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Abstract We study finite foldable cubical complexes of nonpositive cur-
vature (in the sense of A.D. Alexandrov). We show that such a complex
X admits a graph of spaces decomposition. It is also shown that when
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the universal cover of X is isometric to the product of two CAT(0) cubical
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1 Introduction

We study finite foldable cubical complexes with nonpositive curvature (in the
sense of A.D. Alexandrov), including the rank rigidity problem of such com-
plexes. Foldable cubical complexes have been studied by W. Ballmann and
J. Swiatkowski in [BSw]. Our notion of foldable cubical complexes is slightly
more general than that of [BSw] since we do not require gallery connected-
ness. D. Wise has also studied a class of 2-dimensional cubical complexes (VH -
complexes in [W]) which are closely related to foldable cubical complexes.

A cubical complex X is a CW-complex formed by gluing unit Euclidean cubes
together along faces via isometries. We require that all the cubes inject into
X and the intersection of the images of two cubes is either empty or equals
the image of a cube. The image of a k -dimensional unit Euclidean cube in
X is called a k -cube, and a 1-cube is also called an edge. Let d be the path
pseudometric on X . When X is finite dimensional, d is actually a metric and
turns X into a complete geodesic space, see [Br].

Let X be a cubical complex. X is called dimensionally homogeneous if there is
an integer n ≥ 1 such that each cube of X is a face of some n-cube. A folding

of X is a combinatorial map f : X → C onto an n-cube C such that the
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restriction of f on each cube is injective. X is foldable if it admits a folding.
X has nonpositive curvature in the sense of A.D. Alexandrov if and only if all
the vertex links are flag complexes [BH]. Recall that a simplicial complex is a
flag complex if any finite set of vertices that is pairwise joined by edges spans
a simplex. By a FCC we mean a connected foldable cubical complex that is
dimensionally homogeneous, geodesically complete (definition given below) and
has nonpositive curvature.

Our first observation about FCCs is the following:

Proposition 2.6 Let X be a FCC of dimension n. Then X admits the

structure of a graph of spaces, where all the vertex and edge spaces are (n−1)-
dimensional FCCs and the maps from edge spaces to vertex spaces are combi-

natorial immersions.

Notice Proposition 2.6 offers the potential for proving statements about FCCs
by inducting on dimension.

We shall give two applications of the above observation. The first concerns
the rank rigidity problem for CAT(0) spaces. Let X be a metric space with
nonpositive curvature. A curve σ : I → X is a geodesic if it has constant
speed and is locally distance-minimizing. We say X is geodesically complete

if every geodesic σ : I → X can be extended to a geodesic σ̃ : R → X . A
CAT(0) space is a simply connected complete geodesic space with nonpositive
curvature. Let Y be a geodesically complete CAT(0) space. We say Y has
higher rank if each geodesic σ : R → Y is contained in a flat plane (the image
of an isometric embedding R

2 → Y ). Otherwise we say Y has rank one. There
are two main classes of higher rank CAT(0) spaces: symmetric spaces and
Euclidean buildings. The following conjecture is still open ([BBu], [BBr2]):

Rank Rigidity Conjecture Let Y be a geodesically complete CAT(0) space

and Γ a group of isometries of Y whose limit set is the entire ideal boundary

of Y .

(1) If Y has higher rank, then Y isometrically splits unless Y is a symmetric

space or an Euclidean building;

(2) If Y has rank one, then Y contains a periodic rank one geodesic.

Recall a complete geodesic σ : R → Y is a periodic rank one geodesic if σ
does not bound a flat half-plane and there is some γ ∈ Γ and c > 0 such that
γ(σ(t)) = σ(t+ c) for all t ∈ R. The conjecture holds if the action of Γ on Y is
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proper and cocompact and Y is a Hadamard manifold [B] or a 2-dimensional
polyhedron with a piecewise smooth metric [BBr]. Claim (1) of the conjecture
also holds when Y is a 3-dimensional piecewise Euclidean polyhedron and Γ
acts on Y properly and cocompactly [BBr2].

Theorem 3.13 Let X be a finite FCC of dimension 3 with universal cover

X̃ and group of deck transformations Γ.

(1) If X̃ has higher rank, then X̃ is isometric to the product of two CAT(0)
FCCs .

(2) If X̃ has rank one, then X̃ contains a periodic rank one geodesic in the

1-skeleton.

As the second application, we address the Tits alternative question for finite
FCCs . The result has been established by Ballmann and Swiatkowski [BSw].
We give a new and very short proof.

Theorem 4.1 Let X be a finite FCC . Then any subgroup of π1(X) either

contains a free group of rank two or is virtually free abelian.

The paper is organized as follows. In Section 2 we recall some basic facts about
FCCs and show that a FCC has a graph of spaces structure. In Section 3 the
rank rigidity problem for 3-dimensional FCCs is discussed. In Section 4 we give
a new proof of the Tits alternative for FCCs.

The author would like to thank the referee and the editor for many helpful
comments.

2 Foldable cubical complexes

2.1 Locally convex subcomplexes

In this section we show that a FCC has many locally convex subcomplexes.
The results in this section are more or less known (see [BSw], [C], [DJS]). We
include the proofs only for completeness.

For any locally finite piecewise Euclidean complex Y and any y ∈ Y , the
link Link(Y, y) is piecewise spherical. We let dy be the induced path metric
on Link(Y, y). If Y has nonpositive curvature, then Link(Y, y) is a CAT(1)
space. Let Y be a locally finite piecewise Euclidean complex with nonpositive
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curvature and Z ⊂ Y a subcomplex. For z ∈ Z , a subset L(Z, z) ⊂ Link(Y, z)
is defined as follows: a point ξ ∈ Link(Y, z) belongs to L(Z, z) if there is a
nontrivial geodesic segment zx of Y with zx ⊂ Z such that the initial direction
of zx at z is ξ .

For any metric space Z , the Euclidean cone over Z is the metric space C(Z)
defined as follows. As a set C(Z) = Z × [0,∞)/Z × {0}. The image of (z, t)
is denoted by tz . d(t1z1, t2z2) = t1 + t2 if d(z1, z2) ≥ π , and d(t1z1, t2z2) =
√

t21 + t22 − 2t1t2 cos(d(z1, z2)) if d(z1, z2) ≤ π . The point O := Z×{0} is called
the cone point of C(Z).

Recall a subset A ⊂ M of a CAT(1) metric space M is π -convex if for any
a, b ∈ A with d(a, b) < π the geodesic segment ab lies in A.

Lemma 2.1 Let Y be a locally finite piecewise Euclidean complex with non-

positive curvature and Z ⊂ Y a subcomplex. Then Z is locally convex in Y if

and only if for each z ∈ Z , L(Z, z) is π -convex in Link(Y, z).

Proof For any y ∈ Y let C(Link(Y, y)) be the Euclidean cone over Link(Y, y)
and O the cone point. For any r > 0 let B̄(y, r) ⊂ Y and B̄(O, r) ⊂
C(Link(Y, y)) be the closed metric balls with radius r . For any subset A ⊂
Link(Y, y), let Cr(A) ⊂ C(Link(Y, y)) be the subset consisting of points of the
form ta, t ≤ r and a ∈ A.

Since Y is a locally finite piecewise Euclidean complex and Z ⊂ Y is a subcom-
plex, for each z ∈ Z there is some r > 0 and an isometry g : B̄(z, r) → B̄(O, r)
such that g(B̄(z, r) ∩ Z) = Cr(L(Z, z)). Now it is easy to see that B̄(z, r) ∩ Z
is convex in B̄(z, r) if and only if L(Z, z) is π -convex in Link(Y, z).

Let X be a FCC and f : X → C a fixed folding. Two edges e1 and e2 of
X are equivalent if f(e1) and f(e2) are parallel in C . Let E1, · · · , En be
the equivalence classes of the edges of X . For each nonempty subset T ⊂
{1, 2, · · · , n} we define a subcomplex XT of X as follows: a k -cube belongs to
XT if all its edges belong to ET := ∪i∈T Ei . XT is disconnected in general. We
shall see that each component of XT is locally convex in X .

To prove that the components of XT are locally convex in X we also need the
following lemma. Recall a spherical simplex is all right if all its edges have
length π/2, and a piecewise spherical simplicial complex K is all right if all its
simplices are all right. When K is finite dimensional, the path pseudometric
on K is a metric that makes K a complete geodesic space [Br].
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Lemma 2.2 ([BH], p.211) Let K be a finite dimensional all right spheri-

cal complex and v ∈ K a vertex. If σ : [a, b] → K is a geodesic such that

σ(a), σ(b) /∈ B(v, π/2), then each component of B(v, π/2) ∩ σ has length π .

A dimensionally homogeneous cubical complex Z of dimension n has no bound-

ary if each (n − 1)-cube is contained in the boundaries of at least two
n-cubes. Similarly, a dimensionally homogeneous simplicial complex Z of
dimension n has no boundary if each (n−1)-simplex is contained in the bound-
aries of at least two n-simplices.

The following proposition is a consequence of Proposition 1.7.1 of [DJS]. It
also follows from Lemmas 1.1 and 1.3 of [C]. In addition, W. Ballmann and
J. Swiatkowski have made the same observation([BSw], Lemma 3.2(4) and the
paragraph at the bottom of p.69 and the top of p.70).

Proposition 2.3 Let X be a FCC and f : X → C a fixed folding onto an

n-cube. Then for any nonempty T ⊂ {1, 2 · · · , n}, each component of XT is

locally convex in X . Furthermore, each component of XT is also a FCC .

Proof Let Z be a component of XT . For any z ∈ Z we need to show that
L(Z, z) ⊂ Link(X, z) is π -convex. First assume z is a vertex. Then Link(X, z)
is an all right flag complex. By the definition of XT we see L(Z, z) is a full
subcomplex of Link(X, z), that is, a simplex of Link(X, z) lies in L(Z, z) if
and only if all its vertices lie in L(Z, z). Let ξ, η ∈ L(Z, z) with dz(ξ, η) < π .
Assume ξη 6⊆ L(Z, z). Then there is some ξ′ ∈ ξη − L(Z, z). Let ∆ be the
smallest simplex of Link(X, z) containing ξ′ and ω1, · · · , ωk be its vertices.
Then ξ′ ∈ B(ωj, π/2) for all 1 ≤ j ≤ k . Since L(Z, z) is a full subcomplex
and ξ′ /∈ L(Z, z), there exists some j , 1 ≤ j ≤ k , with ωj /∈ L(Z, z). We may
assume ω1 /∈ L(Z, z). By the definition of XT , ω1 corresponds to some edge
e ∈ Ei with i /∈ T . It follows that ξ, η /∈ B(ω1, π/2). Then Lemma 2.2 implies
that ξη ∩ B(ω1, π/2) has length π , contradicting to the fact that dz(ξ, η) < π .

When z is not a vertex, there is an obvious all right simplicial complex structure
on Link(X, z) where the vertices in Link(X, z) are represented by geodesic seg-
ments parallel to the edges in X . In this case L(Z, z) is still a full subcomplex
of Link(X, z) and the above argument applies.

It is clear that Z is a foldable cubical complex that is dimensionally homoge-
neous. Since X is geodesically complete, it has no boundary. It follows that
Z also has no boundary. Z is locally convex in X implies Z has nonpositive
curvature in the path metric. By Proposition 2.4 Z is geodesically complete
and therefore is a FCC.
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Proposition 2.4 Let Z be either a piecewise Euclidean complex that has

nonpositive curvature, or a piecewise spherical complex that is locally CAT(1).
Assume Z is locally finite and dimensionally homogeneous. Then Z is geodesi-

cally complete if and only if it has no boundary.

Proof It is clear that if Z is geodesically complete then it has no boundary. To
prove the other direction, we assume Z has no boundary. We first notice that
Z is geodesically complete if and only if for any z ∈ Z and any ξ ∈ Link(Z, z)
there is some η ∈ Link(Z, z) with dz(ξ, η) ≥ π . The link Link(Z, z) is a
finite piecewise spherical complex that is CAT(1), dimensionally homogeneous
and has no boundary. We prove the following statement by induction on the
dimension: Let Y be an n-dimensional finite piecewise spherical complex that
is CAT(1), dimensionally homogeneous and has no boundary. Then for any
x ∈ Y , there is some y ∈ Y with d(x, y) ≥ π .

When n = 1, Y is a finite graph and the claim is clear. Let n = dimY ≥ 2
and suppose there is a point x ∈ Y such that d(x, y) < π for all y ∈ Y .
Since Y is finite, there is some y0 ∈ Y with d(x, y) ≤ d(x, y0) for all y ∈ Y .
As Y is CAT(1) and d(x, y0) < π , there is a unique minimizing geodesic
σ : [0, d(x, y0)] → Y from y0 to x. Let ξ ∈ Link(Y, y0) be the point represented
by σ . Now Link(Y, y0) has dimension n − 1 and the induction hypothesis
implies that there is some η ∈ Link(Y, y0) with dy0

(ξ, η) ≥ π , where dy0
is

the path metric on Link(Y, y0). Hence σ can be extended to a geodesic σ̃ :
[−ǫ, d(x, y0)] → Y that contains y0 in the interior. As Y is CAT(1), σ̃ is
minimizing for small enough ǫ, contradicting to the choice of y0 .

2.2 Graph of spaces decomposition

In this section we show that a FCC admits decomposition as a graph of spaces,
as defined in [SW].

Let X be a FCC and f : X → C0 a fixed folding onto an n-cube. Then the
set E of edges of X is a disjoint union E = ∐n

i=1Ei , see Section 2.1. For each
i with 1 ≤ i ≤ n, let Ti = {1, 2, · · · , n} − {i}. Then the components of XTi

are (n − 1)-dimensional FCCs and are locally convex in X .

For each n-cube C of X , let e ∈ Ei be an edge of C and Ci ⊂ C the hyperplane
in C containing the midpoint of e and perpendicular to e. It is clear that
Ci ⊂ C does not depend on e and is isometric to a (n − 1)-dimensional unit
Euclidean cube. Set Hi = ∪Ci , where C varies over all n-cubes of X . Hi is
not connected in general. An argument similar to the one in Section 2.1 shows
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that each component of Hi is locally convex in X . Hi has a natural FCC
structure, where each Ci is a (n − 1)-cube.

It is not hard to see that each component of X −XTi
is isometric to Y × (0, 1),

where Y is a component of Hi . Let {Y1, · · · , Yk} be the set of components of
Hi . Then X can be obtained from XTi

by attaching Yj × [0, 1] along Yj ×{0}
and Yj×{1}, 1 ≤ j ≤ k . That is, X has the structure of a graph of spaces [SW]
for each i, 1 ≤ i ≤ n = dim X . Now we make it more precise. The base graph
Gi is as follows. The vertex set {vB} of Gi is in one-to-one correspondence
with the set {B} of components of XTi

, and the edge set {eY } is in one-to-
one correspondence with the set {Y } of components of Hi . For each edge eY ,
consider the component Y × (0, 1) of X−XTi

corresponding to Y . The closure
of Y × (0, 1) in X has nonempty intersection with one or two components of
XTi

. Let B0, B1 be these components of XTi
(we may have B0 = B1 ). Then

the edge eY connects the vertices vB0
and vB1

. The vertex space corresponding
to vB is the component B of XTi

and the edge space corresponding to eY is
the component Y of Hi .

We notice that the base graph Gi is connected: Let vB , vB′ be two vertices of
Gi . Pick two vertices v ∈ B, v′ ∈ B′ of X . Since X is connected, there are
vertices v0 = v, v1, · · · , vl = v′ such that vj−1 and vj are the endpoints of an
edge ej . Let Bj be the component of X − XTi

that contains vj . If ej /∈ Ei ,
then Bj−1 = Bj . On the other hand, if ej ∈ Ei , then vBj−1

and vBj
are

connected by an edge in Gi .

We next describe the maps from edge spaces to vertex spaces. Let eY be an
edge of Gi connecting vB0

and vB1
. We may assume that for each fixed y ∈ Y ,

(y, t) (where (y, t) ∈ Y × (0, 1) ⊂ X ) converges to a point in B0 as t → 0 and
to a point in B1 as t → 1. The maps geY ,0 : Y → B0 and geY ,1 : Y → B1

can be described as follows. Recall each (n − 1)-cube of Y has the form Ci ,
where C is an n-cube of X and Ci ⊂ C is the hyperplane of C containing the
midpoint of some edge e ∈ Ei of C and perpendicular to e. Clearly C has the
decomposition Ci × [0, 1]. We may assume Ci × {0} ⊂ C is contained in B0

and Ci × {1} ⊂ C is contained in B1 . Then the map geY ,0 : Y → B0 sends
Ci to Ci × {0} via the identity map. Similarly for the map geY ,1 . Thus geY ,0

and geY ,1 are nondegenerate combinatorial maps between FCCs. Recall that
two cubes in X either are disjoint or intersect in a single cube. It follows that
the maps geY ,0 and geY ,1 are immersions, that is, they are locally injective.

Lemma 2.5 The maps geY ,0 and geY ,1 are local isometric embeddings. In

particular, they induce injective homomorphisms between fundamental groups.
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Proof We show that geY ,0 is a local isometric embedding, the proof for geY ,1

is similar. It suffices to show that geY ,0 : Y → B0 sends geodesics in Y to
geodesics in B0 . Recall that Y is a component of Hi and the component of
X − XTi

containing Y is isometric to Y × (0, 1). Y can be identified with
Y × {1

2}. Let σ : I → Y be a geodesic. Then for each t, 0 < t < 1, the map
σt : I → X with σt(s) = (σ(s), t) for s ∈ I is a geodesic in X . Since X has
nonpositive curvature, the limit map σ0 : I → X , σ0(s) := limt→0 σt(s) is also
a geodesic in X (see p.121, Corollary 7.58 of [BH]). Now the lemma follows
since σ0 = geY ,0 ◦ σ .

Summarizing the above observations we have the following:

Proposition 2.6 Let X be a FCC of dimension n. Then X admits the

structure of a graph of spaces, where all the vertex and edge spaces are (n−1)-
dimensional FCCs and the maps from edge spaces to vertex spaces are combi-

natorial immersions. In particular, π1(X) has a graph of groups decomposition.

Let X , Gi be as above, vB ∈ Gi a vertex and eY ⊂ Gi an edge incident to
vB . Suppose for each y ∈ Y , (y, t) converges to a point in B as t → 0, and
let geY ,0 : Y → B be the map from the edge space to the vertex space. For

each vertex w ∈ Y , {w} × (0, 1) is an edge in X ; we let ew be the associated
oriented edge which goes from 0 to 1. For any oriented edge e of X with initial
point v ,

→
e∈ Link(X, v) denotes the point representing e.

Lemma 2.7 In the above notation, the following two conditions are equivalent:

(1) geY ,0 is not a covering map;

(2) there exists a vertex w ∈ Y and an oriented edge e ⊂ B with initial point

v := geY ,0(w) such that dv(
→
e ,

→
ew) ≥ π .

Proof We first notice that (2) is equivalent to the following condition:

(3) There is a vertex w ∈ Y and an edge e ⊂ B incident to v = geY ,0(w) such
that no edge (in Y ) incident to w is mapped to e.

So (2) clearly implies (1). Now assume geY ,0 is not a covering map. If the
image of geY ,0 does not contain all the vertices of B , the connectedness of the
1-skeleton of B implies there is an edge e ⊂ B with two endpoints v1 and v2

such that v1 ∈ image(geY ,0) and v2 /∈ image(geY ,0). In this case no edge of
Y is mapped to e and (3) holds. So we assume image(geY ,0) contains all the
vertices of B . If (3) does not hold, then image(geY ,0) = B and for each vertex
w ∈ Y , geY ,0 maps star(w) isomorphically onto star(v), where v = geY ,0(w).
It follows that geY ,0 is a covering map, contradicting to the assumption.
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2.3 Davis complexes of right-angled Coxeter groups

In this section we give examples of finite FCCs whose universal covers are Davis
complexes of certain right-angled Coxeter groups.

Let S be a finite set, and M = (ms,s′)s,s′∈S a symmetric matrix such that
ms,s = 1 for s ∈ S and ms,s′ ∈ {2, 3, · · · , } ∪ {∞} for s 6= s′ ∈ S . The group
W given by the presentation W =< S|(ss′)ms,s′ = 1, s, s′ ∈ S > is a Coxeter
group, where (ss′)∞ = 1 means the relation is void. The Coxeter group W is
a right-angled Coxeter group if for any s 6= s′ ∈ S , ms,s′ = 2 or ∞.

Given any Coxeter group W , there is a locally finite cell complex DW , the so
called Davis complex of W such that W acts on DW properly with compact
quotient [D]. Moussong ([M], [D]) showed that there is a piecewise Euclidean
metric on DW that turns DW into a CAT(0) space. The action of W on DW

preserves the piecewise Euclidean metric, that is, W acts on DW as a group of
isometries. When W is a right-angled Coxeter group, the Davis complex DW

is a cubical complex. Below we shall describe FCCs which are finite quotients
of Davis complexes of certain right-angled Coxeter groups.

There is a one-to-one correspondence between right-angled Coxeter groups and
finite flag complexes. Let W be a right-angled Coxeter group with standard
generating set S . The nerve N(W ) of W is a simplicial complex with set of
vertices S . For any nonempty subset T ⊂ S there is a simplex in N(W ) with
T as its vertex set if and only if mt,t′ = 2 for any t 6= t′ ∈ T . N(W ) is clearly
a flag complex. Conversely, let K be a finite flag complex with set of vertices
S . Then we can define a right-angled Coxeter group with generating set S as
follows: for s 6= s′ , ms,s′ = 2 if there is an edge in K joining s and s′ , and
ms,s′ = ∞ otherwise.

Let K be a finite flag complex with vertex set S . We shall construct a finite
cubical complex Y (K) whose vertex links are all isomorphic to K ([BH], p.212).
Let V be a Euclidean space with dimension equal to |S|, the cardinality of
S . Identify the standard basis es(s ∈ S ) with S and consider the unit cube
[0, 1]|S| ⊂ V . For each nonempty subset T ⊂ S , let FT be the face of [0, 1]|S|

spanned by the unit vectors et , t ∈ T . The cubical complex Y (K) is the
subcomplex of [0, 1]|S| consisting of all faces parallel to FT , for all nonempty
subsets T of S that are the vertex sets of simplices of K . Notice that Y (K)
contains the 1-skeleton of the unit cube [0, 1]|S| ⊂ V . In particular, Y (K) is
connected.
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Proposition 2.8 [BH] Let K be a finite flag complex. Then Y (K) is a

connected finite cubical complex with nonpositive curvature all of whose vertex

links are isomorphic to K .

We subdivide Y (K) by using the hyperplanes xs = 1/2 (s ∈ S ) of the unit
cube [0, 1]|S| . Let X(K) be the obtained cubical complex. Then X(K) is also
a finite cubical complex of nonpositive curvature with some of its vertex links
isomorphic to K .

A simplicial complex K is foldable if there is a simplicial map f : K → ∆ onto
an n-simplex such that the restriction of f to each simplex is injective.

Corollary 2.9 Let K be a finite flag complex. If K is foldable, dimensionally

homogeneous and has no boundary, then X(K) is a finite FCC .

Proof It is not hard to see that X(K) is dimensionally homogeneous and has
no boundary. Proposition 2.4 implies that X(K) is geodesically complete. We

need to show that X(K) is foldable. First we notice that the group Z
|S|
2 acts

on X(K) as a group of isometries: the s-th factor Z2 acts as the orthogonal
reflection about the hyperplane xs = 1/2. Let o ∈ X(K) be the origin of V

and star(o) the star of o in X(K). Then the quotient of X(K) by Z
|S|
2 is

isomorphic to star(o). So we have a nondegenerate combinatorial map from
X(K) onto star(o). Since the link of X(K) at o is isomorphic to K and K
is foldable, the star star(o) can be folded according to the folding of K . The
composition of these two maps is a folding of X(K).

Next we construct certain flag complexes that satisfy the assumptions in Corol-
lary 2.9. Let n ≥ 2. A standard n-sphere is the unit round n-sphere with an
all right simplicial complex structure. A standard n-sphere has n + 1 subcom-
plexes which are standard (n − 1)-spheres; we call them equators. Let S

n be
a standard n-sphere and E one of its equators. An all right simplicial com-
plex is called a standard n-hemisphere if it is isomorphic to the closure of one
of the components of S

n − E ; the subcomplex of the standard n-hemisphere
corresponding to E is also called its equator. The unique point on a standard
n-hemisphere that has distance π/2 from its equator is called its pole.

Let S
n be a standard n-sphere and E1, · · · , En+1 its equators. A hemispherex

is an all right simplicial complex obtained from S
n by attaching a finite num-

ber of standard n-hemispheres along the equators of S
n such that for each

i, 1 ≤ i ≤ n + 1, there is at least one hemisphere attached along Ei . Here the
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attaching is realized through isomorphisms between equators of S
n and those of

the hemispheres. It is clear that a hemispherex H satisfies all the conditions in
Corollary 2.9, so the corresponding X(H) is a finite FCC. The universal cover
of X(H) is a subdivision of the Davis complex of the right-angled Coxeter group
whose nerve is H .

Hemispherex was first introduced by Ballmann and Brin in [BBr2]. The Eu-
clidean cone over a hemispherex is the first example of a higher rank CAT(0)
space aside from Euclidean buildings and symmetric spaces. But such a space
does not admit cocompact isometric actions. On the other hand, we shall see
in Section 3.2 that if X is a finite FCC with some vertex link isomorphic to a
hemispherex, then it contains closed rank one geodesics. In particular, X(H)
contains closed rank one geodesics if H is a hemispherex.

3 Existence of closed rank one geodesics

In this section we discuss the existence of closed rank one geodesics in a finite
FCC. Throughout this section X denotes a finite FCC of dimension n, except
in Section 3.4.

3.1 Vertex links and 1-skeleton

Recall that X is dimensionally homogeneous, geodesically complete and has
nonpositive curvature. It follows that for each vertex v of X , the link Link(X, v)
is dimensionally homogeneous, has no boundary and is a flag complex.

Recall that the set of edges in X is a disjoint union: E = ∐n
i=1Ei . Let v be a

vertex of X . For 1 ≤ i ≤ n, let Vi,v be the set of vertices in Link(X, v) that
correspond to edges in Ei . Since X has no boundary, Vi,v contains at least two
points.

Lemma 3.1 Let v ∈ X be a vertex and 1 ≤ i ≤ n. If Vi,v consists of exactly

two points, then Link(X, v) is the spherical join of Vi,v and Li,v , where Li,v

is the subcomplex of Link(X, v) consisting of all simplices of Link(X, v) with

vertices in Vj,v , j 6= i.

Proof Denote by ξ+, ξ− the two vertices in Vi,v , and let η ∈ Vj,v with j 6= i.
Since Link(X, v) is a flag complex it suffices to show that there are edges ηξ+

and ηξ− in Link(X, v).

Algebraic & Geometric Topology, Volume 4 (2004)



614 Xiangdong Xie

Since Link(X, v) is dimensionally homogeneous, there is a (n − 1)-simplex ∆1

of Link(X, v) containing η . ∆1 contains exactly one vertex from Vi,v . Without
loss of generality we may assume it is ξ+ (thus there is an edge ηξ+ ). Let ∆′

1 ⊂
∆1 be the (n − 2)-face disjoint from ξ+ . Since Link(X, v) has no boundary,
there is a (n − 1)-simplex ∆2 6= ∆1 containing ∆′

1 . The assumption that Vi,v

consists of exactly two points implies ξ− is a vertex of ∆2 . In particular there
is an edge ηξ− .

For any vertex v of X and 1 ≤ i ≤ n, let Xi,v be the component of X{i} that
contains v .

Corollary 3.2 Let v ∈ X be a vertex and 1 ≤ i ≤ n. If there are ξ ∈ Vj,v ,

η ∈ Vi,v with j 6= i and dv(ξ, η) ≥ π , then Xi,v is not a circle.

Proof By Lemma 3.1, Vi,v contains at least three points and therefore there
are at least three edges of Xi,v incident to v .

For an oriented edge e, ē denotes the same edge with the opposite orientation
and t(e) denotes the terminal point of e. It is not hard to prove the following
lemma.

Lemma 3.3 Let Γ be a connected finite graph such that the valence of each

vertex is at least two. Assume Γ is not homeomorphic to a circle. Then for any

two oriented edges e1 , e2 in Γ, there is a geodesic c from t(e1) to t(e2) such

that ē2 ∗ c ∗ e1 is also a geodesic. In particular, for any oriented edge e of Γ,

there is a geodesic loop c based at t(e) such that ē ∗ c ∗ e is also a geodesic.

3.2 Closed rank one geodesics

Let v ∈ X be a vertex and ξ ∈ Link(X, v). Then ξ lies in the interior of a
simplex ∆ of Link(X, v). Define T (ξ) = {i : Vi,v ∩ ∆ 6= φ}. Then T (ξ) ⊂
{1, 2, · · · , n}. We say T (ξ) is the type of ξ . For an oriented edge e of X with

initial point v , define Pe = {ξ ∈ Link(X, v) : dv(ξ,
→
e ) = π/2}.

Lemma 3.4 Let e be an oriented edge of X . Then there is an isometry

De : Pe → Pē such that ξ and De(ξ) have the same type for any ξ ∈ Pe .
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Proof Let i be the index such that the geometric edge of e lies in Ei , m the
midpoint of e and Y the component of Hi containing m. Denote by v and
w the initial and terminal points of e, and B0 and B1 the components of XTi

containing v and w respectively. Since geY ,0 : Y → B0 and geY ,1 : Y → B1 are
local isometric embeddings and B0 , B1 are locally convex in X , the induced
maps h0 : Link(Y,m) → Link(B0, v) ⊂ Link(X, v) and h1 : Link(Y,m) →
Link(B1, w) ⊂ Link(X,w) are isometric embeddings. It is not hard to check
that the images of these maps are Pe and Pē respectively. Set De = h1 ◦ h0

−1 .
Then De : Pe → Pē is an isometry. Since h0 and h1 clearly preserve type, De

also preserves type.

Corollary 3.5 Let X be a FCC , v ∈ X a vertex and e1, e2, e3 three ori-

ented edges with initial point v . Suppose dv(
→
e1,

→
e3) = dv(

→
e2,

→
e3) = π/2. Then

dv(
→
e1,

→
e2) = π if and only if dw(De3

(
→
e1),De3

(
→
e2)) = π , where w is the terminal

point of e3 .

Proof It follows easily from the fact that De3
: Pe3

→ Pē3
is an isometry.

We say a geodesic in a metric space with nonpositive curvature has rank one if
its lifts in the universal cover have rank one.

Proposition 3.6 Let c ⊂ X be a closed geodesic that is contained in the 1-

skeleton. If for each i, c contains at least one edge from Ei , then c is a closed

rank one geodesic.

Proof Let π : X̃ → X be the universal cover of X , c̃ a lift of c to X̃ and
Ẽi = π−1(Ei) for 1 ≤ i ≤ n. Note X̃ is also a FCC and the set Ẽ of edges of
X̃ has the decomposition into different colors Ẽ = ∐n

i=1Ẽi .

Assume the proposition is false. Then there is half flatplane H bounding c̃,
that is, H = image(f) where f is an isometric embedding f : R × [0,∞) → X̃
with f(R × {0}) = c̃. For any vertex v ∈ c̃, H determines a unique point
ξv ∈ Link(X̃, v) with the following property: for any oriented edge e ⊂ c̃ with
initial point v and terminal point w , ξv ∈ Pe and De(ξv) = ξw . By Lemma
3.4, all ξv have the same type T ⊂ {1, 2, · · · , n}. Let i ∈ T . By assumption
there is an oriented edge e ⊂ c̃ with e ∈ Ẽi . Let v be the initial point of
e. Since Link(X̃, v) is an all right spherical complex and

→
e∈ Link(X̃, v) is a

vertex, ξv ∈ Pe implies dv(
→
e , ξ) = π/2 for any vertex ξ of the smallest simplex

of Link(X̃, v) containing ξv . Since T (ξv) = T ∋ i, the definition of type implies

there is an oriented edge ei ∈ Ẽi with dv(
→
e ,

→
ei) = π/2. This contradicts to the

facts that e ∈ Ẽi and X̃i,v is locally convex in X̃ .
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Let v ∈ X be a vertex. We define a relation ∼v on the set {1, 2, · · · , n} as
follows: i ∼v j if and only if there are oriented edges e1 ∈ Ei , e2 ∈ Ej with

initial point v such that dv(
→
e1,

→
e2) ≥ π .

Proposition 3.7 Let X be a finite FCC of dimension n. For a fixed vertex v ∈
X , if T ⊂ {1, 2, · · · , n} is an equivalence class with respect to the equivalence

relation generated by ∼v , then there is a closed geodesic in the 1-skeleton of

X that contains at least one edge from Ei for each i ∈ T .

Proof By the definition of the equivalence relation, we may assume T =
{i1, i2, · · · , im} such that for each t, 2 ≤ t ≤ m, there is some j , 1 ≤ j < t
with it ∼v ij . Now we prove the following claim by induction on k , 1 ≤ k ≤ m:
there is a closed geodesic ck in the 1-skeleton of X such that for each j ≤ k ,
ck contains an edge belonging to Eij and incident to v .

The claim is clear for k = 1. Now let k ≥ 2 and assume the claim has been
established for k−1. By the above paragraph we have ik ∼v ij for some j < k .
Hence there are oriented edges e′j ∈ Eij , ek ∈ Eik with initial point v such

that dv(
→

e′j ,
→
ek) ≥ π . Corollary 3.2 implies Xij ,v and Xik ,v are not circles. By

induction hypothesis, there is a closed geodesic ck−1 in the 1-skeleton of X
containing an oriented edge ej ∈ Eij with initial point v . Let v1 , v2 , v3 be
the terminal points of the edges ek , e′j , ej respectively. By Lemma 3.3, there
is a geodesic loop c̃1 in Xik,v based at v1 such that c′1 = ēk ∗ c̃1 ∗ ek is also a
geodesic in Xik ,v . Similarly there are geodesic loops c̃2 and c̃3 in Xij ,v based
at v2 and v3 respectively such that c′2 = ē′j ∗ c̃2 ∗ e′j and c′3 = ēj ∗ c̃3 ∗ ej are
geodesics in Xij ,v . Proposition 2.3 implies c′1 , c′2 and c′3 are geodesics in X .
We reparametrize the closed geodesic ck−1 so that it starts from v with initial
segment ej . Define ck = c′2 ∗c′3 ∗ck−1 ∗c′2 ∗c′1 if e′j 6= ej and ck = c′1 ∗c′2 ∗ck−1 if
e′j = ej . Now it is easy to check that ck is a closed geodesic with the required
property.

The following corollary follows immediately from Propositions 3.6 and 3.7.

Corollary 3.8 Let X be a finite FCC of dimension n and v ∈ X a vertex.

If {1, 2, · · · , n} is a single equivalence class with respect to the equivalence

relation generated by ∼v , then there is a closed rank one geodesic contained in

the 1-skeleton of X .

Let H be a hemispherex with central sphere S
n , and E1, · · · , En+1 the equators

of S
n . For each i, 1 ≤ i ≤ n + 1, let Hi be a fixed hemisphere of H that is
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attached to S
n along Ei . Denote the pole of Hi by pi . Then the distance

between pi and pj is π for i 6= j . Now let X be a FCC and v ∈ X a vertex
with Link(X, v) = H . Then there are oriented edges ei , 1 ≤ i ≤ n + 1 with

initial point v and
→
ei= pi . It is clear that ei and ej have different colors for

i 6= j . It follows that the assumption in the above corollary is satisfied if the
vertex link Link(X, v) is a hemispherex. Thus we have:

Corollary 3.9 Let X be a finite FCC of dimension n. Suppose there is a

vertex v ∈ X such that Link(X, v) is a hemispherex, then X has a closed rank

one geodesic contained in the 1-skeleton.

Proposition 3.10 Let X be a finite FCC . Suppose there is a vertex v ∈ X
and ξ ∈ Vi,v , η ∈ Vj,v with i 6= j and dv(ξ, η) > π , then X contains a closed

rank one geodesic in the 1-skeleton.

Proof Let e1 and e2 be the two oriented edges with initial point v that give
rise to ξ and η respectively. Since dv(ξ, η) > π , Corollary 3.2 implies Xi,v and
Xj,v are not circles. Lemma 3.3 then implies there are geodesic loops c1 ⊂ Xi,v

and c2 ⊂ Xj,v based at t(e1) and t(e2) respectively such that c′1 := ē1 ∗ c1 ∗ e1

and c′2 := ē2 ∗ c2 ∗ e2 are geodesics in Xi,v and Xj,v respectively. Since by
Proposition 2.3 Xi,v and Xj,v are locally convex in X , c′1 and c′2 are geodesics
in X . Let c = c′2 ∗ c′1 . Since dv(ξ, η) > π , it is clear that c is a closed rank one
geodesic.

3.3 A splitting criterion

Let Y be a CAT(0) space and Z1, Z2 ⊂ Y be two closed, convex subsets. We
say Z1 , Z2 are parallel if for some a ≥ 0 there is an isometric embedding
f : Z1 × [0, a] → Y such that f(Z1 ×{0}) = Z1 and f(Z1 ×{a}) = Z2 . For any
closed convex subset Z ⊂ Y of a CAT(0) space Y , let PZ be the union of all
closed convex subsets that are parallel to Z . When Z is geodesically complete,
PZ is closed, convex and isometrically splits Z×C , where C ⊂ Y is closed and
convex ([BBr2], p.6).

Proposition 3.11 Let X be a FCC of dimension n. Suppose {1, 2, · · · , n} is

the disjoint union of nonempty subsets T , S with the following property: for

any vertex v ∈ X , and any two edges incident to v , ei ∈ Ei , ej ∈ Ej with

i ∈ T , j ∈ S , there is a square containing ei and ej in the boundary. Then the

universal cover X̃ of X is isometric to the product of two CAT(0) FCCs .
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Proof For any vertex v ∈ X̃ , let X̃T,v be the component of X̃T that contains
v . We claim for any edge e of X̃ with endpoints v and w , X̃T,v and X̃T,w are
parallel.

We may assume e ∈ Ei for some i ∈ S , otherwise X̃T,v = X̃T,w . For any k ≥ 0
we inductively define a subcomplex X̃T,v(k) of X̃T,v : X̃T,v(0) = {v}, for k ≥ 1,
X̃T,v(k) is the union of X̃T,v(k−1) and all the cubes in X̃T,v that have nonempty
intersection with X̃T,v(k−1). Similarly one can define X̃T,w(k). We also define
subcomplexes X̃T,e(k) of X̃ : X̃T,e(0) = e, for k ≥ 1, X̃T,e(k) is the union of
X̃T,e(k − 1) and all the cubes whose edges are in Ei ∪ (∪j∈TEj) and whose
intersections with X̃T,e(k−1) contain edges from Ei . Set X̃T,e = ∪k≥0X̃T,e(k).

Since X̃ is a CAT(0) cubical complex, the vertex links of X̃ are flag complexes.
Our assumption then implies that for any (m− 1) (m ≤ n) cube C in X̃T,v(1)
or X̃T,w(1), there is a unique m-cube in X̃ that contains both e and C . It
follows that X̃T,e(1) contains X̃T,v(1) and X̃T,w(1) and there is an isomorphism

fe,1 : X̃T,v(1) × [0, 1] → X̃T,e(1)

such that fe,1|X̃T,v(1)×{0} is the identity map and fe,1(X̃T,v(1)×{1}) = X̃T,w(1).

Now X̃T,v(k) = ∪v′X̃T,v′(1) and X̃T,e(k) = ∪e′X̃T,e′(1), where v′ varies over
all vertices in X̃T,v(k − 1) and e′ ⊂ X̃T,e(k − 1) varies over all edges from Ei .
Notice all the maps fe′,1 are compatible for e′ ⊂ X̃T,e(k−1) from Ei . It follows
that for each k there is an isomorphism fe,k : X̃T,v(k) × [0, 1] → X̃T,e(k) such
that fe,k|X̃T,v(k)×{0} is the identity map, fe,k(X̃T,v(k) × {1}) = X̃T,w(k) and

fe,k agrees with fe,k−1 when restricted to X̃T,v(k − 1)× [0, 1]. The union of all
these isomorphisms fe,k defines an isomorphism fe : X̃T,v × [0, 1] → X̃T,e such
that fe|X̃T,v×{0} is the identity map onto X̃T,v and fe(X̃T,v × {1}) = X̃T,w . It

follows that X̃T,v and X̃T,w are parallel.

Fix a vertex v0 ∈ X̃ and let PT be the parallel set of X̃T,v0
. Note X̃T,v0

is closed, convex and geodesically complete. It follows that PT isometrically
splits PT = X̃T,v0

× Y where Y ⊂ X̃ is a closed convex subset and for y ∈ Y ,
X̃T,v0

× {y} is parallel to X̃T,v0
. By the claim we have established, all vertices

of X̃ lie in PT . Since X̃ is the convex hull of all its vertices we see X̃ = PT

splits.

Proposition 3.11 has previously been established in dimension 2 (Theorem 1.10
on p.36 of [W] and Theorem 10.2 in [BW]).

Let X be a FCC. By Proposition 2.6 X has the structure of a graph of spaces,
where all the vertex and edge spaces are FCCs and the maps from edge spaces
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to vertex spaces are combinatorial immersions. The following corollary follows
from Lemma 2.7 and Proposition 3.11.

Corollary 3.12 Let X be a FCC with a graph of spaces decomposition as in

Proposition 2.6. If all the maps from edge spaces to vertex spaces are covering

maps, then the universal cover of X is isometric to the product of a simplicial

tree and a (n − 1)-dimensional CAT(0) FCC .

3.4 Rank rigidity in low dimensions

In this section we discuss the rank rigidity problem for finite FCCs with di-
mension ≤ 3. A 1-dimensional finite FCC X is a finite graph and each of its
vertices is incident to at least two edges; X clearly contains closed geodesics
and all the geodesics in X have rank one. The claim in dimension 2 follows
easily from Corollary 3.8 and Proposition 3.11.

Theorem 3.13 Let X be a finite FCC of dimension 3 with universal cover

X̃ .

(1) If X̃ has higher rank, then X̃ is isometric to the product of two CAT(0)
FCCs .

(2) If X̃ has rank one, then there is a closed rank one geodesic in the 1-skeleton

of X .

Proof Suppose that X̃ does not split as a product. Recall the decomposition
of the set of edges into different colors: E = E1 ∐ E2 ∐ E3 . We shall call the
edges in E1 , E2 , E3 blue, green and red edges respectively. By Proposition
3.10 and Proposition 3.11 we may assume the following: for any two oriented
edges e1 , e2 with the same initial point v but different colors, dv(

→
e1,

→
e2) ≤ π

holds; there exist two oriented edges e1 , e2 with different colors (say blue and

green respectively) and the same initial point v such that dv(
→
e1,

→
e2) = π .

Consider the graph of spaces decomposition of X where the vertex spaces are
components of X{1,2} . Let G3 be the base graph. By Corollary 3.12 at least
one of the maps from the edge spaces to vertex spaces is not a covering map.
Recall the base graph G3 is connected. Let k ≥ 0 be the smallest integer with
the following property: there are two vertices vB , vB′ of G3 at distance k apart
such that

(1) B contains an oriented blue edge e1 and an oriented green edge e2 with

the same initial point v ∈ X such that dv(
→
e1,

→
e2) = π ;
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(2) there is an edge eY ⊂ G3 incident to vB′ such that the map from the edge
space Y to the vertex space B′ is not a covering map.

We claim k = 0. Assume k ≥ 1. Let B0 = B,B1, · · · , Bk = B′ be a sequence
of components of X{1,2} such that vBi

and vBi+1
(0 ≤ i ≤ k − 1) are adjacent

vertices in G3 . Since k ≥ 1, the map from the edge space of vBvB1
to the vertex

space B is a covering map. Lemma 2.7 implies that there is a red edge e with
one endpoint v and the other endpoint w in B1 such that e is perpendicular
to both e1 and e2 . Corollary 3.5 implies that there exist an oriented blue edge
e3 and an oriented green edge e4 with initial point w such that dw(

→
e3,

→
e4) = π .

Note e3, e4 ⊂ B1 and the distance from vB1
to vB′ in G3 is k−1, contradicting

to the definition of k . Therefore k = 0 and B = B′ . By Lemma 2.7 there is
a vertex v′ ∈ B and oriented edges er (red), eb ⊂ B with initial point v′ such

that dv′(
→
er,

→
eb) = π . We may assume eb is a blue edge.

By Corollary 3.8 we may assume the following: for any vertex v ∈ B , if
there are oriented blue edge e1 and red edge e2 with initial point v such that
dv(

→
e1,

→
e2) = π , then all green edges incident to v are perpendicular to all blue

and red edges incident to v .

Recall that B is a finite FCC of dimension 2. We consider the graph of spaces
decomposition of B where the vertex spaces consist of blue edges. Let G be
the connected base graph. Lemma 2.7 and the condition (1) above imply that
not all maps from edge spaces to vertex spaces are covering maps. Let l ≥ 0
be the smallest integer with the following property: there are two vertices vC

and vC′ of G at distance l apart such that

(1) there is a vertex v′ ∈ C , an oriented red edge er and an oriented blue edge

eb with initial point v′ such that dv′(
→
er,

→
eb) = π ;

(2) there is an edge eY ⊂ G incident to vC′ such that the map from the edge
space Y to the vertex space C ′ is not a covering map.

Now the preceding paragraph and a similar argument as above show that l = 0
and C = C ′ .

There is a vertex v′′ ∈ C , an oriented blue edge eb′ and an oriented green
edge eg with initial point v′′ such that dv′′(

→
eb′ ,

→
eg) = π . Corollary 3.2 implies

C = X1,v′′ is not a circle. By Lemma 3.3 there is a geodesic c ⊂ C from v′ to
v′′ which starts with eb and ends with ēb′ . Similarly there are geodesic loops
c1 and c2 based at t(er) and t(eg) respectively such that c′1 = ēr ∗ c1 ∗ er and
c′2 = ēg ∗ c2 ∗ eg are also geodesics. Set c′ = c′1 ∗ c̄ ∗ c′2 ∗ c. Then c′ is a closed
geodesic that contains blue, green and red edges. By Proposition 3.6 c′ is a
rank one geodesic.
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Theorem 3.13 (1) also follows from a theorem of Ballmann and Brin [BBr2]:
they proved that if a 3-dimensional, geodesically complete and piecewise Eu-
clidean polyhedra Y is CAT(0), has higher rank and admits a cocompact and
properly discontinuous group of isometries, then Y either isometrically splits
or is a thick Euclidean building of type Ã3 or B̃3 . A FCC certainly can not be
an Euclidean building of type Ã3 or B̃3 . The main point of Theorem 3.13 is
the existence of closed rank one geodesics in rank one finite FCCs. Our proof
of Theorem 3.13 is independent of the proof in [BBr2].

4 Tits alternative for foldable cubical complexes

In this section we give a short proof of the Tits alternative for the fundamental
group of a finite FCC. Ballmann and Swiatkowski have a slightly more general
result [BSw].

Theorem 4.1 Let X be a finite FCC . Then any subgroup of π1(X) either

contains a free group of rank two or is virtually free abelian.

Proof We induct on the dimension of X . If dim X = 1, then X is a finite
graph and the Theorem clearly holds. Let n = dim X and H a subgroup of
π1(X). By Proposition 2.6 X admits a graph of spaces decomposition where
all the vertex and edge spaces are (n − 1)-dimensional finite FCCs. It follows
that π1(X) admits a graph of groups decomposition and acts on the associated
Bass-Serre tree T . As a subgroup of π1(X), H also acts on T . By [PV], H
contains a free group of rank two unless one of the following happens: H fixes a
point in T , H stabilizes a complete geodesic in T , or H fixes a point in ∂∞T .
We need to consider these three exceptional cases.

First assume H fixes a point in T . Then H fixes a vertex of T and is a subgroup
of a conjugate of some vertex group of the graph of groups decomposition for
π1(X). We have observed that such a vertex group is the fundamental group
of a finite FCC with dimension n− 1. By induction hypothesis the claim on H
holds.

Now assume H stabilizes a complete geodesic c in T . Since T is a simplicial
tree, by taking an index two subgroup we may assume H acts on c as transla-
tions and so there is an exact sequence 1 → N → H → Z → 1. Thus N ⊂ H
has a fixed point in c ⊂ T . By the previous paragraph N contains a free group
of rank two or is virtually free abelian. We may assume N is virtually free
abelian. It implies that H is virtually solvable. The claim on H follows since
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any virtually solvable subgroup of a group acting properly and cocompactly by
isometries on a CAT(0) space is virtually free abelian ([BH], p.249). The case
when H fixes a point in ∂∞T can be handled similarly.
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