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Abstract The Reshetikhin-Turaev invariant, Turaev’s TQFT, and many
related constructions rely on the encoding of certain tangles (n-string links,
or ribbon n-handles) as n-forms on the coend of a ribbon category. We
introduce the monoidal category of Hopf diagrams, and describe a universal
encoding of ribbon string links as Hopf diagrams. This universal encoding
is an injective monoidal functor and admits a straightforward monoidal
retraction. Any Hopf diagram with n legs yields a n-form on the coend of
a ribbon category in a completely explicit way. Thus computing a quantum
invariant of a 3-manifold reduces to the purely formal computation of the
associated Hopf diagram, followed by the evaluation of this diagram in a
given category (using in particular the so-called Kirby elements).
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Introduction

In 1991, Reshetikhin and Turaev [12] introduced a new 3-manifold invariant.
The construction proceeds in two steps: representing a 3-manifold by surgery
along a link and then coloring the link to obtain a scalar invariant. Here, colors
are (linear combinations of) simple representations of a quantum group at a
root of unity. Since then, this construction has been re-visited many times.

In particular, Turaev [13] introduced the notion of a modular category, which is
(after innocuous additivisation and karoubianisation, see [1]) an abelian semi-
simple ribbon category satisfying a finiteness and a non-degeneracy condition,
and showed that such a category defines a 3-manifold invariant, and indeed a
TQFT. In this approach, colors are simple objects of the category.

Following these ideas, a more general approach on quantum invariants of 3-man-
ifolds has been subsequently developed, see [7] and more recently [3, 14]. It
avoids in particular the semisimplicity condition. Let us briefly outline it: the

c© Geometry & Topology Publications



1678 Alain Bruguières and Alexis Virelizier

initial data used to construct the invariants is a ribbon category C endowed
with a coend A =

∫ X∈C ∨X ⊗ X . Let L be a framed n-link. We can always
present L as the closure of some ribbon n-string link T . By using the universal
property of the coend A, to such a string link T is associated a n-form on A,
that is, a morphism TC : A⊗n → 1 in C . Given a morphism α : 1 → A (which
plays here the role of the color), set:

τC(L;α) = TC ◦ α
⊗n ∈ EndC(1).

A Kirby element of C , as defined in [14], is a morphism α : 1 → A such that,
for all framed link L, τC(L;α) is well-defined and invariant under isotopies of L
and under 2-handle slides. In this case, by Kirby’s theorem [4] and under some
invertibility condition, the invariant τC(L;α) can be normalized to an invariant
of 3-manifolds.

At this stage, two main questions naturally arise. Firstly, how to recognize
the Kirby elements of a ribbon category? And secondly, how to compute the
forms TC obtained via the universal property?

Concerning the first question, recall that the coend A has a structure of a
Hopf algebra in the category C , see [9, 6]. This means in particular that A
is endowed with a product µA : A ⊗ A → A, a coproduct ∆A : A → A ⊗ A,
and an antipode SA : A→ A which satisfy the same axioms as those of a Hopf
algebra except one has to replace the usual flip map with the braiding of C . If
A admits a two-sided integral λ : 1 → A, then λ is a Kirby element and the
corresponding 3-manifold invariant is that of Lyubashenko [7]. More generally,
if a morphism α : 1 → A in C satisfies:

(idA ⊗ µA)(∆A ⊗ idA)(α⊗ α) = α⊗ α and SAα = α,

then it is a Kirby element, see [14]. In particular, any Reshetikhin-Turaev
invariant computed from a semisimple sub-quotient of C can be defined directly
via a Kirby element of C satisfying this last equation.

The main motivation of the present paper is to answer the second question.
Given a ribbon string link T , we express TC in terms of some structural mor-
phisms of A (avoiding the product). This can be done by means of a universal
formula, that is, independently of C . To this end, we introduce the notion
of Hopf diagrams. They are braided planar diagrams (with inputs but no
output) obtained by stacking boxes such as ∆ = , S = , and ω = .
These are submitted to relations corresponding to those of a coproduct, an
antipode, and a Hopf pairing. To each Hopf diagram D with n inputs is
associated a ribbon n-string link ψ(D) as in Figure 1. We construct a cate-
gory DiagS , whose objects are non-negative integers and morphisms are Hopf
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Figure 1: From Hopf diagrams to ribbon string links

diagrams up to a certain equivalence relation, in such a way that ψ factors
as a monoidal functor ψ from DiagS to the category RSL of ribbon string
links. Moreover we construct a monoidal functor Ψ: RSL → DiagS which
is right inverse to ψ , that is, such that ψ ◦ Ψ = 1RSL . This is the main
result of this paper (Theorem 4.5). This monoidal functor may be viewed
as a formal encoding of ribbon string links. More precisely, given a ribbon
category C endowed with a coend A =

∫ X∈C ∨X ⊗ X , there is a canonical
map EC : {Hopf diagrams with n inputs} → HomC(A

⊗n,1) such that TC =
EC ◦ Ψ(T ) for any ribbon n-string link T (see Theorem 5.1).

In Section 1, we define the the monoidal category DiagS of Hopf diagrams, as
a convolution category. The category of Hopf diagrams comes in two versions:
with, or without antipode. Both versions are isomorphic, however. In Section 2,
we review the monoidal category RSL of ribbon string links and the related
monoidal category of ribbon handles. These categories are isomorphic. In
Section 3, we construct a monoidal functor ψ : DiagS → RSL. In Section 4, we
define a category DiagS , as a quotient of DiagS by certain new relations, in
such a way that ψ induces a monoidal functor ψ : DiagS → RSL which admits
a right inverse. Finally, in Section 5, given a ribbon category C endowed with a
coend A, we explain how to represent the category of Hopf diagrams into C by
using some structural morphisms of A. Moreover, we give a general criterion,
using Hopf diagrams, for recognizing Kirby elements.

Unless otherwise specified, monoidal categories are assumed to be strict.

Acknowledgements This work has been partially funded by the CNRS-NSF
project n◦17149 ‘Algebraic and homologic methods in low dimensional topol-
ogy’. The second author thanks the Max-Planck-Institut für Mathematik in
Bonn, where part of this work was carried out, for its support and hospitality.

1 Hopf diagrams

In this section, we construct the categories Diag and DiagS (as convolution
categories) which are shown to be isomorphic. They are preliminary versions
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of the category of Hopf diagrams.

1.1 Categorical (co)algebras

Recall that an algebra in a monoidal category is an object A endowed with
morphisms µ : A ⊗ A → A (the product) and η : A → 1 (the unit) which
satisfy:

µ(idA ⊗ µ) = µ(µ⊗ idA) and µ(η ⊗ idA) = idA = µ(idA ⊗ η).

Dually, a coalgebra in a monoidal category is an object C endowed with mor-
phisms ∆: C → C ⊗ C (the coproduct) and ε : C → 1 (the counit) which
satisfy:

(idC ⊗ ∆)∆ = (∆ ⊗ idC)∆ and (ε⊗ idC)∆ = idC = (idC ⊗ ε)∆.

Note that the unit object 1 of a monoidal category C is both an algebra (with
µ = id1 = η) and a coalgebra (with ∆ = id1 = ε) in C (recall that 1 = 1⊗ 1).

When the category C is braided with braiding τ , the monoidal product A⊗A′

of two algebras A and A′ in C is an algebra in C with unit η⊗ η′ and product
(µ⊗µ′)(idA⊗ τA,A′ ⊗ idA′). In particular, for any non-negative integer n, A⊗n

is an algebra in C . Likewise, the monoidal product C ⊗ C ′ of two coalgebras
C and C ′ in a braided category C is a coalgebra in C with counit ε ⊗ ε′ and
coproduct (idC ⊗ τC,C′ ⊗ idC′)(∆ ⊗ ∆′). In particular, for any non-negative
integer n, C⊗n is a coalgebra in C .

1.2 The convolution product

Let C be a monoidal category, (A,µ, η) be an algebra in C , and (C,∆, ε) be a
coalgebra in C . The convolution product of two morphisms f, g ∈ HomC(C,A) is
the morphism f⋆g = µ(f⊗g)∆ ∈ HomC(C,A). This makes the set HomC(C,A)
a monoid with unit ηε : C → A.

1.3 Convolution categories

Let C be a braided category, A be an algebra in C , and C be a coalgebra in C .
Let us define the convolution category ConvC(C,A) as follows: the objects
of ConvC(C,A) are the non-negative integers N. For m,n ∈ N, the set of
morphisms from m to n is empty if m 6= n and is the monoid HomC(C

⊗n, A)
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endowed with the convolution product if m = n (recall indeed that C⊗n is a
coalgebra in C ). In particular, the identity of an object n ∈ N is:

idn = ηε⊗n : C⊗n → A,

and the composition of two endomorphisms f, g ∈ HomC(C
⊗n, A) of an object

n ∈ N is given by the convolution product:

f ◦ g = f ⋆ g = µ(f ⊗ g)∆C⊗n : C⊗n → A,

where ∆C⊗n denotes the coproduct of the coalgebra C⊗n .

Note that the category ConvC(C,A) is a monoidal category: the monoidal
product of two objects m,n ∈ N is given by m⊗ n = m+ n, the unit object is
0 ∈ N, and the monoidal product of two morphisms f : m→ m and g : n→ n
(where m,n ∈ N) is the morphism f ⊗ g = µ(f ⊗C g) : m+ n→ m+ n.

1.4 The category Diag

Let D0 be the braided category freely generated by one object ∗ and the fol-
lowing morphisms:

∆: ∗ → ∗ ⊗ ∗, ω+ : ∗ ⊗∗ → 1, θ+ : ∗ → 1,

ε : ∗ → 1, ω− : ∗ ⊗∗ → 1, θ− : ∗ → 1,

where 1 denotes the unit object of the monoidal product. Let D be the quotient
of the category D0 by the following relations:

(id∗ ⊗ ∆)∆ = (∆ ⊗ id∗)∆, (1)

(id∗ ⊗ ε)∆ = id∗ = (ε⊗ id∗)∆. (2)

The category D is still braided (with induced braiding) and (∗,∆, ε) is a coal-
gebra in D . We define the category Diag to be the convolution category
ConvD(∗,1), see Section 1.3, where 1 is endowed with the trivial algebra struc-
ture.

1.5 The category DiagS

Let DS
0 be the braided category freely generated by one object ∗ and the

following morphisms:

∆: ∗ → ∗ ⊗ ∗, ω+ : ∗ ⊗∗ → 1, θ+ : ∗ → 1,

ε : ∗ → 1, ω− : ∗ ⊗∗ → 1, θ− : ∗ → 1,

S : ∗ → ∗, S−1 : ∗ → ∗.
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Let DS be the quotient of the category DS
0 by the relations (1) and (2), and

the following relations:

SS−1 = id∗ = S−1S, (3)

∆S = (S ⊗ S)τ∗,∗∆, (4)

εS = ε, (5)

θ±S = θ±, (6)

ω+(S ⊗ id∗) = ω− = ω+(id∗ ⊗ S), (7)

ω+(S−1 ⊗ id∗) = ω−τ∗,∗ = ω+(id∗ ⊗ S−1), (8)

where τ∗,∗ : ∗⊗∗ → ∗⊗∗ denotes the braiding of the object ∗ with itself in DS
0 .

The category DS is still braided (with induced braiding) and (∗,∆, ε) is a
coalgebra in DS . We define the category DiagS to be the convolution category
ConvDS(∗,1), see Section 1.3, where 1 is endowed with the trivial algebra
structure.

1.6 Relations between Diag and DiagS

The inclusion functor D0 →֒ DS
0 induces a functor D → DS and so a functor

ι : Diag → DiagS . Note that ι is the identity on the objects.

Theorem 1.1 ι : Diag → DiagS is an isomorphism of categories.

Proof Fix n ∈ N. Set C = HomD0(∗
n, ∗) and CS = HomDS

0
(∗n, ∗). We

identify C with its image under the functor D0 →֒ DS
0 , so that we have C ⊂ CS .

Let ∼ be the equivalence relation on C defined by (1)-(2), and let ∼S be the
equivalence relation on CS defined by (1)-(8). All we have to show is that the
map F : C/∼ → CS/∼S induced by the inclusion C →֒ CS is bijective.

We will construct a map CS → C , f 7→ f ′ , satisfying:

(a) f ′ ∼S f for all f ∈ CS ;

(b) f ′ = f for all f ∈ C ;

(c) f ∼S g =⇒ f ′ ∼ g′ for all f, g ∈ CS .

If this holds, then F is onto by (a), and F is into by (b) and (c).
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Now consider the following rewriting rules:

∆S±1 −→ (S±1 ⊗ S±1)τ±1
∗,∗∆, ǫS±1 −→ ǫ,

SS−1 −→ id∗, S−1S −→ id∗,

θ+S
±1 −→ θ+, θ−S

±1 −→ θ−,

ω+(S ⊗ id∗) −→ ω−, ω+(id∗ ⊗ S) −→ ω−,

ω+(S−1 ⊗ id∗) −→ ω−τ∗,∗, ω+(id∗ ⊗ S−1) −→ ω−τ∗,∗,

ω−(S ⊗ id∗) −→ ω+τ
−1
∗,∗ , ω−(id∗ ⊗ S) −→ ω+τ

−1
∗,∗ ,

ω−(S−1 ⊗ id∗) −→ ω+, ω−(id∗ ⊗ S−1) −→ ω+.

For f, g ∈ CS , we write f ≤ g (resp. f ≺ g) if we can go from f to g
by applying a finite number (resp. exactly one) of these rules. The rewriting
system is noetherian. Indeed, the first rule decreases the number of letters
S±1 on the right of ∆, and all other rules decrease the number of letters S±1 .
Therefore (CS ,≤) is a noetherian partially ordered set. Moreover the system
is confluent: if x ≺ y and x ≺ z , then there exists t such that y, z ≤ t. This
can easily be checked by considering all cases when two rewriting rules can be
applied to the same element f ∈ CS . By [11], for each f ∈ CS there exists a
unique maximal element f ′ ∈ CS such that f ≤ f ′ . The maximality condition
means that no rewriting rule can be applied to f ′ . Such can only be the case
if no letter S±1 occurs in f ′ , that is, if f ′ ∈ C .

So we have constructed a map f 7→ f ′ . Condition (b) is obvious. Condition (a)
results from the observation that ∼S is the equivalence relation on CS gener-
ated by ≺ and (1)-(2). Let us check Condition (c). By construction, if f ≺ g
then f ′ = g′ . So, by the previous observation, it is enough to verify that if
g is obtained from f by a modification of the form (1) or (2), then f ′ ∼ g′ .
This is easily shown by noetherian induction. The only point here is to verify
that, in the presence of a configuration of the type (∆⊗ id∗)∆S

±1 , applying (1)
followed by twice the first rewriting rule gives the same result as applying twice
the first rewriting rule followed by (1). Hence the theorem.

1.7 Hopf diagrams

By a Hopf diagram, we shall mean a morphism of Diag or DiagS . Hopf dia-
grams can be represented by plane diagrams: we draw one of their preimage
in the braided category D or DS by using Penrose graphical calculus with the
ascending convention (diagrams are read from bottom to top) as for instance
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in [13]. We depict the generators as in Figure 2 except Figure 2(e) which depicts
∆(n) : ∗ → ∗⊗(n+1) defined inductively by:

∆(0) = id∗, ∆(1) = ∆ and ∆(n+1) = (∆(n) ⊗ id∗)∆.

The relations defining DiagS (except those concerning the braiding) are de-
picted in Figure 3. Recall that the composition D1 ◦D2 = D1 ⋆D2 of two Hopf
diagrams D1 and D2 is given by the convolution product, see Figure 4.

(a) ∆: ∗ → ∗⊗∗ (b) ε : ∗ → 1 (c) S : ∗ → ∗ (d) S
−1 : ∗ → ∗

(e) ∆(n) : ∗ → ∗
⊗(n+1) (f) τ∗,∗ : ∗⊗∗ → ∗⊗∗ (g) τ

−1
∗,∗ : ∗⊗∗ → ∗⊗∗

(h) ω+ : ∗⊗∗ → 1 (i) ω− : ∗⊗∗ → 1 (j) θ+ : ∗ → 1 (k) θ− : ∗ → 1

Figure 2: Generators of DiagS

, ,

, , , ,

, .

Figure 3: Relations in DiagS

2 Ribbon string links and ribbon handles

As usual, we represent ribbon tangles (also called framed tangles) by thin plane
diagrams (using blackboard framing). Recall that two such diagrams represent
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D ⋆D′ DD D′D′

◦

Figure 4: Composition in DiagS

the same isotopy class of a ribbon tangle if and only if one can be obtained from
the other by deformation and a finite sequence of ribbon Reidemeister moves
depicted in Figure 5.

(a) Type 0 (b) Type 1 ′ (c) Type 2

(d) Type 2 ′ (e) Type 3

Figure 5: Ribbon Reidemeister moves

2.1 Ribbon string links

Let n be a non-negative integer. By a ribbon n-string link we shall mean a
ribbon (n, n)-tangle T ⊂ R

2 × [0, 1] consisting of n arc components, without
any closed component, such that the kth arc (1 ≤ k ≤ n) joins the kth bottom
endpoint to the kth top endpoint. Note that a ribbon string link is canonically
oriented by orienting each component from bottom to top.

We denote by RSL the category of ribbon string links. The objects of RSL are
the non-negative integers. For two non-negative integers m and n, the set of
morphisms from m to n is

HomRSL(m,n) =

{
∅ if m 6= n,

RSLn if m = n,

where RSLn denotes the set of (isotopy classes) of ribbon n-string links. The
composition T ′ ◦ T of two ribbon n-string links is given by stacking T ′ on the
top of T (i.e., with ascending convention). Identities are the trivial string links.

Algebraic & Geometric Topology, Volume 5 (2005)



1686 Alain Bruguières and Alexis Virelizier

Note that the category RSL is a monoidal category: m⊗n = m+n on objects
and the monoidal product T ⊗ T ′ of two ribbon string links T and T ′ is the
ribbon string link obtained by juxtaposing T on the left of T ′ (see, e.g., [13]).

2.2 Ribbon handles

Let n be a non-negative integer. By a ribbon n-handle we shall mean a ribbon
(2n, 0)-tangle T ⊂ R

2 × [0, 1] consisting of n arc components, without any
closed component, such that the k -th arc (1 ≤ k ≤ n) joins the (2k − 1)-th
bottom endpoint to the 2k -th bottom endpoint. Note that a ribbon handle is
canonically oriented by orienting each component upwards near its right bottom
input.

We denote by RHand the category of ribbon handles. The objects of RHand
are the non-negative integers. For two non-negative integers m and n, the set
of morphisms from m to n is

HomRHand(m,n) =

{
∅ if m 6= n,

RHandn if m = n,

where RHandn denotes the set of (isotopy classes) of ribbon n-handles. The
composition of two ribbon n-handles T and T ′ is the ribbon n-handle de-
fined in Figure 6(c). The identity for this composition consists in n caps, see
Figure 6(d).

T

(a) T

T ′

(b) T
′

T T ′

(c) T ◦ T
′ (d) id

T T ′

(e) T ⊗ T
′

Figure 6: Composition, identity, and monoidal product in RHand

Note that the category RHand is a monoidal category: m ⊗ n = m + n on
objects and the monoidal product T ⊗ T ′ of two ribbon handles T and T ′ is
the ribbon handle obtained by juxtaposing T on the left of T ′ , see Figure 6(e).

2.3 An isomorphism between ribbon handles and string links

Let us construct functors F : RSL → RHand and G : RHand → RSL as follows.
On objects, set F (n) = n and G(n) = n for any non-negative integer n. For any
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ribbon n-string link S , let F (S) be the ribbon n-handle defined in Figure 7(b).
For any ribbon n-handle T , let G(T ) be the ribbon n-string link defined in
Figure 7(d).

S

(a) S

S

(b) F (S)

T

(c) T

T

(d) G(T )

Figure 7: Definition of the functors F and G

Proposition 2.1 The functors F : RSL → RHand and G : RHand → RSL
are mutually inverse monoidal functors.

Proof Straightforward.

3 From Hopf diagrams to ribbon string links

3.1 From Hopf diagrams to ribbon handles

Let us define a functor φ from the category DiagS of Hopf diagrams to the
category RHand of ribbon handles. For any non-negative integer n, we set
φ(n) = n. Given a Hopf diagram D , we construct a diagram of ribbon handle
φD by using the rules of Figure 8 and the stacking product (with ascending
convention). See Figure 9 for an example. Then let φ(D) be the isotopy class
of the ribbon handles defined by φD .

Proposition 3.1 The functor φ : DiagS → RHand is well-defined and mo-
noidal.

We will prove in Section 4 (see Corollary 4.6) that φ is surjective.

Proof Let us first verify that φ is well-defined. We only have to verify that
both sides of the relations defining DiagS are transformed by the rules of
Figure 8 to isotopic tangles. Examples of such verifications are depicted in
Figure 10. The fact that φ is a monoidal functor comes from the definitions of
composition and monoidal product in DiagS and RHand.
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,,,

,,

,,,,

.

Figure 8: Rules for defining φ

D = φD = ∼

Figure 9

,

, ,

.∼∼

∼ ∼

Figure 10

3.2 From Hopf diagrams to ribbon string links

Let us define a functor ψ : DiagS → RSL as follows. For any non-negative
integer n, let ψ(n) = n. If D is a Hopf diagram, we construct a diagram of
ribbon string link ψD as in Figure 11(a), where φD is defined as above. For an
example, see Figure 11(b). Then we let ψ(D) be the isotopy class of the ribbon
string link defined by ψD .

Corollary 3.2 The functor ψ : DiagS → RSL is well-defined and surjective.
Moreover F ◦ ψ = φ and G ◦ φ = ψ , where F and G are the functors of
Section 2.3.

Proof This is an immediate consequence of Propositions 2.1 and 3.1.
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φ
DψD

(a)

 ∼

(b)

Figure 11

4 From ribbon string links to Hopf diagrams

In this section, we construct a refined version DiagS of the category of Hopf
diagrams and we prove the main theorem.

4.1 More relations on Hopf diagrams

Recall the braided category DS of Section 1.5. Let DS be the quotient of DS

by the following relations:

(id∗ ⊗ θ±)∆ = (θ± ⊗ id∗)∆, (9)

(θ+ ⊗ θ−)∆ = ε, (10)

(θ+ ⊗ θ+)∆ = ω+τ
−1
∗,∗∆, (11)

(θ− ⊗ θ−)∆ = ω−∆, (12)

ω+ ⋆ ω− = ε⊗ ε = ω− ⋆ ω+, (13)

ω+12 ⋆ ω+13 ⋆ ω+23 = ω+13 ⋆ ω+23 ⋆ ω+12 = ω+23 ⋆ ω+12 ⋆ ω+13, (14)

ω+13 ⋆ ω+23 ⋆ ω+24 ⋆ ω−23 = ω+23 ⋆ ω+24 ⋆ ω−23 ⋆ ω+13, (15)

where ⋆ denotes the convolution product of Hopf diagrams. Graphically, these
relations can be depicted as in Figure 12. The category DS is still braided
(with induced braiding) and (∗,∆, ε) is a coalgebra in DS . Then let DiagS

be the convolution category Conv
DS(∗,1), see Section 1.3, where 1 is endowed

with the trivial algebra structure. By abuse, we will still call Hopf diagrams
the morphisms of DiagS .

Note that the category DiagS can also be viewed as the quotient of the category
DiagS by Relations (9)-(15). Let π : DiagS → DiagS be the projection functor.

Proposition 4.1 The functors φ and ψ factorize through π to functors φ
and ψ , respectively, so that φ = F ◦ ψ .
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, ,,

, ,

,

.

Figure 12

Proof We have to verify both sides of Relations (9)-(15) are transformed by
the rules of Figure 8 to isotopic tangles. Examples of such verifications are
depicted in Figure 13. Note that in the first picture, we used the fact that the
(2i− 1)-th and 2i-th inputs of a ribbon handle are connected.

,

,

,

.

∼

∼ ∼

∼

Figure 13

4.2 From ribbon pure braids to Hopf diagrams

Let RPB the subcategory of RSL made of ribbon pure braids. The objects of
RPB are the non-negative integers. For two non-negative integers m and n,

Algebraic & Geometric Topology, Volume 5 (2005)



Hopf diagrams and quantum invariants 1691

the set of morphisms from m to n is

HomRPB(m,n) =

{
∅ if m 6= n,

RPBn if m = n,

where RPBn ⊂ RSLn denotes the set of (isotopy classes) of ribbon pure n-
braids. Note that RPB is a monoidal subcategory of RSL.

Recall we have a canonical group isomorphism:

(u, t1, . . . , tn) : RPBn
∼

−→ PBn × Z
n,

where PBn denotes the group of pure n-braids, u : RPBn → PBn is the for-
getful morphism, and ti the self-linking number of the i-th component. Hence,
using a presentation of PBn by generators and relations due to Markov [10],
we get that RPBn is generated by tk (1 ≤ k ≤ n) and σi,j (1 ≤ i < j ≤ n)
subject to the following relations:

tktl = tltk for any k, l; (16)

tkσi,j = σi,jtk for any i < j and k; (17)

σi,jσk,l = σk,lσi,j for any i < j < k < l or any i < k < j < l; (18)

σi,jσi,kσj,k = σi,kσj,kσi,j = σj,kσi,jσi,k for any i < j < k; (19)

σi,kσj,kσj,lσ
−1
j,k = σj,kσj,lσ

−1
j,kσi,k for any i < j < k < l. (20)

Graphically, the generators may be represented as:

σi,j =

1 i j n

and tk =

1 k n

.

Let us define a functor Ψ0 : RPB → DiagS as follows: for any non-negative
integer n set Ψ(n) = n. For 1 ≤ i < j ≤ n and 1 ≤ k ≤ n, set

Ψ0(σ
±1
i,j ) = Σ±1

i,j and Ψ0(t
±1
k ) = Ω±1

k ,

where

Σ±1
i,j =

1 i j n

and Ω±1
k =

1 k n

. (21)

Lemma 4.2 The functor Ψ0 : RPB → DiagS is well defined, monoidal, and
is such that ψ ◦ Ψ0(P ) = P for all ribbon pure braid P .
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Proof Firstly, from Relation (13) (resp. Relations (9) and (10)), we see that
the Hopf diagrams Σ−1

i,j and Σi,j (resp. Ω−1
k and Ωk ) are inverse each other.

Secondly Relations (16)-(20) hold in DiagS , where we replace σi,j and tk with
Σi,j and Ωk respectively. Indeed Relations (16) and (17) follow from (9). Rela-
tion (18) follows from (2). Relations (19) and (20) correspond to (14) and (15)
respectively.

Finally the isotopies depicted in Figure 14 show that ψ ◦ Ψ0(σi,j) = σi,j and
ψ ◦ Ψ0(tk) = tk . Hence ψ ◦ Ψ0(P ) = P for all ribbon pure braid P .

11 ii jj nn

∼

1 1k kn n

∼

Figure 14

4.3 Contractions

Let n ≥ 3 and 1 < i < n. For a ribbon n-string link T , we define the
i-th contraction of T to be the ribbon (n − 2)-string link ci(T ) defined as
in Figure 15(a). For a Hopf diagram D with n inputs, we define the i-th
contraction of D to be the Hopf diagram with (n− 2) inputs Ci(D) defined as
in Figure 15(b).

Tci(T ) =

i−2︷︸︸︷ n−i−1︷︸︸︷

︸︷︷︸
i−2

︸︷︷︸
n−i−1

(a)

D

Ci(D) =

︸︷︷︸
i−2

︸︷︷︸
n−i−1

(b)

Figure 15: Contractions of ribbon string links and Hopf diagrams

Lemma 4.3 Let n ≥ 3 and 1 < i < n. For any Hopf diagram D with n
inputs, we have ci(ψ(D)) = ψ(Ci(D)).
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Proof This follows from the following equalities:

ψ(Ci(D)) =

φ
(D

)

φ
(D

)

∼∼

φ
(C

i (D
))

= ci(ψ(D)),

where we used that the (2i − 1)-th and 2i-th inputs of φ(D) are connected
(since it is a ribbon handle).

Lemma 4.4 We have cicj = cjci+2 and CiCj = CjCi+2 for any i ≥ j .

Proof This results directly from the definitions of the contraction operators.

4.4 From ribbon string links to Hopf diagram

In this section, we extend the monoidal functor Ψ0 : RPB → DiagS to a
monoidal functor Ψ: RSL → DiagS . The construction of this extension fol-
lows, broadly speaking, the same pattern as the proof of [2, Theorem 3]. The
point is to see that a ribbon string link can be obtained from a ribbon pure
braid by a sequence of contractions. This will at least show that Ψ extends
uniquely and suggest a construction for it. We then must check the coherence
of this construction, that is, its independence from the choices we made.

The main trick we use consists in “pulling a max to the top line”. Let Γ
be a tangle diagram with a local max m, with n outputs. We may write Γ
as in Figure 16(a), where U , V are tangle diagrams. Let i be an integer,
1 ≤ i ≤ n + 1. Let j be the number of strands to the left of m on the same
horizontal line. Let U ∪ ℓ be a tangle diagram obtained from U by inserting a
new component ℓ going from a point between the j -th and (j+1)-th inputs of
U to a point between the (i − 1)-th and i-th outputs of U , see Figure 16(b).
We assume also that ℓ has no local extremum. Let Uℓ = ∆ℓ(U∪ℓ) be the tangle
diagram obtained from U ∪ ℓ by doubling ℓ. Set Γℓ = UℓV , see Figure 16(c).
We say that Γℓ is obtained from Γ by pulling m to the top in the i-th position
(along the path ℓ). Likewise, one defines the action of pulling a local min to the
bottom.

We define Ψ: RSL → DiagS as follows: on objects n ∈ N, set Ψ(n) = n.
Let n be a non-negative integer and T be a ribbon n-string link. Consider
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U

V

m

(a) Γ

U

ℓ
1

1

i

j

n

(b) U ∪ ℓ

Uℓ

V

(c) Γℓ

Figure 16: Pulling a max to the top line

a diagram of T . For each local extremum pointing to the right (once the
strands canonically oriented from bottom to top), modify the diagram using
the following rule:

or . (22)

This leads to a diagram Γ which is left handed, that is, with all local extrema
pointing to the left. Pulling all local max to the top and all local min to the
bottom, we obtain a diagram of a pure braid. Here is an algorithm. Denote
by mi the number of local max (which is equal to the number of local min)
on the i-th component of Γ. Let m(Γ) = m1 + · · · + mn be the number
of local max of Γ. If m(Γ) = 0, we are already done. Otherwise, chose i
maximal so that mi > 0. Let m be the first max and m′ be the first min
you meet on the i-th component, going from bottom to top. Pull m to the
top, in the (i + 1)-th position, and m′ to the bottom, in the i-th position.
Let Γ′ be the diagram so constructed. Then Γ′ is a string link diagram, with
m(Γ′) = m(Γ)− 1. Let us denote by {Γ} the ribbon string link defined by the
diagram Γ. Then {Γ} = ci+1{Γ

′}, where ci+1 is the (i + 1)-th contraction as
in Section 4.3. Repeating m(Γ) times this transformation yields a pure braid
diagram P with n+2m(Γ) strands, and we have {Γ} = cjm(Γ)

· · · cj1{P} where
1 ≤ j1 ≤ · · · ≤ jm(Γ) ≤ n, and jk takes mi times the value i+ 1. Note that

T = (tα1
1 · · · tαn

n ) cjm(Γ)
· · · cj1{P}, (23)

where αi is the number of modifications (22) made on the i-th component and
ti ∈ RPBn is as in Section 4.2. Finally, as suggested by Lemmas 4.2 and 4.3,
set:

Ψ(T ) = (Ωα1
1 · · ·Ωαn

n )Cjm(Γ)
· · ·Cj1Ψ0({P}),

where Ψ0 : RPB → DiagS is the functor of Lemma 4.2, the Ωj = Ψ0(tj) are
the Hopf diagrams of Section 4.2, and the Cj are the contractions on Hopf
diagrams defined in Section 4.3.
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A component of a ribbon string link is said to be trivial if it is trivial as an
unframed long knot (up to isotopy). Note that each contraction cjk in (23) is
performed on a ribbon string link with trivial jk -th component.

Theorem 4.5 The functor Ψ: RSL → DiagS is well-defined, monoidal, and
satisfies ψ ◦Ψ = 1RSL . Moreover, Ψ is the unique functor from RSL to DiagS

satisfying:

(a) Ψ(P ) = Ψ0(P ) for any ribbon pure braid P ;

(b) Ψ(ci(T )) = CiΨ(T ) for any 1 < i < n and any ribbon n-string link T
with trivial i-th component.

Remark in particular that Ψ is injective and ψ (and so ψ) is surjective.

We prove the theorem in Section 4.6.

Set Φ = Ψ ◦ G : RHand → DiagS , where G : RHand → RSL is the monoidal
isomorphism defined in Section 2.3. From Proposition 2.1 and Theorem 4.5, we
immediately deduce that:

Corollary 4.6 The functor Φ: RHand → DiagS is monoidal and satisfies
φ ◦ Φ = 1RHand .

Note in particular that Φ is injective and that φ (and so φ) is surjective.

4.5 Summary

The previous results may be summarized in the commutativity of the following
diagram:

RHand oo =
RHand

G

��

ΦrrDiag
ι
∼

//DiagS

ψ ,, ,,

φ
22 22

π // //DiagS

ψ �� ��

φ

@@ @@

RSL oo
=

RSL

F

KK

Ψ
ll

At this stage, we do not know whether the functors φ and Φ (resp. ψ and Ψ)
are isomorphisms and so inverse each other.
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4.6 Proof of Theorem 4.5

Before proving Theorem 4.5, we first establish some lemmas.

Lemma 4.7 Let P be a ribbon pure n-braid and 1 ≤ i ≤ n+ 1. Insert a new
component ℓ between the (i − 1)-th and i-th strand of P so that P ∪ ℓ is a
ribbon pure (n+1)-braid. Let Pℓ = ∆ℓ(P ∪ℓ) be the ribbon pure (n+2)-braid
from P ∪ ℓ by doubling ℓ. Then:

(a) The equalities of Figure 17 hold;

(b) Ci
(
Ψ0(Pℓ)D

)
= Ψ0(P )Ci(D) and Ci+1

(
DΨ0(Pℓ)

)
= Ci+1(D)Ψ0(P ) for

any Hopf diagram D with (n+ 2) inputs.

Ψ0(Pℓ) Ψ0(Pℓ)Ψ0(P )
i iii+ 1 i+ 1i− 1

Figure 17

Proof Let us prove Part (a) by induction on the length m of P ∪ l in the gen-
erators σ±1

k,l and t±1
k of RPBn+1 . If m = 0, then it is an immediate consequence

of (2) and (5). Suppose that m = 1. Given a ribbon pure braid Q, denote by
∆i(Q) (resp. δi(Q)) the ribbon pure braid obtained from Q by doubling (resp.
deleting) its i-th component. We have to verify that the statement is true for
P = δi(σ

±1
k,l ) and Pℓ = ∆i(σ

±1
k,l ), and for P = δi(t

±1
k ) and Pℓ = ∆i(t

±1
k ). This

can be done case by case by using the descriptions of Table 1. Examples of such
verifications are depicted in Figure 18.

∆i(σ
±1
k,l ) δi(σ

±1
k,l )

i < k σ±1
k+1,l+1 σ±1

k−1,l−1

i = k (σi,l+1σi+1,l+1)
±1 In

k < i < l σ±1
k,l+1 σ±1

k,l−1

i = l (σk,iσk,i+1)
±1 In

l < i σ±1
k,l σ±1

k,l

∆i(t
±1
k ) δi(t

±1
k )

i < k t±1
k+1 t±1

k−1

i = k σ±1
i,i+1t

±1
i t±1

i+1 In

k < i t±1
k t±1

k

Table 1
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Ψ0(δi(σ
−1

i,l ))

Ψ0(∆i(σ
−1

i,l ))

Ψ0(∆i(ti))

Ψ0(δi(ti))

,

.

i

i

i

i

i+ 1

i+ 1

i− 1

i− 1

l + 1

Figure 18

Let m ≥ 1 and suppose the statement true for rank m. Let P and ℓ such that
P∪ℓ = w1 . . . wm+1 where the wj are generators of RPBn+1 . Remark that Pℓ =
∆i(w1)∆i(w2 · · ·wm+1) and P = δi(w1)δi(w2 · · ·wm+1). By using (4), (2), and
the statement for ranks 1 and m, we get the equalities depicted in Figure 19.
The left equality of Figure 17 is then true for P and ℓ. The right equality can
be verified similarly by remarking that Pℓ = ∆i(w1 · · ·wm)∆i(wm+1). Hence
the statement is true for rank m+ 1.

Let us prove Part (b). Let D be a Hopf (n+2)-diagram. By using (1), (2), (4),
and Part (a) of the lemma, we get the equalities of Figure 20, which mean that
Ci

(
Ψ0(Pℓ)D

)
= Ψ0(P )Ci(D). Likewise, one can show that Ci+1

(
DΨ0(Pℓ)

)
=

Ci+1(D)Ψ0(P ).

Lemma 4.8 Let n ≥ 3 and 1 < i < n (resp. 0 < i < n−1). Let P and P ′ be
two pure n-braids which have diagrams which differ only inside a disk. Inside
this disk, the i-th and (i+ 1)-th strands pass respectively to the front and the
back of another strand. Suppose also that above (resp. below) the disk, the
i-th and (i+ 1)-th strands run parallel, see Figure 21. Then:

CiΨ0(P ) = CiΨ0(P
′) (resp. Ci+1Ψ0(P ) = Ci+1Ψ0(P

′)).
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Ψ0(∆i(w1))

Ψ0(∆i(w1))

Ψ0(∆i(w1))

Ψ0(∆i(w2 · · ·wm+1))

Ψ0(∆i(w2 · · ·wm+1))

Ψ0(∆i(w2 · · ·wm+1))

Ψ0(∆i(w2 · · ·wm+1))

Ψ0(∆i(w2 · · ·wm+1))

Ψ0(δi(w1))

Ψ0(δi(w1))

Ψ0(δi(w1)) Ψ0(δi(w2 · · ·wm+1))

Ψ0(Pℓ)

Ψ0(P )
i

i

ii

i i

i

i

i i

i+ 1

i+ 1

i+ 1i+ 1

i+ 1 i+ 1

i+ 1

i+ 1 i+ 1

i− 1

Figure 19

Ψ0(Pℓ) Ψ0(Pℓ)

Ψ0(P ) Ψ0(P )D

D D

Ci(D)
i

i i i i

i+ 1

i+ 1 i+ 1 i+ 1 i+ 1

i− 1 i− 1 i− 1 i− 1

i− 1 i− 1 i− 1 i− 1

Figure 20

Proof Let us denote by k the other component. Suppose that above the disk,
the i-th and (i+1)-th strands run parallel (the resp. case can be done similarly).
Assume first that k < i. We can write P = Aσk,iσk,i+1B and P ′ = AB where
A and B are ribbon pure n-braids. Moreover A = ∆ℓ(E∪ℓ) where E is ribbon
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P = and P ′ =
(
resp. P = and P ′ =

)

Figure 21

pure braid with n− 2 strands and ℓ is a new component inserted in E in i-th
position. Now remark that σk,iσk,i+1 = ∆γ(In−2 ∪ γ) where In−2 is the trivial
braid with n−2 strands and γ is new component added to In−2 in i-th position
so that In−2 ∪ γ = σk,i in RPBn−1 . Therefore, by using Lemma 4.7, we get:

CiΨ0(P ) = CiΨ0(Aσk,iσk,i+1B) = CiΨ0

(
∆ℓ(E ∪ ℓ)∆γ(In−2 ∪ γ)B

)

= Ψ0(E)Ψ0(In−2)CiΨ0(B) = Ψ0(E)CiΨ0(B)

= CiΨ0

(
∆ℓ(E ∪ ℓ)B

)
= CiΨ0(AB) = CiΨ0(P

′).

The case k > i + 1 is done similarly by writing P = Aσi,kσi+1,kB and P ′ =
AB .

Let us now prove Theorem 4.5. Let n be a non-negative integer and T be a rib-
bon n-string link. Consider a diagram ΓT of T . Applying rules (22) changes (in
a unique manner) ΓT to a left handed diagram. Denote by αi is the number of
modifications (22) made on the i-th component of ΓT . Then pulling maxima to
the top and minima to the bottom as explained in Section 4.4 leads to a diagram
P of a ribbon pure braid so that T = (tα1

1 · · · tαn
n )cjm · · · cj1{P} for some 1 ≤

j1 ≤ · · · ≤ jm ≤ n. Pulling extrema in another way may lead to another dia-
gram P ′ of a ribbon pure braid so that T = (tα1

1 · · · tαn
n )cjm · · · cj1{P

′}. Now the
ribbon pure braids {P} and {P ′} are related by moves described in Figure 21.
Therefore, by using Lemmas 4.4 and 4.8, we obtain: Cjm · · ·Cj1Ψ0({P}) =
Cjm · · ·Cj1Ψ0({P

′}). Hence

ΨΓT
= (Ωα1

1 · · ·Ωαn
n )Cjm · · ·Cj1Ψ0({P})

only depends on the diagram ΓT of T .

Let us verify that ΨΓT
remains unchanged when applying to ΓT a Reidemeis-

ter’s move, see Figure 5. Invariance under moves of type 2 or type 3 is a
consequence of the existence of the functor Ψ0 . Invariance under moves of type
2’ is a consequence of Lemmas 4.4 and 4.8.

Suppose that a Reidemeister move of Type 0 is applied to ΓT , and denote Γ′
T

the diagram so obtained. There are four cases to consider, depending on the
orientation of the considered strand and the direction (left or right handed)
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ΓT = 7→ Γ′
T =  

(a)

ΓT = 7→ Γ′
T =   

(b)

ΓT = 7→ Γ′
T =  

(c)

ΓT = 7→ Γ′
T =   

(d)

Figure 22

of the move. These cases, together with the way we apply the algorithm,
are depicted in Figure 22. Let us for example verify invariance in the case
depicted in Figure 22(d). Recall that applying the algorithm to ΓT gives rise
to a diagram P of a pure braid such that {ΓT } = (tα1

1 · · · tαn
n ) cjm · · · cj1{P}. Let

i be the number of the component of ΓT on which the move is performed. Since
the orientation of the strand is downwards and T is a (canonically oriented)
string link, we know that there exist a maximum just before and a minimum
just after the place where the move is performed, when going through the
i-th component from bottom to top (see the left picture of Figure 22(d)). Let
cjr be the contraction corresponding to this pair of extrema when applying
the algorithm to ΓT (we have jr = i + 1). Denote by k the number of the
component of P where the move is performed. Up to using invariance under
Reidemeister’s moves of type 2 and type 3, we can write {P} = UV , with U and
V pure braids, so that the move is performed on the k -th component between U
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ΓT = i
  cjm · · · cj1

(

k

U

V

)

7→

Γ′
T =   cjm · · · cjrci+1cjr−1 · · · cj1

(

k

Uℓ

Vℓ′

)

Figure 23

and V . Insert a new component ℓ in U in k -th position and a new component
ℓ′ in V in (k + 1)-th position. Set Uℓ = ∆ℓ(U ∪ ℓ) and Vℓ′ = ∆ℓ′(V ∪ ℓ′). As
depicted in Figures 22(d) and 23, we can apply the algorithm to Γ′

T in such a
way that:

{Γ′
T } = (tα1

1 · · · tαi+2
i · · · tαn

n )cjm · · · cjrci+1cjr−1 · · · cj1(Uℓσk+1,k+2Vℓ′).

Now, by using (4), (6) and (9), we have, for any Hopf diagram D ,

Cj(ΩpD) =





ΩpCj(D) for p < j,
Ωj−1Cj(D) for p = j,
Ωp−2Cj(D) for p > j.

(24)

Moreover we have the equalities of Figure 24 where are used in particular (7),
(9), (12) and Lemma 4.7(a). Then we get that:

CkCkΨ0(Uℓσk+1,k+2Vℓ′) = CkCk+2

(
Ψ0(Uℓ)Σk+1,k+2Ψ0(Vℓ′)

)

= Ω−2
k−1Ck

(
Ψ0(U)Ψ0(V )

)

= Ω−2
k−1CkΨ0({P}).

Therefore we can conclude that:

ψΓ′
T

= (Ωα1
1 · · ·Ωαi+2

i · · ·Ωαn
n )Cjm · · ·CjrCi+1Cjr−1 · · ·Cj1Ψ0(Uℓσk+1,k+2Vℓ′)

= (Ωα1
1 · · ·Ωαi+2

i · · ·Ωαn
n )Cjm · · · Ĉjr · · ·Cj1CkCkΨ0(Uℓσk+1,k+2Vℓ′)

= (Ωα1
1 · · ·Ωαi+2

i · · ·Ωαn
n )Cjm · · · Ĉjr · · ·Cj1

(
Ω−2
k−1CkΨ0({P})

)

= (Ωα1
1 · · ·Ωαi+2

i · · ·Ωαn
n )Ω−2

i Cjm · · · Ĉjr · · ·Cj1CkΨ0({P}) by (24)

= (Ωα1
1 · · ·Ωαn

n )Cjm · · ·Cj1Ψ0({P}) = ψΓT
.
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Ψ0(Uℓ) Ψ0(Uℓ)Ψ0(Vℓ′ ) Ψ0(Vℓ′ )

Ψ0(U) Ψ0(V ) Ψ0(U)Ψ0(V )
k − 1k − 1 k − 1

k − 1k − 1 k − 1k − 1

k k k

k k k k

k + 1 k + 1 k + 1

k + 1 k + 1 k + 1 k + 1k + 2 k + 2 k + 2 k + 2k + 3k + 3 k + 3k + 3

Figure 24

Invariance in the cases depicted in Figures 22(a), 22(b), and 22(c) can be
checked as above.

By using similar techniques, one can show the invariance of ΨΓT
under Reide-

meister’s moves of type 1’. Hence we conclude that ΨΓT
remains unchanged

when applying to ΓT a Reidemeister’s move, and so Ψ(T ) = ΨΓT
is well-defined.

We get directly from its construction that the functor Ψ is monoidal and sat-
isfies Condition (a). Let us check that it satisfies Condition (b). Let 1 < i < n
and T be a ribbon n-string link with trivial i-th component. By applying the al-
gorithm we have T = (tα1

1 · · · tαn
n )cjm · · · cj1(P ) for some 1 ≤ j1 ≤ · · · ≤ jm ≤ n

and some pure braid P . Since the i-th component of T is trivial, we can apply
the algorithm to a diagram of ci(T ) in such a way that:

ci(T ) = (tα1
1 · · · t

αi−2

i−2 t
αi−1+αi+αi+1

i−1 t
αi+2

i · · · tαn

n−2)cjm−2 · · · cjk+1−2cicjk · · · cj1(P ),

where k is such that jk+1 > i+ 1 ≥ jk . Hence:

Ci(Ψ(T )) = Ci
(
Ωα1

1 · · ·Ωαn
n Cjm · · ·Cj1Ψ0(P )

)

= (Ωα1
1 · · ·Ω

αi−1+αi+αi+1

i−1 · · ·Ωαn

n−2)CiCjm · · ·Cj1Ψ0(P ) by (24)

= (Ωα1
1 · · ·Ω

αi−1+αi+αi+1

i−1 · · ·Ωαn

n−2)Cjm−2 · · ·Cjk+1−2CiCjk · · ·Cj1Ψ0(P )

= Ψ(ci(T )).

Uniqueness of a functor DiagS → RSL satisfying (a) and (b) comes from the
fact that every ribbon string link can be realized as a sequence of contractions
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of a ribbon pure braid such that each of contraction is performed on a trivial
component (see the algorithm described in Section 4.4).

Finally, let T be a ribbon string link. We can always write T = cjm · · · cj1(P )
for some ribbon pure braid P . Then we have:

ψΨ(T ) = ψΨ(cjm · · · cj1(P ))

= ψ
(
Cjm · · ·Cj1Ψ0(P )

)
by Conditions (a) and (b)

= cjm · · · cj1
(
ψΨ0(P )

)
by Lemma 4.3

= cjm · · · cj1(P ) = T by Lemma 4.2.

Hence ψ ◦ Ψ = 1RSL . This completes the proof of Theorem 4.5.

5 Quantum invariants via Hopf diagrams and Kirby

elements

A general method is given in [14] for defining quantum invariants of 3-manifolds
starting from a ribbon category (or a ribbon Hopf algebra). In this section, we
explain the role played by Hopf diagrams in this theory. Note that this was the
initial motivation of this work.

5.1 Dinatural transformations and coends

We give here definitions adapted to our purposes. For more general situations,
we refer to [8].

Let C be a category with left duals. By a dinatural transformation of C , we
shall mean a pair (Z, d) consisting in an object Z of C and a family d, indexed
by Ob(C), of morphisms dX : ∨X ⊗ X → Z in C satisfying dY (id∨Y ⊗ f) =
dX(∨f ⊗ idX) for any morphism f : X → Y .

By a coend of C , we shall mean a dinatural transformation (A, i) which is
universal in the sense that, if (Z, d) is any dinatural transformation, then there
exists a unique morphism r : A → Z such that dX = r ◦ iX for all object X
in C , see Figure 25. Note that a coend, if it exists, is unique (up to unique
isomorphism).

Remarks (1) In general, the coend of C always exists in a completion of C ,
namely the category of Ind-objects of C (see [6]). However, for simplicity, we
will restrict to the case where the coend exists in C .
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∨Y ⊗X

∨f⊗1
��

1⊗f // ∨Y ⊗ Y

dY

�� iY

��

∨X ⊗X
dX //

iX --

Z cc

∃!r

A

Figure 25

(2) If C is the category of representations of a finite-dimensional Hopf algebra
or is a premodular category, then the coend exists in C , see [14].

Assume that (A, i) is the coend of C . Let the morphisms evX : ∨X ⊗X → 1

and coevX : 1 → X ⊗ ∨X be the evaluation and coevaluation associated to the
left dual ∨X of an object X . The following dinatural transformations:

(iX ⊗ iX)(1 ⊗ coevX ⊗ 1): ∨X ⊗X → A⊗A and evX : ∨X ⊗X → 1

factorize respectively to morphisms ∆A : A → A ⊗ A (the coproduct) and
εA : A→ 1 (the counit). This makes A a coalgebra in the category C .

5.2 The coend of a ribbon category

Let C be a ribbon category (see [13]) and assume that the coend (A, i) of C
exists. We denote the braiding of C by cX,Y : X ⊗ Y → Y ⊗X , and the twist
of C by θX : X → X .

The coalgebra structure (∆A, εA) on the object A (see Section 5.1) extends to
a structure of a Hopf algebra, see [6]. This means that there exist morphisms
µA : A ⊗ A → A (the product), ηA : 1 → A (the unit), and SA : A → A (the
antipode). They satisfy the same axioms as those of a Hopf algebra except the
usual flip is replaced by the braiding cA,A : A⊗A→ A⊗A. Namely, the unit
morphism is ηA = i1 : 1 = ∨1 ⊗ 1 → A. By using the universal property of a
coend1, the product µA and the antipode SA are defined as follows:

µA(iX ⊗ iY ) = iY⊗X(1∨X ⊗ cX,∨Y⊗Y ) : ∨X ⊗X ⊗ ∨Y ⊗ Y → A,

SAiX = (evX ⊗ i∨X)(id∨X ⊗ c∨∨X,X ⊗ id∨X)(coev∨X ⊗ c∨X,X) : ∨X ⊗X → A.

1For the product µA , use it twice.
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Note that SA is invertible, with inverse S−1
A : A→ A defined via:

S−1
A iX = (evX ⊗ i∨X)(id∨X ⊗ c−1

∨∨X,X
⊗ id∨X)(coev∨X ⊗ c−1

∨X,X
) : ∨X ⊗X → A.

Let us define the morphisms ωA : A⊗A→ 1 and θ±A : A→ 1 as follows:

θ±AiX = evX(id∨X ⊗ θ±1
X ) : ∨X ⊗X → 1,

ωA(iX ⊗ iY ) = ωX,Y : ∨X ⊗X ⊗ ∨Y ⊗ Y → 1,

where ωX,Y = (evX ⊗ evY )(id∨X ⊗ c∨Y,XcX,∨Y ⊗ id∨Y ). It can be shown that ωA
is a Hopf pairing, see [14]. Finally, we set:

ω+
A = ωA(S−1

A ⊗ idA) and ω−
A = ωA.

5.3 Hopf diagrams and factorization

Let C be a ribbon category. Assume that the coend (A, i) of C exists. Consider
the Hopf algebra structure of A and the morphisms ω±

A and θ±A as in Section 5.2.

Let T be a ribbon n-handle. Recall that for any objects X1, . . . ,Xn of C , the
handle T defines a morphism TX1,...,Xn : ∨X1 ⊗ X1 ⊗ · · · ⊗ ∨Xn ⊗ Xn → 1 by
canonically orienting T (see Section 2.2) and decorating the kth component
of T by Xk . Hence it can be factorized thought the coend to a morphism
TC : A⊗n → 1 so that:

TX1,...,Xn = TC ◦ (iX1 ⊗ · · · ⊗ iXn) (25)

for all objects X1, . . . ,Xn of C .

Let DS be the braided category defined in Section 4.1.

Theorem 5.1 (a) There exists a unique braided functor eC : DS → C send-
ing the object ∗ to A and the morphisms ∆, ε, S±1 , ω± , θ± to the
morphims ∆A , εA , S±1

A , ω±
A , θ±A respectively.

(b) The functor eC induces a monoidal functor EC : DiagS → ConvC(A,1).

(c) For any ribbon n-handle T , the factorization morphism TC : A⊗n → 1

defined by T is given by TC = EC(D) where D is any Hopf diagram such
that φ(D) = T . In particular, TC = EC ◦ Φ(T ).

Remark 5.2 We expect to generalize this result to categories C which are not
ribbon but only turban, see [2].
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Proof Let us prove Part (a). Uniqueness of the functor eC is clear since we
impose the image of all its generators. Its existence comes from the fact that
the relations imposed on the generators ∆, ε, S±1 , ω± , θ± and τ±1

∗,∗ in DS

are still true in C when replacing them by ∆A , εA , S±1
A , ω±

A , θ±A and c±1
A,A

respectively (since ωA is a Hopf pairing and θA is defined using the twist of C ).

Part (b) is a direct consequence of DiagS = Conv
DS (∗,1).

Finally, let us prove Part (c). By the uniqueness of the factorization morphism
via a coend, we have to show that if D is a Hopf diagram with n inputs, then

φ(D)X1,...,Xn = EC(D) ◦ (iX1 ⊗ · · · ⊗ iXn) (26)

for any objects X1, . . . ,Xn of C . Clearly, if (26) is true for two Hopf diagrams
D and D′ , then it is also true for the Hopf diagram D ⊗D′ .

Moreover, by definition of φ (see Figure 8) and of εA , ω±
A and θ±A , (26) is true

for the trivial Hopf diagram ε ⊗ · · · ⊗ ε and for the Hopf diagrams Σ±1
i,j and

Ω±1
k depicted in (21). Now suppose that (26) is true for some Hopf diagram D .

Then, by definition of φ (see Figure 8) and of ∆A , S±1
A and c±1

A,A , (26) remains
true for the following diagrams:

D , D , D , and D .

Hence we can deduce that (26) is always true.

5.4 Kirby elements

Let C and A be as in Section 5.3. Let L be a framed link in S3 with n compo-
nents. Choose an orientation for L. There always exists a ribbon n-handle T
(not necessarily unique) such that L is isotopic T ◦ (∪⊗ · · · ⊗ ∪), where ∪ de-
notes the cup with counterclockwise orientation and T is canonically oriented.
For α ∈ HomC(1, A), set:

τC(L;α) = TC ◦ α
⊗n ∈ EndC(1), (27)

where TC : A⊗n → 1 is defined as in (25). Following [14], by a Kirby element
of C we shall mean a morphism α ∈ HomC(1, A) such that, for any framed
link L, τC(L;α) is well-defined and invariant under isotopies and 2-handle slides
of L.

In general, determining the set of the morphisms TC when T runs over ribbon
handles is quite difficult. Nevertheless, by Theorem 5.1, the TC ’s belong to the
set of morphisms given by evaluations of Hopf diagrams. Hence a criterion for
a morphism to be a Kirby element:
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Corollary 5.3 Let α : 1 → A in C . Suppose that the two following conditions
are satisfied:

(a) for any integer n ≥ 1 and any Hopf diagram D with n entries, we have:

ααααα

EC(D) EC(D)

SA
;

(b) for any integer n ≥ 2 and any Hopf diagram D with n entries, we have:

αααααααα

EC(D)EC(D)

,

where and denote µA : A⊗A→ A and ∆A : A→ A⊗A respectively.

Then α is a Kirby element of C .

Remark 5.4 One recovers the fact (see [14, Theorem 2.5]) that a morphism
α : 1 → A is a Kirby element if it satisfies:

{
SAα = α,
(µA ⊗ idA)(idA ⊗ ∆A)(α⊗ α) = α⊗ α,

or, in case C is linear, if the morphisms
{
SAα− α,
(µA ⊗ idA)(idA ⊗ ∆A)(α⊗ α) − α⊗ α,

are negligible.

Proof We adapt the proof of [14, Theorem 2.5] to this more general situation.
Let L = L1 ∪ · · · ∪ Ln be a framed link. Choose an orientation of L and a
ribbon n-handle T such that L is isotopic T ◦ (∪ ⊗ · · · ⊗ ∪).

Suppose firstly that we reverse the orientation of Li . Let us denote by L′ the
oriented framed link obtained from L by this orientation change. As in the
proof of [14, Theorem 2.5], we can choose a ribbon n-handle T ′ such L′ is
isotopic to T ′ ◦ (∪ ⊗ · · · ⊗ ∪) and T ′

C
= TC ◦ (idA⊗(i−1) ⊗ SA ⊗ idA⊗(n−i)). Now

Algebraic & Geometric Topology, Volume 5 (2005)



1708 Alain Bruguières and Alexis Virelizier

let D be a Hopf diagram such that φ(D) = T . Then TC = EC(D) and so

τC(L
′;α) = EC(D)(idA⊗(i−1) ⊗ SA ⊗ idA⊗(n−i))α⊗n

= EC(D)(cA,A⊗(i−1) ⊗ idA(n−i))(SAα⊗ α⊗n−1)

= EC(D
′)(SAα⊗ α⊗n−1)

= EC(D
′)α⊗n by Condition (a)

= EC(D)(cA,A⊗(i−1) ⊗ idA(n−i))α⊗n

= EC(D)α⊗n = τC(L;α),

where

D′ = Di .

Hence τC(L;α) does not depend on the choice of an orientation for L.

Suppose now that the component L2 slides over the component L1 . Let L′
1 be

a parallel copy of L1 and set L′ = L1∪(L′
1#L2)∪L3∪· · ·∪Ln . As in the proof of

[14, Theorem 2.5], we can choose a ribbon n-handle T ′ such that L′ is isotopic
to T ′ ◦ (∪⊗ · · · ⊗∪) and T ′

C
= TC ◦

(
(µA⊗ idA)(idA⊗∆A)⊗ idA⊗(n−2)

)
. Hence,

choosing a Hopf diagram D such that φ(D) = T , we get that TC = EC(D) and
so

τC(L
′;α) = EC(D)

(
(µA ⊗ idA)(idA ⊗ ∆A) ⊗ idA⊗(n−2)

)
α⊗n

= EC(D)α⊗n by Condition (b)

= τC(L;α).

Likewise, using the braiding, we can show that τC(L;α) is invariant under the
other handle slides. Hence α is a Kirby element of C .

5.5 Quantum invariants of 3-manifolds

Recall (see [5]) that every closed, connected and oriented 3-dimensional mani-
fold can be obtained from S3 by surgery along a framed link L ⊂ S3 .

For any framed link L in S3 , we will denote by S3
L the 3-manifold obtained

from S3 by surgery along L, by nL the number of components of L, and by
b−(L) the number of negative eigenvalues of the linking matrix of L.

A Kirby element α of C is said to be normalizable if θ+
Aα and θ−Aα are invertible

in the semigroup EndC(1). To each normalizable Kirby element α is associated
an invariant τC(M ;α) of (closed, connected, and oriented) 3-manifolds M with
values in EndC(1), see [14, Proposition 2.3]. From Theorem 5.1, we immediately
deduce that:
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Corollary 5.5 For a normalizable Kirby element α and any framed link L,
we have

τC(S
3
L;α) = (θ+

Aα)b−(L)−nL (θ−Aα)−b−(L) EC(D)α⊗n,

where D is any Hopf diagram such that L is isotopic to φ(D) ◦ (∪ ⊗ · · · ⊗ ∪).

Remarks 1) Corollary 5.5 gives an intrinsic description, in terms of Hopf
algebraic structures, of quantum invariants of 3-manifolds.

2) In Corollary 5.5, we can in particular take D = Ψ(T ) where Ψ is as in
Theorem 4.5 and T is a ribbon sting link such that L is isotopic to closure of
T . Recall also that the constructive proof of Theorem 4.5 provides us with an
algorithm for computing D = Ψ(T ) starting from a diagram of T .

Let us conclude by giving an example. Recall that the Poincaré sphere P can
be presented as P ≃ S3

K where K is the right-handed trefoil with framing +1.
Now this trefoil can be represented as K = φ(D)◦∪ where D = (ω+∆⊗ θ−)∆.
Indeed, we have:

K = and D = φ(D) = ∼ .

Hence, if α : 1 → A is a normalizable Kirby element of C , then:

τC(P;α) =
θ+A

α

−1 ∆A

∆A

θ−A

ω+

A

α

.
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