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Abstract This paper is devoted to the study of the knot Floer homology

groups ĤFK(S3,K2,n), where K2,n denotes the (2, n) cable of an arbitrary
knot, K . It is shown that for sufficiently large |n|, the Floer homology of the

cabled knot depends only on the filtered chain homotopy type of ĈFK(K).
A precise formula for this relationship is presented. In fact, the homology
groups in the top 2 filtration dimensions for the cabled knot are isomorphic
to the original knot’s Floer homology group in the top filtration dimension.
The results are extended to (p, pn± 1) cables. As an example we compute

ĤFK((T2,2m+1)2,2n+1) for all sufficiently large |n|, where T2,2m+1 denotes
the (2, 2m+ 1)-torus knot.
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1 Introduction

In [8], Ozsváth and Szabó introduced a collection of abelian groups associated
to closed oriented three-manifolds: given a three-manifold Y and Spinc struc-
ture s, there are various Heegaard Floer homology groups of Y : ĤF (Y, s),
HF∞(Y, s), HF+(Y, s), and HF−(Y, s). In [12] they subsequently showed
that a knot K ⊂ Y induces a filtration on the chain complexes which compute
these groups, see also [17]. In particular, the filtered chain homotopy types of
the filtered chain complexes were shown to be topological invariants of the knot
and the Spinc structure. This paper will deal with the case Y = S3 and primar-
ily with the simplest objects defined in [12], ĤFK(K, i). The notation here, as
in the rest of this paper, agrees whenever possible with that of [12],[13],[14], so

that the lack of reference to the three-manifold in ĤFK(K, i) implies Y = S3

and the index i refers to the level of the filtration induced on ĤF (S3) by K .
Specific definitions and relevant notation will be discussed in Section 2.

Recall that the (p, q) cable of a knot K , denoted Kp,q , is defined to be the
topological type of a knot supported on the boundary of a tubular neighborhood
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Figure 1: On the left is the right handed trefoil, with writhe +3. On the right is the
(2,7) cable of the trefoil.

of K which is linear with slope p/q with respect to the standard framing of
this torus. In other words, it is a satellite knot which winds p times around
the meridian of K as it winds q times around a specified longitude. This
longitude is determined by the Seifert framing for K . The knot which is cabled
is sometimes called the companion knot (see [7] for more details).

Cabling a knot increases its complexity in some sense. If one draws a projection
for a knot and its (p, pn+ 1) cable (where n is the writhe of the original knot’s
projection), the number of crossings in the latter projection will be p2 times
the number of crossings of the original diagram plus (p− 1) (see Figure 1).

The Alexander polynomials of a knot and its cables are related by the following
classical formula (which is a special case of a similar formula holding for all
satellites):

∆Kp,q(t) = ∆Tp,q(t) · ∆K(tp), (1)

where Tp,q denotes the (p, q) torus knot, and ∆K(t) the symmetrized Alexander
polynomial of K [7]. It is proved in [12] that the following relationship holds

between the Euler characteristics of ĤFK and the symmetrized Alexander
polynomial: ∑

i

χ
(
ĤFK(K, i)

)
· T i = ∆K(T ). (2)

It is therefore a natural question to ask how Equation (1) manifests itself within

ĤFK , and, more generally, how ĤFK of a knot and its satellites are related.

We demonstrate some results in this direction. Before stating the first theorem,
recall from [14] that degĤFK(K) denotes the largest integer d > 0 for which
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ĤFK(K,d) 6= 0 and that [15] identifies this invariant with the Seifert genus of

K . Note that also degĤFK(Tp,q) = (p−1)(q−1)
2 . Let us denote the filtration of

ĈF (S3) induced by K by F(K, j), so that we have the sequence of inclusions:

0 = F(K,−i) ⊆ F(K,−i + 1) ⊆ . . . ⊆ F(K,n) = ĈF (S3),

with F(K,j)
F(K,j−1) = ĈFK(K, j). The following theorem will be proved in Section 3.

Theorem 1.1 Let K be a knot in S3 , and suppose deg ĤFK(K) = d. Then
∃ N > 0 such that ∀ n > N the following holds:

deg ĤFK(K2,2n+1) = 2d+ n.

Furthermore, ∀ i ≥ 0 we have

ĤFK∗(K2,2n+1, i) ∼=

{
H∗+2(k−d)(F(K,k − d)) for i = 2d+ n− 2k

H∗+2(k−d)+1(F(K,k − d)) for i = 2d+ n− 2k − 1.

By the symmetry of ĤFK under the involution on Spinc structures (Equation

(5) in Section 2) the above result completely determines ĤFK(K2,2n+1). Note

that the information required above is more than simply ĤFK(K, i) for all

i. ĤFK(K) is the homology of an associated graded of a filtered chain com-
plex – one needs to know H∗(F(K)) to fully exploit the theorem. Despite this
additional requirement, the theorem is still a powerful calculational tool. For
instance, in [2] it is shown that the Floer homology of (1,1) knots is combina-
torial. They show this by exhibiting a genus one Heegaard diagram for a (1,1)
knot. Since the differentials in these cases can be computed combinatorially
via the Riemann mapping theorem, ĤFK of (2, 2n + 1) cables will be given
combinatorially as well (for large n). Note that (1,1) knots include torus knots
and 2-bridge knots as a proper subset. In the case of (p, pn+1) cables, we have
the following result:

Theorem 1.2 Let K,d be as above. Then ∃ N > 0 and c(c′, n, p) such that
∀ n > N , the following holds:

deg ĤFK(Kp,pn+1) = pd+
(p− 1)(pn)

2
.

If i > c(c′, n, p) we have

ĤFK∗(Kp,pn+1, i) ∼=





H∗+2(k−d)(F(K,k − d)) for i = pd+ (p−1)(pn)
2 − pk

H∗+2(k−d)+1(F(K,k − d)) i = pd+ (p−1)(pn)
2 − pk − 1

0 otherwise.

Where c′ is a fixed constant coming from the projection of K , and c(c′, n, p) is
linear in n and quadratic in p.
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In some examples we don’t know H∗(F(K)). The theorem can still provide

useful information if all that is known is ĤFK(K) in the top filtration dimen-
sion.

Corollary 1.3 With K,d, n > N as above

deg ĤFK(Kp,pn+1) = p deg ĤFK(K) + deg ĤFK(Tp,pn+1)

= pd+
(p− 1)(pn)

2
.

Furthermore,

ĤFK∗(Kp,pn+1, pd+
(p− 1)(pn)

2
) ∼= ĤFK∗−1(Kp,pn+1, pd+

(p − 1)(pn)

2
− 1)

∼= ĤFK∗(K,d).

Of course the corollary is just the restriction of Theorem 1.2 to the top 2
filtration dimensions. However, it shows that when ĤFK is successful in dis-
tinguishing knots by using only the top filtration dimension (as is the case for
the Kinoshita-Terasaka knots and their Conway mutants, see [14], [6]), it also
distinguishes their (p, pn + 1) cables. In light of [15], the corollary also shows
that in many cases the Seifert genus of cabled knots is a linear function of the
companion knot’s genus, a result proved in [18] in general.

The proof of Theorem 1.2 relies on a special choice of Heegaard diagram for
the cables of a knot which greatly simplifies their chain complexes. This dia-
gram will be introduced in Section 2 and will subsequently be used to calculate
ĤFK(Tp,q) for some of the torus knots. With the aid of the diagram and the
torus knot calculations, Theorems 1.1 and 1.2 will be proved in Section 3. Sec-
tion 4 will then apply Theorem 1.1 to calculate ĤFK for (2, 2n+ 1) cables of
the (2, 2m + 1) torus knots.

Remarks It is interesting to compare the theorems and corollary above with
Equation (1). We also remark that all of the above results have corresponding
analogues when n < 0, and hence we obtain results for (p, pn±1) cables. These
are discussed at the end of Section 3.

Acknowledgment I cannot thank Peter Ozsváth enough for his willingness
and patience to teach me the subject and his support and enthusiasm as my
advisor.
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2 Preliminaries, Heegaard diagrams, and useful Ex-

amples

2.1 Preliminaries on knot Floer homology

Let K ⊂ S3 be a knot. In [12], Ozsváth and Szábo introduced the knot Floer

complex ĈFK(K) =
⊕

i∈Z
ĈFK(K, i) associated to a Heegaard diagram for a

knot, and whose homology groups are knot invariants, see also [17],[13]. This
complex depends upon a suitable choice of Heegaard diagram, compatible with
the knot in the following sense:

Definition 2.1 A compatible doubly-pointed Heegaard diagram for a knot K
(or simply a Heegaard diagram for K) is a collection of data

(Σ, {α1, . . . , αg}, {β1, . . . , βg−1, µ}, w, z),

where

• Σ is an oriented surface of genus g

• {α1, . . . , αg} are pairwise disjoint, linearly independent embedded circles
which specify a handlebody, Uα , bounded by Σ

• {β1, . . . , βg−1, µ} are pairwise disjoint, linearly independent embedded
circles which specify a handlebody, Uβ , bounded by Σ such that Uα∪ΣUβ

is diffeomorphic to S3

• If we do not attach the handle specified by µ, together with the final
three-ball necessary to make S3 , then the resulting three-manifold with
boundary is the knot complement, S3 \ ν(K) (i.e. µ is the meridian of
the knot)

• The points z and w can be joined by a small arc δ , oriented from z to
w , which intersects none of {α1, . . . , αg, β1, . . . , βg−1} and algebraically
intersects µ the same number as lk(K,µ) if we arbitrarily orient µ.

We now briefly recall the definitions of ĈFK(K) and its boundary operator in
terms of this diagram, though the reader unfamiliar with the subject is strongly
encouraged to read Section 2 of [13]. While [12] sets up the machinery for knot
Floer homology in a more general context, the level of generality here will be
consistent with that of [13]. For this reason all definitions and notation used
here are consistent with those of [13] unless otherwise specified.

Algebraic & Geometric Topology, Volume 5 (2005)
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Recall that the knot Floer homology is a doubly graded homology theory. One
grading is a homological grading (coming from the grading on the Floer homol-
ogy of S3 ), also called the Maslov grading. The other grading comes from a

filtration of ĈF (S3) induced by the knot. This latter grading will be referred

to as the filtration or Spinc grading. The chain complex ĈFK is generated by
intersection points of the tori Tα = α1 × . . .×αg and Tβ = β1 × . . .× βg−1 ×µ
contained in Symg(Σg). Any two such points can be connected by a Whitney
disk φ whose boundary is contained in the tori. We denote the intersection
number of φ with the submanifold p×Symg−1(Σg) by np(φ), where p is any
point in Σ − α1 − . . . − αg − β1 − . . .− βg−1 − µ.

The relative Maslov and Spinc gradings (denoted gr and F respectively) are
determined by the following (found in [13]):

gr(x) − gr(y) = µ(φ) − 2nw(φ) (3)

F(x) −F(y) = nz(φ) − nw(φ), (4)

where µ is the Maslov index of φ. The absolute Maslov grading is obtained
by the convention that gr(x) = 0 for x generating ĤF (S3) ∼= Z. The ab-

solute filtration grading can be naively obtained by requiring ĤFK(K, i) to
be symmetric about i = 0, though it has a more invariant description given in
[12].

The boundary operator ∂z is defined as follows:

∂z[x] =
∑

y∈Tα∩Tβ

∑

{φ∈π2(x,y)
∣∣µ(φ)=1,nw(φ)=0}

#
(
M̂(φ)

)
[y],

where here M̂(φ) denotes the quotient of the moduli space of J -holomorphic
disks representing the homotopy type of φ, M(φ), divided out by the natural
action of R on this moduli space. This operator can act on various chain com-
plexes: ĈF (S3), F(K, j), ĈFK(K, j), for example. The resulting homologies

will be denoted ĤF (S3), H(F(K, j)), and ĤFK(K, j). The operator decom-
poses as a sum ∂z = ∂0

z +∂1
z + . . .+∂k

z where ∂i
z has the same formula as above

except we require nz(φ) = i in addition to nw(φ) = 0. We define ∂w with the
same formula except we require nz(φ) = 0. Similarly ∂i

w requires nz(φ) = 0
and nw(φ) = i.

2.2 A Heegaard diagram for cables

The purpose of this section is to demonstrate an appropriate Heegaard diagram
for the (p, pn+1) cable of a knot K . The following lemma describes a procedure
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for finding a Heegaard diagram for cable knots starting from a diagram for the
pattern. Note that, strictly speaking, the diagram we obtain for the cable is not
actually compatible in the sense of Definition 2.1 since it does not contain the
meridian of the cable as a β attaching curve. However, a compatible diagram
can easily be obtained by stabilizing the diagram described below. Due to
the independence of Heegaard Floer homology under (de)stabilization [8], we
simply work with the diagram for the cable obtained below. For more details
on the Heegaard diagrams used in this paper see Chapter 2 of [4].

Lemma 2.2 Let (Σ, {α1, . . . , αg}, {β1, . . . , βg−1, µ}, z, w), be a Heegaard di-
agram for a knot K. Then a Heegaard diagram for Kp,pn+1 is obtained from
the diagram for K by replacing µ with a curve β̃ . The curve β̃ is obtained
by winding µ along an n-framed longitude for the knot (p − 1) times. The
point w is to remain fixed under this operation. The point z is replaced by
a basepoint z′ so that the arc connecting z′ and w has algebraic intersection
number p with β̃ and is disjoint from all other β curves and all α curves. (See
Figures 3 and 4.)

Proof Let us first understand the Heegaard diagram for K2,1 in terms of the
Heegaard diagram for K. Begin with the unknot. A Heegaard diagram for the
unknot is simply the standard Heegaard diagram for S3 , together with two
points, z and w , placed a small distance apart on either side of the curve µ
representing the meridian, Figure 2A.

Now draw in place of the unknot its (2,1) cable. Of course this is still the
unknot. However, µ is no longer a meridian for the knot. It has lk(K,µ) = 2.
Thus we stabilize the diagram in the sense of [3] by drilling a hole between
the strands of the knot. When stabilizing, we add two curves to the diagram,
α′ and µ′ , which bound disks when their corresponding handles are attached,
and which satisfy α′ ∩ µ′ = 1. The curve µ′ (which does not encircle the added
hole) can be chosen so that it is a meridian for the cabled unknot. On either
side of this meridian we add the points z′ and w (we add the prime here and
throughout to signify that this is a diagram for the cabled knot) in such a way
to be compatible with the orientation of the knot. See Figure 2B. Although the
diagram with no modification to the original α and µ curves represents S3 , it
is not a Heegaard diagram for the knot since µ links the knot twice. Thus we
replace µ by a curve β whose attaching disk does not intersect the knot, and
which still results in a Heegaard diagram for S3 . The attaching disk of β stays
between the two strands of the knot, twisting as the knot twists, while it winds
along the longitude of the original unknot. See Figure 2C. Now we perform two
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z

ww

w

w

z′z′

z′
µ′

µ′ β β̃

A B

C D

α′

α′

K K2,1

Figure 2: Illustration of Lemma 2.2. The four figures represent the steps of the lemma.
Each is a top view of a region of the solid torus. A dashed line represents either the
knot in the core of the solid torus, or an attaching circle for the Heegaard diagram
which is on the underside of the torus. The dark circle in figures B and C is a hole
drilled through the torus. It is destabilized in D after two handleslides.

handleslides on β to obtain a curve β̃ which satisfies the requirements of the
lemma and no longer intersects α′ . We can destabilize the resulting diagram,
removing µ′ and α′ ,to obtain a genus one diagram for the (2, 1) cable of the
unknot satisfying the conditions of the lemma. See Figure 2D.

To find a Heegaard diagram for the (2, 2n + 1) cable of an arbitrary knot we
note that our choice of the unknot above was not special: the same sequence of
Heegaard moves could have been applied with an arbitrary knot in a handlebody
of genus g . The index, n, of the cable corresponds to the framing of the knot
used in the Heegaard diagram. If we use the zero framing, the procedure yields
the (2, 1) cable as above. Picking a framing which adds n meridians to the
0-framed longitude for K is equivalent to cabling with the (2, 2n + 1) torus
knot.

Finally, to obtain a diagram for the (p, pn+ 1) cable of a knot, it is easy to see
(if somewhat harder to draw) that the above procedure can be extended. The
only difference is that instead of winding the original meridian once along the
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longitude, we wind it (p−1) times (while still winding n times in the meridional
direction.)

α

µ

λ

δ

x0

w z

Figure 3: Heegaard diagram for the unknot. λ represents a 3-framed longitude for the
unknot around which we will wind the meridian, µ .

2.3 Examples: ĤFK(T2,2n+1), ĤFK(T3,7)

As both an illustration of Lemma 2.2 and also as a tool for the general case,
we calculate ĤFK for the (2, 2n + 1) and (3, 7) torus knots. As it turns out,
much of what we see in these simple examples is reflected in the cables of an
arbitrary knot when n is large.

Proposition 2.3

ĤFK(T2,2n+1, i) ∼=

{
Z(i−n) for |i| ≤ n if n ≥ 0

Z(i−n−1) for |i| ≤ −n− 1 if n < 0.

The groups in both cases vanish outside of the specified range for i.

Of course this result is known, [9]. (For generalizations, see Theorem 1.3 of
[13], Theorem 1.2 of [11], or [17].) Nonetheless it will be interesting to see the
result arise in this context.

Proof To obtain a Heegaard diagram for T2,2n+1 , we start with the standard
genus one diagram for the unknot and apply Lemma 2.2 using an n-framed

Algebraic & Geometric Topology, Volume 5 (2005)
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α

β̃

δ

x0 x1

x2

x3

x4

x5

x6

w z′

Figure 4: Heegaard diagram for the (2,7) cable of the unknot (i.e. T2,7 ) obtained from

the diagram of the unknot above via Lemma 2.2. δ has intersection 2 with β̃ . The
darkly shaded (blue) region indicates the domain of the differential φ connecting x1 to
x0 discussed in the proof of Proposition 2.3 which has nw(φ) = 1. The lightly shaded
(red) region indicates the domain of the differential ψ connecting x1 to x2 and which
has nz′(ψ) = 1

longitude. This process is pictured in Figures 3 and 4. From Figure 4 we see
there are 2n+ 1 intersection points. To determine the intersection point which
has Maslov grading zero, we disregard the basepoint z′ in the diagram. Now
we are free to isotope β̃ back around the longitude, removing all intersection
points but x0 . Thus x0 generates ĤF (S3) ∼= Z and has Maslov grading zero.

We claim that for n > 0, gr(xi) − gr(xi+1) = F(xi) − F(xi+1) = 1. This
follows immediately from the fact that for i odd there is a unique holomorphic
disk φ connecting xi to xi−1 which has nw(φ) = 1 and nz′(φ) = 0, and also
a unique holomorphic disk ψ connecting xi to xi+1 which has nw(ψ) = 0 and
nz′(ψ) = 1. Examples of these disks are shown in Figure 4. The statement
about the Maslov and filtration gradings follows from Equations (3) and (4)

Algebraic & Geometric Topology, Volume 5 (2005)
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above.

For n ≥ 0, the proposition follows immediately by noting that each intersection
point lives in a distinct filtration level. The case for n < 0 is completely
analogous, except that gr(xi) − gr(xi+1) = F(xi) − F(xi+1) = −1 since the
winding occurs in the opposite direction. Be careful to note that using a −1
framed longitude to obtain a Heegaard diagram for T2,−1 actually produces a
Heegaard diagram with 3 intersection points (when one would expect it to have
1, since it is the unknot). However, these additional intersection points can be
removed using an allowed isotopy of β̃ (i.e. one that does not cross z′ or w .)
Indeed, whenever n < 0 we can remove two intersection points in this way.
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α

β̃
x0 x1 x2 x3 x4

x5 x6 x7 x8

w

z′

Figure 5: Heegaard diagram for the (3,7) cable of the unknot (i.e. T3,7 ) obtained via
Lemma 2.2 with p = 3, n = 2 The shaded region indicates the domain φ connecting x3

to x4 discussed in the proof of Proposition 2.4. The light shading indicates multiplicity
1 while the dark shading multiplicity 2

In the interest of being concrete, rather than extend the above example to the
case of the torus knots Tp,pn+1 , we calculate only a specific example, T3,7 . The
case of Tp,pn+1 follows in exactly the same spirit as T3,7 and is only notationally

more difficult. In general, ĤFK(Tp,q) follows from Theorem 1.2 of [11].
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Proposition 2.4

ĤFK(T3,7, i) ∼=





Z(0) i = 6

Z(−1) i = 5

Z(−2) i = 3

Z(−3) i = 2

Z(−4) i = 0

0 i = 1, 4, i > 6

Remark The knot Floer homology groups enjoy a symmetry under the natural
involution on Spinc structures given by conjugation, Proposition 3.10 of [12].
For the purposes of this paper, this symmetry can be expressed by the following
formula:

ĤFK∗(K, i) ∼= ĤFK∗−2i(K,−i). (5)

Thus the information in the above proposition completely specifies ĤFK(T3,7).

Proof We apply Lemma 2.2 with p = 3, n = 2, to obtain the diagram for
T3,7 shown in Figure 5. There are nine intersection points x0 . . . x8 . Just as in
the proof of Proposition 2.3, there are unique holomorphic disks with domains
φ having nw(φ) = 1, nz′(φ) = 0 which connect x1 to x0 and x3 to x2 . Both of
these domains have µ(φ) = 1. There are obvious holomorphic disks connecting
x1 to x2 and x3 to x4 with nz′(φ) = 2, nw(φ) = 0 and µ(φ) = 1 (see Figure 5).
The last two obvious holomorphic disks connect x5 to x6 and x7 to x8 with
nz′(φ) = 1, nw(φ) = 0, and µ(φ) = 1.

We now calculate the relative filtration difference between x4 and x6 . Let A
and B be a symplectic basis for H1(Σ1,Z) such that [B] · [A] = +1 and so that
A = α and [B] = [β̃] (assuming we orient the curves as in Figure 5). Draw an
arc from x4 to x6 along α and an arc from x6 to x4 following β̃ . The result
is a closed curve γ which can be chosen so that [γ] · [A] = 1 and [γ] · [B] = 1.
Hence,

[γ −B −A] = [γ − β̃ − α] = 0 ∈ H1(Σ1,Z).

Thus there is a null-homology φ for the curve γ− β̃−A which has nw(φ) = 0.
nz′(φ) is then the algebraic intersection number of an arc δ connecting z′ to
w , with γ − β̃ − A. Equivalently, it is the multiplicity of the null-homology
constructed at the point z′ . We see from this that nz′(φ) = 3 and hence that
F(x4) − F(x6) = nz′(φ) − nw(φ) = 3 − 0 = 3. A similar analysis shows that
F(x5) − F(x7) = 3. Together with the statements above, we see that each
point is in a different filtration dimension and hence generates a Z summand in
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the associated graded homology. Requiring rkĤFK(i) to be symmetric about
i = 0 yields the statement of the groups in the proposition.

To find the Maslov grading of the groups we argue similarly to Proposition
2.3. If we forget the reference point z′ and slide β̃ back, we find that x0 must
have absolute grading 0. The theorem then follows from Equations (3) and (5)
together with the Maslov indices of the disks in the first paragraph.

3 Proof of theorems

In this section we prove the theorems stated in the introduction. The idea be-
hind these theorems is the following: when we perform the operation of Lemma
2.2, the resulting Heegaard diagram can be simultaneously viewed as a diagram
for both the original and cabled knot by appropriately placing three basepoints.
When we increase n we add a large number of spirals to the Heegaard diagram.
If we make this spiraling region large enough, we can ensure that all generators
in the complex for both the original and cabled knots having high filtration
gradings live in the spiraling region. Since the domains of the differentials in
the Heegaard diagram are the same regardless of whether we are viewing it as
a diagram for the original or cabled knot, we can use our assumed knowledge of
the original knot’s differential to calculate the differential for the cabled knot.
When we specialize to the case of (2, 2n + 1) cables, the symmetry of ĤFK
under the conjugation action on Spinc structures (Equation (5)) allows us to

completely determine ĤFK(K2,2n+1). With the idea in place, we begin.

3.1 Proof of Theorems 1.2 and 1.1

Given a g -bridge presentation for K , we obtain a genus g Heegaard diagram
for S3 compatible with K (see [3]). See Figure 6 for the Heegaard diagram
of the right-handed trefoil. Note that the meridian for the knot will intersect
αg exactly once in the point x0 , and will intersect none of the other α curves.
This ensures that all intersection points of the knot’s chain complex will be of
the form (x0,y) for some (g − 1) tuple, y , of intersection points. Following
[12] one can determine the filtration grading of these generators. For each

filtration summand, ĈFK(K, i), there is a unique set of intersection points
generating the summand. Let us denote by C(i) all g− 1 tuples of intersection
points between Tβ \ µ and Tα \ αg which, together with x0 ∈ αg ∩ µ, generate

ĈFK(K, i). Thus we write x0 × C(i) to mean ĈFK(K, i).
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Apply Lemma 2.2. The first thing to note is that by appropriately placing a
third basepoint, z , the diagram can be viewed as compatible either with K or
with Kp,pn+1 :

Lemma 3.1 Let z be a point on the arc δ connecting z′ to w for which
the segment of δ connecting z to w has intersection number 1 with β̃ . See
Figure 7. Then the Heegaard diagram with the pair (w, z′) is compatible with
Kp,pn+1 , while with the pair (w, z) it is compatible with K .

Proof That the diagram with (w, z′) is compatible with Kp,pn+1 is just Lemma
2.2. To see that the diagram with (w, z) is compatible with K , simply isotope
β̃ in the reverse direction to that of Lemma 2.2 in order to arrive at the original
diagram for K . For the diagram with (w, z) this is an allowed isotopy in the
sense of [12] since it does not cross either basepoint.

Let n ≫ 0. This creates a large spiraling region in the Heegaard diagram,
similar to the diagrams for the torus knots in Section 2. This region contains
an odd number, 2(p − 1)n + 1, of intersection points of β̃ with αg . Denote
these intersection points x0 . . . x2(p−1)n . See Figure 5 or 7. (One should be
careful here. If we start with a 0-framed longitude and apply Lemma 2.2 there
will be at least 2(p − 1)n + 1 intersection points, but possibly more. The 0-
framed longitude for K may intersect αg ) When we look at xi ×C(j) we find
that there is a “copy” of each filtration summand of the original knot’s chain
complex carried by the point xi . In light of this we define:

Definition 3.2 In the Heegaard diagram for the (p, pn+1) cable of K we call
an intersection point an exterior intersection point if it is of the form (xi,y)
where xi ∈ β̃ ∩ αg and xi can be joined to x0 by an arc which intersects β̃
geometrically at most 2(p−1)n−1 times and which intersects none of the other
attaching curves. All other intersection points will be called interior.

The exterior points are those that arise from the spiraling region. Before con-
tinuing further we establish a labeling convention for the αg ∩ β̃ component
of the exterior points. We label these points as follows: each time we wind
β̃ around the longitude (i.e. increase the parameter p) we add 2n intersection
points xi ∈ αg ∩ β̃ generating exterior points. First we label the points that
arise the first time we wind around the longitude. From left to right we label
them x0 . . . x2n . If p = 2, we are done. If p > 2 we next label the points arising
the second time we wind around the longitude x2n+1, . . . , x4n , again from left
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to right, and so on. See Figure 5 for a picture of the spiraling region with this
labeling convention.

The exterior intersection points play a primary role in the proof of the theorem.
If we make n large enough, the chain complexes in highest filtration dimensions
(with respect to the filtrations induced by both the uncabled and cabled knot)
will be generated by a subset of the exterior points. To see this, we must
understand the relative filtrations induced by K and Kp,pn+1 . We develop this
knowledge through a sequence of lemmas. Let us denote the filtration with
respect to z (i.e. induced by K ) by F and the filtration with respect to z′ (i.e.
induced by Kp,pn+1) by F ′ .

We begin with the relative filtration between exterior points sharing the same
(g − 1)-tuple, y .

Lemma 3.3 For i < 2n odd, we have

F(xi−1,y) −F(xi,y) = F ′(xi−1,y) −F ′(xi,y) = 1

F(xi,y) −F(xi+1,y) = 0

F ′(xi,y) −F ′(xi+1,y) = p− 1.

Proof For i odd, there is a holomorphic disk with domain φ from (xi,y) to
(xi−1,y) having nz(φ) = nz′(φ) = 0, nw(φ) = 1. It is the product of the disk
from Propositions 2.3 and 2.4 (connecting xi to xi−1 ) with the constant map
in Symg−1(Σg). There is a disk with domain ψ from (xi,y) to (xi+1,y) with
nz(ψ) = nw(ψ) = 0, nz′(ψ) = p − 1. This is the the analogue of the disk in
Propositions 2.3 and 2.4 connecting xi to xi+1 . Topologically it is still a disk,
but now it wraps around the longitude p − 1 times. The lemma follows from
Equation (4).

Next we fix xi and vary the (g − 1)-tuple.

Lemma 3.4 Suppose y ∈ C(j), z ∈ C(k). Then,

F(xi,y) −F(xi, z) = j − k

F ′(xi,y) −F ′(xi, z) = p(j − k).

Proof The two (g − 1)-tuples had filtration difference j − k in the original
Heegaard diagram by assumption (i.e. before we applied Lemma 2.2). Thus
the boundary of the domain connecting these points in the original diagram
had intersection number j − k with an arc connecting z and w . In the cabled
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diagram, the boundary of the new domain will still have intersection number
j − k with the arc connecting z to w while it will have intersection number
p(j−k) with the arc connecting z′ and w . See Figures 6 and 7 for an illustration
of this lemma.
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x0

zw
α1α2

β1

w1 w2 w3y1 y2 y3

Figure 6: Heegaard diagram for the right-handed trefoil coming from its 2-bridge pre-
sentation. Shaded is a domain φ connecting (x0, w2) to (x0, w1) having nz(φ) = 1,
nw(φ) = 0. When we apply Lemma 2.2 this domain winds along the longitude and the
resulting domain φ′ has nz′(φ′) = p , nz(φ

′) = 1, and nw(φ′) = 0. See Figure 7 for an
illustration when p = 2.

We now know the relative filtration grading for both the cabled and uncabled
knot of all intersection points of the form (xi,y), with i ≤ 2n. See Figure 8
for a table depicting the two chain complexes.

There are many more intersection points in general – β̃ intersects the other
α curves as well as αg . See Figure 7 for an example of these intersection
points. We must also understand the filtration grading of the points (xi,y)
when i > 2n (the rest of the exterior points). These points occur when p > 2
because β̃ winds more than once around the longitude for K . To this end we
have the following:

Lemma 3.5 There exist constants N, c′ > 0 such that ∀ n with n > N ,
the relative filtration gradings of the exterior intersection points containing
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β̃
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x4

y1 z1

w1 w3w2

β1

z′w z

Figure 7: Heegaard diagram for the (2, 13) cable of the right-handed trefoil. The
exterior intersection points are those of the form (xi, wj) for i = 0, . . . , 4, j = 1, 2, 3

(there are only 5 points xi ∈ α2∩ β̃ generating exterior points because the others were
removed by an isotopy of β̃ not crossing z′ .) Note the domain φ′ from (xi, w2) to
(xi, w1) for i = 0, . . . , 4. This is the domain from Figure 6 which was wound along the
longitude to have nz′(φ′) = 2. The point (y1, z1) is an example of an interior point.

x0 . . . x2(n−c′) are higher than the filtration grading of all other intersection
points except possibly those containing x2(n−c′)+1 . . . x2n . The n, as always,
refers to the parameter specifying the cabled knot Kp,pn+1 . The constant c′ is
independent of n and depends only on the projection of K .

Proof First note that the relative filtration difference between any interior
points, p and q, does not change as we vary n. This is because domains
connecting interior points either remain fixed (take place entirely in the interior
of the diagram) or simply add area to the part of the domain with multiplicity
in the spiral. In either case nz′(φ), nz(φ), nw(φ) all remain fixed.

Next observe that the relative filtration difference between points of the form
(x2n,y) and all the interior points is fixed as we vary n. The reason is the same
as above: Domains connecting (x2n,y) to the interior at worst change by adding
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C(d)

x0

C(d− 1)

x1

C(d− 2)

x2

. . .

. . .

. . .

. . .

. . .

. . .

. . .

x3

x4

...
...

...
...

x2n

(0, 0) (−1,−p) (−2,−2p)

(−1,−1) (−2,−p− 1) (−3,−2p− 1)

(−1,−p) (−2,−2p) (−3,−3p)

(−2,−p− 1) (−3,−2p− 1) (−4,−3p− 1)

(−2,−2p) (−3,−3p) (−4,−4p)

(−n,−np) (−1 − n,−np− p) (−2 − n,−np− 2p)

Figure 8: Table of relative filtrations of exterior points for K and Kp,pn+1 when n > N .
The columns and rows are arranged to distinguish the elements (xi,y) ∈ xi × C(j).
The number on the left is the relative filtration of the points in each summand taken
with respect to z (the original knot’s basepoint). The number on the right is the
relative filtration of the points taken with respect to z′ (the cabled knot’s basepoint).
The dashed box is the chain complex for the cabled knot in relative filtration −p . It
is contained in the solid box of generators with relative z filtration greater than −2.
Proposition 3.7 shows that the complex in the dashed box is actually a subcomplex of
the complex in the solid box. Note the filtration gradings here are relative.

area to the part of the domain in the spiral and hence nz′(φ), nz(φ), nw(φ) are
all constant.

Finally we must account for the other exterior points. Let i > 0. We need
to calculate the filtration difference between x2n and x2n+i . We claim that
both F(x2n)−F(x2n+i) and F ′(x2n) −F ′(x2n+i) are bounded below by some
constant K, independent of n.

To prove the claim observe that F(x2n) − F(x2n+1) and F ′(x2n) − F ′(x2n+1)
are independent of n for the same reasons as above. The homological method
for calculating filtration differences of Proposition 2.4 shows that when n is
large enough, F(x2n+1)−F(x2n+j) and F ′(x2n+1)−F ′(x2n+j) are both always
greater than or equal to zero for any j > 1. These observations, the previous two
lemmas, and the fact that there are only a finite number of interior intersection
points proves the lemma.
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We now wish to prove:

Lemma 3.6 For n > N as above,

ĤFK∗(Kp,pn+1, topmost) ∼= ĤFK∗−1(Kp,pn+1, topmost − 1) ∼= ĤFK∗(K,d)

ĤFK(Kp,pn+1, topmost − i) ∼= 0 for i = 2, . . . , p− 1,

Where topmost refers to the highest filtration dimension for which
ĤFK(Kp,pn+1) 6= 0 and d = deg ĤFK(K).

Proof When n > N the above Lemmas show that the exterior points x0×C(d)
are higher in relative filtration than all other intersection points. This holds
whether we take our filtration with respect to z (the original knot) or z′ (its
cable). It follows from this and Equation (4) that the domain of any disk
connecting points of the form x0×C(d) with nw = 0 must have nz = nz′ = 0 as
well. This implies that the differential restricted to these points is independent
of the basepoint used and we immediately have ĤFK(Kp,pn+1,topmost) ∼=

ĤFK(K,d). We do not yet know the absolute filtration grading for the cable
and hence we simply refer to the dimension as “topmost” for now. The gradings
are the same for either knot because the chain complex calculates ĤFK(S3)
regardless of which way it is filtered. Thus a generating point for this homology
is independent of the filtration. Furthermore, the relative Maslov grading is
calculated using Equation (3), which is also independent of the filtration used.
This proves that the first and last groups stated in the lemma are isomorphic.

We show the first and second groups are isomorphic. Recall that ∂w decom-
poses as a sum ∂w = ∂0

w + ∂1
w + . . . + ∂k

w , where ∂i
w is the boundary opera-

tor counting holomorphic disks whose domains have nz(φ) = 0 and nw(φ) =

i. (∂w)2 = 0 implies ∂1
w is a chain map from ĈFK(Kp,pn+1,topmost-1) to

ĈFK(Kp,pn+1,topmost). For each (g-1) tuple y , there is an obvious holomor-
phic disk with domain φ connecting (x1,y) to (x0,y) with nz(φ) = nz′(φ) =
0, nw(φ) = 1. It is the product, u× y , of the disk u in the torus from Propo-
sitions 2.3 and 2.4, with the constant map in Symg−1(Σg). We denote this
summand in ∂1

w by l0 . In the standard way (see, for instance, Theorem 4.1 of
[12]) we filter the chain map ∂1

w with respect to negative area of the domains
of disks. With respect to this filtration,

∂1
w = l0 + lower order terms.

l0 is clearly an isomorphism of chain complexes, and hence ∂1
w induces an

isomorphism of groups. The grading shift is a consequence Equation (3).
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From Lemma 3.5 and Figure 8 it is clear that ĤFK(Kp,pn+1, topmost− i) ∼= 0
for i = 2, . . . , p − 1: there are simply no intersection points in these filtration
dimensions.

Proposition 3.7 Let K be a knot in S3 , and suppose that deg ĤFK(K) = d.
Then ∃ N > 0 such that for all n > N , the following holds:

deg ĤFK(Kp,pn+1) = pd+
(p− 1)(pn)

2

Furthermore, ∃ c(c′, n, p) such that if i > c(c′, n, p) we have

ĤFK∗(Kp,pn+1, i) ∼=





H∗(C(K, i′ ≥ d− k), ∂w) for i = pd+ (p−1)(pn)
2 − pk

ĤFK∗+1(Kp,pn+1, i+ 1) i = pd+ (p−1)(pn)
2 − pk − 1

0 otherwise

Where C(K, i′ ≥ d−k) is the chain complex generated by points with filtration
dimension ≥ d − k with respect to K . c(c′, n, p) is linear in n and quadratic
in p.

Proof The base case being established by Lemma 3.6 we assume the theorem
holds for k − 1, with k < n − c′ (here c′ is the constant from Lemma 3.5). It
is immediate that for k < n− c′

ĤFK∗(Kp,pn+1, topmost − pk)) ∼= ĤFK∗−1(Kp,pn+1, topmost − pk − 1).

∂1
w induces an isomorphism of these groups just as in Lemma 3.6. We will

establish the absolute filtration dimension at the end. We first note that
(C(K, i′ ≥ d − k), ∂w) is a subcomplex of (ĈFK(K), ∂w). This follows from
the fact that ∂w counts only those disks whose domains have nz(φ) = 0. Thus
the domain of any differential with range outside of (C(K, i′ ≥ d−k), ∂w) must
have negative multiplicity by Equation (4). This is impossible by Lemma 3.2
of [8].

The generators of ĈFK(Kp,pn+1, topmost − pk) are clearly contained in
(C(K, i′ ≥ d − k), ∂w), see Figure 8. We will show that the former is actually

a subcomplex of the latter. The differential on ĈFK(Kp,pn+1, topmost − pk)
counts disks whose domains have nz′(φ) = nw(φ) = 0, while
(C(K, i′ ≥ d − k), ∂w) requires nz(φ) = 0. When restricted to points in

ĈFK(Kp,pn+1, topmost − pk), however, both differentials are identical – the
relative filtration gradings of generators in this set are the same with respect
to either basepoint. Thus Equation (4) implies that both differentials compute

the same homology, ĤFK(Kp,pn+1, topmost − pk).
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To show that ĈFK(Kp,pn+1, topmost − pk) is a subcomplex is to show that
there are no differentials from

ĈFK(Kp,pn+1, topmost − pk) to
(C(K, i′ ≥ d− k), ∂w)

ĈFK(Kp,pn+1, topmost − pk)
.

This is an application of Equation (4). The numbers on the left in Figure 8
depend on Equation (4) using z , while the numbers on the right use z′ . If

x ∈ ĈFK(Kp,pn+1, topmost − pk) and y ∈
(C(K, i′ ≥ d− k), ∂w)

ĈFK(Kp,pn+1, topmost − pk)
,

then F(x) −F(y) > F ′(x) −F ′(y).

This immediately implies the domain connecting x to y has negative multiplic-
ity (since nz(φ) = 0). Again Lemma 3.2 of [8] implies there are no holomorphic

representatives of these domains and hence ĈFK(Kp,pn+1, topmost − pk) is a
subcomplex.

The proposition, filtration dimensions aside, follows immediately – the quo-
tient complex has trivial homology since ∂1

w induces an isomorphism between

ĤFK∗(Kp,pn+1, topmost−p(k−1)) and ĤFK∗(Kp,pn+1, topmost−p(k−1)−1).

Calculating the absolute filtration dimension follows from what we have proved
and Equations (1) and (2). The knots K and Kp,pn+1 have isomorphic groups
in top filtration dimension. If the Euler characteristic of this group is non-zero,
then so is the coefficient of TF(topmost) in the Alexander polynomial for both
knots, and the result follows from Equation (1). If the Euler characteristic of the
group is zero, proceed to the first group with non-zero Euler characteristic. One
must exist since the Alexander polynomial of a knot cannot be zero. Inspection
of the relative filtration levels for both knots shows that if degĤFK(K) −

deg ∆K(t) = l , then degĤFK(Kp,pn+1)− deg ∆Kp,pn+1
= p · l . This completes

the proposition.

The constant c(c′, n, p) in the proposition is explained as follows: Lemma 3.5
shows that for n>N , the exterior points carried by x0, . . . , x2(n−c′) are higher in
filtration dimension than all points except those carried by x2(n−c′)+1, . . . , x2n ,
with c′ > 0 independent of n. It follows that the exterior points (xi,y)
with i < 2n generate the top p(n − c′) + 1 filtration dimensions. Since

degĤFK(Kp,pn+1) = pd + (p−1)(pn)
2 we see that the constant c(c′, n, p) =

pd+ (p−1)(pn)
2 − p(n− c′) − 1 takes the appropriate form.
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Proof of Theorems 1.1 and 1.2 Theorem 1.2 is a restatement of Propo-
sition 3.7. The chain complex (C(K, i′ ≥ d − k), ∂w) is naturally identified
with F(−K,k − d), where −K denotes K with the reverse orientation – the
differential on F(−K) is ∂w by definition, while the relative filtration equa-
tion (Equation (4)) for −K permutes z and w , see [12]. The homology of
F(−K,k − d) is identified with F(K,k − d) in Section 3.5 of [12].

The grading shift occurs for the following reason: the relative gradings for both
the original and cabled knots are defined using

gr(x) − gr(y) = µ(φ) − 2nw(φ).

The proof of Proposition 3.7, however, identifies the knot Floer homology groups
of the cable with the homology of the complexes, (C(K, i′ ≥ d− k), ∂w). Using
the differential, ∂w , the relative grading equation is

gr(x) − gr(y) = µ(φ) − 2nz(φ).

The grading shift is a consequence of this and the relative filtrations.

In the special case p = 2, we see that the constant c(c′, n, p) is negative for
sufficiently large n, thus proving Theorem 1.1.

Remark In the case where n < 0, the above discussion carries through almost
verbatim. The exterior points can be isolated in filtration, the only difference
being that they are lower (rather than higher) in filtration grading than all
other points. In addition, two exterior points can be removed by an isotopy.
The proof of Proposition 3.7 is exactly the same in this setting, with the roles
of subcomplex and quotient complex reversed (i.e. the cabled knot group is
naturally a quotient complex rather than a subcomplex, and the first term in
the short exact sequence of chain complexes has trivial homology). We state
the analogue of Theorem 1.2 with n < 0 for completeness.

Theorem 3.8 Let K ⊂ S3 be a knot with deg ĤFK(K) = d. Then ∃ N < 0
and c(c′, n, p) such that ∀ n < N , the following holds:

deg ĤFK(Kp,pn+1) = pd+
(p− 1)(p|n| − 2)

2
.

If i < −c(c′, n, p) we have

ĤFK∗(Kp,pn+1, i) ∼=





H∗+2(d−k)(
ĈFK(K)

F(K,d−k−1)) i = pk − pd− (p−1)(p|n|−2)
2

H∗+2(d−k)−1(
ĈFK(K)

F(K,d−k−1)) i = pk + 1 − pd− (p−1)(p|n|−2)
2

0 otherwise.

When p = 2 we can arrange that c(c′, n, p) < 0.
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Proposition 3.7 of [12] relates the Floer homology of a knot K , and its mirror,
K . Thus the above theorem, together with Theorem 1.2, gives the values of
ĤFK(Kp,pn±1, i) for all sufficiently large |n| with |i| > c(c′, n, p).

4 Examples

Let T2,2m+1 be the (2, 2m+1) torus knot. For all i ≥ 0 We have the following:

Proposition 4.1 If m > 0,0 ≤ k < m, then for all n > 10m

ĤFK((T2,2m+1)2,2n+1, i) ∼=





Z−2k for i = 2m+ n− 4k
Z−2k−1 for i = 2m+ n− 4k − 1
0 for i = 2m+ n− 4k − 2
0 for i = 2m+ n− 4k − 3
Zi−n for 0 ≤ i ≤ n− 2m
0 otherwise

If m < 0,0 ≤ k < |m|, then for all n > 6|m| + 1

ĤFK((T2,2m−1)2,2n+1, i) ∼=





Z2|m|−4k i = 2|m| + n− 4k
Z2|m|−4k−1 i = 2|m| + n− 4k − 1
Z2|m|−2k−1 ⊕ Z2|m|−4k−2 i = 2|m| + n− 4k − 2
Z2|m|−2k−2 ⊕ Z2|m|−4k−3 i = 2|m| + n− 4k − 3
Zi−n for 0 ≤ i ≤ n− 2|m|
0 otherwise

If m > 0,0 ≤ k < m, then for all n < −6m− 1

ĤFK((T2,2m+1)2,2n−1, i) ∼=





Z−2m+4k i = −2m− |n| + 4k
Z−2m+4k+1 i = −2m− |n| + 4k + 1
Z−2m+2k+1 ⊕ Z−2m+4k+2 i = −2m− |n| + 4k + 2
Z−2m+2k+2 ⊕ Z−2m+4k+3 i = −2m− |n| + 4k + 3
Zi+|n| for 0 ≥ i ≥ 2m− |n|
0 otherwise

If m < 0,0 ≤ k < |m|, then for all n < −10|m|

ĤFK((T2,2m−1)2,2n−1, i) ∼=





Z2k for i = −2|m| − |n| + 4k
Z2k+1 for i = −2|m| − |n| + 4k + 1
0 for i = −2|m| − |n| + 4k + 2
0 for i = −2|m| − |n| + 4k + 3
Zi+|n| for 0 ≥ i ≥ 2|m| − |n|
0 otherwise
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Proof When n > 0 this follows directly from Proposition 2.3 and Theorem
1.1. When n < 0 we use Theorem 3.8. Alternatively, we could use Proposition
3.7 of [12]. (In Proposition 2.3 we only remarked upon the existence of certain
differentials in the chain complex for S3 . Indeed, it is not difficult to see that
these are the only differentials. Use Equations (3) and (4), for instance,
together with the fact that domains of holomorphic disks must be positive.)

The bounds for n when n > 0,m > 0 or n < 0,m < 0 arise as follows: In
the Heegaard diagram for the (2, 2m + 1) torus knot coming from its 2-bridge
presentation, the natural longitude has framing n = 4m (by natural we mean
the longitude which intersects α2 geometrically the minimum number of times).
Applying Lemma 2.2 with this longitude yields one point, x0 ∈ β̃ ∩ α2 . It is
a straightforward homological computation to see that when m > 0 (resp.
m < 0), x0 carries one intersection point, x0 × w2m+1 , with relative filtration
grading higher (resp. lower) than all other points. Furthermore, the lowest
(resp. highest) relative filtration dimension of any intersection point in the
diagram is 12|m| less (resp. more) than x0 ×w2m+1 . Thus the total breadth of
relative filtration agrees with the breadth of the Alexander polynomial and is
equal to 12|m| + 1. By the lemmas in Section 3, increasing (resp. decreasing)
the framing of the longitude by 6|m| increases the total breadth in filtration by
12|m|. Thus the total breadth in filtration is 24|m|+ 1 whereas the breadth in
filtration of the exterior points is 12|m|+ 1. Therefore we may apply Theorem
1.1 (resp. 3.8). The bound in either case is 4m+ 6m = 10m.

We determine the bound when n < 0,m > 0 or n > 0,m < 0 as follows:
begin as above with the natural 4m-framed longitude for the (2, 2m+ 1) torus
knot. If m > 0 (resp. m < 0), the point x0 × w1 carried by x0 with lowest
(resp. highest) relative filtration is 4m lower (resp. higher) in filtration than
x0×w2m+1 . This follows from Lemma 3.4. Since the total breadth in filtration
is 12|m|+ 1, we see that x0 ×w1 is 8|m| higher (resp. lower) in filtration than
the lowest (resp. highest) filtration dimension. Decrease (resp. increase) the
framing of the longitude by 1. This has the effect of making the total breadth
of filtration 12m, rather than 12m+ 1. Furthermore, x0 ×w1 is now 8|m| − 1
higher (resp. lower) than the lowest (resp. highest) filtration dimension. This is
because a pair of points x1, x2 ∈ β̃ ∩ α2 can be removed by an allowed isotopy
as in Proposition 2.3. The net effect of the change in framing is moving the
basepoint w across β̃ . Decrease (resp. increase) the framing by 4|m|. This
ensures that x0 ×w1 is lower in relative filtration than all other points, interior
or exterior. The framing used is now −1 (resp. 1) and the total breadth of
filtration is 12|m| + 1. Decrease (resp. increase) the framing by 6|m| + 1. The
exterior points isolated in filtration from the interior now account for more than
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half of the total filtration breadth. The bounds follow.

Remark It is likely that the bound here, and indeed in Theorem 1.1, can be
taken to be N = 2g(K). Some support of this can be found in Chapter 3 of
[4], where we explicitly compute all (2, 2n + 1) cables of the trefoil knot.
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