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Noncommutative knot theory

Tim D. Cochran

Abstract The classical abelian invariants of a knot are the Alexander
module, which is the �rst homology group of the the unique in�nite cyclic
covering space of S3 −K , considered as a module over the (commutative)
Laurent polynomial ring, and the Blanch�eld linking pairing de�ned on this
module. From the perspective of the knot group, G, these invariants reflect
the structure of G(1)=G(2) as a module over G=G(1) (here G(n) is the nth

term of the derived series of G). Hence any phenomenon associated to G(2)

is invisible to abelian invariants. This paper begins the systematic study of
invariants associated to solvable covering spaces of knot exteriors, in par-
ticular the study of what we call the nth higher-order Alexander module,
G(n+1)=G(n+2) , considered as a Z[G=G(n+1)]{module. We show that these
modules share almost all of the properties of the classical Alexander module.
They are torsion modules with higher-order Alexander polynomials whose
degrees give lower bounds for the knot genus. The modules have presenta-
tion matrices derived either from a group presentation or from a Seifert sur-
face. They admit higher-order linking forms exhibiting self-duality. There
are applications to estimating knot genus and to detecting �bered, prime
and alternating knots. There are also surprising applications to detecting
symplectic structures on 4{manifolds. These modules are similar to but
di�erent from those considered by the author, Kent Orr and Peter Teich-
ner and are special cases of the modules considered subsequently by Shelly
Harvey for arbitrary 3{manifolds.

AMS Classi�cation 57M27; 20F14

Keywords Knot, Alexander module, Alexander polynomial, derived se-
ries, signature, Arf invariant

1 Introduction

The success of algebraic topology in classical knot theory has been largely
con�ned to abelian invariants, that is to say to invariants associated to the
unique regular covering space of S3nK with Z as its group of covering trans-
lations. These invariants are the classical Alexander module, which is the �rst
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homology group of this cover considered as a module over the commutative ring
Z[t; t−1], and the classical Blanch�eld linking pairing. In turn these determine
the Alexander polynomial and Alexander ideals as well as various numerical
invariants associated to the �nite cyclic covering spaces. From the perspec-
tive of the knot group, G = �1(S3nK), these invariants reflect the structure of
G(1)=G(2) as a module over G=G(1) (here G(0) = G and G(n) = [G(n−1); G(n−1)]
is the derived series of G). Hence any phenomenon associated to G(2) is in-
visible to abelian invariants. This paper attempts to remedy this de�ciency
by beginning the systematic study of invariants associated to solvable covering
spaces of S3nK , in particular the study of the higher-order Alexander module,
G(n)=G(n+1) , considered as a Z[G=G(n)]{module. Certainly such modules have
been considered earlier but the di�culties of working with modules over non-
commutative, non-Noetherian, non UFD’s seems to have obstructed progress.

Surprisingly, we show that these higher-order Alexander modules share most
of the properties of the classical Alexander module. Despite the di�culties of
working with modules over non-commutative rings, there are applications to
estimating knot genus, detecting �bered, prime and alternating knots as well
as to knot concordance. Most of these properties are not restricted to the
derived series, but apply to other series. For simplicity this greater generality
is discussed only briefly herein.

Similar modules were studied in [COT1] [COT2] [CT] where important applica-
tions to knot concordance were achieved. The foundational ideas of this paper,
as well as the tools necessary to begin it, were already present in [COT1] and
for that I am greatly indebted to my co-authors Peter Teichner and Kent Orr.
Generalizing our work on knots, Shelly Harvey has studied similar modules for
arbitrary 3{manifolds and has found several striking applications: lower bounds
for the Thurston norm of a 2{dimensional homology class that are much better
than C. McMullen’s lower bound using the Alexander norm; and new alge-
braic obstructions to a 4{manifold of the form M3�S1 admitting a symplectic
structure [Ha].

Some notable earlier successes in the area of non-abelian knot invariants were
the Jones polynomial, Casson’s invariant and the Kontsevitch integral. More in
the spirit of the present approach have been the \metabelian" Casson{Gordon
invariants and the twisted Alexander polynomials of X.S. Lin and P. Kirk and
C. Livingston [KL]. Most of these detect noncommutativity by studying repre-
sentations into known matrix groups over commutative rings. The relationship
(if any) between our invariants and these others, is not clear at this time.

Our major results are as follows. For any n � 0 there are torsion modules
AZn(K) and An(K), whose isomorphism types are knot invariants, generalizing
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the classical integral and \rational" Alexander module (n = 0) (Sections 2, 3,
4). An(K) is a �nitely generated module over a non-commutative principal
ideal domain Kn[t�1] which is a skew Laurent polynomial ring with coe�cients
in a certain skew �eld (division ring) Kn . There are higher-order Alexander
polynomials �n(t) 2 Kn[t�1] (Section 5). If K does not have (classical) Alexan-
der polynomial 1 then all of its higher modules are non-trivial and �n 6= 1. The
degrees �n of these higher order Alexander polynomials are knot invariants and
(using some work of S. Harvey) we show that they give lower bounds for knot
genera which are provably sharper than the classical bound (�0 � 2 genus(K))
(see Section 7).

Theorem If K is a non-trivial knot and n � 1 then �0(K) � �1(K) + 1 �
�2(K) + 1 � � � � � �n(K) + 1 � � � � 2 genus(K).

Corollary If K is a knot whose (classical) Alexander polynomial is not 1 and
k is a positive integer then there exists a hyperbolic knot K� , with the same
classical Alexander module as K , for which �0(K�) < �1(K�) < � � � < �k(K�).

There exist presentation matrices for these modules obtained by pushing loops
o� of a Seifert matrix (Section 6). There also exist presentation matrices ob-
tained from any presentation of the knot group via free di�erential calculus
(Section 13).There are higher order bordism invariants, �n , generalizing the
Arf invariant (Section 10) and higher order signature invariants, �n , de�ned
using traces on Von Neumann algebras (Section 11). These can be used to de-
tect chirality. Examples are given wherein these are used to distinguish knots
which cannot be distinguished even by the �n . There are also higher order link-
ing forms on An(K) whose non-singularity exhibits a self-duality in the An(K)
(Section 12).

The invariants AZi , �i and �i have very special behavior on �bered knots and
hence give many new realizable algebraic obstructions to a knot’s being �bered
(Section 9). Moreover using some deep work of P. Kronheimer and T. Mrowka
[Kr2] the �i actually give new algebraic obstructions to the existence of a sym-
plectic structure on 4{manifolds of the form S1 �MK where MK is the zero-
framed surgery on K . These obstructions can be non-trivial even when the
Seiberg{Witten invariants are inconclusive!

Theorem 9.5 Suppose K is a non-trivial knot. If K is �bered then all the
inequalities in the above Theorem are equalities. The same conclusion holds if
S1 �MK admits a symplectic structure.
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Section 9 establishes that, given any n > 0, there exist knots with �i + 1 = �0

for i < n but �n + 1 6= �0 .

The modules studied herein are closely related to the modules studied in [COT1]
[COT2] [CT], but are di�erent. In particular for n > 0 our An and �n have
no known special behavior under concordance of knots. This is because the An
reflect only the fundamental group of the knot exterior, whereas the modules
of [COT1] reflect the fundamental groups of all possible slice disk exteriors. To
further detail the properties of the higher-order modules of [COT1] (for example
their presentation in terms of a Seifert surface and their special nature for slice
knots) will require a separate paper although many of the techniques of this
paper will carry over.

2 De�nitions of the higher-order Alexander modules

The classical Alexander modules of a knot or link or, more generally, of a 3{
manifold are associated to the �rst homology of the universal abelian cover of
the relevant 3{manifold. We investigate the homology modules of other regular
covering spaces canonically associated to the knot (or 3{manifold).

Suppose MΓ is a regular covering space of a connected CW-complex M such
that the group Γ is identi�ed with a subgroup of the group of deck (cover-
ing) translations. Then H1(MΓ) as a ZΓ{module can be called a higher-order
Alexander module. In the important special case that MΓ is connected and Γ
is the full group of covering transformations, this can also be phrased easily
in terms of G = �1(M) as follows. If H is any normal subgroup of G then
the action of G on H by conjugation (h −! g−1hg) induces a right Z[G=H]{
module structure on H=[H;H]. If H is a characteristic subgroup of G then
the isomorphism type (in the sense de�ned below) of this module depends only
on the isomorphism type of G.

The primary focus of this paper will be the case that M is a classical knot
exterior S3nK and on the modules arising from the family of characteristic
subgroups known as the derived series of G (de�ned in Section 1).

De�nition 2.1 The nth (integral) higher-order Alexander module, AZn(K),
n � 0, of a knot K is the �rst (integral) homology group of the covering space
of S3nK corresponding to G(n+1) , considered as a right Z[G=G(n+1)]{module,
i.e. G(n+1)=G(n+2) as a right module over Z[G=G(n+1)].
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Clearly this coincides with the classical (integral) Alexander module when n = 0
and otherwise will be called a higher-order Alexander module. It is unlikely that
these modules are �nitely generated. However S. Harvey has observed that they
are the torsion submodules of the �nitely presented modules obtained by taking
homology relative to the inverse image of a basepoint [Ha]. The analogues of
the classical rational Alexander module will be discussed later in Section 4.
These are �nitely generated.

Note that the modules for di�erent knots (or modules for a �xed knot with
di�erent basepoint for �1 ) are modules over di�erent (albeit sometimes isomor-
phic) rings. This subtlety is even an issue for the classical Alexander module. If
M is an R{module and M 0 is an R0{module, we say M is (weakly) isomorphic
to M 0 if there exists a ring isomorphism f : R! R0 such that M is isomorphic
to M 0 as R{modules where M 0 is viewed as an R{module via f . If R and
R0 are group rings (or functorially associated to groups G, G0 ) then we say M
is isomorphic to M 0 if there is a group isomorphism g : G −! G0 inducing a
weak isomorphism.

Proposition 2.2 If K and K 0 are equivalent knots then AZn(K) is isomorphic
to AZn(K 0) for all n � 0.

Proof of 2.2 If K and K 0 are equivalent then their groups are isomorphic.
It follows that their derived modules are isomorphic.

Thus a knot, its mirror-image and its reverse have isomorphic modules. In order
to take advantage of the peripheral structure, one needs to use the presence of
this extra structure to restrict the class of allowable ring isomorphisms. This
may be taken up in a later paper. However in Section 10 and Section 11
respectively we introduce higher-order bordism and signature invariants which
do use the orientation of the knot exterior and hence can distinguish some knots
from their mirror images.

Example 2.3 If K is a knot whose classical Alexander polynomial is 1, then
it is well known that its classical Alexander module G(1)=G(2) is zero. But if
G(1) = G(2) then G(n) = G(n+1) for all n � 1. Thus each of the higher-order
Alexander modules AZn is also trivial. Hence these methods do not seem to
give new information on Alexander polynomial 1 knots. However, it is shown
in Corollary 4.8 that if the classical Alexander polynomial is not 1, then all the
higher-order modules are non-trivial.
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Example 2.4 Suppose K is the right-handed trefoil, X = S3nK and G =
�1(X). Since K is a �bered knot we may assume that X is the mapping torus
of the homeomorphism f : � ! � where � is a punctured torus and we may
assume f �xes @� pointwise. Then �1(�) = F hx; yi. Let Xn denote the
covering space of X such that �1(Xn) �= G(n+1) and AZn(K) = H1(Xn) as a
Z[G=G(n+1)] module. Note that the in�nite cyclic cover X0 is homeomorphic to
�� R so that �1(X0) �= G(1) �= F . Thus Xn is a regular covering space of X0

with deck translations G(1)=G(n+1) = F=F (n) . Since �1(Xn) = F (n) , H1(Xn) =
F (n)=F (n+1) as a module over Z[F=F (n)]. Therefore if one considers AZn(K) as
a module over the subring Z[G(1)=G(n+1)] = Z[F=F (n)] � Z[G=G(n+1)] then it
is merely F (n)=F (n+1) as a module over Z[F=F (n)] (a module which depends
only on n and the rank of the free group). More topologically we observe that
X0 is homotopy equivalent to the wedge W of 2 circles and Xn is (homotopy
equivalent to) the result of taking n iterated universal abelian covers of W .
Let us consider the case n = 1 in more detail. Here X1 is homotopy equivalent
to W1 , as shown in Figure 1.

C

Figure 1: W1

The action of the deck translations F=F (1) �= Z � Z is the obvious one where
x� acts by horizontal translation and y� acts by vertical translation. Clearly
H1(X1) is an in�ntely generated abelian group but as a Z[x�1; y�1]{module is
cyclic, generated by the loop C in Figure 1 which represents xyx−1y−1 under
the identi�cation H1(X1) �= F (1)=F (2) . In fact H1(X1) is a free Z[x�1; y�1]{
module generated by C . But AZ1 (K) = H1(X1) is a Z[G=G(2)]{module and so
far all we have discussed is the action of the subring Z[F=F (1)] = Z[G(1)=G(2)]
because we have completely ignored the fact that X0 itself has a Z{action on it.
In fact, since 1 −! G(1)=G(2) i−! G=G(2) �−! G=G(1) � Z −! 1 is exact, any
element of G=G(2) can be written as gtm for some g 2 G(1)=G(2) and m 2 Z
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where �(t) = 1. Thus we need only specify how t� acts on H1(X1) to describe
our module AZ1 (K). To see this action topologically, recall that, while X0 is
homotopy equivalent to W , a more precise description of it is as a countably
in�nite number of copies of �� [−1; 1] where ��f1g ,! (�� [−1; 1])i is glued
to � � f−1g ,! (� � [−1; 1])i+1 by the homeomorphism f . Correspondingly,
X1 is homotopy equivalent to

‘1
i=−1(W1 � [−1; 1]) glued together in just

such a fashion by lifts of f to W1 . Hence t� acts as f� acts on H1(X1) =
F (1)=F (2) . For example if f�(C) = f(xyx−1y−1) = w(x; y)C then AZ1 (K) is
a cyclic module, generated by C , with relation (t − w(x; y))C = 0. Since
xyx−1y−1 is represented by the circle @�, and since f �xes this circle, in this
case we have that w(x; y) = 1 and AZ1 (K) �= Z[G=G(2)]=(t− 1)Z[G=G(2)]. This
is interesting because it has t−1 torsion represented by the longitude, whereas
the classical Alexander module has no t− 1 torsion. This reflects the fact that
the longitude commutes with the meridian as well as the fact that the longitude,
while trivial in G=G(2) , is non-trivial in G(2)=G(3) � AZ1 .

Since the �gure 8 knot is also a �bered genus 1 knot, its module has a sim-
ilar form. But note that these modules are not isomorphic because they are
modules over non-isomorphic rings (since the two knots do not have isomor-
phic classical Alexander modules G(1)=G(2) ). This underscores that the higher
Alexander modules Ai should only be used to distinguish knots with isomorphic
A0; : : : ;Ai−1 .

The group of deck translations, G=G(n) of the G(n) cover of a knot complement
is solvable but actually satis�es the following slightly stronger property.

De�nition 2.5 A group Γ is poly-(torsion-free abelian) (henceforth abbrevi-
ated PTFA) if it admits a normal series h1i = Gn / Gn−1 / : : : / G0 = Γ such
that the factors Gi=Gi+1 are torsion-free abelian (Warning - in the group theory
literature only a subnormal series is required).

This is a convenient class (as we shall see) because it is contained in the class
of locally indicable groups [Str, Proposition 1.9] and hence ZΓ is an integral
domain [Hig]. Moreover it is contained in the class of amenable groups and
thus ZΓ embeds in a classical quotient (skew) �eld [Do, Theorem 5.4].

It is easy to see that every PTFA group is solvable and torsion-free and although
the converse is not quite true, every solvable group such that each G(n)=G(n+1)

is torsion-free, is PTFA. Every torsion-free nilpotent group is PTFA.

Consider a tower of regular covering spaces

Mn −!Mn−1 −! : : : −!M1 −!M0 = M
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such that each Mi+1 −! Mi has a torsion-free abelian group of deck trans-
lations and each Mi −! M is a regular cover. Then the group Γ of deck
translations of Mn −! M is PTFA and it is easy to see that such towers
correspond precisely to normal series for such a group.

Example 2.6 If G = �1(S3nK) and G(n) is the nth term of the derived series
then G=G(n) is PTFA since each G(i)=G(i+1) is known to be torsion free [Str].
Therefore taking iterated universal abelian covers of S3 − K yields a PTFA
tower as above. Hence the nth higher-order Alexander module generalizes the
classical Alexander module in that the latter is the case of taking a single
universal abelian covering space.

There is certainly more information to be found in modules obtained from other
Γ{covers. For most of the proofs we can consider a general Γ{cover where Γ is
PTFA. Thus there are other families of subgroups which merit scrutiny, and are
covered by most of the theorems to follow, but which will not be discussed in
this paper. Primary among these is the lower central series of the commutator
subgroup of G.

For a general 3{manifold with �rst Betti number equal to 1 (which we cover
since it is no more di�cult than a knot exterior) it is necessary to use the
rational derived series to avoid zero divisors in the group ring:

Example 2.7 For any group G, the nth term of the rational derived series
is de�ned by G

(0)
Q = G and G

(n)
Q = [G(n−1)

Q ; G
(n−1)
Q ] � N where N = fg 2

G
(n−1)
Q j some non-zero power of g lies in [Gn−1

Q ; Gn−1
Q ]g. It is easy to see that

G=G
(n)
Q is PTFA. This corresponds to taking iterated universal torsion-free

abelian covering spaces. For knot groups, G(n)
Q = G(n) [Str].

De�nition 2.8 If M is an arbitrary connected CW-complex with fundamen-
tal group G, then the nth (integral) higher-order Alexander module, AZn(M),
n � 0, of M is H1(Mn;Z) (Mn is the cover of M with �1(Mn) = G

(n+1)
Q )

considered as a right Z[G=G(n+1)
Q ]{module.

More on the relationship of AZn(K) to �1(S3nK)

We have seen that if H is any characteristic subgroup of G then the isomor-
phism type of H=[H;H], as a right module over Z[G=H], is an invariant of the
isomorphism type of G. Moreover, AZn(K) has been de�ned as this module in
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the case G = �1(S3nK) and H = G(n+1) . The following elementary observa-
tion clari�es this relationship. Its proof is left to the reader. One consequence
will be that for any knot there exists a hyperbolic knot with isomorphic AZn for
all n.

Proposition 2.9 Suppose f : G −! P is an epimorphism. Then f induces
isomorphisms fn : AZn(G) −! AZn(P ) for all n � m if and only if the kernel of

f is contained in G
(m+2)
Q . Hence f induces such isomorphisms for all �nite n

if and only if kernel f �
T1
n=1G

(n)
Q .

Corollary 2.10 For any knot K , there is a hyperbolic knot eK and a de-
gree one map f : S3n eK −! S3nK (rel boundary) which induces isomorphisms
AZn( eK) −! AZn(K) for all n.

Proof of Corollary 2.10 In fact it is known that eK can be chosen so that the
kernel of f� is a perfect group (or in other words that f induces isomorphisms
on homology with Z[�1(S3nK)] coe�cients). The �rst reference I know to this
fact is by use of the \almost identical link imitations" of Akio Kawauchi [Ka,
Theorem 2.1 and Corollary 2.2]. A more recent and elementary construction
can be adopted from [BW, Section 4]. Any perfect subgroup is contained in its
own commutator subgroup and hence, by induction, lies in every term of the
derived series. An application of Proposition 2.9 �nishes the proof.

Example 2.11 If K 0 is a knot and K is a knot whose (classical) Alexander
polynomial is 1 then K 0 and K 0#K have isomorphic higher-order modules
since there is a degree one map S3n(K 0#K) ! S3nK 0 which induces an epi-
morphism on �1 whose kernel is �1(S3nK)(1) . The observation then follows
from Proposition 2.9 and Example 2.3.

3 Properties of higher-order Alexander modules of

knots: Torsion

In this section we will show that higher-order Alexander modules have one
key property in common with the classical Alexander module, namely they are
torsion-modules. In Section 12 we de�ne a linking pairing on these modules
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which generalizes the Blanch�eld linking pairing on the Alexander module. All
of the results of this section follow immediately from [COT1, Section 2] but a
simpler proof of the main theorem is given here.

A right module A over a ring R is said to be a torsion module if, for any a 2 A,
there exists a non-zero-divisor r 2 R such that ar = 0.

Our �rst goal is:

Theorem 3.1 The higher-order Alexander modules AZn(K) of a knot are tor-
sion modules.

This is a consequence of the more general result which applies to any complex
X with �1(X) �nitely-generated and �1(X) = 1 and any PTFA Γ [COT1,
Proposition 2.11] but we shall give a di�erent, self-contained proof (Proposi-
tion 3.10). The more general result will be used in later chapters to study
general 3{manifolds with �1 = 1.

Suppose Γ is a PTFA group. Then ZΓ has several convenient properties | it
is an integral domain and it has a classical �eld of fractions. Details follow.

Recall that if A is a commutative ring and S is a subset closed under multiplica-
tion, one can construct the ring of fractions AS−1 of elements as−1 which add
and multiply as normal fractions. If S = A− f0g and A has no zero divisors,
then AS−1 is called the quotient �eld of A. However, if A is non-commutative
then AS−1 does not always exist (and AS−1 is not a priori isomorphic to S−1A).
It is known that if S is a right divisor set then AS−1 exists ( [P, p. 146] or
[Ste, p. 52]). If A has no zero divisors and S = A − f0g is a right divisor set
then A is called an Ore domain. In this case AS−1 is a skew �eld, called the
classical right ring of quotients of A. We will often refer to this merely as the
quotient �eld of A . A good reference for non-commutative rings of fractions
is Chapter 2 of [Ste]. In this paper we will always use right rings of fractions.

Proposition 3.2 If Γ is PTFA then QΓ (and hence ZΓ) is a right (and left)
Ore domain; i.e. QΓ embeds in its classical right ring of quotients K , which is
a skew �eld.

Proof For the fact (due to A.A. Bovdi) that ZΓ has no zero divisors see [P,
pp. 591{592] or [Str, p. 315]. As we have remarked, any PTFA group is solvable.
It is a result of J. Lewin [Lew] that for solvable groups such that QΓ has no
zero divisors, QΓ is an Ore domain (see Lemma 3.6 iii p. 611 of [P]). It follows
that ZΓ is also an Ore domain.
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Remark 3.3 Skew �elds share many of the key features of (commutative)
�elds. We shall need the following elementary facts about the right skew �eld
of quotients K . It is naturally a K{K{bimodule and a ZΓ{ZΓ{bimodule.

Fact 1 K is flat as a left ZΓ{module, i.e. � ⊗ZΓ K is exact [Ste, Proposi-
tion II.3.5].

Fact 2 Every module over K is a free module [Ste, Proposition I.2.3] and such
modules have a well de�ned rank rkK which is additive on short exact
sequences [Co2, p. 48].

If A is a module over the Ore domain R then the rank of A denotes rankK(A⊗R
K). A is a torsion module if and only if A⊗R K = 0 where K is the quotient
�eld of R, i.e. if and only if the rank of A is zero [Ste, II Corollary 3.3]. In
general, the set of torsion elements of A is a submodule which is characterized
as the kernel of A ! A⊗RK . Note that if A �= Rr�(torsion) then rankA = r .

Fact 3 If C is a non-negative �nite chain complex of �nitely generated free
(right) ZΓ{modules then the equivariant Euler characteristic, �(C), given
by
P1

i=0(−1)i rankCi , is de�ned and equal to
P1

i=0(−1)i rankHi(C) andP1
i=0(−1)i rankHi(C⊗ZΓK). This is an elementary consequence of Facts 1

and 2.

There is another especially important property of PTFA groups (more generally
of locally indicable groups) which should be viewed as a natural generalization
of properties of the free abelian group. This is an algebraic generalization of the
(non-obvious) fact that any in�nite cyclic cover of a 2{complex with vanishing
H2 also has vanishing H2 (see Proposition 3.8).

Proposition 3.4 (R. Strebel [Str, p. 305]) Suppose Γ is a PTFA group and R
is a commutative ring. Any map between projective right RΓ{modules whose
image under the functor −⊗RΓ R is injective, is itself injective.

We can now o�er a simple proof of Theorem 3.1.

Proof of Theorem 3.1 The knot exterior has the homotopy type of a �nite
connected 2{complex Y whose Euler characteristic is 0. Let Γ = G=G(n+1)

and let C = (0 −! C2
@2−! C1

@1−! C0 −! 0) be the free ZΓ cellular chain
complex for YΓ (the Γ{cover of Y such that �1(Y ) = G(n+1) ) obtained by
lifting the cell structure of Y . Then �(C) = �(Y ) = 0. It follows from Fact 3
that rankH2(YΓ) − rankH1(YΓ) + rankH0(YΓ) = 0. Now note that (C; @) is
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sent, under the augmentation � : ZΓ −! Z, to (C ⊗ZΓ Z; @ ⊗ZΓ id) which can
be identi�ed with the chain complex for the original cell structure on Y . Since
H2(Y ;Z) = 0, @2 ⊗ id is injective. By Proposition 3.4, it follows that @2 itself
is injective, and hence that H2(YΓ) = 0.

Now we claim that H0(YΓ) is a torsion module. This is easy since H0(YΓ) �= Z.
If H0(YΓ) were not torsion then 1 2 Z generates a free ZΓ submodule. Note
that Γ is not trivial since G 6= G(1) . This is a contradiction since, as an abelian
group, ZΓ is free on more than one generator and hence cannot be a subgroup
of Z.

Now that we have proved that the higher-order modules of a knot are torsion
modules, we look at the homology of covering spaces in more detail and in a
more abstract way. This point of view allows for greater generality and for
more concise notation. Viewing homology of covering spaces as homology with
twisted coe�cients clari�es the calculations of the homology of induced covers
over subspaces.

Homology of PTFA covering spaces

Suppose X has the homotopy type of a connected CW-complex, Γ is any group
and � : �1(X;x0) −! Γ is a homomorphism. Let XΓ denote the regular Γ{
cover of X associated to � (by pulling back the universal cover of BΓ viewed
as a principal Γ{bundle). If � is surjective then XΓ is merely the connected
covering space X associated to Ker(�). Then XΓ becomes a right Γ{set as
follows. Choose a point � 2 p−1(x0). Given γ 2 Γ, choose a loop w in X
such that �([w]) = γ . Let ew be a lift of w to XΓ such that ew(0) = �. Let
dw be the unique covering translation such that dw(�) = ew(1). Then γ acts
on XΓ by dw . This merely the \usual" left action [M2, Section 81]. However,
for certain historical reasons we shall use the associated right action where γ
acts by (dw)−1 . If � is not surjective and we set � = image(�) then XΓ is a
disjoint union of copies of the connected cover X� associated to Ker(�). The
set of copies is in bijection with the set of right cosets Γ=� . In fact it is best to
think of p−1(x0) as being identi�ed with Γ. Then Γ acts on p−1(x0) by right
multiplication. If γ 2 � , then γ sends � to the endpoint of the path ew such thatew(0) = � and �([w]) = γ−1 . Hence � and (�)γ are in the same path component
of XΓ . If � 2 Γ is a non-trivial coset representative then (�)� lies in a di�erent
path component than �. But the path ew , acted on by the deck translation
corresponding to � , begins at (�)� and ends at ( ew(1))� = (�)(γ)(�) = (�)(γ�).
Thus (�)� and (�)� 0 lie in the same path component if and only if they lie in
the same right coset �� of Γ=� .
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For simplicity, the following are stated for the ring Z, but also hold for Q. Let
M be a ZΓ{bimodule (for us usually ZΓ, K , or a ring R such that ZΓ �
R � K, or K=R). The following are often called the equivariant homology and
cohomology of X .

De�nition 3.5 Given X , �, M as above, let

H�(X;M) � H�(C(XΓ;Z)⊗ZΓM)

as a right ZΓ module, and H�(X;M) � H� (HomZΓ(C(XΓ;Z);M)) as a left
ZΓ{module.

These are also well-known to be isomorphic (respectively) to the homology (and
cohomology) of X with coe�cient system induced by � (see Theorems VI 3.4
and 3.4� of [W]). The advantage of this formulation is that it becomes clear
that the surjectivity of � is irrelevant.

Remark 3.6

(1) Note that H�(X;ZΓ) as in De�nition 3.5 is merely H�(XΓ;Z) as a right
ZΓ{module. Thus AZn �= H1(S3nK;ZΓ) where Γ = G=G(n+1) and G =
�1(S3nK). Moreover if M is flat as a left ZΓ{module then H�(X;M) �=
H�(XΓ;Z) ⊗ZΓ M. In particular this holds for M = K by 3.3. Thus
H�(XΓ) = H�(X;ZΓ) is a torsion module if and only if H�(X;K) =
H�(XΓ)⊗ZΓ K = 0 by the remarks below 3.3.

(2) Recall that if X is a compact, oriented n{manifold then by Poincar�e
duality Hp(X;M) is isomorphic to Hn−p(X;@X;M) which is made into
a right ZΓ{module using the obvious involution on this group ring [Wa].

(3) We also have a universal coe�cient spectral sequence as in [L3, Theorem
2.3]. This collapses to the usual Universal Coe�cient Theorem for coe�-
cients in a (noncommutative) principal ideal domain (in particular for the
skew �eld K). Hence Hn(X;K) �= HomK(Hn(X;K);K). In this paper
we only need the UCSS in these special cases where it coincides with the
usual UCT.

We now restrict to the case that Γ is a PTFA group and K is its (skew) �eld
of quotients. We investigate H0 , H1 and H2 of spaces with coe�cients in ZΓ
or K .

Proposition 3.7 Suppose X is a connected CW complex. If � : �1(X) −! Γ
is a non-trivial coe�cient system then H0(X;K) = 0 and H0(X;ZΓ) is a torsion
module.
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Proof By [W, p. 275] and [Br, p.34], H0(X;K) is isomorphic to the co�xed
set K=KI where I is the augmentation ideal of Z�1(X) acting via �1(X) −!
Γ −! K . If � is non-zero then this composition is non-zero and hence I
contains an element which acts as a unit. Hence KI = K .

The following lemma summarizes the basic topological application of Strebel’s
result (Proposition 3.4).

Proposition 3.8 Suppose (Y;A) is a connected 2{complex with H2(Y;A;Q)
�= 0 and suppose � : �1(Y ) −! Γ de�nes a coe�cient system on Y and A where
Γ is a PTFA group. Then H2(Y;A;ZΓ) = 0, and so H1(A;ZΓ) −! H1(Y ;ZΓ)
is injective.

Proof Let C be the free ZΓ chain complex for the cellular structure on
(YΓ; AΓ) (the Γ{cover of Y ) obtained by lifting the cell structure of (Y;A).
It su�ces to show @2 : C2 −! C1 is a monomorphism. By Proposition 3.4
this will follow from the injectivity of @2 ⊗ id : C2 ⊗ZΓ Z −! C1 ⊗ZΓ Z. But
this map can be canonically identi�ed with the corresponding boundary map
in the cellular chain complex of (Y;A), which is injective since H2(Y;A;Q) �=
H2(Y;A;Z) �= 0.

The following lemma generalizes the key argument of the proof of Theorem 3.1.

Lemma 3.9 Suppose Y is a connected 2{complex with H2(Y ;Z) = 0 and
� : �1(Y ) −! Γ is non-trivial. Then H2(Y ;K) = 0; and if Y is a �nite complex
then rkKH1(Y ;K) = �1(Y )− 1.

Proof By Proposition 3.8 H2(Y ;ZΓ) = 0 and H2(Y ;K) = 0 by Remark 3.6.1.
Since � is non-trivial, Proposition 3.7 implies that H0(Y ;K) = 0. But by
Fact 3 (as in the proof of Theorem 3.1) rankKH2(Y ;K) − rankKH1(Y ;K) +
rankKH0(Y ;K) = 1− �1(Y ) and the result follows.

Note that if �1(Y ) = 0 then any homomorphism from �1(Y ) to a PTFA group
is necessarily the zero homomorphism.

Proposition 3.10 Suppose �1(X) is �nitely-generated and � : �1(X) −! Γ
is non-trivial. Then

rankKH1(X;ZΓ) � �1(X)− 1:

In particular, if �1(X) = 1 then H1(X;ZΓ) is a torsion module.
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Proof Since the �rst homology of a covering space of X is functorially de-
termined by �1(X) = G, we can replace X by a K(G; 1). We will now
construct an epimorphism f : E −! G from a group E which has a very
e�cient presentation. Suppose H1(G) �= Zm � Zn1 � � � � � Znk . Then there is
a �nite generating set fg1; : : : ; gm; gm+1; : : : ; gm+k; : : : ji 2 Ig for G such that
fg1; : : : ; gm+kg is a \basis" for H1(G) wherein if i > m + k then gi 2 [G;G]
and if m < i � m + k then gnii 2 [G;G]. Consider variables fxj jj 2 Ig.
Hence for each i there is a word wi(x1; : : : ) in these variables such that wi
lies in the commutator subgroup of the free group on fxjg, and such that if
i > m + k then gi = wi(g1; : : : ) and if m < i � m + k then gnii = wi(g1; : : : ).
Let E have generators fxiji 2 Ig and relations fxi = wiji > m + kg and
fxnii = wijm < i � m + kg. The obvious epimorphism f : E −! G given by
f(xi) = gi is an H1{isomorphism. The composition � � f de�nes a Γ covering
space of K(E; 1). Since f is surjective we can build K(G; 1) from K(E; 1)
by adjoining cells of dimensions at least 2. Thus H1(G;E;ZΓ) = 0 because
there are no relative 1{cells and consequently f� : H1(E;ZΓ) −! H1(G;ZΓ)
is also surjective. Since K is a flat ZΓ module f� : H1(E;K) −! H1(G;K) is
surjective. Thus rankKH1(X;ZΓ) = rankKH1(X;K) � rankKH1(E;K). Now
note that E = �1(Y ) where Y is a connected, �nite 2{complex (associated
to the presentation) which has vanishing second homology. Again since H1 is
functorially determined by �1 , H1(E;K) �= H1(Y ;K). Lemma 3.9 above shows
that rankKH1(Y ;K) = �1(Y ) − 1 = �1(E) − 1 = �1(X) − 1 and the result
follows.

Example 3.11 It is somewhat remarkable (and turns out to be crucially im-
portant) that the previous two results fail without the �niteness assumption.
If Proposition 3.10 were true without the �niteness assumption, all of the in-
equalities of Theorem 5.4 would be equalities. Consider E = hx; zi j zi =
[zi+1; x]; i 2 Zi. This is the fundamental group of an (in�nite) 2{complex with
H2 = 0. Note that �1(E) = 1. But the abelianization of E(1) has a presenta-
tion hzi j zi = (1 − x)zi+1i as a module over Z[x�1] and thus has rank 1, not
�1(E)− 1 as would be predicted by Proposition 3.10.

Corollary 3.12 Suppose M is a compact, orientable, connected 3{manifold
such that �1(M) = 1. Suppose � : �1(M) −! Γ is a homomorphism that is
non-trivial on abelianizations where Γ is PTFA. Then H�(M;@M ;K) �= 0 �=
H�(M ;K).

Proof Propositions 3.7 and 3.10 imply H0(M ;K) �= H1(M ;K) �= 0. Since it is
well known that the image of H1(@M ;Q) −! H1(M ;Q) has one-half the rank of
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H1(@M ;Q), @M must be either empty or a torus. Suppose the latter. Then this
inclusion-induced map is surjective. Therefore the induced coe�cient system
� � i� : �1(@M) −! Γ is non-trivial since it is non-trivial on abelianizations.
Thus H0(@M ;K) = 0 by Proposition 3.7, implying that H1(M;@M ;K) = 0.
By Remark 3.6, H2(M ;K) �= H1(M;@M ;K) �= Hom(H1(M;@M ;K);K) �= 0.
Similarly H3(M ;K) �= 0. Then H�(M ;K) �= 0 ) H�(M;@M ;K) �= 0 by
duality and the universal coe�cient theorem.

Thus we have shown that the de�nition of the classical Alexander module, i.e.
the torsion module associated to the �rst homology of the in�nite cyclic cover
of the knot complement, can be extended to higher-order Alexander modules
AZΓ = H1(M ;ZΓ) which are ZΓ torsion modules associated to arbitrary PTFA
covering spaces. Indeed, by Proposition 3.10, this is true for any �nite complex
with �1(M) = 1.

4 Localized higher-order modules

In studying the classical abelian invariants of knots, one usual studies not only
the \integral" Alexander module, H1(S3nK;Z[t; t−1]), but also the rational
Alexander module H1(S3nK;Q[t; t−1]). Even though some information is lost
in this localization, Q[t; t−1] is a principal ideal domain and one has a good
classi�cation theorem for �nitely generated modules over a PID. Moreover the
rational Alexander module is self-dual whereas the integral module is not [Go].
In considering the higher-order modules it is even more important to localize our
rings Z[G=G(n)] in order to de�ne a higher-order \rational" Alexander module
over a (non-commutative) PID. Here, signi�cant information will be lost but
this simpli�cation is crucial to the de�nition of numerical invariants. Recall that
an integral domain is a right (respectively left) PID if every right (respectively
left) ideal is principal. A ring is a PID if it is both a left and right PID. The
de�nition of the relevant PID’s follows.

Let G be a group with �1(G) = 1 and let Γn = G=G
(n+1)
Q (which is the same

as the ordinary derived series for a knot group). Recall that the (integral)
Alexander module was de�ned as AZn(G) = H1(G;ZΓn) in De�nition 2.1 and
De�nition 2.8. Below we will describe a PID Rn such that QΓn � Rn � Kn
and such that Rn is a localization of QΓn , i.e. Rn = QΓn(S−1) where S is a
right divisor set in QΓn . Using this we de�ne the \localized" derived modules.
These will be analyzed further in Section 5. These PID’s were crucial in our
previous work [COT1].
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De�nition 4.1 The nth \localized" Alexander module of a knot K , or, simply,
the nth Alexander module of K is An(K) = H1(S3nK;Rn).

Proposition 4.2 The nth Alexander module is a �nitely-generated torsion
module over the PID Rn .

Proof Let Mn denote the covering space of M = S3nK with �1(Mn) =
G(n+1) . Then An(K) is the �rst homology of the chain complex C�(Mn)⊗ZΓn

Rn . This is a chain complex of �nitely generated free Rn{modules since M
has the homotopy type of a �nite complex and we can use the lift of this cell
structure to Mn . Since a submodule of a �nitely-generated free module over a
PID is again a �nitely-generated free module ([J], Theorem 17), it follows that
the homology groups are �nitely generated.

Now we de�ne the rings Rn and show that they are PID’s by proving that
they are isomorphic to skew Laurent polynomial rings Kn[t�1] over a skew �eld
Kn . This makes the analogy to the classical rational Alexander module even
stronger.

Before de�ning Rn in general, we do so in a simple example.

Example 4.3 We continue with Example 2.4 where G = �1(S3nK) and K is
a trefoil knot. We illustrate the structure of Z[G=G(2)] = ZΓ1 as a skew Lau-
rent polynomial ring in one variable with coe�cients in Z[G(1)=G(2)]. Recall
that since the trefoil knot is �bered, G(1)=G(2) �= F=F (1) �= Z�Z generated by
fx; yg. Hence Z[G(1)=G(2)] is merely the (commutative) Laurent polynomial
ring Z[x�1; y�1]. If we choose, say, a meridian � 2 G=G(2) then G=G(2) is a
semi-direct product G(1)=G(2) o Z and any element of G=G(2) has a unique
representative �mg for some m 2 Z and g 2 G(1)=G(2) , i.e. �mxpyq for some
integers m, p, q . Thus any element of Z[G=G(2)] has a canonical represen-
tation of the form

P1
m=−1 �

mpm(x; y) where pm(x; y) 2 Z[x�1; y�1]. Hence
Z[G=G(2)] can be identi�ed with the Laurent polynomial ring in one variable �
(or t for historical signi�cance) with coe�cients in the Laurent polynomial ring
Z[x�1; y�1]. Observe that the product of 2 elements in canonical form is not in
canonical form. However, for example, (xpyq)�� = �(�−1xpyq�) = �((xpyq)��).
Hence this is not a true polynomial ring, rather the multiplication is twisted
by the automorphism �� of Z[G(1)=G(2)] induced by conjugation g ! �−1g�
(the action of the generator t 2 Z in the semi-direct product structure). The
action �� (or t� ) is merely the action of t on the Alexander module of the
trefoil Z[t; t−1]=t2 − t+ 1 �= Z� Z with basis fx; yg.
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Moreover this skew polynomial ring Z[G(1)=G(2)][t�1] embeds in the ring R1 =
K1[t�1], where K1 is the quotient �eld of the coe�cient ring Z[x�1; y�1] (in this
case the (commutative) �eld of rational functions in the 2 commuting variables
x and y). Thus Z[G=G(2)] embeds in this (noncommutative) PID R1 (this is
proved below) that also has the structure of a skew Laurent polynomial ring
over a �eld. Note that, under this embedding, the subring Z[G(1)=G(2)] is sent
into the subring of polynomials of degree 0, i.e. K1 and this embedding is just
the canonical embedding of a commutative ring into its quotient �eld (and is
thus independent of the choice of �!).

Now we de�ne Rn in general. Let eGn , n � 1, be the kernel of the map
� : G=G(n)

Q −! G=G
(1)
Q (the latter is in�nite cyclic by the hypothesis that

�1(G) = 1. For the important case that G is a knot group, eGn is the com-
mutator subgroup modulo the nth derived subgroup. Since G=G

(n)
Q is PTFA

by Example 2.7, the subgroup eGn is also PTFA. Thus Z[ eGn] is an Ore do-
main by Proposition 3.2. Let Sn = Z[ eGn+1] − f0g, n � 0, a subset of
ZΓn = Z[G=G(n+1)

Q ]. By [P, p. 609] Sn is a right divisor set of ZΓn and
we set Rn = (ZΓn)(Sn)−1 . Hence ZΓn � Rn � Kn . Note that S0 = Z − f0g
so R0 = Q[J ] where J is the in�nite cyclic group G=G

(1)
Q , agreeing with the

classical case. By Proposition II.3.5 [Ste] we have the following.

Proposition 4.4 Rn is a flat left ZΓn{module so An �= AZn⊗ZΓnRn . Moreover
Kn is a flat Rn{module so An ⊗Rn Kn = H1(M ;Kn).

Now we establish that the Rn are PID’s. Consider the short exact sequence
1 −! eG −! G=G

(n)
Q

�−! Z −! 1 where � is induced by abelianization and eG is
the kernel of � . Note that there are precisely two such epimorphisms � . If we
choose � 2 G=G(n)

Q which generates the torsion-free part of the abelianization
then � is canonical (take �(�) = 1) and has a canonical splitting (1 s−! �).
Now note that any element of Q[G=G(n)

Q ] has a unique expression of the form
γ = �−ma−m + � � � + a0 + � � � + �kak where ai 2 Q eG (a−m and ak not zero
unless γ = 0). Thus Q[G=G(n)

Q ] is canonically isomorphic to the skew Laurent
polynomial ring, Q eG[t�1], in one variable with coe�cients in Q eG. Recall that
the latter is the ring consisting of expressions t−ma−m + � � � + tkak , ai 2 Q eG
which add as ordinary polynomials but where multiplication is twisted by an
automorphism � : Q eG −! Q eG so that if a 2 Q eG then tia � t = ti+1�(a).
The automorphism in our case is induced by the automorphism of eG given by
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conjugation by �. The twisted multiplication is evident in eG since �ia � � =
�i�(�−1a�) = �i+1�(a).

Since eG is a subgroup of a PTFA group, it also is PTFA and so Z eG admits
a (right) skew �eld of fractions K into which it embeds. This is also written
(Z eG)(Z eG)−1 meaning that all the non-zero elements of Z eG are inverted. It fol-
lows that Z[G=G(n)

Q ](Z eG)−1 is canonically identi�ed with the skew polynomial
ring K[t�1] with coe�cients in the skew �eld K (see [COT1, Proposition 3.2]
for more details). The following is well known (see Chapter 3 of [J] or Prop.
2.1.1 of [Co1]).

Proposition 4.5 A skew polynomial ring K[t�1] over a division ring K is a
right (and left) PID.

Proof One �rst checks that there is a well-de�ned degree function on any skew
Laurent polynomial ring (over a domain) where deg(t−ma−m+� � �+tkak) = m+
k and that this degree function is additive under multiplication of polynomials.
Then one veri�es that there is a division algorithm such that if deg(q(t)) �
deg(p(t)) then q(t) = p(t)s(t) + r(t) where deg(r(t)) < deg(p(t)). Finally, if
I is any non-zero right ideal, choose p 2 I of minimal degree. For any q 2 I ,
q = ps + r where, by minimality, r = 0. Hence I is principal. Thus K[t�1] is
a right PID. The proof that it is a left PID is identical.

Proposition 4.6 For n � 0 let Rn denote the ring Z[G=G(n+1)](Z eG)−1 . This
can be identi�ed with the PID Kn[t�1] where Kn is the quotient �eld of Z eG
(1 −! eG −! G=G(n+1) �−! Z −! 1).

Of course the isomorphism type of An(K) is still purely a function of the
isomorphism type of the group G of the knot since An(K) = G(n+1)=G(n+2) ⊗
Rn . However, when viewed as a module over Kn[t�1], it is also dependent on
a choice of the meridional element �.

Non-triviality

We now show that the higher-order Alexander modules are never trivial except
when K is a knot with Alexander polynomial 1. The following results generalize
Proposition 3.10 and Lemma 3.9.

Corollary 4.7 If X is a (possibly in�nite) 2{complex with H2(X;Q) = 0
and � : �1(X) −! Γ is a PTFA coe�cient system then rank(H1(X;ZΓ)) �
�1(X)− 1.
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Corollary 4.8 If K is a knot whose Alexander polynomial �0 is not 1,
then the derived series of G = �1(S3nK) does not stabilize at �nite n, i.e.
G(n)=G(n+1) 6= 0. Hence the derived module AZn(K) is non-trivial for any n.
Moreover, if n > 0, An(K) (viewed as a Kn[t�1] module) has rank at least
deg(�0(K))− 1 as a Kn{module and hence is an in�nite dimensional Q vector
space.

The �rst part of the Corollary has been independently established by S.K.
Roushon [Ru].

Proposition 3.8 ) Corollary 4.7 First consider the case that �1(X) is
�nite. Consider the case of Proposition 3.8 where A is a wedge of �1(X)
circles and i : A −! X is chosen to be a monomorphism on H1( ;Q). Then
rank(H1(X;ZΓ)) is at least rank(H1(A;ZΓ)) which is �1(X)−1 by Lemma 3.9.
Now if �1(X) is in�nite, apply the above argument for a wedge of n circles
where n is arbitrary.

Proposition 3.8 ) Corollary 4.8 Let X be the in�nite cyclic cover of
S3nK , and let eG = �1(X)=�1(X)(n) = G(1)=G(n+1) as in Proposition 4.6. If
�0 6= 1 then deg(�0) = �1(X) � 2. Applying Corollary 4.7 we get that
H1(X;Z eG) has rank at least �1(X)− 1. But H1(X;Z eG) can be interpreted as
the �rst homology of the eG{cover of X , as a Z eG module. This covering space
has �1 equal to G(n+1) . Since the eG cover of X is the same as the cover of S3nK
induced by G −! G=G(n+1) , H1(X;Z eG) �= H1(S3nK;Z[G=G(n+1)]) � AZn(K)
as Z eG{modules. Now, since AZn has rank at least �1(X)− 1 as a Z eG{module,
An has rank at least �1(X)−1 as a Kn module since the latter is the de�nition
of the former. It follows that G(n+1)=G(n+2) is non-trivial (and hence in�nite)
for n � 0. If n > 0 it follows that eG is an in�nite group. In this case Q eG and
hence Kn are in�nitely generated vector spaces.

5 Higher order Alexander polynomials

In this section we further analyze the localized Alexander modules An(K) that
were de�ned in Section 4 as right modules over the skew Laurent polynomial
rings Rn �= Kn[t�1]. We de�ne higher-order \Alexander polynomials" �n(K)
and show that their degrees �n(K) are integral invariants of the knot. We prove
that �0 , �1 + 1, �2 + 1; : : : is a non-decreasing sequence for any knot. In later
sections we will see that the �n are powerful knot invariants with applications
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to genus and �bering questions. The higher-order Alexander polynomials bear
further study.

Recall that it has already been established that An(K) is a �nitely-generated
torsion right Rn module where Rn is a PID. The following generalization of
the standard theorem for commutative PIDs is well known (see Theorem 2.4 p.
494 of [Co2]).

Theorem 5.1 Let R be a principal ideal domain. Then any �nitely generated
torsion right R{module M is a direct sum of cyclic modules

M �= R=e1R� � � � �R=erR

where ei is a total divisor of ei+1 and this condition determines the ei up to
similarity.

Here a is similar to b if R=aR �= R=bR (p. 27 [Co1]). For the de�nition of
total divisor, the reader is referred to Chapter 8 of [Co2]. This complication is
usually unnecessary because a �nitely generated torsion module over a simple
PID is cyclic (pp. 495{496 [Co2])!! For n > 0, Rn is almost always a simple
ring, but since this fact will not be used in this paper, we do not justify it.

De�nition 5.2 For any knot K and any integer n � 0, fe1(K); : : : ; er(K)g
are the elements of the PID Rn , well-de�ned up to similarity, associated to
the canonical decomposition of An(K). Let �n(K), the nth order Alexander
polynomial of K , be the product of these elements, viewed as an element of
Kn[t�1] (for n = 0 this is the classical Alexander polynomial).

The polynomial �n(K), as an element of Rn , is also well-de�ned up to similar-
ity (a non-obvious fact that we will not use). However as an element of Kn[t�1]
it acquires additional ambiguity because a splitting of G � Z was used to
choose an isomorphism between Rn and Kn[t�1]. Alternatively, using a square
presentation matrix for An(K) (see the next section), one can associate an el-
ement of K1(Rn) and, using the Dieudonn�e determinant, recover �n(K) as an
element of U=[U;U ] where U is the group of units of the quotient �eld of Rn .
Since similarity is not well-understood in a noncommutative ring (being much
more di�cult than merely identifying when elements di�er by units), we have
not yet been able to make e�ective use of the higher-order Alexander polynomi-
als except for their degrees, which turn out to be perfectly well-de�ned integral
invariants, as we now explain.
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De�nition 5.3 For any knot K and any integer n � 0, the degree of the nth

order Alexander polynomial, denoted �n(K) is an invariant of K . It can be
de�ned in any of the following equivalent ways:

1) the degree of �n(K)

2) the sum of the degrees of ei(K) 2 Rn �= Kn[t�1]

3) the rank of An(K) as a module over Kn
4) the rank of G(n+1)=G(n+2) ⊗ZΓn Rn as a module over the subring Z eG �

ZΓn
5) the rank of G(n+1)=G(n+2) as a module over the subring Z[G(1)=G(n+1)] �

Z[G=G(n+1)].

Proof of De�nition 5.3 De�nitions 4 and 5 are independent of choices since
there Rn has not been speci�cally identi�ed with the polynomial ring Kn .
To see that De�nition 3 is the same as 4, consider De�nition 2.1 and Proposi-
tion 4.4. Also note that the identi�cation of Z[G=G(n+1)] with the skew polyno-
mial ring Z eG[t�1], carries the subring Z eG (independent of splitting) to the ring
of elements of degree zero. Thus under any identi�cation of Rn = Z[G=G(n+1)]
(Z eG− f0g)−1 with Kn[t�1], the quotient �eld Z eG(Z eG− f0g)−1 is carried (in-
dependent of splitting) to Kn , viewed as the sub�eld of elements of degree zero.
From De�nition 3 and Theorem 5.1, one sees that these ranks are �nite be-
cause the rank of Kn[t�1]=p(t)Kn[t�1] is easily seen to be the degree of p(t).
The equivalence of De�nitions 1 and 2 then follows trivially. To see that 4 and
5 are equivalent, one must show that AZn ⊗Z[G=G(n+1)] Kn[t�1] as a Kn{module
is merely AZn ⊗ZG̃ Kn . This is left to the reader.

We can establish one interesting property of the �n , namely that for any K
they form a non-decreasing sequence. This theorem says that the derived series
of the fundamental group of a knot complement (more generally of certain 2{
complexes) cannot stabilize unless �0 = 1 (see Corollary 4.8). Moreover in some
sense the \size" of the successive quotients G(n)=G(n+1) is non-decreasing.

Theorem 5.4 If K is a knot then �0(K) � �1(K) + 1 � �2(K) + 1 � � � � �
�n(K) + 1.

Proof First we show �1 � �0 − 1. Let X be the in�nite cyclic cover of S3nK
and G = �1(S3nK). Note that �1(X) = rankQH1(S3nK;Q[t; t−1]) = �0 , and
�1 = rankK1 H1(S3nK;K1[t�1]) = rankH1(X;Z[G(1)=G(2)]) by De�nition 5.3.
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The latter, by Corollary 4.7 is at least �1(X)− 1 (since H2(X;Q) = 0) and we
are done.

Now it will su�ce to show �n � �n−1 if n � 2. Let Xn be the covering
space of S3nK with fundamental group G(n+1) so X0 = X . Then Xn−1 is
a covering space of X with G(1)=G(n) as deck translations. Choose a wedge
of �0 circles A0 ! X giving an isomorphism on H1( ;Q). Let eA0

i−! Xn−1

be the induced cover and corresponding inclusion. By Proposition 3.8, i� is a
monomorphism on H1 . Since n � 2, rankZ[G(1)=G(n)]H1(A0;Z[G(1)=G(n)]) is
precisely �1(A0) − 1 = �0 − 1 by Lemma 3.9 (here we assume �0 > 0 since
if �0 = 0 then �i = 0 and the theorem holds). Choose a subset of image i�
with cardinality �0−1 that is Z[G(1)=G(n)]{linearly independent in H1(Xn−1).
It is not di�cult to show that, in a module over an Ore domain, any linearly
independent set can be extended to a maximal linearly independent set, i.e.
whose cardinality is equal to the rank of the module. Hence if �n−1 (which
equals the Z[G(1)=G(n)]{rank of H1(Xn−1)) exceeds �0 − 1, then there is a set
of e = �n−1− (�0− 1) circles and a map ef : Ae ! Xn−1 of a wedge of e circles,
such that the free submodule generated by these circles captures the \excess
rank." Let f = � � ef : Ae ! X . Then the map A = A0 _Ae −! X induces a
monomorphism on H1( ;Z[G(1)=G(n)]) by construction. Another way of saying
this is that the induced map on G(1)=G(n) {covers An−1 ! Xn−1 is injective on
H1( ;Z) where An−1 is the induced cover of A. Since H2(X;Z) = 0, it follows
from Lemma 3.9 that H2(Xn−1;Z) = 0. Hence (Xn−1; An−1) is a relative 2{
complex that satis�es the conditions of Proposition 3.8, with Γ = G(n)=G(n+1) .
It follows that H1(An−1;ZΓ) i�−! H1(Xn−1;ZΓ) is injective. But this is the
same as the map induced by i : A! X on H1( ;Z[G(1)=G(n+1)]). Thus �n =
rankH1(X;Z[G(1)=G(n+1)]) is at least the rank of H1(A;Z[G(1)=G(n+1)]). Since
A is a wedge of e+ �0 = �n−1 + 1 circles and n � 2, this latter rank is precisely
�n−1 by Lemma 3.9. Hence �n � �n−1 as claimed.

Question Is there a knot K and some n > 0 for which �n(K) is a non-zero
even integer?

If not then a complete realization theorem for the �i can be derived from the
techniques of Section 7.

6 Presentation of An from a Seifert surface

Suppose M is a knot exterior, or more generally a compact, connected, ori-
ented 3{manifold with �1 = 1 that is either closed or whose boundary is a
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torus. Suppose �V is a compact, connected, oriented surface which generates
H2(M;@M). In the case of a knot exterior, the orientation on the knot can be
used to �x the orientation of V , and V can be chosen to be a Seifert surface of
K . The classical Alexander module of K can be calculated from a presentation
matrix which is obtained by pushing certain loops in V into S3 n V . Here we
show that there is a �nite presentation of An(K) obtained in a similar fashion
from V .

Let Y = M − (V � (−1; 1)) and denote by i+ and i− the two inclusions
V −! V � f�1g −! @Y � Y . Recall from De�nition 4.1 and Proposition 4.6
that An(M) �= H1(M ;Kn[t�1]) where an isomorphism is �xed by choosing a
circle u dual to V (an oriented meridian in the case that M = S3nK ). The
derivation of a presentation for An(M) follows the classical case (see page 122{
123 of [Hi2])but is complicated by basepoint concerns. The following overlaps
with work of S. Harvey [Ha].

Proposition 6.1 The following sequence is exact.

H1(V ;Kn)⊗Kn Kn[t�1] d−! H1(Y ;Kn)⊗Kn Kn[t�1] −! An(M) −! 0

where d(� ⊗ 1) = (i+)��⊗ t− (i−)��⊗ 1.

Proof (see [Ha] for a more detailed proof) For simplicity let Γn stand for
G=G

(n+1)
Q so there is an exact sequence 1 −! eG −! Γn

�−! Z −! 1 where
�(u) = 1 and Kn is the quotient (skew) �eld of Z eG. Let U = V � [−1; 1] and
consider a Mayer{Vietoris sequence for homology with ZΓn coe�cients using
the decomposition M = Y [U . Or, more naively, consider an ordinary Mayer{
Vietoris sequence for the integral homology of MΓn , the Γn cover, using the
decomposition MΓn = p−1(Y )[p−1(U) = YΓn [UΓn and note that all the maps
are ZΓn{module homomorphisms. After the usual simpli�cation one arrives at
the exact sequence:

−! H1(V ;ZΓn) d−! H1(Y ;ZΓn)
j�−! AZn(M) @�−! H0(V ;ZΓn):

Localizing yields a similar sequence with Kn[t�1] coe�cients where An(M) re-
places AZn(M). Since �1(V ) and �1(Y ) are contained in eG, one can consider
H�(V ;Kn) and H�(Y ;Kn), which are free Kn{modules. Moreover Kn[t�1] is
free and hence flat as a left Kn module. Thus H�(V ;Kn[t�1]) �= H�(V ;Kn)⊗Kn
Kn[t�1] and H�(Y ;Kn[t�1]) �= H�(Y ;Kn)⊗Kn Kn[t�1], showing that these ho-
mology groups are �nitely-generated free Kn[t�1] modules. Since An(M) is a
torsion module by Proposition 4.2 and H0(V ;Kn[t�1]) is free, @� is the zero
map. This concludes our sketch of the proof of the proposition.
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Corollary 6.2 If the (classical) Alexander polynomial of M is not 1 then
An(M), n > 0, has a square presentation matrix of size r = maxf0;−�(V )g
each entry of which is a Laurent polynomial of degree at most 1. Speci�cally,
we have the presentation

(Kn[t�1])r @−! (Kn[t�1])r −! An(M) −! 0

where @ arises from the above proposition. If n = 0 then the same holds with
r replaced by �1(V ).

Proof The Corollary will follow immediately from the Proposition if we es-
tablish that H1(V ;Kn) �= H1(Y ;Kn) �= Krn . Note that both V and Y have
the homotopy type of �nite connected 2{complexes. Consider the coe�cient
systems  : �1(V ) −! eG and  0 : �1(Y ) −! eG obtained by restriction of
�1(M) −! Γn . Letting bi stand for the rank of Hi( ;Z eG) or equivalently the
rank of Hi( ;Kn), we have that �(V ) = b0(V )− b1(V ) + b2(V ) as in Fact 3.

Suppose that  is non-trivial. Then b0(V ) = 0 by Proposition 3.7. Since eG
is PTFA, it is torsion free and hence the image of  is in�nite. It follows that
the eG{cover of V is a non-compact 2{manifold and thus b2(V ) = 0. Therefore
b1(V ) = r as desired. It also follows that  0 is non-trivial and so b0(Y ) = 0.
Since �(M) = 0 it follows that �(Y ) = �(V ). Thus b2(Y ) − b1(Y ) = �(Y ) =
�(V ) = −b1(V ) so b1(Y ) = b1(V ) + b2(Y ). By Proposition 6.1 An has a
presentation of de�ciency b1(Y ) − b1(V ). If b2(Y ) > 0 then An(M) has a
presentation of positive de�ciency, contradicting the fact that it is a Kn[t�1]{
torsion module. Therefore b2(Y ) = 0 and b1(Y ) = b1(V ) = r as required. This
completes the case that  is non-trivial, after noting that if n = 0 then  is
certainly trivial since eG = 1.

Now suppose  is trivial. If n = 0 then this is the case of the classical (rational)
Alexander module and the result is well-known. If n � 1 then the triviality of
 implies that �1(V ) � G

(2)
Q . Consider a map f : M −! S1 such that V is

the inverse image of a regular value. Then G
(1)
Q = ker f� and it follows that

G
(1)
Q is the normal subgroup generated by �1(Y ) and so, for any γ 2 �1(Y ),

there exists a non-zero integer m such that mγ bounds an orientable surface
S . Hence G

(1)
Q =G

(2)
Q is generated by �1(V ) and thus is zero. It follows that

A0(M) = 0 and that classical Alexander polynomial is 1. Since this case was
excluded by hypothesis, the proof is complete.

Example 6.3 Suppose K is a �bered knot of genus g with �ber surface V
and �1{monodromy f . If n > 0 and F is the free group of rank 2g − 1
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then H1(V ;Kn) �= H1(Y ;Kn) �= H1(F ;Kn) �= K2g−1
n by Lemma 3.9. By the

above results, An has a (2g − 1) by (2g − 1) presentation matrix given by
It− fn where fn is an automorphism of the vector space K2g−1

n derived from
the induced action of f on F=F (n+1) .

7 The �n give lower bounds for knot genus

The previous section can now be used to show that the degrees of the higher
order Alexander polynomials give lower bounds for genus(K). In the last part
of this section we show that there are knots such that �0 < �n + 1 so that these
invariants yield sharper estimates of knot genus than that given by the Alexan-
der polynomial, deg(�0) � 2 genus(K). S. Harvey has established analagous
results for any 3{manifold, �nding lower-bounds for the Thurston norm [Ha].

Theorem 7.1 If K is a (null-homologous) non-trivial knot in a rational ho-
mology sphere and �n is the degree of the nth order Alexander polynomial then
�0 � 2 genus(K) and �n + 1 � 2 genus(K) if n > 0.

Proof. We may assume n > 0 since the result for n = 0 is well known. If the
classical Alexander polynomial is 1 then �0 = �n = 0 and the theorem holds.
Otherwise suppose V is a Seifert surface of minimal genus. By Corollary 6.2
An(K) has a square presentation matrix of size 2 genus(K) − 1. Since �n
is de�ned as rankKn An , it remains only to show that the latter is at most
2 genus(K)− 1. This is accomplished by the following lemma of Harvey.

Lemma 7.2 [Ha] Suppose A is a torsion module over a skew Laurent poly-
nomial ring K[t�1] where K is a division ring. If A is presented by an m�m
matrix � each of whose entries is of the form ta + b with a, b 2 K, then the
rank of A as a K{module is at most m.

Theorem 7.3 For any knot K whose (classical) Alexander polynomial is not
1 and any positive integer k , there exists a knot K� such that

a) An(K�) �= An(K) for all n < k .

b) �n(K�) = �n(K) for all n < k .

c) �k(K�) > �k(K).

d) K� can be taken to be hyperbolic or to be concordant to K .
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Corollary 7.4 Under the hypotheses of the theorem above, there exists a
hyperbolic knot K� , with the same classical Alexander module as K , for which
�0(K�) < �1(K�) < � � � < �k(K�).

Proof of Theorem 7.3 Let P = �1(S3nK) and let � be an element of P (k)

which does not lie in P (k+1) . By Corollary 4.8 such � are plentiful. We now
describe how to construct a knot K� = K(�; k) which di�ers from K by a
single \ribbon move," i.e. K� is obtained by adjoining a trivial circle J to K
and then fusing K to this circle by a band as shown in Figure 2. Thus K� is
concordant to K . From a group theory perspective, what is going on is simple.
It is possible to add one generator and one relation that precisely kills that
generator if one \looks" modulo nth order commutators, but does not kill that
generator if one \looks" modulo (n+ 1)st order commutators. Details follow.

K K

K�

J

t z

�

Figure 2: K� is obtained from K by a ribbon move

Choose meridians t and z as shown. Choose an embedded band which follows
an arc in the homotopy class of the word � = t[�−1; t−1z]t−1 . There are
many such bands. For simplicity choose one which pierces the disk bounded
by J precisely twice corresponding to the occurrences of z and z−1 in � . Let
G = �1(S3−K�) and let γ denote a small circle which links the band. A Seifert
Van{Kampen argument yields that the group E � G=hγi has a presentation
obtained from a presentation of P by adding a single generator z (corresponding
to the meridian of the trivial component) and a single relation z = �t�−1 . We
symbolize this by E = hP; z j z = �t�−1i. First we analyze the relationship
between P and E .

Lemma 7.5 Given P , �, k , t, z , E as above:

a) P=P (n) �= E=E(n) for all n � k + 1 implying that for all n < k , AZn(P ) �=
AZn(E) and �n(P ) = �n(E);

b) �k(E) = �k(P ) + 1.
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Proof of Lemma 7.5 Let w = t−1z so E = hP;w j w = [t−1; �]i and
� = t[�−1; w]t−1 . Since � 2 P (k) , � 2 E(k) and hence w 2 E(k) . But
then � 2 E(k+1) so w 2 E(k+1) . Part a) of the Lemma follows immedi-
ately: the epimorphism E −! P obtained by killing w induces an isomor-
phism E=E(k+1) −! P=P (k+1) , and hence AZn(P ) �= AZn(E) for n < k by
De�nition 2.8. Here we use the fact that both E and P are E {groups in the
sense of R. Strebel (being fundamental groups of 2{complexes with H2 = 0
and H1 torsion-free). Consequently any term of their derived series is also an
E {group and it follows that their derived series is identical to their rational
derived series [Str].

Now we consider the subgroup E(k+1) of E . To justify the following group-
theoretic statements, consider a 2{complex X whose fundamental group is P
and de�ne a 2{complex Y by adjoining a 1{cell and a 2{cell so that �1(Y ) �= E
corresponding to the presentation hP;w j w = [t−1; �]i. The subgroup E(k+1)

is thus obtained by taking the in�nite cyclic cover Y1 of Y (so �1(Y1) = E(1) )
followed by taking the E(1)=E(k+1) {cover eY of Y1 (so �1(eY ) = E(k+1) ). Since
the inclusion map X −! Y induces an isomorphism P=P (k+1) −! E=E(k+1) ,
the induced cover of the subspace X � Y is the cover eX of X with �1(X) �=
P (k+1) . Therefore a cell structure for eY relative to eX contains only the lifts of
the 1{cell w and the 2{cell corresponding to the single relation. This allows
for an elementary analysis of E(k+1) as follows. By analyzing X1 and Y1 we
see that

E(1) = hP (1); wi i 2 Z j wi = t−i[t−1; �]tii

where wi stands for t−iwti as an element of �1(Y ). If we rewrite the relation
using �−1 = t−i�−1ti and r−1 = t−i+1�−1ti−1 we get

E(1) = hP (1); wi j wi = �−1wi�w
−1
i wi−1r

−1w−1
i−1ri:

This is a convenient form because what we want to do now is \forget the
t action" because �k is de�ned as the rank of the abelianization of E(k+1)

as a module over Z[E(1)=E(k+1)] (or equivalently over its quotient �eld Kk ).
Therefore we now think of Y1 as being obtained from X1 by adding an in�nite
number of 1{cells wi and a correspondingly in�nite number of 2{cells. Thus eY
is obtained from eX by adding 1{cells fwsi j i 2 Z; s 2 E(1)=E(k+1)g, where wsi
descends to s−1t−iwtis in E , and 2{cells corresponding to the relations fwsi =
w�si (wsi )

−1wsi−1(wrsi−1)−1 j i 2 Z; s 2 E(1)=E(k+1)g where, for example, w�si is
the image of a �xed 1{cell wi under the deck translation �s 2 E(1)=E(k+1) and
descends to s−1�−1t−iwti�s in E . The abelianization, E(k+1)=E(k+2) , as a
right Z[E(1)=E(k+1)] �= Z[P (1)=P (k+1)] module is obtained from P (k+1)=P (k+2)

by adjoining a generator wi and a relation for each i 2 Z. Upon rewriting the
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relations above as wi(2s − �s)� = wi−1(s− rs)� where (2s − �s)� denotes the
(right) action of 2s − �s 2 Z[P (1)=P (k+1)], and then again as wi(2 − �)�s� =
wi−1(1− r)�s� we see that the relations are generated as a module by fwi(2−
�)� = wi−1(1−r)� j i 2 Zg. Note that neither 2−� nor 1−r is zero since their
augmentations are non-zero. Hence in Kk these elements are invertible and each
wi , i 6= 0 can be equated uniquely to a multiple of w0 . Thus E(k+1)=E(k+2) �=
P (k+1)=P (k+2) � Kk as a Kk{module. It follows immediately that �k(E) =
�k(P ) + 1. This concludes the proof of Lemma 7.5.

Returning to the proof of the theorem, it will su�ce to show γ 2 G(k+1) since if
so then the epimorphism G −! E induces an isomorphism G=G(n) �= E=E(n)

for all n � k+1 and hence an isomorphism AZn(G) −! AZn(E) for n < k . More-
over the epimorphism G(k+1) −! E(k+1) induces an epimorphism AZk (G) −!
AZk (E) of G=G(k+1) (�= E=E(k+1) ) modules. Thus �k(K�) = �k(G) � �k(E).
By Lemma 7.5 the map P −! E induces isomorphisms AZn(P ) −! AZn(E) for
n < k and �k(E) = �k(P ) + 1 = �k(K) + 1. Combining these results will �nish
the proof.

γ z�

‘z

Figure 3: γ = [z�; ‘z]

��

γ�

‘z

Figure 4: ‘z = [γ�; ��]
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To see that γ 2 G(k+1) , �rst note that γ bounds an embedded disk which is
punctured twice by the knot. By tubing along the knot in the direction of
J , one sees that γ bounds an embedded (punctured) torus in S3nK� as in
Figure 3. This illustrates the group-theoretic fact that γ = [z�; ‘z] where ‘z is
a longitude of J and z� is a conjugate of z . It su�ces to show ‘z 2 G(k+1) .
But, since � = t�−1t−1z�z−1 contains 2 occurrences of z (with opposite sign)
and we chose our band to pass precisely 2 times through J , ‘z bounds a twice
punctured disk and hence a punctured torus as in Figure 4. This illustrates
that ‘z = [γ�; ��] where γ� is a conjugate of γ since it is another meridian of
the band, and �� is the word � separating the occurrences of z and z−1 in the
word � . Clearly γ 2 G(1) . Suppose γ , and hence γ� , lies in G(j) for some
1 � j � k . Thus G=G(j) �= E=E(j) . Let �0 denote the image of �� under the
map G ! E . Then �0 is the image of � under the map P ! E since all the
elements �, �0 and �� are represented by the \same" path. Since � 2 P (k) (by
hypothesis), �0 2 E(k) and hence �� 2 G(j) . But then ‘z 2 G(j+1) and hence
γ 2 G(j+1) . Continuing in this way shows that γ 2 G(k+1) and concludes the
proof of Theorem 7.3.

Proof of Corollary 7.4 By induction and Theorem 7.3 there exists a knot
Kk−1 with the same classical Alexander module as K and �0(Kk−1) < ::: <
�k−1(Kk−1) Apply Theorem 7.3 to Kk−1 produce a new knot K� . One easily
checks that K� satis�es the required properties by Theorem 7.3, Theorem 5.4
and Corollary 2.10.

8 Genetic infection: A technique for constructing
knots

We discuss a satellite construction, which we call genetic modi�cation or infec-
tion, by which a given knot K is subtly modi�ed, or infected using an auxiliary
knot or link J (see also of [COT1, Section 6] [COT2] [CT]). If, by analogy,
we think of the group G of K as its strand of DNA, then, by Corollary 4.8,
this \strand" is in�nitely long as measured by the derived series. Thus, as
we shall see, it is possible to locate a spot on the \strand" which corresponds
to an element of G(n) − G(n+1) , excise a \small piece of DNA" and replace it
with \DNA associated to the knot J ", with the e�ect that G=G(n+1) is not al-
tered but G=G(n+2) is changed in a predictable fashion. The infection is subtle
enough so that it is not detected by the localized modules An (hence not by
�n ). The e�ect on the (integral) modules AZn can be measured numerically by
the higher-order signatures of Section 11.
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Suppose K and J are �xed knots and � is an embedded oriented circle in S3nK
which is itself unknotted in S3 . Note that any class [�] 2 G has a (non-unique)
representative � which is unknotted in S3 . Then (K; �) is isotopic to part a of
Figure 5 below, where some undetermined number m of strands of K pierce the
disk bounded by � . Let K0 = K(�; J) be the knot obtained by replacing the
m trivial strands of K by m strands \tied into the knot J ". More precisely,
replace them with m untwisted parallels of a knotted arc with oriented knot
type J as in Figure 5. We call K0 the result of infecting K by J along � .

K

� J

Figure 5: Infecting K by J along �

The more general procedure of replacing the m strands by a more complicated
string link will be discussed briefly in Section 10. Note that this is just a satel-
lite construction and as such is not new. The emphasis here is on choosing the
loop or loops � to be very subtle with respect to some measure. Note that this
construction is, in a sense, orthogonal to techniques used by Casson{Gordon,
Litherland, Gilmer, T.Stanford, and K.Habiro wherein the loop � is arbitrary
but the analogue of the infection parameter J is increasingly subtle (for exam-
ple, in Stanford’s case, J must lie in the nth term of the lower central series of
the pure braid group; and, in the claspers that Habiro associated to Vassiliev
theory, the analogue of � is a meridian of K [Hb]). However, infection can
certainly be viewed as the result of modifying K by a certain clasper (depend-
ing on J ) all of whose leaves are parallels of � (see [CT][GL][GR]). Moreover
all of these procedures are special cases of the classical technique, used by J.
Levine and others, of modifying a knot by Dehn surgeries that leave the ambient
manifold unchanged.

We now give an alternate description of genetic infection that is better suited
to analysis by Mayer{Vietoris and Seifert{Van Kampen techniques. Beginning
with the exterior of K , E(K), delete the interior of a tubular neighborhood N
of � and replace it with the exterior of J , E(J), identifying the meridian �� of
� with the longitude ‘J of J , and the longitude ‘� of � with the meridian �J
of J . It is well-known and is a good exercise for the reader to show that the
resulting space is E(K0) as described above. Note that this replaces the exterior
of a unknot with the exterior of the knot J in a fashion that preserves homology.
Since there is a degree one map (rel boundary) from E(J) to E (unknot), there
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is a degree one map (rel boundary) f from E(K0) to E(K) which is the identity
outside E(J).

Theorem 8.1 If � 2 G(n) then the map f (above) induces an isomorphism
f : �1(E(K0))=�1(E(K0))(n+1) ! �1(E(K))=�1(E(K))(n+1) and hence induces
isomorphisms between the ith (integral and localized) modules of K0 and K
for 0 � i < n.

Proof Let E(�) denote E(K) with the interior of an open tubular neighbor-
hood of � deleted. Then, by the Seifert{VanKampen theorem, G = �1(E(K)) �=
h�1(E(�)); t j ��=1; ‘�=ti. Similarly, G0 = �1(E(K0)) �= h�1(E(�)); �1(E(J))
j‘� = �J ; �� = ‘Ji where this denotes the obvious \free product with amalga-
mation". The map f induces the identity on �1(E(�)) and is the Hurewicz map
on �1(E(J)) ! Z = hti which sends ‘J ! 1 and �J ! t. Hence the kernel of
f : G0 ! G is precisely the normal closure in G0 of [P;P ] where P = �1(E(J)).
Thus it su�ces to show that P � G(n)

0 . Since P is normally generated by �J ,
it su�ces to show by induction that �J 2 G(n)

0 . This is clearly true for n = 0.
Suppose �J 2 G

(k)
0 k < n. Then P � G

(k)
0 so �� = ‘J � [P;P ] � G

(k+1)
0 .

By hypothesis � 2 G(n) . Therefore � bounds in E(K), a map of a symmetric
n{stage grope [CTe]. Thus ‘� bounds such a grope in E(K) and we may as-
sume that the grope stages meet � transversely. Hence ‘� bounds a punctured
n{stage grope in E(�) and the boundaries of these punctures are copies of �� .
Therefore, in G0 , ‘� =

Qm
i=1 �i�

ni
� �
−1
i

Qr
j=1[aj; bj ] where each aj and bj bound

maps of punctured (n − 1){stage gropes in E(�). We claim ‘� 2 G(k+1)
0 . It

su�ces to show the aj and bj lie in G
(k)
0 . But each of these, modulo conjugates

of ��1
� , is given by a similar expression as ‘� above. Continuing in this fashion,

we see that ‘� 2 G(n)
0 modulo the punctures �� 2 G(k+1)

0 . Since n � k + 1,
‘� 2 G(k+1)

0 and hence �J 2 G(k+1)
0 , completing our induction.

Theorem 8.2 Let K0 = K(�; J) be the result of genetic infection of K by
J along � 2 G(n) (as described above). Then the nth (integral) Alexander
module of K0 , AZn(K0), is isomorphic to AZn(K)�(AZ0 (J)⊗Z[t;t−1]Z[G=G(n+1)])
where Z[G=G(n+1)] is a left Z[t; t−1] module via the homomorphism hti = Z!
G=G(n+1) sending t! � . Thus, if n � 1, Ai(K0) �= Ai(K) for all i � n.

Proof Note that since � 2 G(n) , AZn(K0) and AZn(K) are modules over isomor-
phic rings since G=G(n+1) �= G0=(G0)(n+1) by the previous theorem. Therefore
we can take the point of view that the map E(K0) ! E(K) induces on both
spaces a local coe�cient system with G=G(n+1) coe�cients.
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Lemma 8.3 The inclusion i : @E(J) ! E(J) induces an isomorphism on
H0( ;Z[G=G(n+1)]) and induces either the 0 map or an epimorphism on
H1( ;Z[G=G(n+1)] according as � =2 G(n+1) or � 2 G(n+1) respectively, whose
kernel is generated by h‘J i.

Proof of Lemma 8.3 The Lemma refers to the coe�cient system on E(J) in-
duced by E(J) � E(K0)! E(K). Note that the kernel of the map �1(E(J))!
G contains [�1(E(J)); �1(E(J))] and thus its image in G=G(n+1) is cyclic, gen-
erated by the image of �J = � . Since G=G(n+1) is torsion-free (see Example
2.4), this image is either zero or Z according as � 2 G(n+1) or not. This also
shows that the image of �1(@E(J)) in G=G(n+1) is the same as the image of
�1(E(J)). The �rst claim of the Lemma now follows immediately from the
proof of Proposition 3.7. Alternatively, since H0( ;Z[G=G(n+1)]) is free on
the path components of the induced cover, and since the cardinality of such
is the index of the image of �1 in G=G(n+1) , i induces an isomorphism on
H0( ;Z[G=G(n+1)]). If � 2 G(n+1) then the induced local coe�cient systems
on @E(J) and E(J) are trivial, i.e. untwisted and thus i induces an epimor-
phism on H1( ;Z[G=G(n+1)]) whose kernel is h‘J i because it does so with
ordinary Z coe�cients. If � =2 G(n+1) then the induced cover of @E(J) is a
disjoint union of copies of the Z{cover which \unwinds" �J , i.e. the ordinary
in�nite cyclic cover. Thus H1 of this cover is generated by a lift of ‘J . But ‘J
bounds a surface in E(J) and this surface lifts to the induced cover since every
loop on a Seifert surface lies in [�1(E(J)); �1(E(J))]. Therefore i induces the
zero map on H1 in this case. This concludes the proof of the Lemma.

We return to the proof of Theorem 8.2. Consider the Mayer{Vietoris sequence
with Z[G=G(n+1)] coe�cients for E(K0) viewed as E(J) [E(�) with intersec-
tion @E(J). By Lemma 8.3 this simpli�es to

H1(@E(J))
( 1; 2)−! H1(E(J)) �H1(E(�)) −! H1(E(K0)) −! 0:

Note �rst that E(K) is obtained from E(�) by adding a solid torus, i.e. a 2-cell
and then a 3-cell, so that it is clear that H1(E(K)) is the quotient of H1(E(�))
by the submodule generated by �� (or ‘J ). If � =2 G(n+1) then  1 is zero by
Lemma 8.3 so H1(E(K0)) �= H1(E(J)) � (H1(E(�))=h 2i). But in the proof
of Lemma 8.3 we saw that H1(@E(J)) was generated by ‘J and so the image
of  2 is generated by ‘J . Hence H1(E(K0)) �= H1(E(J)) � (H1(E(K)). This
concludes the proof of the theorem in the case � =2 G(n+1) once we identify
H1(E(J)) as AZ0 (J) ⊗Z[t;t−1] Z[G=G(n+1)]. But since the map from �1(E(J))
to its image in G=G(n+1) has already been observed to be the abelianization,
this is clear.
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In case � 2 G(n+1) ,  1 is an epimorphism whose kernel is generated by ‘J and
so H1(E(K0)) �= H1(E(�))=h‘J i �= H1(E(K)). On the other hand, in this case
AZ0 (J)⊗Z[t;t−1] Z[G=G(n+1)] factors through the augmentation of AZ0 (J), which
is zero since the classical Alexander polynomial of a knot augments to 1.

If n � 1, � 2 eG. Let �(t) be the classical Alexander polynomial of J . Then
�(�) 2 Z eG − f0g. Recall that Z eG − f0g is a right divisor set of regular
elements of Z[G=G(n+1)] by [P, p. 609]. Thus for any r 2 Z[G=G(n+1)], there
exist r1 2 Z[G=G(n+1)] and t1 2 Z eG− f0g such that �(�)r1 = rt1 [P, p. 427].
Hence any element x⊗ r 2 AZ0 (J)⊗Z[G=G(n+1)] is annihilated by t1 , showing
that this is a Z eG{torsion module. Hence An(K0) �= An(K).

9 Applications to detecting �bered and alternating

knots and symplectic structures on 4{manifolds

In this section we show that the higher-order Alexander modules of �bered knots
and alternating knots have special properties. Therefore noncommutative knot
theory gives algebraic invariants which can be used to tell when a knot is not
�bered or not alternating, even in situations where the Alexander module yields
inconclusive evidence. In the case of �bered knots, examples of this type were
obtained independently by J.C. Cha using the twisted Alexander invariant [Ch].
Remarkably, for 4{manifolds of the form MK � S1 (MK is the 0{surgery on
K ), our invariants also obstruct the existence of a symplectic structure (using
work of P. Kronheimer [Kr]). We also establish that �i − �j are not Vassiliev
invariants of �nite type.

Proposition 9.1 If K is a non-trivial �bered or alternating knot then �0 =
�1 + 1 = � � � = �n + 1 = 2 genus(K).

Proof It is well known that for a �bered or alternating knot, �0 = 2 genus(K).
The result now follows immediately from Theorem 5.4.

Corollary 9.2 For any non-trivial �bered or alternating knot K , and any
positive integer n, there exists a hyperbolic knot K� such that

a) Ak(K�) �= Ak(K) for all k < n

b) �k(K�) = �k(K) for all k < n

c) �n(K�) > �n(K)
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d) K� is neither �bered nor alternating.

Proof Apply Theorem 7.3 and Corollary 2.10 to produce K� . Suppose n � 2.
Since K is �bered or alternating, �n(K) = �n−1(K) by Proposition 9.1. It
follows that �n(K�) > �n−1(K�) so K� is not �bered. A similar argument
works for n = 1.

There are more subtle obstructions to �bering that cannot be detected by the
localized modules, but can be detected by the integral modules.

Proposition 9.3 If K is a �bered knot then the following equivalent condi-
tions hold:

1) AZn(K) −! An(K) is injective

2) AZn(K) is torsion-free as a Z eG{module (recall that eG is G(1)=G(n+1) ).

Proof Recall AZn(K) = G(n+1)=G(n+2) = F (n)=F (n+1) where G(1) = F is free
since K is a �bered knot. Since eG = G(1)=G(n+1) = F=F (n) , AZn as a Z eG{
module is merely F (n)=F (n+1) as a Z[F=F (n)]{module (i.e. H1(F ;Z[F=F (n)])).
Since F is the fundamental group of a 1{complex, this is a submodule of a free
module and hence is torsion-free.

Theorem 9.4 For any non-trivial �bered knot K and any positive integer n
there exists a family of hyperbolic knots K� = K�(J; n), parametrized by an
auxiliary knot J , such that

1) G=G(n+1) �= G�=G
(n+1)
� meaning that all knots in the family share (with

K ) the same AZi for 0 � i � n− 1;

2) An(K) �= An(K�)

3) �0 = �1 + 1 = � � � = �n + 1 for each K� and K

4) if P� is the commutator subgroup of G� then P�=(P�)j �= F=Fj for each
term of the lower central series (F is free of rank equal to 2 genus(K)).

5) If J has non-trivial classical Alexander polynomial then K� is not �bered
and hence is distinct from K .

6) If J has non-trivial classical Alexander polynomial then G=G(n+2) 6�=
G�=G

(n+2)
� and AZn(K�) 6�= AZn(K).

7) K�(J; n) and K�(J 0; n) are distinct if the integrals of the classical Levine
signature functions of J and J 0 are distinct.
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Proof Since K is a non-trivial �bered knot, it does not have Alexander poly-
nomial 1. By Corollary 4.8 (or more simply since G(n) is free if n � 1), for
any n, we can choose a class � 2 G(n) − G(n+1) which can be represented by
a loop in the complement of a �ber surface for K and which is also unknotted
in S3 . Construct K0 = K(�; J) by genetic infection as in Section 8. It follows
that genus(K0) = genus(K) so if we drop the claim of hyperbolicity we can
retain this. By Corollary 2.10 there is a hyperbolic knot, K� , whose funda-
mental group di�ers from that of K0 by a perfect group. Thus K0 and K�
have isomorphic AZi for any i and have isomorphic groups modulo any term
of the derived series (see Proposition 2.9). Thus, by Theorem 8.1, part 1) of
Theorem 9.4 follows. Part 2) follows from Theorem 8.2. Part 3) holds for K by
Proposition 9.1 and hence for K� by the second part of Theorem 8.2. Part 4) is
true for any knot for which AZ0 �= Z2 genus(K) since one can then de�ne a homo-
morphism from the free group of rank 2 genus(K) to the commutator subgroup
which induces an isomorphism on H1 and an epimorphism on H2 . Stallings’
theorem [St] then guarantees an isomorphism modulo any term of the lower
central series.

By Theorem 8.2, AZn(K�) is AZn(K) direct sum AZ0 (J) ⊗Z[t;t−1] Z[G=G(n+1)].
But An(K�) �= An(K). By Proposition 9.3, if K� were �bered then this second
direct summand would be zero. But even after tensoring with Q[G=G(n+1)]
this module is not zero because it is cyclic of order �(�) where �(t) is the
classical Alexander polynomial of J . Thus the module is zero if and only if
�(�) is a unit in Q[G=G(n+1)]. Since G=G(n+1) is PTFA it is right orderable
by [P, p. 587] hence has only trivial units by [P, p. 588,590]. Since �(�) is an
integral polynomial in � , this can only happen if �(t) has degree zero which
was excluding by hypothesis. Thus Part 5 is established. Part 6 follows from
the discussion above. The proof of Part 7) must be postponed to Theorem 11.1
of Section 11.

Some of these new obstructions to �bering can be used to show that certain
4-manifolds of the form S1 �MK admit no symplectic structure. If K is a
�bered knot then MK also �bers over the circle and it is known that S1 �
MK is then symplectic. C. Taubes conjectured the converse. The Seiberg-
Witten invariants provide evidence for this conjecture. If S1 �MK admits a
symplectic structure then the Alexander polynomial of K must be monic. This
is precisely the �bering obstruction on the classical Alexander polynomial of K .
Peter Kronheimer provided more evidence for the conjecture by proving that if
S1 �MK admits a symplectic structure then �0 = 2 genus(K) [Kr2] [Kr]. As
a consequence of his work, we see that the �i constitute algebraic invariants

Algebraic & Geometric Topology, Volume 4 (2004)



Noncommutative knot theory 383

which can obstruct a symplectic structure on S1 �MK even when the Seiberg
Witten invariants give inconclusive information.

Theorem 9.5 Suppose K is a non-trivial knot. If S1 �MK admits a sym-
plectic structure then the invariants �i(K)− �0(K) + 1 are zero for all i > 0.

Proof By Kronheimer’s theorem, �0(K) = 2 genus(K). The result then fol-
lows from Theorem 5.4.

Corollary 9.6 If K� is any one of the examples of Corollary 9.2, then S1�MK

admits no symplectic structure although the Alexander polynomial of K is
monic.

Now consider �n as a rational valued invariant on knot types.

Proposition 9.7 None of the invariants �i − �j (i 6= j ) or �i − 2 genus(K) is
determined by any �nite number of �nite type (Vassilliev) invariants.

Proof Let � be one of the mentioned invariants. Suppose � were determined
by the �nite type invariants v1; : : : ; vm . We have shown in Theorem 7.3 that �
is not constant. But on �bered knots � is constant, say C , by Proposition 9.1.
Again using Theorem 7.3 choose a knot K� such that �(K�) = C 0 6= C . By a
result of A. Stoimenow [Sti], there exists a �bered knot K such that vi(K) =
vi(K�) for 1 � i � m. Thus �(K) = �(K�) a contradiction.

10 Bordism invariants generalizing the Arf invariant

In this section we de�ne higher-order bordism invariants for knots which (in a
certain sense) generalize the Arf invariant. The reader is warned that these are
not the same as the generalizations of the Arf invariant de�ned in Section 4 of
[COT1]. The invariants about to be de�ned are almost certainly not concor-
dance invariants. If K is a knot, G its group, let MK be the result of 0{framed
surgery on K and P = �1(MK). Recall that the Arf invariant of K may be
de�ned as the class in ΩSpin

3 (S1) �= Z2 represented by MK with the map to S1

induced by the abelianization homomorphism P −! P=P (1) �= G=G(1) �= Z.
Equivalently one could consider spin bordism (rel boundary) over S1 of 3{
manifolds with a toral boundary component, in which case the Arf invariant of
K is zero if and only if S3nK is bordant to the exterior of the unknot. Note
that S1 = K(P=P (1); 1) = K(G=G(1); 1).

More generally,

Algebraic & Geometric Topology, Volume 4 (2004)



384 Tim D. Cochran

De�nition 10.1 The nth (reduced) bordism invariant of K , �n(K), is the

class in ΩSpin
3 (K(P=P (n+1); 1))=Aut(P=P (n+1)) represented by MK

fn−!
K(P=P (n+1); 1) where fn is induced by the quotient map fn : P −! P=P (n+1) .

Obviously then �0(K) is the Arf invariant of K , and equivalent knots (here
we need an orientation-preserving homeomorphism) have identical bordism in-
variants. Note also that �n(−K) = −�n(K), so that a �{amphichiral knot
satis�es 2�n = 0. We also have the following purer but uglier version. The
purest (and ugliest) version would �x the peripheral structure in G=G(n+1) and
e�ectively only consider pairs of knots with isomorphic G=G(n+1) preserving
peripheral structure.

De�nition 10.2 The nth unreduced bordism invariant of K , e�n(K), is the
equivalence class of (S3nK;@(S3nK), fn : S3nK −! K(G=G(n+1); 1)) in the
set of spin bordism classes rel boundary of spin 3{manifolds and maps to
K(G=G(n+1); 1) modulo the action of Aut(G=G(n+1); 1).

Conjecture For each n � 0 there exist knots K , K� such that Ai(K) �=
Ai(K�), 0 � i < n but �n(K) 6= �n(K�).

We give a construction which should produce K� for any n but are only able
to verify this in the �rst case n = 0.

Theorem 10.3 There exist knots K , K� with identical classical Alexander
module and Blanch�eld form but which are distinguished by �1 . Moreover we
can choose K to be amphichiral and K� to be chiral.

The knot K� in this case will be constructed from K by choosing 3 \bands"
of a Seifert surface for K and tying them into the shape of a Borromean rings,
with a restriction on the 3 bands that they are \essential" (in a sense to be
made precise) in the Alexander module. This then becomes very interesting in
light of previous work of S. Naik and T. Stanford who showed that any two
knots with isomorphic classical Alexander modules and isomorphic classical
Blanch�eld forms are related by a sequence of such replacements (without the
restriction) [NS]; and work of S. Garoufalidis and L. Rozansky, who de�ne a
\�nite type" isotopy invariant of knots that is a�ected by precisely this same
construction. Their invariant gives information even for Alexander polynomial
one knots [GR]. The work of Naik-Stanford can be interpreted as saying that the
construction by which we prove Theorem 10.3 is the only construction necessary
(for n = 0) to achieve the full range of values of the triple (A0(K), B‘0(K),
�1(K)).
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Infection by a string link

We discuss an instance of genetic infection of a �xed knot K using an auxil-
iary string link. This was perhaps �rst discussed in [CO] in the case that the
auxiliary link is a boundary link. For our examples it su�ces to consider the
case where the auxiliary link is the Borromean Rings. This type of Borromean
modi�cation has been considered by many other authors including Matveev,
Habiro, Goussarov and those mentioned above. Let � be a 2-disk with 3 dis-
joint open subdisks �1 , �2 , �3 , deleted. Consider an embedding of � in
S3nK which extends to an embedding �+ of D2 into S3 . An example is
shown in Figure 6. The trivial braid K\ (�+� [0; 1]) ,! �+� [0; 1] is obtained
from the trivial 3-string braid by forming fm1;m2;m3g parallel strands (and
perhaps altering some orientations) where mi is the number of components
of K \ �i . From the Borromean rings (written as a 3-string braid) form the
fm1;m2;m3g cable of the Borromean rings and alter orientations consistent
with the above. Then replace the trivial braid with this cable of the Bor-
romean Rings. We denote the modi�ed knot by K� = K(�) where � denotes
the triple (�1; �2; �3) = (@�1; @�2; @�3) of conjugacy classes of elements of
G = �1(E(K)) as shown in Figure 6.

�

�1
�2 �3

Figure 6: The data required to infect K by a string link along (�1; �2; �3)

Once again this is the same as replacing the solid handlebody � � [0; 1] with
the exterior of a 3-string braid that represents the Borromean Rings.

The Seifert Van-Kampen proof of the following Lemma is left to the reader, it
being entirely analogous to that of Theorem 8.1.

Lemma 10.4 If �i 2 G(n) , i = 1, 2, 3 then �1(E(K�))=(�1(E(K�)))(n+1) is
isomorphic to �1(E(K))=(�1(E(K)))(n+1) preserving peripheral structure. In
particular AZi (K�) �= AZi (K) for 0 � i < n.
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Now consider the di�erence �n(K�) − �n(K) projected onto Ω3(P=P (n+1)) �=
H3(P=P (n+1)), forgetting the spin structure. We claim that this element is
equal to the image of a generator of H3(S1�S1�S1) under the map induced by

Z3 (�1;�2;�3)−! P (n)=P (n+1) −! P=P (n+1) . To establish this, we describe a cobor-
dism, over P=P (n+1) , from (MK qS1�S1�S1; fnq (�1; �2; �3)) to (MK� ; (f�)n).
First add a 1-handle to @+ of (MKq(S1�S1�S1))�[0; 1]). A framed link picture
of the new @+ is shown in Figure 7. Since the meridians of the components
of the pictured Borromean rings map to (�1; �2; �3) in P=P (n+1) we can add
three 2-handles fh1; h2; h3g as shown in Figure 8 and still have a cobordism
over P=P (n+1) . But now the knot in Figure 8 is well known to be equivalent
to K(�) by �rst sliding the strands of K which link the attaching circles of hi
over the corresponding component of the Borromean Rings until the attaching
circles of the hi bound disks intersecting only the Borromean rings and then
sliding the strands of K over the hi as needed until completely free.

0 0

0

�1

�2

�3

Figure 7

Proof of Theorem 10.3 Let K be a knot with classical Alexander module
cyclic of order p(t)p(t−1) where p(t) = t3 + t− 1. Since p(t) is irreducible and
coprime to p(t−1) there is a unique direct summand B of A0(K) isomorphic
to Z[t; t−1]=hp(t)i. Since B is a free abelian group of rank 3, 1 ^ t ^ t2 is a
basis of H3(B) and also represents an element � of H3(G=G(2)) �= H3(P=P (2))
under the inclusions. Choose a trivial link f�1; �2; �3g in S3 , avoiding K ,
representing f1; t; t2g in G=G(2) and perform a Borromean modi�cation to K
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Figure 8

along f�1; �2; �3g as above to arrive at a knot K� that has isomorphic A0 .
Using the cobordism above we see that �1(K�) − �1(K) = �. However we
must take into account the ambiguity in the de�nition of �1(K). Suppose f
is an automorphism of the group G=G(2) . Assuming �1(K�) − f��1(K) = 0
for some f , we shall derive a contradiction. Here we are viewing both �1(K�)
and �1(K) as elements of H3(G=G(2)). Let r be the canonical retract from
Z[t; t−1]=hp(t)p(t−1)i to B , inducing a map r from G=G(2) (which is A0oZ to
� = B oZ). The automorphism f induces an automorphism g of � such that
g�r = r�f . Combining the two equations above we see that f��1(K)−�1(K) =
� and hence r�(�) = r�f��1(K)− r��1(K) = (g�− id)(r��1(K)). Consider the
Wang sequence

H3(B) t�−id−! H3(B)
j�−! H3(�) @−! H2(B) t�−id−! H2(B):

Since H2(B) is free abelian on f1^ t; 1^ t2; t^ t2g one can easily calculate that
(t�− id) is injective on H2(B). Hence @ is the zero map and r�(�1(K)) = j�(�)
for some � 2 H3(B). Recall that, by de�nition, r�(�) = j�(1^ t^ t2). It follows
that (1 ^ t ^ t2) − (g� − id)(�) lies in the kernel of j� and hence in the image
of (t� − id). But H3(B) is Z generated by 1 ^ t ^ t2 so it is easy to calculate
that t� − id is zero on H3(B). Moreover since g� is an automorphism of an
in�nite cyclic group, it equals � id. Hence 1 ^ t ^ t2 = 0 or 1 ^ t ^ t2 = −2� ,
both contradictions. Therefore �1(K�) and �1(K) are distinct. Alternatively,
we could choose the amphichiral knot K#−K and form K� by infecting \the
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K part" as above. Then K� is not amphichiral.

11 Von Neumann higher-order signatures of knots

One can de�ne higher-order signatures �n , n � 0, for knots using the Von
Neumann �{invariant of J. Cheeger and M. Gromov. In this section these are
de�ned and used to distinguish among knots which have isomorphic localized
Alexander modules. These can also be used to detect chirality of knots. Similar
signatures were crucial in the work of Cochran-Orr-Teichner [COT1] [COT2]
[CT].

If K is a knot and G its group, let MK denote the result of zero framed surgery
on K and let P = �1(MK). To the P (n+1) covering space of MK , Cheeger and
Gromov associate a real-valued Von Neumann �{invariant, which we denote
�n(K) [ChG]. If −K denotes the mirror-image of K then M−K �= −MK so
�n(−K) = −�n(K) [ChG]. If K and K 0 are equivalent knots, then MK and
MK 0 are (orientation-preserving) homeomorphic so �n(K) = �n(K 0). Hence if
K is plus or minus amphichiral then �n(K) = 0 for each n. In general it is
not known how to compute �n . However relative signatures �n(K0) − �n(K1)
are often easy to compute. Suppose K0 , K1 are knots such that P0=P

(n+1)
0

�=
P1=P

(n+1)
1 where Pi = �1(MKi) as above. Moreover suppose MK0 and MK1

are bordant over P=P (n+1) , as in the previous section, that is there exists a
compact oriented 4-manifold (W ,  : �1(W ) −! P=P (n+1) ) whose boundary
is (MK0 , �0 : �1(MK0) −! P=P (n+1) ) q(−MK1; �1 : �1(MK1) −! P=P (n+1))
where �i is a composition of the projection Pi −! Pi=P

(n+1)
i with an arbi-

trary identi�cation of Pi=P
(n+1)
i with a standard copy called P=P (n+1) . Then

the relative signature �n(K0)− �n(K1) is equal to the (reduced) L2{signature
�

(2)
n (W )−�(W ) associated to  (see [COT1, Section 5]. This is often calculable.

For example, if n = 0 and K is an Arf invariant zero knot, then P=P (1) �= Z
and it is known that (MK , �0 : P −! Z) is null-bordant, i.e. that MK bounds
(V; ), and that �(2)

0 (K) is the integral of the Levine signature function of K
and �(V ) is the ordinary knot signature [COT2]. In this sense the �n generalize
\ordinary" Levine-Tristram signatures associated to the Z{cover of S3nK .

The technique of genetic infection may be used to modify a given knot K
so subtly that the two have isomorphic ith localized modules for i � n and
have isomorphic (integral) modules for i < n. The di�erence in the (integral)
modules at the nth stage can (in many cases) be detected by the nth relative
signature.
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Theorem 11.1 Let K� = K(�; J) be the result of genetic infection of K by
J along � 2 G(n) (G = �1(E(K))) as in Section 8. Then

1) AZi (K�) �= AZi (K) for i < n,

2) If n > 0, Ai(K�) �= Ai(K) and �i(K�) = �i(K) for i � n,

3) If Arf J = 0 then �i(K�) = �i(K) and e�i(K�) = e�i(K) for i � n,

4) �i(K�) = �i(K) for i < n,

5) If � =2 P (n+1) then �n(K�) − �n(K) is the integral of the normalized
Levine signature function of J . If this real number is non-zero then K�
is distinct from K and distinct from the mirror image of K� .

Proof Since 1) and 2) were shown in Theorem 8.1 and Theorem 8.2 we begin
with 3). Consider the map f : MJ −! S1 induced by the abelianization of
�1(E(J)). Since Ω3(S1) �= 0 and ΩSpin

3 (S1) �= Z2 as detected by the Arf
invariant of J , it can be shown that MJ is the boundary of a 4{manifold V
with �1(V ) �= Z generated by the meridian of J and such that V extends the
usual spin structure on MJ if Arf J = 0. We may also assume signature(V ) = 0
by connected summing with �CP (2)’s. The boundary of V decomposes into
E(J) [ (S1 �D2). We form a cobordism W from MK to MK� (or E(K) to
E(K�)) as follows. Let W be the 4{manifold obtained from MK � [0; 1] by
identifying S1�D2 ,! @V with the solid torus neighborhood of � in MK �f1g
in such a way that @+W = MK� . Since �1(MK) −! �1(W ) is an isomorphism,
W is a cobordism \over" �1(MK)=(�1(MK))(i+1) for any i. By Theorem 8.1,
this quotient is isomorphic to that of K� if i � n (since the longitudes are
preserved under the map f of Theorem 8.1) and so �i and e�i agree for K�
and K if i � n. Then �n(K�) − �n(K) is equal to the L2{signature of W
associated the homomorphism �1(W ) �= P −! P=P (n+1) . By additivity of
signature [COT1, Lemma 5.9], this is equal to the L2 signature of V associated
to the map �1(V ) −! �1(W ) −! P=P (n+1) . Since �1(V ) �= Z generated by
�(= �J), if � =2 P (n+1) , this map is injective. It follows that the L2 signature
associated to P=P (n+1) is equal to that associated to the map �1(V ) −! Z (its
image) [COT1, Proposition 5.13]. But this is the integral of the classical Levine
signature function of J over the circle as remarked above [COT2, Appendix].
Note that �i(K�) = �i(K) for i < n because in this case the map �1(V ) −!
P=P (i+1) is zero and the L2{signature of V is equal to its usual signature
(which is zero).

Remarks If n � 1, it is easy to get genus(K�) = genus(K) by choosing �
in the complement of a minimal genus Seifert surface for K . Then K and K�
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also have identical Seifert form. This shows that �n is determined neither by
the localized modules or �i for i � n, nor by the bordism invariants �i for
i � n, nor by the genus. Note that the above proof also establishes part 7) of
Theorem 9.4

Question Is �n(K) determined by An(K) and the nth linking form B‘n dis-
cussed in the next section?

12 Higher order Blanch�eld linking forms, duality,

and the behavior of the longitude

We will now show that the Blanch�eld linking form de�ned on the classical
Alexander module generalizes to linking forms B‘n on the localized higher-
order Alexander modules An . We see that if n 6= 1, we can get a non-singular
linking form. If n = 1 the form is non-singular after killing the longitude.
Hence the An are self-dual if n 6= 1. Recall that (A; �) is a symmetric linking
form if A is a torsion R{module and

� : A −! HomR(A;K=R) � A#

is an R{module map such that �(x)(y) = �(y)(x) (here K is the �eld of
fractions of R and Hom, which is naturally a left module, is made into a right
R{module using the involution of R). The linking form is non-singular if � is
an isomorphism.

Theorem 12.1 [COT1] Suppose M is a compact, oriented, connected 3{
manifold with �1(M) = 1 and � : �1(M) −! Γ a non-trivial PTFA coe�cient
system. Suppose R is a ring such that ZΓ � R � K . Then there is a symmetric
linking form

B‘ : H1(M ;R) −! H1(M ;R)#

de�ned on the higher-order Alexander module A := H1(M ;R).

Proof Note that A is a torsion R{module by Proposition 3.10, since K is
also the quotient �eld of the Ore domain R. De�ne B‘ as the composition
of the following maps: the natural map � : H1(M ;R) −! H1(M;@M ;R), the
Poincar�e duality isomorphism to H2(M ;R), the inverse of the Bockstein to
H1(M ;K=R), and the usual Kronecker evaluation map to A# . The Bockstein

B : H1(M ;K=R) −! H2(M ;R)
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associated to the short exact sequence

0 −! R −! K −! K=R −! 0

is an isomorphism since H�(M ;K) �= H�(M;@M ;K) �= 0 by Corollary 3.12.

We also need to show that B‘ is \conjugate symmetric". The diagram below
commutes up to a sign (see, for example, [M, p. 410]), where B0 is the homology
Bockstein

H1(M ;R)????y�
H2(M;@M ;K=R) B0−−−−! H1(M;@M ;R)

�=
??yP:D: �=

??yP:D:
H1(M ;K=R) B−−−−! H2(M ;R)??y�

(1)

HomR(H1(M ;R);K=R)

and the two vertical homomorphisms are Poincar�e duality. Thus our map B‘
agrees with that obtained by going counter-clockwise around the square and
thus agrees with the Blanch�eld form de�ned by J. Duval in a non commutative
setting [D, p. 623{624]. The argument given there for symmetry is written in
su�cient generality to cover the present situation and the reader is referred to
it.

De�nition 12.2 The nth {order linking form for the knot K , B‘n : An(K)!
An(K)# , is the linking form above with R = Rn (as in Section 4).

Proposition 12.3 The linking form B‘ : An(K) −! An(K)# is non-singular
if n 6= 1. If n = 1 the kernel of B‘ is the submodule generated by the longitude,
and there is a non-singular linking form induced on the \reduced" (quotient)
module A�1(K), obtained by killing the longitude.

Corollary 12.4 The localized modules An(K) (if n = 1 use A�1(K)) are self-
dual. It follows that the higher-order Alexander polynomials eni and �n of
Theorem 5.1 are self-dual (an element � of R is self-dual if it is similar to �).
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Proof of Corollary 12.4 Note that for a �nite cyclic module, A = R=eR,
Hom(A;K=R) �= R=Re and A# �= R=�eR. The result then follows from the
uniqueness in Theorem 5.1.

Proof of Proposition 12.3 The Kronecker map H1(S3nK;Rn) −!
HomRn(An(K);K=Rn) is an isomorphism since, over the PID Rn , the usual
Universal Coe�cient Theorem holds (Remark 3.6.3) and ExtRn(H0(S3nK;Rn);
Kn=Rn) = 0 since K=Rn is clearly a divisible Rn{module and hence an injective
Rn{module by [Ste, I Prop. 6.10]. Thus B‘ is a isomorphism if and only if the
map � : H1(S3nK;Rn) −! H1(S3nK;@(S3nK);Rn) is an isomorphism. When
n = 0, the map H0(@(S3nK);Q[t; t−1]) −! H0(S3nK;Q[t; t−1]) is an isomor-
phism, implying � is onto. Moreover H1(@(S3nK);Q[t�1]) has zero image in
H1(S3nK;Q[t�1]) since any Seifert surface for K lifts to the Γ0 (1{cyclic)
covering space, in other words the longitude ‘ 2 G(2) . Thus � is an isomor-
phism when n = 0. Now suppose n � 2. If K has Alexander polynomial
1 then G(1) is a perfect group so G(1) = G(n) for all n and thus Γ0 = Γn
for all n and An = A0 for all n. The non-singularity then follows from the
n = 0 case. Thus we may assume that G(1)=G(2) 6= 0. Below it will be shown
that the longitude is non-trivial in G(2)=G(3) . In particular the longitude is
non-trivial in Γn = G=G(n+1) if n � 2. Since ‘ 2 G(1) , it follows that ‘
is a non-trivial element of eGn+1 . Therefore ‘ − 1 is a non-zero element of
Z eGn+1 and thus is invertible in Rn . Thus, by (the proof of) Proposition 3.7,
H0(@(S3nK);Rn) = Rn=RnI = 0, and so � is surjective. Moreover since ‘ is
non-trivial in Γn if n � 2, �1(@(S3nK)) embeds in Γn and the induced Γn
cover is a union of planes so H1(@(S3nK);Rn) = 0 and � is also injective. This
�nishes the proof of the proposition in the case n 6= 1, modulo the proof that
‘ =2 G(3) (assuming G(1)=G(2) 6= 0).

If n = 1, the situation is more complicated. Let E = S3nK and consider
the commutative diagram below where all groups have coe�cients in R1 unless
speci�ed.

H1(E) P.D.−−! H2(E; @E) B−1

−−−! H1(E; @E;K1=R1) �−! Hom(H1(E; @E);K1=R1)????y�1

????y�2

????y�3

????y�#
1

H1(E; @E) P.D.−−! H2(E) B−1

−−−! H1(E;K1=R1) �−−! Hom(H1(E);K1=R1)

All of the horizontal maps are isomorphisms. Let f (respectively g) denote the
composition of all the maps in the top (bottom) row. Then B‘ = g ��1 and its
kernel is precisely the kernel of �1 which equals the image of i� : H1(@E) −!
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H1(E). This image is clearly generated by the longitude since the in�nite
cyclic cover of @E is an annulus homotopy equivalent to a circle representing
a lift of the longitude. Moreover the induced map B‘� is thus injective on
A�1 �= H1(E)=i�(H1(@E)). It remains only to show that the image of g � �1 is
naturally isomorphic to (A�1)# , i.e. Hom(H1(E)=H1(@E);K1=R1). The image
of g � �1 equals the image of �#

1 since f is an isomorphism. Consider the
commutative diagram below. Since �1 : H1(E)=H1(@E) −! H1(E; @E)

Hom(H1(E; @E);K1=R1)
�#

1−−! Hom(H1(E)=H1(@E);K1=R1)

& �#
1

????y�#

Hom(H1(E);K1=R1)????yi#�
Hom(H1(@E);K1=R1)

is injective, its dual map �#
1 (the horizontal map above) is surjective since

ExtR1( ;K1=R1) = 0 as remarked earlier in the proof. Therefore the image of
�# is contained in the image of g � �1 . Note that the image of (the diagonal
�#

1 is contained in the kernel of i#� . But the vertical sequence is exact and
�# is injective since Hom is right exact. Thus image(B�‘) = image(�#

1 ) =
image �# , and �# induces an isomorphism between (A�1)# and image(g ��1).
Therefore, with this identi�cation, B‘ induces an isomorphism B‘� between
A�1 � A1= kerB‘ and (A�1)# .

Proposition 12.5 If the (classical) Alexander polynomial of K is not 1, then
the longitude of K represents a non-zero class in G(2)=G(3) ⊗Z[G=G(2)] R1 . In

particular ‘ =2 G(3) .

Proof Consider the coe�cient system � : G −! G=G(2) � Γ1 . Let M be
the result of zero framed surgery on K so M = (S3nK) [ e2 [ e3 where the
attaching circle of e2 is the longitude. Since ‘ 2 G(2) for any knot, � extends
to �1(M). We may then consider the commutative diagram of exact sequences
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below:

K1[t�1]??y@0
H2((S3nK) [ e2;K1[t�1]) �−−−−! K1[t�1] @−−−−! H1(S3nK;K1[t�1])??yi�
H2(M ;K1[t�1]) = 0??y

0

The horizontal sequence is that of the pair (S3nK [ e2; S3nK) and the gen-
erator of the K1[t�1] may be thought of as e2 and its boundary as the class
represented by the longitude in A1 . Suppose ‘ 2 A1 � G(2)=G(3) ⊗Z[G=G(2)] R1

is zero. Then the map � would be a surjection. Now consider the vertical
exact sequence of the pair (M;S3nK [ e2). Here the generator of K1[t�1] may
be thought of as the 3{cell e3 . We have H2(M ;K1[t�1]) �= H1(M ;K1[t�1]) �=
Ext(H0(M ;K1[t�1]);K1[t�1]). If the Alexander polynomial of K is not 1 then
the Alexander module G(1)=G(2) contains some x 6= e. Thus x− 1 lies in the
augmentation ideal of ZG and �(x − 1) is invertible in K1[t�1] � R1 since
x 2 eG (see Proposition 4.6). Thus H0(M ;K1[t�1]) vanishes by (the proof of)
Proposition 3.7 and hence H2(M ;K1[t�1]) = 0. Therefore @0 and � � @0 are
epimorphisms. We claim that the diagonal map (� � @0) sends 1! 1− t. This
claim is seen by analyzing how the 3{cell goes over the 2{cell twice. This map is
clearly not surjective since 1− t is not a unit. This contradicts our assumption
that the longitude vanished.

13 Calculation from a presentation of the knot group

A presentation matrix for An(K) can be derived from any �nite presentation
of G = �1(S3nK).

It is known that, for any regular Γ covering space XΓ ! X of a �nite com-
plex, the free di�erential calculus can be used to give a presentation matrix
for H1(XΓ; ex0) as a ZΓ{module where ex0 is the inverse image of a basepoint
(see, for example [H]). The torsion submodule of H1(XΓ; ex0) can easily seem
to be isomorphic to H1(XΓ). Thus a presentation matrix can be computed
for a module whose torsion submodule is AZn(K). The same holds for An(K).
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Over a PID, it is theoretically possible to simplify a presentation matrix by
appropriate row and column operations until it is diagonal, thus calculating the
�n (see[Ha]). This necessitates deciding whether or not a given element of the
solvable group G(n)=G(n+1) is trivial. Sometimes this is di�cult. However note
that for n = 1 this quotient group is merely the classical Alexander module of
the knot. Hence there exists a practical algorithm to compute A1(K). We hope
to soon implement this. Details and some sample calculations can be found in
[Ha].

14 Questions and open directions

(1) Find invariants of the higher-order modules which can detect the periph-
eral structure of a knot.

(2) Find other invariants of the integral modules that are not simply invari-
ants of the localized modules.

(3) Develop e�ective invariants of the higher-order Alexander polynomials or
�nd ways to reduce their indeterminacy.

(4) Is there a higher-order Seifert form? (The existence of (t−1){torsion has
thwarted our e�orts on this question.)

(5) Is there a knot K and some n > 0 for which �n(K) is a non-zero even
integer? If not then a complete realization theorem for the �i can be
derived from the techniques of Section 7.

(6) Find higher-order Seiberg-Witten invariants of 3{manifolds that reflect
these higher-order modules.

(7) Are the invariants �i of �nite type?

(8) Prove that for each n � 0 there exist knots K and K� such that Ai(K) �=
Ai(K�) for 0 � i < n but �n(K�) 6= �n(K).

(9) The Arf invariant of a knot is determined by its Alexander polynomial
which is in turn determined by its Alexander module which is in turn de-
termined by any Seifert matrix. Similarly the Levine-Tristram signatures
of a knot are determined by the Alexander module and its Blanch�eld
form which are in turn determined by a Seifert matrix. Can any such
statements be made for the higher-order bordism invariants �n , modules
AZn , signatures �n and presentation matrices from Section 6?

(10) Find knots with the same higher-order modules but di�erent linking
forms.
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(11) Find ways to compute the �n .

(12) Apply these ideas to links, string links, braids and mapping class groups.

(13) Do these invariants have any special behavior on other special classes
of knots? (for example connected-sums of knots have non-longitudinal
(t− 1){torsion in A1 ).

(14) Find applications to contact structures on 3{manifolds (which seem to
be closely related to �bering questions).
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