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Abstract The purpose of this paper is to investigate torsion-free groups
which act properly and cocompactly on CAT(0) metric spaces which have
isolated flats, as defined by Hruska [18]. Our approach is to seek results
analogous to those of Sela, Kharlampovich and Miasnikov for free groups
and to those of Sela (and Rips and Sela) for torsion-free hyperbolic groups.

This paper is the first in a series. In this paper we extract an R-tree
from an asymptotic cone of certain CAT(0) spaces. This is analogous to a
construction of Paulin, and allows a great deal of algebraic information to
be inferred, most of which is left to future work.
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1 Introduction

Using the theory of isometric actions on R-trees as a starting point, Sela has
solved the isomorphism problem for hyperbolic groups (at least for torsion-free
hyperbolic groups which do not admit a small essential action on an R-tree [28],
though he has a proof in the general torsion-free case), has proved that torsion-
free hyperbolic groups are Hopfian [31], and recently has classified those groups
with the same elementary theory as a given torsion-free hyperbolic group [32,
33, 34]. Kharlampovich and Miasnikov have a similar, but more combinatorial,
approach to this last problem for free groups; see [21] and references contained
therein.1

1Neither Sela’s nor Kharlampovich and Miasnikov’s work on the elementary theory
of groups have entirely appeared in refereed journals.
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1326 Daniel Groves

It seems that Sela’s methods will not work for non-positively curved groups
in general (whatever the phrase ‘non-positively curved group’ means). For
example, Wise [39] constructed a group which acts properly and cocompactly
on a CAT(0) metric space, but is non-Hopfian.

The class of groups acting properly and cocompactly on CAT(0) spaces with
the isolated flats condition is in many ways an intermediary between hyperbolic
groups (which are the ‘negatively curved groups’ in the context of discrete
group) and CAT(0) groups. Sela [35, Question I.8] asked whether such a group
is Hopfian, and whether one can construct Makanin-Razborov diagrams for these
groups. In the second paper in this series, [17], we will provide a positive
answer to these questions (under certain extra hypotheses, described below).
The purpose of this paper is to develop tools for addressing these questions.

The initial ingredient in many of Sela’s arguments is a result of Paulin ([23, 24];
see also [1] and [9]; and see [22] for work preceding Paulin’s) which extracts
an isometric action on an R-tree from (certain) sequences of actions on δ -
hyperbolic spaces. Given two finitely generated groups G and Γ, and a sequence
of non-conjugate homomorphisms {hi : G → Γ}, it is straightforward to con-
struct an action of G on a certain asymptotic cone of Γ with no global fixed
point. If Γ acts properly and cocompactly by isometries on a metric space
X , then a G-action can be constructed on an asymptotic cone of X (which
is bi-Lipschitz homeomorphic, but not necessarily isometric, to the analogous
asymptotic cone of G). For δ -hyperbolic groups, this is in essence the above-
mentioned result of Paulin. In the case of groups acting on CAT(0) spaces, it
is carried out by Kapovich and Leeb in [20], but the general case is hardly more
complicated. Of course, for a general finitely generated group Γ, the existence
of an action of G on an asymptotic cone of Γ with no global fixed point provides
little information about G or Γ. In this paper we place certain restrictions on
Γ so that we can find a G-action on an R-tree which provides much the same
information as Paulin’s result. We study the case where Γ acts properly and
cocompactly on a CAT(0) metric space with isolated flats.

We study the asymptotic cone of such a space. Under a further hypothesis (that
the stabilisers of maximal flats are free abelian), we construct an R-tree, which
allows many of Sela’s arguments to be carried out in this context (though we
leave most such applications to subsequent work).

The first application of this construction is the following:
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Theorem 5.9 Suppose that Γ is a torsion-free group acting properly and co-

compactly on a CAT(0) space X which has isolated flats, so that flat stabilisers

in Γ are abelian. Suppose further that Out(Γ) is infinite. Then Γ admits a

nontrivial splitting over a finitely generated free abelian group.

This partially answers a question of Swarup (see [3, Q 2.1]). However, Theorem
5.9 is only the first application. Our hope is that much of Sela’s program for
free groups and torsion-free hyperbolic groups can be carried out for groups
Γ as in the statement of Theorem 5.9. In future work, we will consider the
automorphism groups of such groups (in analogy with [26, 29]), the Hopf prop-
erty (in analogy with [31]) and Makanin-Razborov diagrams for these groups
(in analogy with [32, 34]). The last of these involves finding a description of
Hom(G,Γ), where G is an arbitrary finitely-generated group. A key argument
in Sela’s solution to all of these problems for torsion-free hyperbolic groups
is the shortening argument, which we present for these CAT(0) groups with
isolated flats in [17].

The outline of this paper is as follows. In Section 2 we recall some basic def-
initions and results and prove some preliminary results about CAT(0) spaces
with isolated flats and groups acting properly and cocompactly on such spaces.
In Section 3, we consider a torsion-free group Γ which acts properly and co-
compactly on a CAT(0) metric space X with isolated flats. Given a finitely
generated group G and a sequence of homomorphisms {hn : G → Γ} no two
of which differ only by an inner automorphism of Γ, it is straightforward to
construct an action of G on the asymptotic cone of X . A key feature of this
action is that it has no global fixed point. This construction amounts to a com-
pactification of a certain space of G-actions on X (those actions which factor
through a fixed homomorphism q : Γ → Isom(X)). In Section 4, we restrict
to a torsion-free group Γ which acts properly and cocompactly on a CAT(0)
space with isolated flats and has abelian flat stabilisers. Under this additional
hypothesis, we are able to extract an isometric action of G on an R-tree T
with no global fixed point. The action of G on T largely encodes the same
information from the homomorphisms {hn} as Paulin’s construction does in
the case where Γ is δ -hyperbolic. See, in particular, Theorem 4.4, the main
technical result of this paper. Finally, in Section 5 we discuss a few simple
relations between our limiting objects, Γ-limit groups, and other definitions of
Γ-limit groups, and prove Theorem 5.9.

I would like to thank Jason Manning for several conversations which illustrated
my näıveté, and in particular for pointing out an incorrect argument in a pre-
vious construction of the limiting tree T in §4.
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2 CAT(0) metric spaces with isolated flats and iso-
metric actions upon them

For the definition of R-trees and the basic properties of their isometries, we
refer the reader to [36], [37], [12] and [2]. For this paper, we do not need much
of this theory.

For the definition and a multitude of results about CAT(0) metric spaces, and
isometric actions upon them, we refer the reader to [8]. We recall only a few
basic properties and record our notation.

Suppose that X is a geodesic metric space. If p, q, r ∈ X , then [p, q] denotes
a geodesic between p and q , and ∆(p, q, r) denotes the triangle consisting of
the geodesics [p, q], [q, r], [r, p]. Geodesics (and hence geodesic triangles) need
not be unique in geodesic metric spaces, but they are in CAT(0) spaces. If
p, q, r ∈ X then [p, q, r] denotes the path [p, q] ∪ [q, r]. Expressions such as
[p, q, r, s] are defined similarly.

If Γ is a group acting properly and cocompactly by homeomorphisms on a
connected simply-connected topological space then Γ is finitely presented (see
[8, Theorem I.8.10, pp.135-137]). Obviously, if Γ is torsion-free, then the action
is free.

Suppose now that X is a CAT(0) metric space and that Γ acts properly and
cocompactly by isometries on X . Then (see [8, II.6.10.(2), p.233]) each element
of Γ acts either elliptically (fixing a point) or hyperbolically (there is an invari-
ant axis upon which the element acts by translation). If also Γ is torsion-free
then all isometries are hyperbolic.

Recall the following two results.

Lemma 2.1 [8, Proposition II.2.2, p. 176] Let X be a CAT(0) space. Given

any pair of geodesics c : [0, 1] → X and c′ : [0, 1] → X parametrised propor-

tional to arc length, the following inequality holds for all t ∈ [0, 1]:

dX(c(t), c′(t)) ≤ (1 − t)dX(c(0), c′(0)) + t(dX(c(1), c′(1)).

Proposition 2.2 [8, Proposition II.2.4, pp. 176–177] Let X be a CAT(0)
space, and let C be a convex subset which is complete in the induced metric.

Then,

(1) for every x ∈ X , there exists a unique point πC(x) ∈ C such that

d(x, πC(x)) = d(x,C) := infy∈C d(x, y);

Algebraic & Geometric Topology, Volume 5 (2005)
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(2) if x′ belongs to the geodesic segment [x, πC(x)], then πC(x′) = πC(x);

(3) the map x → πC(x) is a retraction of X onto C which does not increase

distances.

2.1 CAT(0) spaces with isolated flats and groups acting on
them

Definition 2.3 A flat in a CAT(0) space X is an isometric embedding of
Euclidean space E

k into X for some k ≥ 2.

Note that we do not consider a geodesic line to be a flat.

Definition 2.4 [18, 2.1.2] A CAT(0) metric space X has isolated flats if it
contains a family FX of flats with the following properties:

(1) (Maximal) There exists B ≥ 0 such that every flat in X is contained in
a B -neighbourhood of some flat in FX ;

(2) (Isolated) There is a function φ : R+ → R+ such that for every pair of
distinct flats E1, E2 ∈ FX and for every k ≥ 0, the intersection of the
k -neighbourhoods of E1 and E2 has diameter less than φ(k).

This definition is due to C. Hruska [18], but such an idea is implicit in Chapter
11 of [15], and in the work of Wise [40] and of Kapovich and Leeb [20].

Convention 2.5 To simplify constants in the sequel, we assume that φ(k) ≥ k
for all k ≥ 0 and that φ is a nondecreasing function. We can certainly make
these assumptions, and usually do so without comment.

For the basic properties of CAT(0) metric spaces with isolated flats, for exam-
ples of such spaces, and for some properties of isometric actions upon them, we
refer the reader to [18].

Hruska also introduced the relatively thin triangles property:

Definition 2.6 [18, 3.1.1] A geodesic triangle in a metric space X is δ-thin
relative to the flat E if each side of the triangle lies in the δ -neighbourhood of
the union of E and the other two sides of the triangle (see Figure 1). A metric
space X has the relatively thin triangle property if there is a constant δ so that
each triangle in X is either δ -thin in the usual sense or δ -thin relative to some
flat in FX .

Algebraic & Geometric Topology, Volume 5 (2005)



1330 Daniel Groves

E

Figure 1: A triangle which is thin relative to the flat E

Using work of Druţu and Sapir [14] on asymptotic cones of relatively hyperbolic
groups, Hruska and Kleiner [19] have proved that if X is a CAT(0) space with
isolated flats which admits a cocompact isometric group action then X satisfies
the relatively thin triangles condition. In this paper, the symbol ‘δ ’ will always
refer to the constant from Definition 2.6.

Terminology 2.7 When we refer to a CAT(0) group with isolated flats we
mean a group which admits a proper, cocompact and isometric action on a
CAT(0) space with isolated flats.

We now consider some of the basic properties of CAT(0) spaces with isolated
flats, and groups acting properly, cocompactly and isometrically upon them,
which are necessary in the sequel.

Proposition 2.8 [18, 2.1.4] Suppose X is a CAT(0) space with isolated flats.

The family FX of flats in Definition 2.4 may be assumed to be invariant under

all isometries of X .

Lemma 2.9 [18, 2.1.9] Suppose that the CAT(0) space X has isolated flats

and admits a proper and cocompact action by some group of isometries. Then

any maximal flat in X is periodic.

Lemma 2.10 Suppose that X is a CAT(0) space with isolated flats, and that

∆ = ∆(a, b, c) is a geodesic triangle in X . If ∆ is not (δ + φ(δ)
2 )-thin then ∆

is δ -thin relative to a unique flat E ∈ FX .

Algebraic & Geometric Topology, Volume 5 (2005)
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Proof Let la,b be that part of the geodesic [a, b] which lies outside of the
δ -neighbourhood of [a, c] ∪ [b, c], and define la,c and lb,c similarly.

Suppose that ∆ is δ -thin relative to E,E′ ∈ FX , where E 6= E′ . Then
la,b, la,c, lb,c all lie in the δ -neighbourhood both of E and of E′ . The intersection
of these δ -neighbourhoods has diameter at most φ(δ). Therefore, the length of
la,b is at most φ(δ) (since it is a geodesic). Thus, from any point on la,b , the

distance to [a, c] ∪ [b, c] is at most δ + φ(δ)
2 .

A symmetric argument for la,c and lb,c finishes the proof.

2.2 Bieberbach groups and toral actions on CAT(0) spaces with
isolated flats

Given a proper and cocompact isometric action of a group Γ on a CAT(0)
space X with isolated flats, we are compelled to study the subgroups Stab(E),
where E is a maximal flat in X .2

By Lemma 2.9 we have a proper and cocompact action of the group StabΓ(E)
on E ∼= E

n . Recall the following celebrated result of Bieberbach [6, 7]. 3

Theorem 2.11 (Bieberbach; see for example [38], 4.2.2, p.222)

(a) A group Γ is isomorphic to a discrete group of isometries of E
n , for some

n, if and only if Γ contains a subgroup of finite index that is free abelian

of finite rank;

(b) An n-dimensional crystallographic group Γ contains a normal subgroup

of finite index that is free abelian of rank n and equals its own centraliser.

This subgroup is characterised as the unique maximal abelian subgroup

of finite index in Γ, or as the translation subgroup of Γ.

The structure of the subgroups StabΓ(E) will be important to us in the sequel.
In particular, when there are such groups which are not free abelian the con-
struction in Section 4 does not work. Motivated by this consideration, we make
the following

2By Stab(E) we mean {g ∈ Γ | g.E = E} . The point-wise stabiliser is Fix(E) =
{g ∈ Γ | g.x = x, ∀x ∈ E} .

3An n-dimensional crystallographic group is a cocompact discrete group of isometries
of E

n .
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Definition 2.12 Suppose that X is a CAT(0) space with isolated flats and
that a group Γ acts properly and cocompactly by isometries on X . We say that
the action of Γ on X is toral if for each maximal flat E ⊆ X , the subgroup
Stab(E) ≤ Γ is free abelian. We say that Γ is a toral CAT(0) group with
isolated flats if there is a proper, cocompact and toral action of Γ on a CAT(0)
space X with isolated flats.

Remark 2.13 We observe in Lemma 2.18 below that if a torsion-free group
Γ admits a proper, cocompact and toral action on some CAT(0) space X with
isolated flats then any proper and cocompact action of Γ on a CAT(0) space
with isolated flats is toral. Thus the property of being toral belongs to the
group rather than the given action on a CAT(0) space with isolated flats. Also,
Hruska and Kleiner have proved [19] that any CAT(0) space X on which a
CAT(0) group with isolated flats acts properly and cocompactly by isometries
has isolated flats.

2.3 Basic algebraic properties of CAT(0) groups with isolated
flats

In this paragraph we consider a few basic algebraic properties of torsion-free
CAT(0) groups with isolated flats.

Definition 2.14 A subgroup K of a group G is said to be malnormal if for
all g ∈ G r K we have gKg−1 ∩ K = {1}.

A group G is said to be CSA if any maximal abelian subgroup of G is malnor-
mal.

The following lemma is straightforward and certainly well known, but we record
and prove it for later use.

Lemma 2.15 Suppose that G is a CSA group. Then every soluble subgroup

of G is abelian. Also, every virtually abelian subgroup of G is abelian.

Proof Suppose that S is a nontrivial soluble subgroup of G. Let S(i) be
the smallest nontrivial term of the derived series of S . Then S(i) is a normal
abelian subgroup of S . However, it is an abelian subgroup of G, so is contained
in a maximal abelian subgroup A. If g ∈ S , then g normalises S(i) , so g ∈ A,
since A is malnormal. Therefore, S is contained in A and S is abelian.

Algebraic & Geometric Topology, Volume 5 (2005)
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Any virtually abelian subgroup H has a finite index normal abelian subgroup
A. By the above argument, the normaliser of A is abelian and contains H , so
H is abelian.

Proposition 2.16 Suppose that Γ is a torsion-free group which admits a

proper and cocompact action on a CAT(0) space X with isolated flats. Then

the stabiliser in Γ of any maximal flat in X is malnormal.

Proof Let FX be the collection of flats from Definition 2.4, and let E be a
maximal flat in X . Consider M = Stab(E). Without loss of generality, we
may assume that E ∈ FX .

Suppose that g ∈ Γ is such that gMg−1 ∩ M 6= {1}. We prove that g ∈ M .
There exist a1, a2 ∈ M r {1} so that ga1g

−1 = a2 .

Now, ga1g
−1 = a2 leaves both E and gE invariant. Therefore, there is an axis

for ga1g
−1 in each of E and gE , and there is a Euclidean strip, isometric to

[0, k] × R for some k , joining these axes. However, E and gE are both in FX

by Proposition 2.8, and we have seen that the k -neighbourhoods of E and gE
intersect in an unbounded set, so we must have that E = gE , which is to say
that g ∈ M .

Corollary 2.17 Suppose that Γ is a torsion-free toral CAT(0) group with

isolated flats. Then Γ is CSA.

Proof Let A be a maximal abelian subgroup of Γ and let X be a CAT(0)
space with isolated flats with a proper, cocompact and toral action of Γ.

Suppose first that A is noncyclic. Then A stabilises some flat E ∈ FX , and
hence some maximal flat (by the Isolated Flats condition). Since A is maximal
abelian, and the action of Γ on X is toral, A = Stab(E). In this case the result
follows from Proposition 2.16.

Suppose now that A is a cyclic maximal abelian subgroup, and that for some
g ∈ Γ r A we have gAg−1 ∩ A 6= {1}. Let A = 〈a〉. Then gapg−1 = aq for
some p, q . Since A is maximal abelian, we do not have p, q = 1. However,
Γ is a CAT(0) group, so |p| = |q| (see [8, Theorem III.Γ.1.1(iii)]). Thus g2

commutes with ap . Therefore, 〈ap〉 is central in G = 〈g2, ap〉. By [8, II.6.12],
there is a finite index subgroup H of G so that H = 〈ap〉 × H1 , for some
group H1 . If H1 is infinite, then 〈ap〉 is contained in a subgroup isomorphic
to Z

2 . This Z
2 stabilises a flat, and hence a maximal flat, so 〈ap〉 is contained

in Stab(E) for some E ∈ FX . However, a normalises 〈ap〉, so by Proposition
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2.16 a ∈ Stab(E). This subgroup is abelian since the action of Γ on X is
toral, which contradicts A being maximal abelian. Therefore, H1 is finite, and
since Γ is torsion-free, H1 is trivial. Therefore, G is virtually cyclic, and being
torsion-free, is itself infinite cyclic. Hence g2 commutes with a and so 〈g2〉 is
central in G1 = 〈g, a〉. Exactly the same argument as above applied to G1

and 〈g2〉 implies that G1 is cyclic. Since A is maximal abelian, g ∈ A, a
contradiction to the choice of g . Thus A is malnormal, as required.

Lemma 2.18 Suppose that Γ is a torsion-free group which admits a proper,

cocompact and toral action on a CAT(0) space X with isolated flats. Then

any proper and cocompact action of Γ on a CAT(0) space with isolated flats

is toral. If Γ is a torsion-free CAT(0) group with isolated flats then Γ is toral

if and only if Γ is CSA.

Proof Let Γ act properly and cocompactly on a CAT(0) space Y with isolated
flats, and let M be the stabiliser of a maximal flat E ∈ FY .

Since Γ admits a proper, cocompact and toral action on a CAT(0) space X
with isolated flats, by Corollary 2.17 any maximal abelian subgroup of Γ is
malnormal, and so the normaliser of any abelian group is abelian.

Since M is a Bieberbach group, it has a normal abelian subgroup A of finite
index. However, by the above, the normaliser of A is abelian and it certainly
contains M , so M is abelian. Therefore the action of Γ on Y is toral. This
proves the first claim of the lemma. The second claim follows from the proof
of the first and Corollary 2.17.

Definition 2.19 A group G is said to be commutative transitive if for all
u1, u2, u3 ∈ Gr{1}, whenever [u1, u2] = 1 and [u2, u3] = 1 we necessarily have
[u1, u3] = 1.

CSA groups are certainly commutative transitive, so we have

Corollary 2.20 Suppose Γ is torsion-free toral CAT(0) group with isolated

flats. Then Γ is commutative transitive. Hence every abelian subgroup in Γ is

contained in a unique maximal abelian subgroup.

2.4 Projecting to flats

Fix X , a CAT(0) space with isolated flats. Let δ be the constant from Defini-
tion 2.6 and φ the function from Definition 2.4.

We study the closest-point projection from X onto a flat E ⊂ X .

Algebraic & Geometric Topology, Volume 5 (2005)
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Lemma 2.21 Suppose that E ∈ FX . Suppose that x, y ∈ E and z ∈ X .

There exist u ∈ [x, z] and v ∈ [y, z] so that u and v lie in the 2δ -neighbourhood

of E , and

dX(u, v) ≤ φ(δ).

Proof If z lies in the 2δ -neighbourhood of E then the result is immediate,
so we assume that this is not the case. The key (though trivial) observation is
that [x, y] lies entirely within E .

Let u1 be the point on [x, z] which is furthest from x in the δ -neighbourhood
of E . The convexity of E and the convexity of the metric on X ensures that
u1 is unique.

We consider the triangle ∆ = ∆(x, y, z). If ∆ is δ -thin, then there is clearly a
point v1 on [y, z] within δ of v1 , and we take u = u1, v = v1 (this is because
if u1 is not δ -close to [y, z] then neither is a point nearby u1 , but there are
points arbitrarily close to u1 on [x, z] which are not δ -close to E , which would
contradict ∆ being δ -thin since [x, y] ⊂ E ).

Thus suppose that ∆ is not δ -thin, so that ∆ is δ -thin relative to a flat E′ . If
E′ = E , then we have a point v1 ∈ [y, z] which is within δ of u1 , by the same
reasoning as above. Again, we take u = u1, v = v1 .

Suppose then that E′ 6= E . Either u1 is δ -close to [y, z], in which case we
proceed as above, or u1 is δ -close to E′ . In this case define v2 to be the point
on [y, z] which is furthest from y but in the δ -neighbourhood of E . Again, v2

is either δ -close to [x, z] or δ -close to E′ . In the first situation, we proceed
as above, with v = v2 and u a point on [x, z] which is within δ of v2 . In
the second situation, both u1 and v2 are within δ of E and of E′ , and the
intersection of the δ -neighbourhoods of E and E′ has diameter less than φ(δ).
Thus in this case, dX(u1, v2) < φ(δ) and we may take u = u1, v = v2 .

We have proved that there exist u and v in the 2δ -neighbourhood of E so that
dX(u, v) ≤ max{δ, φ(δ)}. However, δ ≤ φ(δ) by Convention 2.5, so the proof is
complete.

Proposition 2.22 Suppose that E ⊂ FX is a flat and that x, y ∈ X are such

that [x, y] does not intersect the 4δ -neighbourhood of E . Let π : X → E be

the closest-point projection map. Then dX(π(x), π(y)) ≤ 2φ(3δ).

Proof By Lemma 2.21, there are points w1 ∈ [π(x), y] and w2 ∈ [π(y), y],
both in the 2δ -neighbourhood of E , so that dX(w1, w2) ≤ φ(δ).
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Now consider the triangle ∆′ = ∆(π(x), x, y). By a similar argument to the
proof of Lemma 2.21, we find points u1 ∈ [π(x), x] and u2 ∈ [π(x), y] which lie
outside the 2δ -neighbourhood of E such that dX(u1, u2) ≤ max{δ, φ(3δ)} ≤
φ(3δ). Indeed, let v1 be the point on [π(x), x] furthest from π(x) which lies in
the 3δ -neighbourhood of E , and let v2 be the point on [π(x), y] furthest from
π(y) which lies in the 3δ -neighbourhood of E .

If ∆′ is δ -thin then there is a point u2 on [π(x), y] within δ of v1 . We may
take v1 = u1 . Similarly, if ∆′ is δ -thin relative to E then once again there
must be such a point u2 .

Therefore, suppose that ∆′ is δ -thin relative to E′ 6= E . Then v1 does not
lie within δ of [x, y] since [x, y] does not intersect the 4δ -neighbourhood of E .
Therefore, either v1 lies within δ of E′ or within δ of [π(y), x]. The second
case is unproblematic as usual. Also, v2 either lies within δ of E′ or within δ
of [π(x), x], and in this second case we proceed as usual.

So suppose that v1 and v2 both lie within δ of E′ . Then they both lie within
the 3δ -neighbourhoods of E and E′ and so dX(v1, v2) ≤ φ(3δ).

Now, u2 is closer to y along [π(x), y] than w1 , since u2 lies outside the 2δ -
neighbourhood of E , and w1 lies within. Hence, the convexity of the metric in
X ensures that there is a point u3 ∈ [π(y), y] so that dX(u2, u3) ≤ dX(w1, w2).

Now, u1 ∈ [π(x), x] so π(u1) = π(x), and similarly π(y3) = π(y). Therefore,

dX(π(x), π(y)) = dX(π(u1), π(u3))

≤ dX(π(u1), π(u2)) + dX(π(u2), π(u3))

≤ dX(π(u1), π(u2)) + dX(π(w1), π(w2))

≤ φ(3δ) + φ(δ)

≤ 2φ(3δ),

as required.

3 Asymptotic cones of CAT(0) spaces with isolated

flats

In this section, we construct a limiting action from a sequence of homomor-
phisms from a fixed finitely generated group G to Γ, a CAT(0) group with
isolated flats. The action is of G on the asymptotic cone of X , where X is the
CAT(0) space with isolated flats upon which G acts properly and cocompactly.
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Asymptotic cones of CAT(0) spaces have been studied in [20] and we use or
adapt many of their results. We note that one of the results of this section is
that the asymptotic cone of X is a tree-graded metric space, in the terminology
of [14]. This follows from [19] and [14]. This paper was written before [19] or
[14] appeared publicly, and we need more results from this section than follow
directly from either [14] or [19]. Thus, we prefer to leave this section unchanged,
rather than referring to [14] or [19] for some of the results herein.

Remark 3.1 The construction below could be carried out in a similar way
to those found in [23, 24] (see also [1] and [9]) using the equivariant Gromov
topology on ‘approximate convex hulls’ of finite orbits of a basepoint x under
the various actions of G on X . For the sake of brevity, however, we use asymp-
totic cones. However, having used asymptotic cones we use Lemma 3.15 below
to pass back to the context of the equivariant Gromov topology.

3.1 Constructing the asymptotic cone

Suppose that X is a CAT(0) space with isolated flats, and Γ → Isom(X) is a
proper, cocompact and isometric action of Γ on X .

Let G be a finitely generated group, and suppose that {hn : G → Γ} is a
sequence of nontrivial homomorphisms. A homomorphism h : G → Γ gives rise
to a sequence of proper isometric actions of G on X :

λh : G × X,

given by λh = ι ◦ h, where ι : Γ → Isom(X) is the fixed homomorphism given
by the action of Γ on X .

Because the action of Γ on X is proper and cocompact, we have the following:

Lemma 3.2 For any y ∈ X , j ≥ 1 and g ∈ G, the function ιg,j,y : Γ → R

defined by

ιg,j,y(γ) = dX (γ.y, λj(g, γ.y)) ,

achieves its infimum for some γ′ ∈ Γ.

Let A be a finite generating set for G and let x ∈ X be arbitrary. For a
homomorphism h : G → Γ define µh and γh ∈ Γ so that

µh = max
g∈A

dX (γh.x, λh(g, γh.x))

= min
γ∈Γ

max
g∈A

dX (γ.x, λh(g, γ.x)) .
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For the chosen sequence of homomorphisms hn : G → Γ, we write λn instead
of λhn

, µi instead of µhi
and γi instead of γhi

.

Now define the pointed metric spaces (Xn, xn) to be the set X with basepoint
xn = x, with the metric dXn = 1

µn
dX . Since there is a natural identification

between Isom(X) and Isom(Xi), we consider λi to give an action of G on Xi ,
as well as on X .

The next lemma follows from the fact that Γ.x is discrete, and that G is finitely
generated.

Lemma 3.3 Suppose that for all j 6= i there is no element γ ∈ Γ so that

hi = τγ ◦ hj where τγ is the inner automorphism of Γ induced by γ . Then the

sequence {µj} does not contain a bounded subsequence.

We use the homomorphism hj and the translation minimising element γj to

define an isometric action λ̂j : G × Xn → Xn by defining

λ̂n(g, y) =
(

γ−1
n hn(g)γn

)

.y.

Convention 3.4 For the remainder of the paper, we assume that the homo-
morphisms hn were chosen so that γn = 1 for all n. Therefore, λ̂n(g, x) =
λn(g, x) = hn(g).x for all n ≥ 1, g ∈ G and x ∈ X .

Using the spaces (Xn, xn) and the actions λn of G on Xn , we construct an
action of G on the asymptotic cone of X , with respect to the basepoints xn = x,
scalars µn and an arbitrary non-principal ultrafilter ω .

We briefly recall the definition of asymptotic cones. For more details, see [13]
and [14], or [20] in the context of CAT(0) spaces.

Definition 3.5 A non-principal ultra-filter, ω , is a {0, 1}-valued finitely addi-
tive measure on N defined on all subsets of N so that any finite set has measure
0.

The existence of non-principal ultrafilters is guaranteed by Zorn’s Lemma.

Fix once and for all a non-principal ultrafilter ω .4 Given any bounded se-
quence {an} ⊂ R there is a unique number a ∈ R so that, for all ǫ > 0,

4The choice of ultrafilter will affect the resulting construction, but will not affect
our results. Thus we are unconcerned which ultrafilter is chosen.
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ω ({an | |a − an| < ǫ}) = 1. We denote a by ω -lim{an}. This notion of limit
exhibits most of the properties of the usual limit (see [13]).

The asymptotic cone of X with respect to {xn}, {µn} and ω , denoted Xω is
defined as follows. First, define the set X̃ω to consist of all sequences {yn | yn ∈
Xn} for which {dXn(xn, yn)} is a bounded sequence. Define a pseudo-metric d̃
on X̃ by

d̃({yn, zn}) = ω -lim dXn(yn, zn).

The asymptotic cone Xω is defined to be the metric space induced by the
pseudo-metric d̃ on X̃ω :

Xω := X̃ω/ ∼,

where the equivalence relation ‘∼’ on X̃ω is defined by: x ∼ y if and only if
d̃(x, y) = 0. The pseudo-metric d̃ on X̃ω naturally descends to a metric dω on
Xω .

Lemma 3.6 (see [13] and [20], Proposition 3.6) (Xω, dω) is a complete, geo-

desic CAT(0) space.

We now define an isometric action of G on Xω . Let g ∈ G and {yn} ∈ X̃ω .
Then define g.{yn} to be {λn(g, yn)} ∈ X̃ω . This descends to an isometric
action of G on Xω .

Remark 3.7 The action of G defined on the asymptotic cone Xω is slightly
different to the one described in [20, §3.4], but the salient features remain the
same.5

We assume a familiarity with asymptotic cones, but we essentially use only two
properties. The first is that finite sets in N have ω -measure 0. The second
property is the following:

Lemma 3.8 Suppose that Xω is constructed using the sequence {hn : G → Γ}
as above. Suppose that Q ⊂ G is finite and S ⊂ Xω is finite. For each s ∈ S , let

{sn} be a sequence of elements from Xn such that {sn} ∈ X̃ω is a representative

of the equivalence class s. Fix ǫ > 0 and define Iǫ,Q,S to be the set of i ∈ N so

that for all q1, q2 ∈ Q ∪ {1} and all s, s′ ∈ S we have

|dXi
(λ̂(q1, si), λ̂(q2, s

′
i)) − dXω(q1.s, q2.s

′)| < ǫ.

Then ω(Iǫ,Q,S) = 1.

Given finite subsets Q of G and S of Xω and ǫ > 0 as above, if i ∈ Iǫ,Q,S then
the pair (Xi, λi) is called an ǫ-approximation for Q and S .

5The difference comes in the choice of scalars µn and the choice of basepoints xn .
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3.2 Properties of Xω

Lemma 3.9 The action of G on Xω by isometries does not have a global fixed

point.

Proof Let K ⊆ X be a compact set so that the basepoint x is in K and
Γ.K = X . Let D = Diam(K).

Suppose that y ∈ Xω is fixed by all points of G. Choose a large i so that (i)
µi > 4D ; and (ii) Xi is a 1

2 -approximation for {y} and A. (Recall that A is
the fixed finite generating set for G.) Thus, if {yn} represents y then for all
g ∈ A

dXi
(yi, λi(g, yi)) <

1

2
.

This implies that, for all g ∈ A,

dX(yi, hi(g).yi) <
µi

2
.

Now, there exists γ ∈ Γ so that dX(x, γ.yi) ≤ D . Let g ∈ S be the element
which realises the maximum:

µi = min
γ∈Γ

max
g∈S

dX(x, γhi(g)γ−1).x).

Then we have

µi ≤ dX(x, (γhi(g)γ−1).x)

≤ dX(x, γ.yi) + dX(γ.yi, (γhi(g)γ−1)γ.yi)

+dX((γhi(g)γ−1)γ.yi, (γhi(g)γ−1).x)

= 2dX(x, γ.yi) + dX(yi, hi(g).yi)

< 2D +
µi

2
.

Since µi > 4D this is a contradiction. Therefore there is no global fixed point
for the action of G on X∞ .

We now prove some results about Xω which are very similar to those obtained
in [20] in the context of asymptotic cones of certain 3-manifolds.

Definition 3.10 (See [20], §2-2) Let X be a CAT(0) space and x, y, z ∈ X .
Define x′, y′, z′ by [x, x′] = [x, y] ∩ [x, z], [y, y′] = [y, z] ∩ [y, x] and [z, z′] =
[z, x] ∩ [z, y]. The triangle ∆(x′, y′, z′) is called the open triangle spanned by
x, y, z . The triangle ∆(x, y, z) is called open if x = x′ , y = y′ and z = z′ .
An open triangle ∆(x′, y′, z′) is non-degenerate if the three points x′, y′, z′ are
distinct.
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Let FX be the set of flats in X from Definition 2.4. Let Fn be the set FX

considered as subsets of Xn . Denote by Fω the set of all flats in Xω which
arise as limits of flats {Ei}i∈N where Ei ∈ Fi .

Proposition 3.11 (See [20], Proposition 4.3) The space Xω satisfies the

following two properties:

(F1) Every non-degenerate open triangle in Xω is contained in a flat E ∈ Fω ;

and

(F2) Any two flats in Fω intersect in at most a point.

Proof Let ∆ = ∆(x, y, z) be an open triangle in Xω . Then ∆ can be obtained
as a limit of triangles ∆i , where ∆i = ∆(xi, yi, zi) is a triangle in Xi . The
triangle ∆i may be identified with a triangle ∆′

i in X (since X and Xn are
the same set with different metrics).

For ω -almost all i, the triangle ∆′
i is not δ -thin, for otherwise the limit would

not be a non-degenerate open triangle. Therefore, ∆′
i is δ -thin relative to

some flat Ei ∈ FX . Consider a point w ∈ [x, y] r {x, y}. The point w ∈
X∞ corresponds to a sequence of points {wi}. Now dω(w, [y, z]) > 0 and
dω(w, [x, z]), so for ω -almost all i the point wi is not contained in the δ -
neighbourhood of [yi, zi] or the δ -neighbourhood of [xi, zi]. Therefore, for
ω -almost all i the point wi is contained in the δ -neighbourhood of Ei . Let ui

be a point in Ei within δ of wi . It is clear that the sequences {wi} and {ui}
have the same limit, namely w (although ui is only defined for ω -almost all i).
Therefore, w is contained in the limit of the flats {Ei}. This proves Property
(F1).

Now suppose that the flats E,E′ ∈ F∞ intersect in more than one point. Let
x, y ∈ Ê1 ∩ Ê2 be distinct. By Property (F1), there is a sequence of flats {Ei}
which approximate E . Let u,w ∈ [x, y] r {x, y} be arbitrary (u 6= w) and let
{xi}, {yi}, {ui}, {wi} ⊆ Ei be sequences of points representing x, y , u and w ,
respectively.

Let z ∈ E′ be arbitrary so that ∆(x, y, z) is a non-degenerate triangle, and
let {zi ∈ Xi} be a sequence of points representing z . Since the triangle
∆(x, y, z) is an open triangle, there is a sequence of flats {E′

i} whose limit
contains ∆(x, y, z).

For ω -almost all i, neither ui nor wi is contained in the δ -neighbourhood of
[xi, zi] ∪ [yi, zi], and so are contained in the δ -neighbourhood of E′

i . Therefore
the points ui and wi are each contained in the δ -neighbourhoods of both Ei
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and E′
i . However u and w are distinct, so for ω -almost all i the points ui

and wi are at least φ(δ) apart, which implies that Ei = E′
i for ω -almost all

i. Therefore, the triangle ∆(x, y, z) is contained in E . Since z was arbitrary,
E′ ⊆ E , and a symmetric argument shows that the two flats are equal.

Using only the properties (F1) and (F2) from the conclusion of Proposition 3.11
above, Kapovich and Leeb proved the following two results.

Lemma 3.12 [20, Lemma 4.4] Let E ∈ Fω be a flat in Xω and let πE : Xω →
E be the closest-point projection map. Let γ : [0, 1] → Xω r E be a curve in

the complement of E . Then πE ◦ γ : [0, 1] → E is constant.

Lemma 3.13 [20, Lemma 4.5] Every embedded loop in Y is contained in a

flat E ∈ Fω .

3.3 The equivariant Gromov topology

From the sequence of homomorphisms hn : G → Γ, we have constructed a space
Xω , a basepoint xω and an isometric action of G on Xω with no global fixed
point. Let X∞ be the convex hull of the set G.xω , and let C∞ be the union
of the geodesics [xω, g.xω], along with the flats E ∈ Fω which contain some
non-degenerate open triangle contained in a triangle ∆(g1.xω, g2.xω, g3.xω), for
g1, g2, g3 ∈ G. Certainly X∞ ⊆ C∞ . The set C∞ , and hence also X∞ , is
separable.

Note that C∞ is a CAT(0) space and that Proposition 3.11 and Lemmas 3.12
and 3.13 hold for C∞ also. The action of G on Xω leaves C∞ invariant, so
there is an isometric action of G on C∞ . Since C∞ ⊆ Xω , Lemma 3.9 implies:

Lemma 3.14 There is no global fixed point for the action of G on C∞ .

We have chosen to consider the space C∞ rather than X∞ so that if some flat in
Xω intersects our subspace in a set containing a non-degenerate open triangle
then the entire flat containing this triangle is contained in the subspace.

Suppose that {(Yn, λn)}∞n=1 and (Y, λ) are pairs consisting of metric spaces,
together with actions λn : G → Isom(Yn), λ : G → Isom(Y ). Recall (cf. [5,
§3.4, p. 16]) that (Yn, λn) → (Y, λ) in the G-equivariant Gromov topology if and
only if: for any finite subset K of Y , any ǫ > 0 and any finite subset P of G,
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for sufficiently large n, there are subsets Kn of Yn and bijections ρn : Kn → K
such that for all sn, tn ∈ Kn and all g1, g2 ∈ P we have

|dY (λ(g1).ρn(sn), λ(g2).ρn(tn)) − dYn(λn(g1).sn, λn(g2).tn)| < ǫ.

To a homomorphism h : G → Γ, we naturally associate a pair (Xh, λh) as
follows: let Xh be the convex hull in X of G.x (where x is the basepoint of
X ), endowed with the metric 1

µh
dX ; and let λh = ι◦h, where ι : Γ → Isom(X)

is the fixed homomorphism.

Lemma 3.15 Let Γ, X , G and {hn : G → Γ} be as described above. Let Xω

be the asymptotic cone of X , and C∞ be as described above. Let λ∞ : G →
Isom(C∞) denote the action of G on C∞ and (C∞, λ∞) the associated pair.

There exists a subsequence {fi} ⊆ {hi} so that the elements (Xfi
, λfi

) converge

to (C∞, λ∞) in the G-equivariant Gromov topology.

Proof Since C∞ is separable, there is a countable dense subset of C∞ , S say.
Let S1 ⊂ S2 ⊂ . . . be a collection of finite sets whose union is S .

Let {1} = Q1 ⊂ Q2 ⊂ . . . ⊂ G be an exhaustion of G by finite subsets. Define
Ji to be the collection of i ∈ N so that (Xhi

, λi) is a 1
i
-approximation for Qi

and Si . By the definition of asymptotic cone, ω(Ji) = 1, and in particular each
Ji is infinite.

Let n1 be the least element of J1 , and let f1 = hn1
. Inductively, define nk to

be the least element of Jk which is not contained in {n1, . . . , nk−1}, and define
fk = hnk

.

It is straightforward to see that the sequence {fi} satisfies the conclusion of
the lemma.

The above result can be interpreted as a compactification of a certain space of
metric spaces equipped with G-actions. This is the ‘compactification’ referred
to in the title of this paper.

Convention 3.16 For the remainder of the paper, we will assume that we
started with the sequence {fi : G → Γ} found in Lemma 3.15 above. This will
allow us to speak of ‘all but finitely many n’ instead of ‘ω -almost all n’.

To make the use of Convention 3.16 more transparent, when using this con-
vention we speak of the homomorphisms fi , rather than hi . However, we still
write λi for the action of G on X induced by fi , and we write µi for µfi

and
Xi for X endowed with the metric dXi

:= 1
µi

dX = 1
µfi

dX .

Let F∞ be the set of flats in C∞ .
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Corollary 3.17 Under Convention 3.16, for each E ∈ F∞ there is a sequence

{Ei ⊂ Xi} so that Ei → E in the G-equivariant Gromov topology.

Proof This follows from the proofs of Proposition 3.11 and Lemma 3.15.

3.4 The action of G on Xω

Lemma 3.18 Let E ∈ F∞ be a flat which is a limit of the flats {Ei}. If

g ∈ G and g.E = E then for all but finitely many j we have fj(g).Ej = Ej .

Proof Choose a non-degenerate triangle ∆(a, b, c) in E . Let {Ei} be a se-
quence of flats from Xi approximating E . Let {ai}, {bi} and {ci} be sequences
of points representing a, b and c, respectively.

By the definition of the action of G on Xω , the point g.x is represented by the
sequence {λi(g, ai)}. The triangle ∆(g.a, g.b, g.c) is also a non-degenerate tri-
angle in E and at least one of the triangles ∆(a, b, g.a), ∆(a, c, g.a), ∆(b, c, g.a)
is non-degenerate in E . The argument from the proof of Proposition 3.11 (along
with Corollary 3.17) applied to this non-degenerate triangle shows that for all
but finitely many i the point λi(g, ai) is δ -close to the flat Ei . Similarly, for
all but finitely many i the point λi(g, bi) is δ -close to Ei . Since Ei ∈ FX , so
is the flat fi(g).Ei , by Proposition 2.8. However,

dX(λi(g, ai), λi(g, bi)) = dX(ai, bi),

which is greater than φ(δ) for all but finitely many i. Therefore, by the defini-
tion of the function φ, for all but finitely many i the flats Ei and fi(g).Ei are
the same, as required.

Lemma 3.19 Suppose that Γ is a group acting properly and cocompactly on

a CAT(0) space X with isolated flats, and suppose that this action is toral. Let

G and Xω be as above. Suppose that g ∈ G leaves a flat E in C∞ invariant as

a set. Then g acts by translation on E .

Proof Suppose that g acts nontrivially on E , but not as a translation. Then
there are y, z ∈ E which are moved different distances by g (suppose that y
is moved further than z by g). Let {Ei} be a sequence of flats in Xi which
converge to E . Since g maps E to itself, for all but finitely many i, we have
fi(g).Ei = Ei , by Lemma 3.18.
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Let {zi}, {yi} ⊆ Ei be sequences of points in representing z and y , respectively.
Suppose that dXω(y, g.y) − dXω(z, g.z) = ǫ > 0. Choose large i so that the
points zi , yi , λi(g, zi) and λi(g.yi) satisfy

|dXn(λi(g, zi), zi) − dX(g.z, z)| <
ǫ

3
; and

|dXn(λi(g, yi), yi) − dX(g.y, y)| <
ǫ

3
.

Since Γ is toral, the action of g on Xn via λi is by (possibly trivial) translations.
Therefore,

dXn(λi(g, zi), zi) = dXn(λi(g, yi), yi).

However, dX(g.y, y) − dX(g.z, z) = ǫ > 0 and we have a contradiction.

Remark 3.20 As we shall see in Example 3.26 below, Lemma 3.19 does not
hold when Γ is a non-toral CAT(0) group with isolated flats.

3.5 Algebraic Γ-limit groups

Definition 3.21 (cf. [32], Definition 1.2) Define the normal subgroup K∞

of G to be the kernel of the action of G on C∞ :

K∞ = {g ∈ G | ∀y ∈ C∞, g(y) = y}.

The strict Γ-limit group is L∞ = G/K∞ . Let η : G → L∞ be the natural
quotient map.

A Γ-limit group is a group which is either a strict Γ-limit group or a finitely
generated subgroup of Γ.

Recall the following (see [5, Definition 1.5]).

Definition 3.22 Let G and Ξ be finitely generated groups. A sequence {fi} ⊆
Hom(G,Ξ) is stable if, for all g ∈ G, the sequence {fi(g)} is eventually always
1 or eventually never 1.

For any sequence {fi : G → Ξ} of homomorphisms, the stable kernel of {fi},
denoted Ker−−→ (fi), is

{g ∈ G | fi(g) = 1 for all but finitely many i}.

Definition 3.23 An algebraic Γ-limit group is the quotient G/Ker−−→ (hi), where

{hi : G → Γ} is a stable sequence of homomorphisms.
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In the case that Γ is a free group (acting on its Cayley graph), Bestvina and
Feighn [5] define limit groups to be those groups of the form G/Ker−−→ fi , where

{fi} is a stable sequence in Hom(G,Γ). When Γ is a free group, this leads to
the same class of groups as the geometric definition analogous to Definition 3.21
above (see [32]; this is also true when Γ is a torsion-free hyperbolic group, see
[34]). When Γ is a torsion-free CAT(0) group with isolated flats we may have
torsion in G/K∞ , but G/Ker−−→ is always torsion-free. However, for any stable

sequence {fi}, we always have Ker−−→ fi ⊆ K∞ . Torsion in G/K∞ can only occur

when C∞ is a single flat, in which case fi(G) is virtually abelian for almost all
i.

In Section 4 below, when Γ is a torsion-free toral CAT(0) group with isolated
flats we use the action of G on C∞ to construct an action of G on an R-tree T .
In this case, the class of Γ-limit groups and algebraic Γ-limit groups coincides.
It will be this fact that allows us in [17] to prove many results about torsion-free
toral CAT(0) groups with isolated flats in analogy to Sela’s results about free
groups and torsion-free hyperbolic groups.

The following are elementary.

Lemma 3.24 Suppose that {fn : G → Γ} gives rise to the action of G on C∞
as in the previous section. Then Ker−−→ (fn) ⊆ K∞ .

Lemma 3.25 Let L be a Γ-limit group. Then L is finitely generated.

3.6 A non-toral example

In this paragraph we consider an example of the above construction in the case
that Γ is a torsion-free non-toral CAT(0) group with isolated flats.

For any torsion-free group acting an properly and cocompactly on a CAT(0)
space X with isolated flats, and for any maximal flat E ∈ Fω , we know that
H := Stab(E) is a torsion-free, proper cocompact lattice in R

n , for some n.
Hence, by Bieberbach’s theorem, H has a free abelian group of finite index.
We have an exact sequence

1 → Z
n → H → A → 1,

where A is a finite subgroup of O(n). Each element g ∈ H acts on R
n as

g(v) = rg(v) + tg,

where rg ∈ A ⊂ O(n) and tv ∈ R
n . The homomorphism H → A is given by

g → rg .
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Example 3.26 Let G1 be a non-abelian torsion-free crystallographic group
as above, with the exact sequence

1 → Z
n → G1 → A → 1,

where A is a nontrivial finite group and let Γ = G1×Z. Let w be the generator
of the Z factor of Γ. Clearly the group Γ acts properly and cocompactly by
isometries on a CAT(0) space with isolated flats.

Let Γ be generated by {g1, . . . , gk, w}, where {g1, . . . , gk} is a generating set
for G1 and let Fk+1 be the free group of rank k + 1 with basis {x1, . . . , xk+1}.
For n ≥ 1, define the homomorphism φn : Fk+1 → G3 by φn(xi) = gi for
1 ≤ i ≤ k , and φn(xk+1) = wn . All of the kernels of φn are identical, so the
algebraic Γ-limit group is F/Ker−−→ (φn) ∼= Γ.

In this case C∞ = X∞ = Xω = R
n+1 . In the geometric Γ-limit group, the

Z
n in G1 acts trivially, but the elements not in Z

n act like the corresponding
element of A. The element w acts nontrivially by translation, and the Γ-limit
group is isomorphic to A × Z, which is not torsion-free.

4 The R-tree T

For the remainder of the paper, we suppose that Γ is a torsion-free toral CAT(0)
group with isolated flats. In this section we extract an R-tree T from the space
Xω and an isometric action of G on T . The idea is to remove the flats in Xω

in order to obtain an R-tree. We replace the flats with lines.

4.1 Constructing the R-tree

Suppose that Γ is a torsion-free toral CAT(0) group with isolated flats acting
on the space X , and that the sequence of homomorphisms hn : G → Γ gives rise
to the limiting space Xω , as in the previous section. Let C∞ be the collection
of geodesics and flats as described in Subsection 3.4, and let F∞ be the set of
flats in C∞ .

Suppose that E ∈ F∞ . By Proposition 3.11, for any g ∈ G, exactly one of
the following holds: (i) g.E = E ; (ii) |g.E ∩ E| = 1; or (iii) g.E ∩ E = ∅. By
Lemmas 3.18 and 3.19, the action of Stab(E) on E is as a finitely generated
free abelian group, acting by translations on E .

Let DE be the set of directions of the translations of E by elements of Stab(E).
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For each element g ∈ G r Stab(E), let lg(E) be the (unique) point where any
geodesic from a point in E to a point in g.E leaves E , and let LE be the set
of all lg(E) ⊂ E . Note that if g.E ∩ E is nonempty (and g 6∈ Stab(E)) then
g.E ∩ E = {lg(E)}.

Since G is finitely generated, and hence countable, both sets DE and LE are
countable. Given a (straight) line p ⊂ E , let χp

E be the projection from E to
p. Since LE is countable, there are only countably many points in χp

E(LE).
Therefore, there is a line pE ⊆ E such that

(1) the direction of pE is not orthogonal to a direction in DE ;

(2) if x and y are distinct points in LE , then χpE

E (x) 6= χpE

E (y);

Project E onto pE using χpE

E . The action of Stab(E) on pE is defined in the
obvious way (using projection) – this is an action since the action of Stab(E)
on E is by translations. Connect C∞ r E to pE in the obvious way – this uses
the following observation which follows immediately from Lemma 3.12.

Observation 4.1 Suppose S is a component of C∞rE . Then there is a point
xS ∈ E so that S is a component of C∞ r {xE}.

Glue such a component S to pE at the point χpE

E (xS).

Perform this projecting and gluing construction in an equivariant way for all
flats E ⊆ C∞ – so that for all E ⊆ C∞ and all g ∈ G the lines pg.E and g.pE

have the same direction (this is possible since the action of Stab(E) on E is by
translations, so doesn’t change directions).

Having done this for all flats E ⊆ C∞ , we arrive at a space T , which is endowed
with the (obvious) path metric.

The action of G on T is defined in the obvious way from the action of G on
Xω . This action is clearly by isometries.

The space T has a distinguished set of geodesic lines, namely those of the form
χpE

E (E), for E ∈ F∞ . Denote the set of such geodesic lines by P.

Lemma 4.2 T is an R-tree and there is an action of G on T by isometries

without global fixed points.

Proof That T is an R-tree is obvious, since there are no embedded loops. We
have already noted that there is an isometric action of G on T .
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Finally, suppose that there is a fixed point y for the action of G on T . If y is
not contained in some geodesic line in P, then y would correspond to a fixed
point for the action of G on Xω , and there are no such fixed points, by Lemma
3.14.

Thus y is contained in some geodesic line pE ∈ P, corresponding to the flat
E ∈ F∞ . Let g ∈ G. If g does not fix pE then it takes pE to some line pE′ ,
and g takes E to E′ in Xω , fixing the point of intersection. Suppose that g1

and g2 are elements of G which fix y but not pE . Then let α ∈ Xω be the
point of intersection of E and g1.E and let β be the point of intersection of
E and g2.E . Then α and β are both in LE and χpE

E (α) = χpE

E (β), so by the
choice of pE we must have α = β . Therefore, there is a point α ∈ E so that
all elements g ∈ G which do not fix pE ⊆ T fix α ∈ Xω .

If g does leave pE invariant then it fixes E as a set, and so acts by translations
on E , and hence by translations on pE . Therefore g fixes pE pointwise, and
the direction of translation of g on E is orthogonal to the direction of pE . By
the choice of the direction of pE above, this means that g acts trivially on E ,
and in particular fixes the point α found above. Thus α is a global fixed point
for the action of G on C∞ , contradicting Lemma 3.14.

Remark 4.3 Since K∞ ≤ G acts trivially on C∞ , it also acts trivially on T
and the action of G on T induces an isometric action of L∞ on T .

4.2 The actions of G and L∞ on T

The following theorem is the main technical result of this paper, and the re-
mainder of this section is devoted to its proof.

Let G be a finitely generated group, Γ a torsion-free toral CAT(0) group with
isolated flats and {hi : G → Γ} a sequence of homomorphisms, no two of which
differ only by conjugation in Γ. Let Xω , C∞ and T be as in Section 3 and
Subsection 4.1 above. Let {fi : G → Γ} be the subsequence of {hi} as in the
conclusion of Lemma 3.15. Let K∞ be the kernel of the action of G on C∞
and let L∞ = G/K∞ be the associated strict Γ-limit group.

Theorem 4.4 (Compare [32], Lemma 1.3) In the above situation, the follow-

ing properties hold.

(1) Suppose that [A,B] is a non-degenerate segment in T . Then FixL∞
[A,B]

is an abelian subgroup of L∞ ;
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(2) If T is isometric to a real line then for all sufficiently large n the group

fn(G) is free abelian. Furthermore in this case L∞ is free abelian.

(3) If g ∈ G fixes a tripod in T pointwise then g ∈ Ker−−→ (fi);

(4) Let [y1, y2] ⊂ [y3, y4] be a pair of non-degenerate segments of T and

assume that the stabiliser Fix([y3, y4]) of [y3, y4] in L∞ is non-trivial.

Then

Fix([y1, y2]) = Fix([y3, y4]).

In particular, the action of L∞ on the R-tree T is stable.

(5) Let g ∈ G be an element which does not belong to K∞ . Then for all but

finitely many n we have g 6∈ ker(fn);

(6) L∞ is torsion-free;

(7) If T is not isometric to a real line then {fi} is a stable sequence of

homomorphisms.

We prove Theorem 4.4 in a number of steps.

First, we prove 4.4(1). Suppose that [A,B] ⊆ T is a non-degenerate segment
with a nontrivial stabiliser. If there is a line pE ∈ P such that [A,B] ∩ pE

contains more than one point, then any elements g1, g2 ∈ Fix([A,B]) fix pE

and hence fix E ∈ F∞ . Therefore, by Lemma 3.18 for all but finitely many i
the elements g1 and g2 fix the flat Ei ∈ Xi , where {Ei} → E . The stabiliser
of Ei is free abelian, so [g1, g2] ∈ ker(fi). Thus [g1, g2] ∈ Ker−−→ (fi). By Lemma

3.24, Ker−−→ (fi) ⊆ K∞ , so [g1, g2] ∈ K∞ . Hence, in this case the stabiliser in L∞

of [A,B] is abelian.

Suppose therefore that there is no pE ∈ P which intersects [A,B] in more than
a single point. In particular, A and B are not both contained in pE for any
pE ∈ P.

In fact, we need something stronger than this. First we prove the following:

Lemma 4.5 Suppose that α, β ∈ Xn and g ∈ G are such that there is a seg-

ment of length at least 6φ(4δ) + 4max{dX(g.α, α), dX (g.β, β)} in [α, β] which

is within δ of a flat E ∈ FX . Then g ∈ Fix(E).

Proof In this lemma, all distances are measured with the metric dX . Let
L = max{dX(g.α, α), dX (g.β, β)}.

Let [α1, β1] be the segment in [α, β] of length at least 6φ(4δ) + 4L which is in
the δ -neighbourhood of E .
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Consider first the triangle ∆1 = ∆(α, β, g.β).

If ∆1 is δ -thin, then there is a segment [α2, β2] ∈ [α, g.β] which has length
at least 6φ(4δ) + 3L − 2δ and is within δ of [α1, β1]. Hence [α2, β2] is in the
2δ -neighbourhood of E . Also, when [α, β] and [α, g.β] are both parametrised
by arc length, there is an interval of time of length at least 6φ(4δ) + 3L − 2δ
when [α1, β1] and [α2, β2] both occur.

Suppose then that ∆1 is δ -thin relative to a flat E′ 6= E . Then a subsegment
[α′

1, β
′] ⊆ [α1, β1] of length at least 6φ(4δ) + 3L − φ(δ) does not intersect the

δ -neighbourhood of E′ , and so must be contained in the δ -neighbourhood of
[α, g.β] ∪ [β, g.β]. However, dX(α, β) ≥ 6φ(4δ) + 4L, so there is an interval
[α2, β2] in [α, g.β] of length at least 6φ(4δ) + 3L − φ(δ) which is within δ of
[α1, β1] and hence in the 2δ -neighbourhood of E . Once again, when [α, β] and
[α, g.β] are parametrised by arc length there is an interval of time of length at
least 6φ(4δ) + 3L − φ(δ) when both [α1, β1] and [α2, β2] occur.

Finally suppose that ∆1 is δ -thin relative to E . Then there is certainly
a segment [α2, β2] ⊆ [α, g.β] of length at least 6φ(4δ) + 3L − 2δ in the δ -
neighbourhood of E . Since

dX(α, g.β) ≤ dX(α, β) + dX(β, g.β)

≤ dX(α, β) + L,

then just as above there are subsegments [α′
1, β

′
1] and [α′

2, β
′
2] (contained in

[α1, β1] and [α2, β2] ,respectively) which occur at the same time for an interval
of at least 6φ(4δ) + 2L − 2δ .

In any of these cases, denote by [α1, β1] and [α2, β2] the intervals in [α, β] and
[α, g.β] of length at least 6φ(4δ)+2L−2φ(δ) which occur at the same time when
[α, β] and [α, g.β] are parametrised by arc length and such that [α1, β1] and
[α2, β2] are both contained in the 2δ -neighbourhood of E . We now consider
∆2 = ∆(g.α, β, g.β).

Using the same arguments as those which found [α2, β2] as above, it is not
difficult to find an interval [α3, β3] ⊆ [g.α, g.β] which is of length at least
6φ(4δ) − 4φ(δ) and occurs at the same time as [α2, β2] when [α, g.β] and
[g.α, g.β] are parametrised by arc length. The only wrinkle in this argument
occurs when ∆2 is δ -thin relative to E and we may have to change [α2, β2]
as in the third case above. However, in this case we can find an appropriate
[α1, β1].

Now, [α3, β3] is contained in the 4δ -neighbourhood of E . Also, the time at
which it occurs overlaps the time at which [α1, β1] occurs by at least 6φ(4δ) −
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4φ(δ). Note that 6φ(4δ)−4φ(δ) > φ(4δ)+1. Since [α1, β1] ⊆ [α, β] is contained
in the δ -neighbourhood of E , and since [α3, β3] ⊆ [g.α, g.β] occurs at the same
time as [α1, β1], the interval [α3, β3] is contained in the δ -neighbourhood of
g.E . Therefore, the 4δ -neighbourhoods of E and g.E intersect in a geodesic
segment of length at least φ(4δ)+1, which implies that E = g.E , so g ∈ Fix(E),
as required.

Fix a finite subset Q ∈ FixG([A,B]). Let the sequences {Ak} and {Bk} con-
verge to A and B , respectively.

Suppose that, for some ǫ > 0, for all but finitely many i there is a segment
[αi, βi] ⊆ [Ai, Bi] for which (i) dXi

(αi, βi) ≥ ǫ; and (ii) there is a flat Ei so that
[αi, βi] is in the δ -neighbourhood of Ei . In this case, for all but finitely many
i, the conditions of Lemma 4.5 are satisfied for each g ∈ Q and the segment
[αi, βi]. Therefore, fi(Q) ⊆ StabΓ(Ei), so 〈fi(Q)〉 is abelian for all but finitely
many i. In this case 〈qK∞ | q ∈ Q〉 is certainly abelian. Thus we can suppose
that for all ǫ > 0 there is no such segment [αi, βi].

Let Q = {g1, . . . , gs}. Let [ρ, σ] ∈ [A,B] be the middle third, and let the
sequences {ρk}, {σk}, {λk(gi, ρk)} and {λk(gi, σk)} converge to ρ, σ , gi.ρ, and
gi.σ . Consider the triangles ∆(ρk, σk, λ(gi, σk)) and ∆(λ(gi, ρk), σk, λ(gi, σk)).
By the argument in Lemma 4.5, the argument in the above paragraph and the
argument in [24, Proposition 2.4], for all but finitely many k there is a segment
[τk, υk] ⊆ [ρk, σk] whose length (measured in dXk

) is at least 1
3dXk

(ρk, σk) and
such that for each gi ∈ Q, the image gi.[τk, υk] lies in the 4δ -neighbourhood of
[ρk, σk]. Note that dXk

(τk, υk) ≥
1
9(Ak, Bk).

Now, since translations on a line commute, each element of the form [g, g′],
g, g′ ∈ Q moves the midpoint of [τk, υk] at most 16δ (see [24, Proposition 2.4]).

There is an absolute bound on the size of the ball of radius 16δ around any
point in X . Let this bound be D1 . Since the action of Γ is free, we have
|{[fn(g), fn(g′)] |g, g′ ∈ Q}| ≤ D1 irrespective of the size of Q.

Let x1, x2 ∈ FixG([A,B]). Either for all but finitely many n there is a flat En

so that x1, x2 ∈ Fix(En) or the above argument bounding the size of the set
of commutators holds. In the first case, 〈fn(x1), fn(x2)〉 is abelian for all but
finitely many n.

Suppose then that the second case holds. By the above argument, with Q =
{x2, x1, x

2
1, . . . , x

D1+1
1 }, for all but finitely many n we can find 1 ≤ s1 < s2 ≤

D1 + 1 for which fn([xs1

1 , x2]) = fn([xs2

1 , x2]). Therefore fn(xs1

1 x2x
−s1

1 ) =
fn(xs2

1 x2x
−s2

1 ), which implies that fn([xs2−s1

1 , x2]) = 1. Hence fn(x1)
s2−s1
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commutes with fn(x2). Also, 〈fn(x1)
s2−s1〉 ⊆ 〈fn(x1)

s2−s1, fn(x2)〉
fn(x1) , so

by Proposition 2.16, fn(x1) is contained in the same maximal abelian subgroup
as 〈fn(x1)

s2−s1 , fn(x2)〉, which is to say that fn(x1) commutes with fn(x2).

Therefore, in any case if x1, x2 ∈ FixG([A,B]) then for all but finitely many n
fn(x1) commutes with fn(x2). Therefore x1K∞ commutes with x2K∞ . Since
x1 and x2 were arbitrary, we have proved that the group FixL∞

([A,B]) is
abelian. This finishes the proof of 4.4(1).

We now prove 4.4(2). Suppose that T is isometric to a real line, so L∞ is a
subgroup of Isom(R).

Suppose first that C∞ is not a single flat.

Suppose that k1, k2 ∈ G are arbitrary. Let H = 〈k1, k2〉 and H be the image
of 〈k1, k2〉 in L∞ . Then H is a 2-generator subgroup of Isom(R) and so is one
of the following (i) cyclic; (ii) infinite dihedral; or (iii) free abelian of rank 2.
We first prove that H cannot be infinite dihedral, so that it is abelian.

Suppose that k ∈ G reverses the orientation of T (which we are assuming is
isometric to R). Let a, b ∈ T be distinct points so that k(a) = b and k(b) = a.
Approximate the segment [a, b] by a segment [ai, bi] ⊂ Xi for large i, and
let [ci, di] be the middle third of [ai, bi]. Since C∞ is not a single flat, the
segment k.[ci, di] lies within 2δ of [ai, bi], with orientation reversed (distances
are being measured in dX ). It is not hard to see that there must be a point
ei ∈ [ci, di] which is moved at most 2δ by k . Therefore dX(k2.ei, ei) ≤ 6δ . In
turn, this implies that k2 moves each point on [ci, di] distance at most 10δ .
Repeating this argument (with a larger i) with the elements k, k3, . . . , k2D1+1

we find 1 ≤ i1 < i2 ≤ D1 so that k2(2i1+1).ei = k2(2i2+1).ei , which implies that
k2(2i1+1)k−2(2i2+1) ∈ ker(fi) for large enough i. This in turn implies, since Γ
is torsion-free, that k ∈ ker(fi) for all but finitely many i. Therefore k acts
trivially on T , and so cannot reverse the orientation. This proves that H is
abelian, and being an orientation preserving subgroup of Isom(R), it is free
abelian.

Suppose then that k1 and k2 act as translations on T , with translations lengths
τ1, τ2 , say. Choose κ > 100D1(max{τ1, τ2} + 1), and choose a, b ∈ T distance
κ from each other. For large enough i, the approximation [ai, bi] ⊂ Xi of
[a, b] is such that for all j ∈ {1, . . . ,D1}, the elements kj

1 and k2 move the
middle third [ci, di] of [ai, bi] entirely within the 4δ neighbourhood of [ai, bi].
As in the proof of 4.4(1) above, the commutator [kj

1, k2] moves the midpoint of
[ci, di] a distance at most 16δ . Therefore, there is 1 ≤ j1 < j2 ≤ D1 so that
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fi([k
j1
1 , k2]) = fi([k

j2
1 , k2]), which as above implies that fi([k1, k2]) = 1 for large

enough i.

In this argument k1 and k2 were arbitrary, so letting k1 and k2 run over all pairs
in a finite generating set {g1, . . . , gk} for G we see that for all i, j ∈ {1, . . . , k}
the elements fn(gi) and fn(gj) commute for all but finitely many n. Thus,
fn(G) is abelian for all but finitely many n.

We have also proved that L∞ is an orientation preserving subgroup of Isom(R),
which is free abelian, as required.

Now suppose that C∞ is a single flat. By Lemma 3.18, for any g ∈ G for all but
finitely many i the element g fixes a flat Ei ⊆ Xi . Take a finite generating set
for G and note that for all but finitely many i each of the elements in this set
fix the flat Ei . Therefore, for all but finitely many i, fi(G) ⊆ Fix(Ei), which
is free abelian. This proves also that L∞ is abelian, and again the only abelian
subgroups of Isom(R) which are not free abelian have a global fixed point. This
proves 4.4(2).

We now prove 4.4(3). Let T (A,B,C) be a tripod in T and let N be the valence
three vertex in T (A,B,C). Suppose that g ∈ G r {1} stabilises A,B and C
and therefore also N . We prove that g ∈ ker(fn) for all but finitely many n.

Let K0 be the maximum number of elements of any orbit Γ.y in any ball of
radius 170φ(16φ(φ(3δ))) in X (with metric dX ). Such a K0 exists because the
action of Γ on X is proper and cocompact.

Suppose that some point α ∈ T (A,B,C) is contained in a line pE ∈ P. Cer-
tainly not all of T (A,B,C) is contained in pE , so let y ∈ T (A,B,C)r pE . Let
α ∈ C∞ be a point corresponding to y ∈ T and β = πE(α). Let {Ei} be a
sequence of flats converging to E (such a sequence exists by Corollary 3.17).
By Lemma 3.18 fi(g) ∈ Fix(Ei) for all but finitely many i.

By fixing a sufficiently small ǫ and finding an Xi which is an ǫ approximation for
Q = {1, g, . . . , gK0+1} and {α, β} we can ensure that for all q ∈ Q the geodesic
[αi, λi(q, αi)] does not intersect the 4δ -neighbourhood of Ei , where E is the
limit of the flats {Ei}. Hence by Proposition 2.22 dX(πEi

(αi), πEi
(λi(q, αi))) ≤

2φ(3δ), for all q ∈ Q. However, |Q| > K0 and there are no more than K0

elements of Γ.y in a ball of radius 2φ(3δ) in X , by the choice of K0 . Note also
that if fi(g) leaves Ei invariant then πEi

(λi(q, αi)) = λi(q, πEi
(αi)). Therefore,

there exist 1 ≤ s1 < s2 ≤ K0 + 1 so that λi(g
s1 , πEi

(αi)) = λi(g
s2 , πEi

(αi)),
which implies that fi(g

s2−s1) fixes πEi
(αi). Therefore, fi(g

s2−s1) = 1, and
since Γ is torsion-free g ∈ ker(fi) for all but finitely many i, as required.
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Therefore, we assume for the moment that no point in the tripod T (A,B,C)
is contained in any line pE ∈ P. In this case, A,B and C correspond to points
A,B and C in C∞ for which ∆(A,B,C) is a tripod in C∞ . Let N be the
valence three vertex in the tripod T (A,B,C).

Let A
′
, B

′
, C

′
be the midpoints of [A,N ], [B,N ] and [C,N ] respectively and let

S = {A,B,C,N,A
′
, B

′
, C

′
}. We also define the set Q = {1, g, g2, . . . , gK0+1}.

For varying ǫ, we will consider those Xi which are ǫ approximations for Q and
S . Consider the triangle ∆ = ∆(Ak, Bk, Ck) in Xk , an ǫ-approximation for Q
and S . Suppose that ∆ is δ -thin relative to a flat E . If ǫ is small enough,
then necessarily Ak is at least distance 1

3dXi
(Ak, A

′

k) from E . See Figure 2.

.

Ak

A
′

k

Bk

B
′

k

Ck

C
′

k

Nk

E

Figure 2: Ensuring A, B and C do not lie close to the flat E

Note that since Ak , Bk and Ck are not moved far by q ∈ Q, compared to
the distances dXi

(Ak, A
′

k), etc., the same property is true for triangles such as
∆(Ak, Bk, q.Ck).

Fix Xi , an ǫ-approximation for Q and S so that ǫ is ‘small enough’ in the
sense of the previous two paragraphs, and also ǫ < 1

100 .

Consider the triangle ∆ = ∆(Ai, Bi, Ci) in Xi . Define the constant δ′ =
17φ(16φ(φ(3δ))).

Suppose that ∆ is not δ′ -thin, so it is δ -thin relative to a unique flat E ⊂
Xi . In this case dX(πE(Ai), πE(Bi)) ≥ δ′ − 2δ . Now, since ǫ < 1

100 and
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dX(Ai, πE(Ai)) ≥
1
3dXi

(Ak, A
′

k), for large enough i the geodesic [Ai, λi(q,Ai)]
avoids the 4δ -neighbourhood of E for all q ∈ Q. Therefore, for all q ∈ Q,
dX(πE(Ai), πE(λi(q,Ai))) ≤ 2φ(3δ). Fix q ∈ Q. We now prove that fi(q)
leaves E invariant, and then as above we argue that g ∈ ker(fi).

To prove that fi(q) leaves E invariant, we consider the triangle

∆′ = ∆(λi(q,Ai), λi(q,Bi), λi(q, Ci)),

and prove that it is 16φ(φ(3δ))-thin relative to E . Since it is also δ -thin relative
to fi(q).E and since it is not δ′ -thin, we must have that E = fi(q).E , by an
argument similar to that which proved Lemma 2.10.

Let α1 = λi(q,Ai), α2 = πE(α1), β1 = λi(q,Bi) and β2 = πE(β1). Now,

dX(α2, πE(Ai)), dX (β2), πE(Bi)) ≤ 2φ(3δ), and

dX(πE(Ai), πE(Bi)) ≥ δ′ − 2δ,

so we have

dX(α2, β2) ≥ 17φ(16φ(φ(3δ))) − 4φ(3δ) − 2δ.

Now, by Lemma 2.21 there exists u, v in the 2δ -neighbourhood of E so that
u ∈ [α1, α2] and v ∈ [α1, β2] and dX(u, v) ≤ φ(δ). Now, since α2 = πE(α1),
dX(u, α2) ≤ 2δ , and so dX(v, α2) ≤ φ(δ) + 2δ). Therefore, [α2, β2] and [v, β2]
3φ(δ)-fellow travel and ∆(α1, α2, β2) is 3φ(δ)-thin. Also dX(v, β2) ≥ δ′ −
7φ(3δ) − 2δ .

Now, consider the triangle ∆1 = ∆(α1, β1, β2). Suppose it is δ -thin relative
to a flat E′ 6= E . Let w1 be the point on [β2, β1] which lies in the 4φ(δ)-
neighbourhood of E furthest from β2 . Then w1 is not in the δ -neighbourhood
of [v, β2], and so is not in the δ -neighbourhood of [α1, β2]. If w1 is in the
δ -neighbourhood of [β1, α1] then ∆1 is 5φ(δ)-thin. Thus suppose that w1 is in
the δ -neighbourhood of E′ .

Now, because (i) β2 = πE(β1); (ii) dX(v, β2) ≥ δ′−7φ(3δ)−2δ ; and (iii) [v, β2] is
contained in the 3φ(δ)-neighbourhood of E , either ∆1 is (φ(3φ(δ))+3φ(δ)+δ)-
thin or there is a segment in [v, β2] of length at least φ(φ(3δ)) which lie in
the δ -neighbourhood of E′ . However, this segment also lies in the φ(3δ)-
neighbourhood of E , which is a contradiction. Therefore, in any case either ∆1

is 5φ(φ(3δ))-thin or ∆1 is δ -thin relative to E .

Suppose that ∆1 is δ -thin relative to E . The geodesic [β2, β1] intersects the
δ -neighbourhood of E in a segment of length at most δ and so in this case ∆1

is 2δ -thin.
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We have proved that ∆1 = ∆(α1, β1, β2) is 5φ(φ(3δ))-thin, and also that
∆(α1, α2, β2) is 3φ(δ)-thin. Therefore, the geodesic [α1, β1] must 8φ(φ(3δ))-
fellow travel the path [α1, α2, β2, β1].

Similar arguments applied to the geodesic segments [λi(q,Ai), λi(q, Ci)] and
[λi(q,Bi), λi(q, Ci)] show that the triangle ∆′ = ∆(λi(q,Ai), λi(q,Bi), λi(q, Ci))
is 16φ(φ(3δ))-thin relative to E . Since ∆′ is not δ′ -thin, the argument from
Lemma 2.10 implies that ∆′ is 16φ(φ(3δ))-thin relative to a unique flat. Since
∆′ is certainly 16(φ(3δ))-thin relative to fi(q).E we must have that fi(q).E =
E , as required. Now we know for all q ∈ Q that dX(λi(q, πE(Ai)), πE(Ai)) ≤
2φ(3δ), which implies as above that g ∈ ker(fi).

Therefore, we may assume that ∆ is δ′ -thin. Similar arguments to those above
allow us to infer that for all r1, r2, r3 ∈ {1, q}, the triangle

∆(fi(r1).Ai, fi(r2).Bi, fi(r3).Ci),

is δ′ -thin. Now, by the Claim in the proof of [26, Lemma 4.1], the point
N i is moved by fi(q) at most 170φ(16φ(φ(3δ))). Again in this case, we find
1 ≤ s1 < s2 ≤ K0+1 so that fi(g

s2−s1) fixes N i , which implies that g ∈ ker(fi).

We have proved that if g ∈ G stabilises a tripod in T then for all but finitely
many i g ∈ ker(hi). This proves 4.4(3).

The proof of 4.4(4) is identical to the of [26, Proposition 4.2], except that
segment stabilisers are abelian, rather than cyclic. However, all that is used in
this proof is that segment stabilisers are abelian.

We now prove 4.4(5). Suppose that g 6∈ K∞ . Then certainly g 6∈ ker(fk) for
all but finitely many k , by the choice of the sequence {fi} in Lemma 3.15.

We now prove 4.4(6). If T is isometric to a real line then by 4.4(2) L∞ is
finitely generated free abelian, and is certainly torsion-free.

Therefore suppose that T is not isometric to a real line, that g ∈ G and
that gp ∈ K∞ . Since T is not isometric to a real line, gp stabilises a tripod,
so gp ∈ ker(fk) for all but finitely many k . However Γ is torsion-free, so
g ∈ ker(fk) for all but finitely many k and, by 4.4(5), g ∈ K∞ , as required.
This proves 4.4(6).

Finally, we prove 4.4(7). To see that {fi} is a stable sequence of homomor-
phisms when T is not isometric to a real line, suppose that g ∈ G. If g 6∈ K∞

then by 4.4.(5) we have g 6∈ ker(fi) for all but finitely many i. If g ∈ K∞ then
g stabilises a tripod in T and so by 4.4.(3) g ∈ ker(fi) for all but finitely many
i. This proves that {fi} is a stable sequence of homomorphisms.

This finally completes the proof of Theorem 4.4. �
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5 Γ-limit groups and concluding musings

5.1 Various kinds of Γ-limit groups

Theorem 5.1 Suppose that Γ is a torsion-free toral CAT(0) group with iso-

lated flats. The class of Γ-limit groups coincides with the class of algebraic

Γ-limit groups.

Proof The class of abelian Γ-limit groups is exactly class of finitely generated
free abelian groups. It is easy to see that these are also the abelian algebraic
Γ-limit groups.

Clearly a finitely generated subgroup of Γ is an algebraic Γ-limit group.

Suppose then that {hi : G → Γ} is a sequence of homomorphisms and {fi} is
the subsequence obtained from Lemma 3.15. If the limiting tree T is isometric
to a real line then the associated Γ-limit group is abelian. We have already
covered this case, so we may assume T is not isometric to a real line. Therefore,
by 4.4.(3), 4.4.(5) and 4.4.(7), {fi} is a stable sequence and K∞ = Ker−−→ (fi).
Hence the limit group L∞ is an algebraic Γ-limit group.

Conversely, suppose that {hi : G → Γ} is a stable sequence of homomorphisms.
If the associated sequence of stretching factors {µj} contains a bounded subse-
quence, then there is a subsequence {hi′} of {hi} so that hi′

1
(G) ∼= hi′

2
(G) for

all i′1, i
′
2 ∈ {hi′}. In this case, since {hi} is a stable sequence, the associated

algebraic Γ-limit group is isomorphic to a finitely generated subgroup of Γ.

Thus suppose that there is not a bounded subsequence of the {µj}. In this
case we can construct a limiting spaces Xω and C∞ and the associated R-tree
T . If T is isometric to a real line, we are done. Otherwise since passing to a
subsequence of a stable sequence does not change the stable kernel, we see again
that K∞ = Ker−−→ (hi), so that the algebraic Γ-limit group is a Γ-limit group.

We now recall a topology on the set of finitely generated groups from [11] (see
also [16, 10]).

Definition 5.2 A marked group (G,A) consists of a finitely generated group
G with an ordered generating set A = (a1, . . . , an). Two marked groups (G,A)
and (G′,A′) are isomorphic if the bijection taking ai to a′i for each i induces
an isomorphism between G and G′ .

For a fixed n, the set Gn consists of those marked groups (G,A) where |A| = n.
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We now introduce a metric on Gn . First, we introduce the following abuse of
notation.

Convention 5.3 Marked groups are always considered up to isomorphism
of marked groups. Thus for any marked groups (G,A) and (G′,A′) in Gn ,
we identify an A-word with the corresponding A′ -word under the canonical
bijection induced by ai → a′i , i = 1, . . . , n.

Definition 5.4 A relation in a marked group (G,A) is an A-word representing
the identity in G. Two marked groups (G,A) and (G′,A′) in Gn are at distance
e−d from each other if they have the exactly the same relations of length at
most d, but there is a relation of length d+1 which holds in one marked group
but not the other.

The following result is implicit in [11].

Proposition 5.5 Let G be a finitely generated group and Ξ a finitely pre-

sented group. Suppose that {hi : G → Ξ} is a stable sequence, and {g1, . . . , gk}
is a generating set for G. Then the marked group

(

G/Ker−−→{hi},
{

g1Ker−−→{hi}, . . . , gkKer−−→{hi}
})

,

is a limit of marked groups (Gi,Ai) where each Gi is a finitely generated

subgroup of Ξ.

Conversely, if the marked group (G,A) is a limit of finitely generated subgroups

of Ξ, then (G,A) is an algebraic Ξ-limit group.

Proof Suppose that {hi : G → Ξ} is a stable sequence, and {g1, . . . , gk} is a
generating set for G. Consider the marked group

(

G/Ker−−→{hi},
{

g1Ker−−→{hi}, . . . , gkKer−−→{hi}
})

.

For each n, let Hn = 〈hn(g1), . . . , hn(gk)〉 ≤ Ξ. We consider the marked groups
(Hn, {hn(g1), . . . , hn(gk)}), and prove that they converge to G/Ker−−→{hi} with
the above marking.

Let j ≥ 1 be arbitrary and let Wj be the set of all words of length at most j
in the alphabet {x±1

1 , . . . , x±1
k }. Following Convention 5.3, we interpret Wj as

words in the various generating sets without changing notation. The set Wj

admits a decomposition into Tj ∪Nj , where Tj are the words of length at most
j which are in Ker−−→{hi} and Nj are the remaining words of length at most j .
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Since {hi} is a stable sequence, for each element w ∈ Tj , the element hn(w) is
trivial for all but finitely many n, and for each w ∈ Nj the element hn(w) is
nontrivial for all but finitely many n.

Thus, for all but finitely many n, the relations in Hn of length at most j are
exactly the same as the relations of length at most j in G/Ker−−→{hi}. Thus for
all but finitely many n, the group Hn with the given marking is at distance
at most e−j from G/Ker−−→{hi} with the given marking. This implies that the

sequence {Hn} (with markings) converges to G/Ker−−→{hi} (with marking).

For the converse, suppose that (G,A) is a limit of a (convergent) sequence of
marked finitely generated subgroups of Ξ. Denote these subgroups by (Hi,Ai).
Note that |Ai| is fixed. Let A = {a1, . . . , ak}, let Ai = {bi,1, . . . , bi,k} and let
F be the free group on the set A. Define homomorphisms hi : F → Ξ by
hi(aj) = bi,j . It is not difficult to see that G ∼= F/Ker−−→{hi}.

For a group H , let T∀(H) be the universal theory of H – the set of all universal
sentences which are true in H (see [11] or [25] for the definition, we are interested
only in its consequences). The results in [11] now imply

Corollary 5.6 Let Ξ be a finitely presented group and suppose that L is an

algebraic Ξ-limit group. Then T∀(Ξ) ⊆ T∀(L).

Corollary 5.7 Suppose that Γ is a torsion-free toral CAT(0) group with

isolated flats and that L is a Γ-limit group. Then

(1) any finitely generated subgroup of L is a Γ-limit group;

(2) L is torsion-free;

(3) L is commutative transitive; and

(4) L is CSA.

Lemma 2.15 now implies the following:

Corollary 5.8 Let Γ be a torsion-free toral CAT(0) group with isolated flats

and let L be a Γ-limit group. Every solvable subgroup of L is abelian.
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5.2 The Main Theorem and conclusions

Finally, we have:

Theorem 5.9 Suppose that Γ is a torsion-free toral CAT(0) group with iso-

lated flats such that Out(Γ) is infinite. Then Γ admits a nontrivial splitting

over a finitely generated free abelian group.

Proof Suppose that {φi} is an infinite set of automorphisms of Γ which belong
to distinct conjugacy classes in Out(Γ). Then the construction from Sections 3
and 4 allows us to find an isometric action of Γ on an R-tree T without global
fixed points. Pass to the subsequence {fi} of {φi} as in Lemma 3.15.

Suppose first that T is isometric to a real line. Then by Theorem 4.4.(2) the
group fi(Γ) is free abelian for all but finitely many i. But fi(Γ) = Γ, so Γ must
be free abelian in this case. The theorem certainly holds for finitely generated
free abelian groups.

Therefore, we may suppose that T is not isometric to a real line. In this case,
since K∞ = Ker−−→ is trivial, the Γ-limit group L∞ is Γ itself. Then by Theorem

9.5 of [4], the group Γ splits over a group of the form E -by-cyclic, where E
fixes a non-degenerate segment of T . The stabilisers in Γ of non-degenerate
segments are free abelian, by Lemma 4.4.(4). Hence the group of the form
E -by-cyclic is soluble, and hence free abelian by Lemma 2.15. Note that free
abelian subgroups of Γ are finitely generated. This finishes the proof of the
theorem.

Suppose that Γ is a CAT(0) group and that Out(Γ) is infinite. Swarup asked
(see [3], Q2.1) whether Γ necessarily admits a Dehn twist of infinite order. The
above result shows that this is the case for the class of torsion-free toral CAT(0)
groups with isolated flats. Swarup also asked whether there is an analog of the
theorem of Rips and Sela that Out(Γ) is virtually generated by Dehn twists.

In the subsequent work [17], we will prove if Γ is a torsion-free toral CAT(0)
group with isolated flats then Out(Γ) is virtually generated by generalised Dehn
twists (which take into account the existence of noncyclic abelian groups).

It seems that the techniques developed here will be of little help in answering
Swarup’s question in the case of a general CAT(0) group.

It is also clear from the above construction that if L is a non-abelian freely inde-
composable strict Γ-limit group then L splits over an abelian group. However,
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there is no reason to conclude that the edge group in this splitting is finitely
generated.

It is straightforward to construct the canonical abelian JSJ decomposition of
a strict Γ-limit group L∞ , using acylindrical accessibility [30].6 However, for
example, we do not yet know that the edge groups in the abelian JSJ decom-
position of L∞ are finitely generated. To prove that this is the case if L∞

is freely indecomposable and nonabelian involves the shortening argument of
Sela, which we present for torsion-free toral CAT(0) groups with isolated flats
in future work. The shortening argument allows us to prove that torsion-free
toral CAT(0) groups with isolated flats are Hopfian, and to construct Makanin-
Razborov diagrams for these groups, thus partially answering a question of Sela
(see [35, I.8.(i), (ii), (iii)]). This work will be undertaken in [17].
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