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Introduction

Cheeger-Simons di�erential characters can be thought of equivalence classes of
some \higher" version of line bundles-with-connection. In dimension two this
can be taken to mean gerbes-with-connection, as explained in [2]. One way
to think about \higher" line bundles-with-connection is in terms of Turaev’s
homotopy quantum �eld theories [9] (see also [8, 1]), where in dimension two
such a thing provides a vector bundle over the free loop space together with a
generalised (flat) connection where parallel transport is de�ned across surfaces.
To make contact with gerbes and di�erential characters one needs to de�ne
a more rigid variation of 1+1-dimensional homotopy quantum �eld theory as
explained [3] (see also [10] and for a similar approach [7]).

There is, however, an intrinsic di�erence between di�erential characters and
homotopy quantum �eld theories. The former are de�ned in terms of homo-
logical information and the latter in terms of bordism. In dimension two this
di�erence is unimportant (cf. the isomorphism between degree two homology
and bordism) but in higher dimensions one would expect this di�erence to be-
come apparent. The underlying geometrical picture of homotopy quantum �eld
theories is however very appealing: one thinks of a bundle over some space
of n-manifolds in X with a generalised connection where parallel transport is
de�ned across (n+ 1)-cobordisms. The motivation for the present work was to
reconcile this picture with the homological needs of di�erential characters.
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82 Paul Turner

The \functorial approach" of the title refers to the fact that many geometrical
constructions can be de�ned in terms of representations of a geometrical cat-
egory i.e. functors from a geometrical category to a category of vector spaces.
Homotopy quantum �eld theories are a good example, but more familiar is the
case of a line bundle-with-connection on X . One can de�ne the path category
of X as the category with objects the points of X and morphisms smooth paths
between points. A line bundle with connection on X can be thought of as a
functor from the path category of X to the category of one-dimensional vector
spaces: a point in X is assigned to its �bre and a path to parallel transport
along that path. This functor must also be continuous in an appropriate way.
This was the point of view in [3] where the authors gave similar description for
gerbes-with-connection, by considering rank one representations of a category
with objects loops in X and morphisms equivalence classes of surfaces in X .

We recall now the de�nition of Cheeger-Simons di�erential characters [4]. Let-
ting Zn+1X denote the group of smooth (n + 1)-cycles in X , a degree n + 1
di�erential character is a homomorphism f : Zn+1X ! U(1) together with a
closed (n+ 2)-form c such that if � is an (n+ 2)-chain then

f(@�) = exp(2�i
Z
�
c):

The collection of these is denoted bHn+1(X) where the index n+ 1 follows the
convention in [4] (rather than that in [2] where the index n+ 2 is used for this
group).

Outline of the paper

In order to marry the homological nature of di�erential characters with the
functorial viewpoint we introduce new objects which we have dubbed chain
�eld theories. These are symmetric monoidal functors from a category whose
objects are smooth n-cycles in X and whose morphisms are (n + 1)-chains
in X , to one-dimensional vector spaces. Such an object should be thought of
as a line bundle over the group of n-cycles in X together with a generalised
connection in which parallel transport is de�ned across (n + 1)-chains. The
holonomy of such a bundle is a Cheeger-Simons di�erential character. The
reader should beware that the bundle analogy only goes so far as we do not
demand continuous functors (see also the remarks at the end of section 2). From
one point of view, a chain �eld theory provides a possible interpretation of an
n-gerbe-with-connection.
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In Section 1 we de�ne the chain category of X , give the de�nition of chain �eld
theory and give two important examples. In Section 2 we prove the following
theorem.

Theorem 2.1 On a �nite dimensional smooth manifold there is an isomor-
phism from the group of (n+ 1)-dimensional chain �eld theories (up to isomor-
phism) to the group of (n+ 1)-dimensional di�erential characters.

In Section 3 we characterise flat chain �eld theories as those that are invariant
under deformation by (n+ 2)-chains and �nally we discuss the classi�cation of
flat theories by the group Hn+1(X;U(1)).

1 Chain Field Theories

We will construct a symmetric monoidal category, Gn+1X of n-cycles and (n+
1)-chains in X , and then de�ne a chain �eld theory to be a 1-dimensional
representation of this category. Throughout we will work with cubical chains,
for consistency with the work of Cheeger and Simons.

Chain categories

Let X be a smooth �nite dimensional manifold. Let CkX denote the group of
smooth k -chains in X and let ZkX (resp. BkX ) be the subgroup of smooth
cycles (resp. boundaries).

The (n+ 1)-dimensional chain chain category of X , denoted Gn+1X is de�ned
in the following way. The objects are smooth n-cycles in X and a morphism
from γ to γ0 is a smooth (n + 1)-chain � satisfying @� = −γ + γ0 . The
composition � � �0 is de�ned to be sum of chains � + �0 . Associativity follows
from the fact that Cn+1X is a group. Noting that the endomorphisms of an
object γ can be identi�ed with the group of (n + 1)-cycles, we take the zero
cycle as the identity morphism for γ . To simplify notation we will write G for
Gn+1X where there is no ambiguity and we will write G(γ; γ0) for the set of
morphisms from γ to γ0 . We will also make no notational distinction between
the identity morphisms for di�erent n-cycles.

We de�ne a bifunctor ⊗ : G � G ! G on objects by γ1 ⊗ γ2 = γ1 + γ2 , where
the sum on the right is taken in ZnX and on morphisms by �1⊗�2 = �1 + �2 ,
where the sum is taken in Cn+1X . This provides G with the structure of a
monoidal category where the monoidal unit is the zero cycle in ZnX .
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Proposition 1.1 G is a strict symmetric strict monoidal groupoid. Its con-
nected components are in one-to-one correspondence with Hn(X;Z).

Proof That Gn+1X is strict symmetric strict monoidal follows easily from the
fact that Cn+1X and ZnX and abelian groups.

To see that G is a groupoid, let � 2 G(γ; γ0) and note that −� 2 G(γ0; γ) since
@(−�) = −@(�) = −(−γ + γ0) = −γ0 + γ . Moreover (−�) � � = � + (−�) = 0
which is the identity element in G(γ; γ).

To prove the statement about connected components observe that γ is in the
same path component as γ0 if and only if there exists an (n + 1)-chain � 2
G(γ; γ0) such that @� = −γ + γ0 i.e. γ and γ0 are homologous.

In fact, the objects of this category also possess inverses and Gn+1X is a cate-
gorical group i.e. a group object in the category of groupoids.

The de�nition of chain �eld theories

We let Lines denote the category with objects 1-dimensional complex vector
spaces with Hermitian inner product and morphisms isometries. We regard this
as a monoidal category under tensor product. For background information on
monoidal categories, functors and so forth we refer to the appendix in [3] where
all relevant de�nitions can be found.

An (n+1)-dimensional chain �eld theory on X is a symmetric monoidal functor
E : Gn+1X ! Lines together with a closed di�erential (n+ 2)-form c such that
for any (n+ 2)-chain � the following holds:

E(@�)(1) = exp(2�i
Z
�
c):

The left hand side of this equation should be interpreted in the following man-
ner. The boundary of an (n+2)-chain is an (n+1)-cycle and hence a morphism
in G(0; 0). Since 0 is the monoidal unit in G and the functor E is monoidal
there is an isomorphism E(0) �= C, and in this way E(@�) is a unitary map
C! C. This condition should be thought of as a smoothness condition of the
functor E . We note that as part of the de�nition of a monoidal functor there
are natural isomorphisms �E

γ;γ0 : E(γ) ⊗ E(γ0) ! E(γ + γ0) for objects γ and
γ0 .

We say that a chain �eld theory is flat if the (n + 2)-form c is zero. The
reader should think of a chain �eld theory as a line bundle over the space of
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n-cycles with parallel transport de�ned across (n + 1)-chains. At �rst sight it
is tempting to provide a more general de�nition in which the functor E takes
values in the category of hermitian vector spaces (rather than one-dimensional
ones). However, the objects of G have inverses and E is monoidal so for an
object γ we have E(γ) ⊗ E(−γ) �= E(0) �= C from which it follows that E(γ)
is one dimensional.

Two chain �eld theories are isomorphic when there is a monoidal natural iso-
morphism between them. Recall that this requires a natural transformation
Ψ: E ! E0 such that for each object γ , the map Ψγ : E(γ) ! E0(γ) is an
isomorphism and for each pair of objects γ and γ0

Ψγ+γ0 ��E
γ;γ0 = �E0

γ;γ0 � (Ψγ ⊗Ψγ0):

The set of isomorphism classes of (n + 1)-dimensional chain �eld theories on
X becomes a group, denoted ChFT n+1(X), with product ? de�ned as follows.
Given two theories E and F form E ?F by de�ning (E ?F )(γ) = E(γ)⊗F (γ)
and (E ? F )(�) = E(�) ⊗ F (�). The (n + 2)-form of E ? F is the sum in
the group of (n + 2)-forms and the monoidal structure isomorphisms are the
obvious ones. The identity of the group is the trivial chain �eld theory, which
assigns all objects to C and all morphisms to the identity map. The (n + 2)-
form of the trivial chain �eld theory is the zero form and the monoidal structure
isomorphisms are the canonical identi�cation of C⊗C with C. The inverse of
E is de�ned by E−1(γ) = E(γ)� = Hom(E(γ);C) and E−1(�) = E(�)� . The
set of flat chain �eld theories forms a subgroup of this group.

A chain �eld theory has the following very useful invertibility property. Given
a morphism � we have E(−�) = E(�)−1 . This is because

E(−�) = E(−�)�E(�)�E(�)−1= E(−�+�)�E(�)−1= E(0)�E(�)−1= E(�)−1:

Just as line bundles with connection have holonomy de�ned for closed paths, a
chain �eld theory has holonomy de�ned for closed (n + 1)-chains i.e. (n + 1)-
cycles. If � is an (n+ 1)-cycle then it can be regarded as an element of G(0; 0)
and we de�ne the holonomy of � by

HolE(�) = E(�)(1):

Notice that flat theories have trivial holonomy on boundaries since if � is an
(n+ 2)-chain then HolE(@�) = exp(2�i

R
� c) = 1.

If � 2 G(γ; γ) then @� = −γ + γ = 0 so we can also regard � as an element
of G(0; 0) and hence holonomy can be de�ned. As the next lemma shows, this
holonomy is consistent with the map E(�) : E(γ)! E(γ).

Algebraic & Geometric Topology, Volume 4 (2004)



86 Paul Turner

Lemma 1.2 If γ is an object in G and � is an automorphism of γ , then the
map E(�) : E(γ)! E(γ) is given by multiplication by HolE(�).

Proof Since E is a monoidal functor there is an isomorphism �: E(γ) ⊗
E(−γ) �= E(0) = C. By naturality of the monoidal structure isomorphisms we
have the following commutative diagram.

E(γ)⊗ E(−γ) �
//

E(�)�Id
��

E(0)

E(�)
��

E(γ)⊗ E(−γ)
�

// E(0)

Letting a and b be generators of E(γ) and E(−γ) respectively we can write
E(�)(a) = �a. By chasing a ⊗ b around the diagram one way we get �(a ⊗
b) HolE(�) and the other way ��(a⊗ b). It follows that � = HolE(�).

This lemma has two corollaries which will be useful later on.

Corollary 1.3 If �1 and �2 2 G(γ; γ0) and HolE(�1 − �2) = 1 then E(�1) =
E(�2).

Proof We have that E(−�2) � E(�1) = E(−�2 � �1) = E(�1 − �2) and using
the lemma above we see that this is multiplication by HolE(�1 − �2) = 1 i.e.
E(−�2) � E(�1) = IdE(γ) . Thus

E(�1) = IdE(γ0) � E(�1) = E(�2) � E(−�2) � E(�1) = E(�2) � IdE(γ) = E(�2):

Corollary 1.4 For a flat theory the holonomy of an (n+ 1)-cycle � depends
only on the homology class [�] 2 Hn+1(X;Z).

Proof Suppose �0 = � + @� for some (n+ 2)-chain � . Then

HolE(�0)=HolE(�) = HolE(−�) HolE(�0) = HolE(−� + �0) = HolE(@�) = 1:
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Examples

We now give two of examples of chain �eld theories.

Example 1.5

In the �rst example we construct an (n+1)-dimensional chain �eld theory from
an (n + 1)-form. We let Ω�(X) denote the smooth complex di�erential forms
on X . By Ω�(X)0;Z we denote the subspace of closed forms which have periods
in Z. Recall from [4] that there is an injection

Ωk(X)! Hom(CkX;U(1)) (1)

given by sending ! 2 Ωk(X) to the map � 7! exp(2�i
R
� !).

Let ! 2 Ωn+1(X) and de�ne a chain �eld theory E! : Gn+1X ! Lines as
follows. For any object γ set E!(γ) = C and for a morphism (n + 1)-chain
� de�ne E!(�) : C ! C to be multiplication by exp(2�i

R
� !). The monoidal

structure is the canonical one and the (n+ 2)-form c is taken to be d! . Using
Stokes theorem we see that for any (n+ 2)-chain �

E!(@�)(1) = exp(2�i
Z
@�
!) = exp(2�i

Z
�
c)

as required.

As the di�erential on (n+ 1)-forms is linear this gives rise to a homomorphism

Ωn+1(X)! ChFT n+1(X): (2)

Notice that if ! is closed then the chain �eld theory constructed above is flat.
Moreover if two closed (n+ 1)-forms di�er by an exact form then the resulting
chain �eld theories are isomorphic. To see this let ! = !0 + d� for some
� 2 Ωn(X). For an object γ 2 ZnX de�ne �γ : C = E!(γ) ! E!

0
(γ) = C

to be multiplication by exp(2�i
R
−γ �). This de�nes a natural transformation

� : E! ! E!
0
. Thus (2) becomes a homomorphism

Hn+1(X;U(1)) ! FlatChFT n+1(X): (3)

Example 1.6

Now we construct a chain �eld theory from a Cheeger-Simons di�erential char-
acter. Recall ([4] and [2]) that the Cheeger-Simons group of di�erential char-
acters is de�ned by:
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bHn+1(X) = ff 2 Hom(Zn+1X;U(1)) j 9c 2 Ωn+2
0;Z (X) such that

8� 2 Cn+2X; f(@�) = exp(2�i
Z
�
c)g

This group �ts in to the following exact sequences:

0! Hn+1(X;U(1)) ! bHn+1(X) c! Ωn+2
0;Z (X) (4)

0! Ωn+1(X)=Ωn+1(X)0;Z ! bHn+1(X)! Hn+2(X;Z)! 0 (5)

Starting with a di�erential character f : Zn+1X ! U(1) with (n+2)-form c we
will de�ne an (n+ 1)-dimensional chain �eld theory Ef : G ! Lines as follows.

There is a short exact sequence

0! Zn+1X
�! Cn+1X

@! BnX ! 0

which gives rise to an exact sequence

0! Hom(BnX;U(1)) @�! Hom(Cn+1X;U(1)) ��! Hom(Zn+1X;U(1))! 0: (6)

This sequence is exact on the left since U(1) is divisible and it follows that
Ext(Zn+1X;U(1)) vanishes.

Using this exact sequence choose a lift ~f : Cn+1X ! U(1) of f and for objects
set Ef (γ) = C and for morphisms de�ne Ef (�) : C ! C to be multiplication
by ~f(�). The monoidal structure is taken to be the canonical one and the
(n+ 2)-form is taken to be c.

That this provides a well de�ned symmetric monoidal functor follows from the
fact that Cn+1X is an abelian group. The condition on c is also immediate
since for any � 2 Cn+2X we have that @� 2 Zn+1X so

E(@�)(1) = ~f(@�) = f(@�) = exp(2�i
Z
�
c):

A priori this construction depends on the choice of lift of f , however another
choice yields an isomorphic chain �eld theory. Moreover, the construction above
is additive.

Proposition 1.7 The construction above provides a homomorphism of groupsbHn+1(X)! ChFT n+1(X).
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Proof To show the construction is independent of the lift, let f be another
lift which gives rise to another chain �eld theory E

f and claim that Ef is
isomorphic to E

f .

Noting that ~f=f 2 Ker(Hom(Cn+1X;U(1)) ! Hom(Zn+1X;U(1))) by using
the exact sequence (6) we can regard ~f=f as a homomorphism Bn ! U(1).
There is an exact sequence

0! BnX ! ZnX ! Hn(X;Z)! 0

and thus (again since U(1) divisible) an exact sequence

0! Hom(Hn(X;Z); U(1)) ! Hom(ZnX;U(1))! Hom(BnX;U(1))! 0: (7)

Thus we can lift ~f=f to a homomorphism h : ZnX ! U(1). We now de�ne
a natural transformation � : Ef ! E

f as follows. For an object n-cycle γ in
Gn+1X de�ne �γ : C = Ef (γ)! E

f (γ) = C to be multiplication by h(γ). Note
that since h is a homomorphism � satis�es �γ+γ0 = �γ�γ0 and �−γ = �−1

γ . To
show that � is natural we must show that for any morphism � from γ to γ0

we have �γ(1)f (�) = �γ0(1) ~f (�). This is true since

f(�)= ~f(�) = (f= ~f)(@�) = h(−γ + γ0) = �−γ+γ0(1) = �−γ(1)�γ0(1):

Thus, up to isomorphism, the construction above is independent of the choice
of lift.

Finally, to see that we have a homomorphism we must show that for di�erential
characters f and f 0 we have an isomorphism Ef+f 0 �= Ef ? Ef

0
. This follows

immediately from the de�nition of ? and the fact that if we have lifts ~f and
~f 0 of f and f 0 we can choose the lift of f + f 0 to be ~f + ~f 0 , from which we
see that the canonical identi�cation of C⊗C with C provides an isomorphism
from Ef ? Ef

0
to Ef+f 0 .

If the (n+2)-form c above is zero, then the chain �eld theory constructed above
is flat and using exact sequence (4), we can regard the di�erential character as
an element of Hn(X;U(1)) and there is a homomorphism

Hn+1(X;U(1)) ! FlatChFT n+1(X):

This is the same homomorphism as (3). In fact Example 1.5 is a special case
of Example 1.6, using the fact that an n + 1-form ! determines a di�erential
character by f = exp(2�i

R
!) and c = d! .

It is interesting to compare the example above with the constructions found
in the integration theory of Freed and Quinn ([6, 5]) in the context of Chern-
Simons theory.
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2 Classi�cation by Cheeger-Simons groups

We now show that equivalence classes of (n+1)-dimensional chain �eld theories
are classi�ed by the Cheeger-Simons group bHn+1(X). Taking holonomy of a
chain �eld theory de�nes a function

Hol : ChFT n+1(X)! bHn+1(X):

Recall the notation used before: the holonomy of E is denoted HolE . Using
this notation the function Hol above sends (E; c) to (HolE ; c) and this function
is a homomorphism of groups since

HolE?F (�) = (E ? F )(�)(1) = E(�)(1)F (�)(1) = HolE(�) HolF (�):

The proof of the following theorem is a reformulation of the proof of the main
theorem in [3].

Theorem 2.1 On a �nite dimensional smooth manifold there is an isomor-
phism from the group of (n+ 1)-dimensional chain �eld theories (up to isomor-
phism) to the group of (n+ 1)-dimensional di�erential characters.

Proof We will show that the holonomy homomorphism Hol is an isomorphism
with inverse provided by the homomorphism in Proposition 1.7.

Firstly, we will show that Ker(Hol) is trivial. Let E 2 Ker(Hol), so HolE(�) = 1
for all � 2 Zn+1X . Writing H for the category with objects the elements of
Hn(X;Z) only identity morphisms we can assign to E a symmetric monoidal
functor H ! Lines as follows. Given objects γ and γ0 in the same connected
component of G there is a canonical identi�cation of E(γ) with E(γ0), since if
�1 and �2 are both morphisms from γ to γ0 then HolE(�1−�2) = 1 and hence
by Corollary 1.3 E(�1) = E(�2). It follows from the fact that the connected
components of G are in one-to-one correspondence with Hn(X;Z) that we can
associate a line Lx to each x 2 Hn(X;Z). Since the morphisms in H are
identities, this de�nes a functor H ! Lines. By choosing representatives for
each x 2 Hn(X;Z), we can use the monoidal structure isomorphisms of E to
de�ne natural isomorphisms �x;x0 : Lx⊗Lx0 ! Lx+x0 showing that the functor
H ! Lines is monoidal and moreover symmetric.

Conversely given a symmetric monoidal functor � : H ! Lines we can construct
a chain �eld theory with trivial holonomy by setting E(γ) = �([γ]) and E(�) =
Id. This provides an identi�cation of Ker(Hol) with the group of symmetric
monoidal functors H ! Lines. Using Lemma 6.2 of [3] reformulated for U(1)
rather than C� , the latter can be identi�ed with Ext(Hn(X;Z); U(1)), but this
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group is trivial since U(1) is divisible. We have thus shown that the holonomy
homomorphism is injective.

To see that Hol is surjective (and that the homomorphism in Proposition 1.7
provides an inverse) let f be a di�erential character and claim that HolE

f
= f ,

where Ef is the chain �eld theory produced in Proposition 1.7. This is immedi-
ate however, since for � 2 Zn+1X we know that Ef (�) : C! C is multiplication
by f(�), so as an element of U(1) we have HolE

f
(�) = Ef (�)(1) = f(�).

It is important to note that the theorem above relates equivalence classes of
chain �eld theories with di�erential characters. If, for example, one chooses
to interpret 1-dimensional characters as classifying equivalence classes of line
bundles-with-connection then there is only an identi�cation of line bundles-
with-connection with chain �eld theories after quotienting up to equivalence.
One could modify the de�nition of chain �eld theory so that the functor is con-
tinuous which would get closer to a genuinely geometric interpretation, but we
haven’t done that here. I am grateful to Simon Willerton and Mark Brightwell
for clarifying this point.

3 Flat theories

In this section we show that flat chain �eld theories are characterised by in-
variance under deformation by (n + 2)-chains. This is analogous to the fact
that for flat line bundles parallel transport is invariant under deformation by
homotopy.

Let �1; �2 2 G(γ; γ0) and suppose � is an (n+2)-chain such that @� = −�1+�2 .
We say that a chain �eld theory E is invariant under chain deformation if for
all such �1; �2 and � we have E(�1) = E(�2).

Proposition 3.1 A chain �eld theory E is flat if and only if it is invariant
under chain deformation.

Proof We remarked after the de�nition of holonomy that if E is flat then
holonomy is trivial on boundaries. Thus

HolE(−�1 + �2) = HolE(@�) = 1:

So by Corollary 1.3, we see that E(�1) = E(�2) and hence E is invariant under
chain deformation.
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Conversely, if E is invariant under chain deformation we claim that c = 0.
Letting � 2 Cn+1X we can write @� = −0 + @� and so the de�nition of
invariance under chain deformation implies E(@�) = E(0) = Id. Thus for all
� 2 Cn+2X

exp(2�i
Z
�
c) = E(@�)(1) = 1:

Using the injectivity of (1) we conclude that c = 0.

This can be rephrased as follows. De�ne Gn+1(X) to be the quotient category
obtained from Gn+1(X) by imposing the following relation on morphisms. Let
�1; �2 2 G(γ; γ0), then the relation is

�1 � �2 i� there exists an (n+ 2)-chain � such that @� = −�1 + �2 .

Composition is still well de�ned and the category inherits a monoidal structure
from Gn+1(X).

The above proposition states that a flat chain �eld theory is one that factors
through Gn+1(X). Moreover it is clear that given a symmetric monoidal functor
Gn+1(X) ! Lines the composite Gn+1(X) ! Gn+1(X) ! Lines is a flat chain
�eld theory and this assignment is one-to-one. Hence we have the following
theorem.

Theorem 3.2 There is a one-to-one correspondence between flat chain �eld
theories and symmetric monoidal functors Gn+1(X)! Lines.

Corollary 1.4 states that the holonomy of a flat chain �eld theory factors through
Hn+1(X;Z) and thus may be thought of as a homomorphism Hn+1(X;Z) !
U(1). One may proceed as in the last section to study the function

Hol : Flat ChFT n+1(X)! Hom(Hn+1(X;Z); U(1)) �= Hn+1(X;U(1))

to establish that this is an isomorphism of groups with the homomorphism (3)
providing an inverse. As the proof is merely a reformulation of the proof of
Theorem 2.1 and the result is expected once one knows that theorem (compare
with the exact sequence (4)), we omit the details.
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