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1 Introduction

The theory of spinc{structures has attained new importance through its recent
application to the topology of smooth 4{manifolds. Among smooth, closed,
oriented 4{manifolds (with b1 + b+ odd) a typical homeomorphism type con-
tains many di�eomorphism types. The only invariants known to distinguish
such di�eomorphism types are those arising from gauge theory, as pioneered by
Donaldson (eg [1]). The most e�cient approach currently known is to assign a
Seiberg{Witten invariant (eg [6]) to any such 4{manifold X with a �xed spinc{
structure. To extract the most information from these invariants, one must
understand how spinc{structures transform under homeomorphisms. This is
straightforward if H2(X;Z) has no 2{torsion (for example, if X is simply con-
nected), for then the Chern class will distinguish any two spinc{structures on
X . The general case is less obvious, however. In high dimensions, a homeo-
morphism between smooth manifolds need not be covered by an isomorphism
of their tangent bundles. While such isomorphisms always exist in dimen-
sion 4, they are not canonical, and automorphisms of the tangent bundle cov-
ering idX may permute the spinc{structures on X . (For example, such an
automorphism over RP 3 or RP 3 � S1 can be constructed from the di�eomor-
phism RP 3 ! SO(3).) In this note, we show how to canonically assign to
any orientation-preserving proper homotopy equivalence X1 ! X2 between
manifolds a correspondence between spinc{structures on X1 and those on X2 .

Our approach is to generalize the theory of spin and spinc{structures from
SO(n) to more general structure groups H . Most of the homotopy of SO(n)
does not enter into the theory. In fact, it su�ces for H to be path con-
nected with a nontrivial double cover so that we can generalize the de�nition
spinc(n) = (spin(n)�spin(2))=Z2 . The resulting theory generalizes the classical
theory in the obvious way, for example, with spinc{structures on a bundle � over
X classi�ed by H2(X;Z) whenever W3(�) = 0 (Proposition 1). Ultimately, the
map BSO ! BSG of classifying spaces allows us to generalize spinc{structures
from smooth manifolds to Poincar�e complexes, and the latter theory has the
required functoriality with respect to homotopy equivalences by naturality of
the Spivak normal �bration (Theorem 5). Under reasonable hypotheses, one
can explicitly compute the correspondence of spinc{structures induced by a ho-
motopy equivalence; a procedure is given following Theorem 5. The concluding
remarks include other characterizations of classical spinc{structures.
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2 Generalized spinc{structures

A naive approach to generalizing the theory of spin and spinc{structures would
be to de�ne spin(H) to be a preassigned double cover of a path connected
topological group H , and let spinc(H) denote the group spin(H � SO(2)) di-
agonally double covering H � SO(2). One could then generalize the theory in
the obvious way, using principal spin(H) and spinc(H){bundles, the natural
epimorphisms from spinc(H) to H and SO(2), and the involution of spinc(H)
induced by conjugation on SO(2) = U(1). However, to avoid the di�culties
of adapting principal bundle theory to spherical �brations, we translate the
argument into the language of classifying spaces, replacing epimorphisms of
groups with kernel Z2 or SO(2) by �brations of the corresponding classifying
spaces with �ber BZ2 = K(Z2; 1) = RP1 or BSO(2) = K(Z; 2) = CP1 ,
respectively. We remove the groups from the theory while keeping the sugges-
tive notation, obtaining a theory of spin and spinc{structures on bundles or
�brations classi�ed by a universal bundle (�bration) �H ! BH , where BH is
homotopy equivalent to a simply connected CW {complex, and a nonzero class
w 2 H2(BH;Z2) is speci�ed (corresponding to a choice of double cover of H ).
We can recover the classical theory by setting BH = BSO(n) (n � 2), with w
the unique nonzero class w� 2 H2(BSO(n);Z2) �= Z2 .

Recall [8] that any map f : X ! Y can be transformed into a �bration by
replacing X by the space P of paths from X to Y in the mapping cylinder
of f . The initial point �bration p0: P ! X has contractible �ber, and the
endpoint �bration p1: P ! Y is homotopic to f � p0 . The �ber F of p1 is
homotopy equivalent to a CW {complex if X and Y are [4], and p0jF is a
�bration with �ber the loop space ΩY .

Now let (BH;w) be as above. Then w de�nes epimorphisms H2(BH;Z2)! Z2

and hence ’w: �2(BH) ! Z2 . We apply the previous paragraph to the map
BH ! K(Z2; 2) induced by ’w , and let Bspin(H;w) denote the �ber F . The
�bration Bspin(H;w) ! BH induces isomorphisms of �i(Bspin(H;w)) with
ker’w for i = 2 and �i(BH) otherwise, and its �ber is K(Z2; 1) = RP1 .
Now we de�ne Bspinc(H;w) to be Bspin(H�; w + w�), where BH� = BH �
BSO(2). We immediately obtain �brations pH and pSO(2) of Bspinc(H;w)
over BH and BSO(2), whose �bers are Bspin(SO(2); w�) = K(Z; 2) and
Bspin(H;w), respectively, and each �bration restricted to the opposite �ber
is the map arising from the de�nition of Bspin(�). (Compare with the projec-
tions of spinc(H;w) to H and SO(2) on the level of groups.) By obstruction
theory, complex conjugation on the second factor BSO(2) = CP1 of BH� lifts
uniquely from BH� to a map on Bspinc(H;w) whose square is �ber homotopic
to the identity, and the map is homotopic to conjugation on each CP1{�ber
of pH .
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To de�ne spinc{structures over H , recall that an H {bundle (or �bration) � !
X over a CW {complex is classi�ed by a bundle map

�
~f−! �H??y ??y

X
f−! BH:

For two choices of classifying map ~f , there is a canonical homotopy (up to
homotopy rel 0,1) between the corresponding maps f , characterized by lifting
to a homotopy of the maps ~f through bundle maps. This allows us to de�ne
spinc{structures in a manner independent of the choice of ~f .

De�nition A spin structure on an H {bundle (�bration) � (relative to w) is
a function assigning to each classifying bundle map ~f : � ! �H a homotopy
class of lifts f̂ : X ! Bspin(H;w) of f : X ! BH , such that for two choices
of ~f the canonical homotopy between the maps f lifts to a homotopy of the
corresponding maps f̂ . A spinc{structure is de�ned similarly with spin replaced
by spinc .

We denote the sets of spin and spinc{structures on an H {bundle � by S(�; w)
and Sc(�; w), respectively. Note that in either case, any lift of a single f with a
speci�ed ~f uniquely determines such a structure, but changing ~f with f �xed
may result in an automorphism of S(�; w) or Sc(�; w).

To de�ne characteristic classes, let Y � X be a possibly empty subcomplex,
and let � be a trivialization of �jY . Then we can assume that the clas-
sifying map f : X ! BH of � is constant on Y , and that � determines
the restriction ~f jY : �jY ! �H . Set w2(�; �) = f�(w) 2 H2(X;Y ;Z2) and
W3(�; �) = �w2(�; �) 2 H3(X;Y ;Z), where � is the Bockstein homomor-
phism. Any spinc{structure s 2 Sc(�; w) determines a homotopy class of lifts
f̂ : X ! Bspinc(H;w) of f , and we de�ne a trivialization �̂ of sjY over �

to be a choice of f̂ (within the given homotopy class) that is constant on Y,
up to homotopies through such maps. (Equivalently, �̂ is a spinc{structure
on X=Y that pulls back to s on X .) We de�ne Chern classes by setting
c1(s; �̂ ) = f̂�p�SO(2)(c) 2 H2(X;Y ;Z), where c 2 H2(BSO(2);Z) �= Z is the
generator c1(�SO(2)). If Y is empty, we use the notation w2(�), W3(�), c1(s).

Proposition 1 The set S(�; w) of spin structures on an H {bundle (or �bra-
tion) � ! X is nonempty if and only if w2(�) = 0. If so, then H1(X;Z2) acts
freely and transitively on S(�; w). The set Sc(�; w) is nonempty if and only
if W3(�) = 0, and if so, then H2(X;Z) acts freely and transitively on it. For
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s 2 Sc(�; w) and a 2 H2(X;Z), we have c1(s + a) = c1(s) + 2a. Conjugation
induces an involution on Sc(�; w) that reverses signs of Chern classes and the
H2(X;Z){action. For Y � X and �̂ as above, c1(s; �̂) reduces modulo 2 to
w2(�; �).

Thus, choosing a base point in S(�; w) or Sc(�; w) (if nonempty) identi�es it
with H1(X;Z2) or H2(X;Z).

Proof The �rst two sentences are immediate from obstruction theory, since
the �ber of Bspin(H;w) ! BH is K(Z2; 1). In fact, w2(�; �) is the obstruc-
tion to lifting f to a map f̂ : X ! Bspin(H;w) with f̂ jY constant, as can
be seen by �rst considering the case where Y contains the 1{skeleton of X .
Similarly, H2(X;Z) acts as required on Sc(�; w) (when nonempty) via di�er-
ence classes, since the �ber of pH is K(Z; 2). Now recall that Bspinc(H;w) =
Bspin(H�; w +w�) with BH� = BH �BSO(2). Thus, a lift of f to f̂ : X !
Bspinc(H;w) with f̂ jY constant is the same as a choice of complex line bundle
L ! X with a trivialization �L over Y , together with a spin structure on the
bundle ��L! X (classi�ed by BH�BSO(2)) whose de�ning lift f̂ is constant
on Y . The resulting spinc{structure s with trivialization �̂ over � will satisfy
c1(s; �̂ ) = c1(L; �L), since pSO(2)�f̂ is the classifying map of L. Such a structure
exists if and only if 0 = w2(��L; ���L) = w2(�; �)+w2(L; �L), or equivalently
w2(�; �) = w2(L; �L) = c1(L; �L)j2 . Thus, Sc(�; w) is nonempty if and only if
w2(�) has a lift to H2(X;Z), ie W3(�) = 0, and any c1(s; �̂ ) reduces mod 2 to
w2(�; �). Given s; s0 2 Sc(�; w), the di�erence class d(s; s0) takes coe�cients in
�2(K(Z; 2)), where K(Z; 2) is the �ber of pH . Since (pSO(2))�: �2(K(Z; 2))!
�2(BSO(2)) is multiplication by 2, we have 2d(s; s0) = c1(s0)− c1(s). Equiva-
lently, c1(s+ a) = c1(s) + 2a for a = d(s; s0). The assertion about conjugation
is clear from the way it lifts to Bspinc(H;w).

Now suppose we are given pairs (BH;w) and (BH 0; w0) as before, and a map
h: BH ! BH 0 covered by a bundle map ~h: �H ! �H0 , with h�w0 = w .
Then any H {bundle � ! X determines an H 0{bundle �0 ! X with the
same w2 and W3 , and h determines maps Bspin(H;w) ! Bspin(H 0; w0) and
Bspinc(H;w) ! Bspinc(H 0; w0). We obtain canonical equivariant identi�ca-
tions S(�; w) �= S(�0; w0) and Sc(�; w) �= Sc(�0; w0), and the latter preserves
Chern classes and conjugation. On the other hand, given an H {bundle map
~g: �1 ! �2 covering g: X1 ! X2 , we have induced maps g�: S(�2; w) !
S(�1; w) and g�: Sc(�2; w) ! Sc(�1; w) that are equivariantly equivalent to
g�: H1(X2;Z2) ! H1(X1;Z2) and g�: H2(X2;Z) ! H2(X1;Z) when the do-
mains are nonempty, and characteristic classes and conjugation are preserved
in the obvious way. If g is a homotopy equivalence, then the maps g� are
isomorphisms.
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Examples 2 (a) If h: BSO(m) ! BSO(n), 2 � m � n, is induced by the
usual inclusion of groups, we recover the stabilization-invariance of classical spin
and spinc{structures. We are free to pass to the limiting group SO , eliminating
the dependence on n.

(b) An oriented topological n{manifold X has the homotopy type of a CW {
complex, and it has a tangent bundle classi�ed by a map into the universal
bundle over BSTOP (n) (eg [3]). There is a canonical map h: BSO(n) !
BSTOP (n) that corresponds to interpreting �SO(n) as a topological bundle
and is a �2{isomorphism of simply connected spaces. We immediately ob-
tain a theory of spin and spinc{structures on oriented topological manifolds
by using their tangent bundles (stabilized if n < 2). As before, the theory
is stabilization-invariant, and we can pass to the limiting case of BSTOP .
On smooth manifolds, the new theory canonically reduces via h to the classi-
cal theory. However, any orientation-preserving homeomorphism g: X1 ! X2

induces an isomorphism of topological tangent bundles, hence, isomorphisms
g�: S(X2) �= S(X1) and g�: Sc(X2) �= Sc(X1) as above.

To generalize to homotopy equivalences, we need one further construction. Sup-
pose we are given a bundle map

�H � �H0
~k−! �H00??y ??y

BH �BH 0 k−! BH 00

with k�(w00) = w+w0 . Then a pair of bundles �; �0 ! X classi�ed by BH;BH 0

determine an H 00{bundle �00 ! X , and w2 and W3 add.

Proposition 3 A trivialization of �00 induces equivariant isomorphisms k�:
S(�; w) ! S(�0; w0) and k�: Sc(�; w) ! Sc(�0; w0), and the latter preserves
conjugation and Chern classes.

Proof By obstruction theory, the map k uniquely determines a map k̂ making
the diagram

Bspin(H;w)�Bspin(H 0; w0) k̂−! Bspin(H 00; w00)???yp1

???yp2

BH �BH 0 k−! BH 00

commute, and a similar diagram is induced for spinc via the map k � k0 ,
where k0: BSO(2)�BSO(2)! BSO(2) induces addition on �2 . The diagrams
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determine a map k#: S(�; w) � S(�0; w0)! S(�00; w00) and similarly for Sc . In
the latter case, k# commutes with conjugation and adds Chern classes. In
either case, k̂ restricts to addition on the homotopy groups of the �bers of
p1 and p2 , so di�erence classes add under k# , and for suitably chosen base
points k# is given by addition on H1(X;Z2) or H2(X;Z) whenever its domain
is nonempty. Now a trivialization of �00 determines a trivial spinc{structure
s00 2 Sc(�00; w00). Since W3(�) + W3(�0) = W3(�00) = 0, it follows that Sc(�; w)
is nonempty if and only if Sc(�0; w0) is. For each s 2 Sc(�; w) there is a unique
\inverse" s0 2 Sc(�0; w0) with k#(s; s0) = s00 . Let k�(s) equal the conjugate
of s0 . Then k�: Sc(�; w) ! Sc(�0; w0) is an equivariant isomorphism, and it
preserves conjugation and Chern classes since s00 is conjugation-invariant with
c1(s00) = 0. A similar procedure (with k�(s) = s0 ) works for spin structures.

Example 4 Any oriented, smooth n{manifold X admits a unique isotopy
class of proper embeddings in RN for N su�ciently large. This determines a
normal bundle �X that is unique up to stabilization. Since the tangent bundle
�X satis�es �X��X = �RN jX and the latter bundle is canonically trivial, the
obvious map BSO(n)�BSO(N −n)! BSO(N) determines canonical equiv-
ariant identi�cations S(�X;w�) �= S(�X;w�) and Sc(�X;w�) �= Sc(�X;w�),
the latter preserving Chern classes and conjugation.

Theorem 5 Let (X;@X) be an oriented, possibly noncompact Poincar�e pair.
There is a canonical procedure for de�ning sets S(X) and Sc(X) of spin and
spinc{structures on X having the structure described in Proposition 1 (with
respect to the usual classes w2(X) and W3(X)). For (X;@X) a smooth man-
ifold, the theory is canonically equivariantly equivalent to the standard one
(preserving Chern classes and conjugation). For pairs (Xi; @Xi) as above, any
orientation-preserving, pairwise, proper homotopy equivalence g: (X1; @X1)!
(X2; @X2) induces equivariant isomorphisms g�: S(X2) �= S(X1) and g�:
Sc(X2) �= Sc(X1), the latter preserving Chern classes and conjugation, and
the construction is functorial for such maps g .

Proof The pair (X;@X) has a canonical Spivak normal �bration [7] de�ned
by embedding (X;@X) pairwise and properly in half-space RN � ([0;1); f0g)
(uniquely for N su�ciently large), and making a �bration out of the collapsing
map of the boundary of a regular neighborhood. The resulting oriented spher-
ical �bration over X is classi�ed by a �ber-preserving map into the universal
spherical �bration, whose base space stabilizes to BSG. As in Example 2(b),
there is a canonical map h: BSO ! BSG induced by the spherical �brations
�SO(n)−(0{section), and h is a �2{isomorphism of simply connected spaces. We
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immediately obtain S(X), Sc(X) and characteristic classes satisfying Propo-
sition 1, using the Spivak �bration and BSG. (The resulting classes w2(X)
and W3(X) are well known.) For (X;@X) a smooth manifold, the theory is
canonically equivalent (via h) to that of the stable normal bundle, which is the
usual theory over the tangent bundle by Example 4. A homotopy equivalence g
as above induces a �ber-preserving map of the corresponding Spivak �brations,
and hence, the required maps g� .

The map g�: Sc(X2) �= Sc(X1) induced by a homotopy equivalence can fre-
quently be computed explicitly. We consider the case where X2 contains a
1{dimensional subcomplex with a regular neighborhood N2 that is a manifold,
such that H2(X2;N2;Z) has no 2{torsion. We also assume that g: X1 ! X2

restricts to a homeomorphism from N1 = g−1(N2) to N2 . These condi-
tions are always satis�ed if g is a homeomorphism between smooth mani-
folds, for example by taking N2 to be a neighborhood of the 1{skeleton of
X2 . Now the map g�: H�(X2;N2) �= H�(X1;N1) is an isomorphism. A (sta-
ble) trivialization �2 of the tangent bundle of N2 (or equivalently, of the sta-
ble normal bundle) pulls back via gjN1 to a trivialization �1 over N1 , and
g�w2(X2; �2) = w2(X1; �1). Given spinc{structures si 2 Sc(Xi), pick any triv-
ializations �̂i of sijNi over �i . Then by Proposition 1, g�c1(s2; �̂2)− c1(s1; �̂1)
reduces to zero mod 2. Since H2(X1;N1;Z) has no 2{torsion, there is a unique
class �(s1; s2) 2 H2(X1;N1;Z) with 2�(s1; s2) = g�c1(s2; �̂2)− c1(s1; �̂1). If we
change �̂i with �i �xed, then �(s1; s2) changes by the coboundary of a cochain
in N1 , so it represents a class d(s1; s2) 2 H2(X1;Z) that depends only on
s1 and s2 (�i �xed). But �(s1; s2) vanishes for s1 = g�s2 and �̂1 given by
pulling back �̂2 , and a change of si changes 2�(s1; s2) by twice the correspond-
ing relative di�erence class (by the addition formula of Proposition 1 applied to
Xi=Ni ). Thus, d(s1; s2) is precisely the di�erence class d(s1; g

�s2), in a form
accessible to computation.

Remarks (a) Spinc{structures have several other convenient characteriza-
tions. As we observed in proving Proposition 1, a spinc{structure on � ! X is
the same as a line bundle L and spin structure on ��L! X . For a di�erent ap-
proach, recall that Milnor [5] observed that a spin structure on an oriented vec-
tor bundle over a CW {complex is equivalent (after stabilizing if necessary) to a
trivialization over the 1{skeleton that can be extended over the 2{skeleton, just
as an orientation is a trivialization over the 0{skeleton that extends over the 1{
skeleton. Similarly, a spinc{structure over an oriented vector bundle is equiva-
lent (after stabilizing if the �ber dimension is odd or � 2) to a complex structure
over the 2{skeleton that can be extended over the 3{skeleton. To see this, ob-
serve that the map of classifying spaces induced by inclusion i: U(n)! SO(2n)
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lifts canonically to a map j: BU(n) ! Bspinc(SO(2n); w�) by �rst lifting the
map id � B det : BU(n) ! BU(n) � BSO(2) to Bspinc(U(n); i�w�). (In
fact, the corresponding diagram exists on the group level.) Thus, any complex
structure determines a spinc{structure (and the correspondence preserves c1
and conjugation). For n � 2, this correspondence is bijective for 2{complexes
and surjective for 3-complexes, since the map j has a 2{connected �ber. The
observation now follows from the fact that restriction induces a bijection from
spinc{structures to those over the 2{skeleton extending over the 3{skeleton.
The same remark applies to bundles classi�ed by BSTOP or BSG if we de�ne
a complex structure to be a lift of the classifying map to BU .

(b) The Wu relations are known to hold for Poincar�e complexes. In particular,
for a compact, oriented 4{dimensional Poincar�e complex X (without boundary)
we have w2(X)[x = x[x for all x 2 H2(X;Z2). The usual argument [2] then
shows that W3(X) = 0, so all such complexes admit spinc{structures.

(c) As in the classical case, we have a canonical map i : Bspin(H;w) !
Bspinc(H;w) as the �ber of pSO(2) (induced by inclusion of groups), inducing
a map � : S(�; w)! Sc(�; w) that is equivariantly equivalent (when the domain
is nonempty) to the Bockstein homomorphism �: H1(X;Z2) ! H2(X;Z).
The image Im � is the set of spinc{structures with c1 = 0, or equivalently,
the set of conjugation-invariant structures. To verify that � has the stated
equivariance and image, note that we can either consider i to be an inclu-
sion into the �xed set of conjugation or replace it by a �bration p. Over each
point in BH , i and p will restrict to the canonical inclusion and �bration
RP1 ! CP1 , respectively, both of which represent the unique nontrivial ho-
motopy class of maps in [RP1;CP1]. For a �xed classifying map ~f : � ! �H ,
spin structures s1; s2 2 S(�; w) determine lifts f̂1; f̂2: X ! Bspin(H;w). We
can assume that these agree over the 0{skeleton and that p � f̂1 , p � f̂2 agree
over the 1{skeleton, giving us obstruction cochains d(s1; s2) 2 C1(X;Z2) and
d(�s1; �s2) 2 C2(X;Z). Now d(�s1; �s2) evaluated on a 2{cell c is the el-
ement of �2(CP1) �= Z given by p � f̂2(c) − p � f̂1(c). Since the boundary
operator �2(CP1) ! �1(RP 1) of p is multiplication by 2, the same coef-
�cient is obtained as 1

2
hd(s1; s2); @ci = h�d(s1; s2); ci. Thus, we obtain the

required equivariance d(�s1; �s2) = �d(s1; s2). To compute Im �, �rst note
that any s 2 Im � is conjugation-invariant (since i is) with c1 = 0. If S(�; w)
is nonempty, �x s 2 Im � and let s0 be any spinc{structure that either is
conjugation-invariant or satis�es c1(s0) = 0. By Proposition 1, 2d(s; s0) = 0, so
d(s; s0) 2 Im � and s0 2 Im �. It now su�ces to show that when S(�; w)
is empty, no spinc{structure has c1 = 0 or is conjugation-invariant. The
�rst assertion is obvious since c1j2 = w2 6= 0. For the remaining asser-
tion, choose s 2 Sc(�; w) with conjugate �s. Since �1(CP1;RP1) = 0, we

Spin^c-structures and homotopy equivalences

Geometry and Topology, Volume 1 (1997)

49



can assume that the lift f̂ : X ! Bspinc(H;w) determined by s maps the
1{skeleton X1 into i(Bspin(H;w)), which is �xed by conjugation. Thus, f̂
and its conjugate determine a di�erence cochain d(s; �s) 2 C2(X;Z). Since
�2(CP1)! �2(CP1;RP1) is multiplication by 2 on Z, we can change d(s; �s)
by any coboundary by changing f̂ jX1: X1 ! i(Bspin(H;w)). Thus, if s = �s
we can assume that d(s; �s) = 0, so over each 2{cell, f̂ is conjugation-invariant
up to homotopy rel @ . But conjugation �xes only 0 in �2(CP1;RP1), so f̂
can then be homotoped into i(Bspin(H;w)), ie s 2 Im �.
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