, whose components are colored by �; � 2 Γ, we have

S�� =
1
 

X
w2W

sn(w)v2(�+�jw(�+�)) : (8)

Lemma 5.1 Let b = (2b1+1
2 ; 2b2+1

2 ; :::; 2bn+1
2 ) be a dominant weight with half{

integer coordinates and A = (k; k; :::; k), then

b

A = (−1)b1+b2+:::+bn

b

:

Proof The coe�cient to determine is equal to SbA(dim b)−1 . From (7) and
(8) we have

dim b =
1
 

X
w2W

sn(w)v2(b+�jw(�))
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SbA =
1
 

X
w2W

sn(w)v2(b+�jw(A+�))

Let us write A+ � = (k + n)(1; 1; :::; 1) +w1(�), where w1 2W and sn(w1) =
(−1)n(n+1)=2 . Then from v4n+4k = −1 we have

v2(k+n)
∑
i(b+�j�ei) = (−1)(b1+b2+:::+bn+n(n+1)=2)

or
sn(w)v2(b+�jw(A+�)) = (−1)b1+b2+:::+bnsn(ww1)v2(b+�jww1(�)) :

The result follows.

5.2 Even orthogonal case

Let feigi=1;2;:::;n be the standard base of Rn with the scalar product (eijej) =
�ij . Any weight of Dn has all integer or all half{integer coordinates in this base.
Any weight � = (�1; :::;��n) with �1 � �2::: � �n � 0 is a highest weight of
an irreducible representation of Dn . The half sum of all positive roots of Dn

we denote by � = (n− 1; n− 2; :::; 1; 0).

Let us consider the quantum group Uq(Dn), where q is a primitive (2n +
2k − 2)th root of unity and v2 = q . The set of simple objects (or dominant
weights) of the corresponding modular category is Γ = f� : �1 + �2 � 2kg.
The formulas (7) and (8) hold for the highest weights from Γ, where the Weyl
group W of Dn is generated by reflections on the hyperplanes orthogonal to
the roots �ei� ej . This group contains Sn . The kernel of the projection to Sn
consists of transformations acting by (−1) on an even number of axes.

Lemma 5.2 Let b = (2b1+1
2 ; 2b2+1

2 ; :::; 2bn+1
2 ) be a dominant weight with half{

integer coordinates, A+ = (k; k; :::; k) and i = vn+k−1 , then

b

A+ = (−1)b1+b2+:::+bn in

b

:

Proof As before, the coe�cient to determine is equal to SbA+(dim b)−1 . We
have

SbA+ =
1
 

X
w2W

sn(w)v2(b+�jw(A++�)) :
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Let us write A+ + � = (k + n − 1)(1; 1; :::; 1) + w1(�), where w1 2 W and
sn(w1) = (−1)n(n−1)=2 . Then

v2(k+n−1)(b+�jw(1;:::;1)) = (−1)b1+b2+:::+bn+n(n−1)=2 in

for any w 2W . The result follows as in the odd orthogonal case.

Note that for A− = (k; k; :::;−k) an analogous statement holds:

b

A− = (−1)b1+b2+:::+bn(−i)n

b
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