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1 Introduction

Preliminaries and notation

We fix a prime p, and an integer n. We use t to denote Mahowald’s inverse
limit construction tE = lim

←−k
(P−k ∧ ΣE), where P−k stands for either RP∞−k or

its analogue for BZ/(p) when p is odd; see [20] or [26]. This is an abbreviation
for the fixed points of the Greenlees–May Tate cohomology functor; we write
tE for what would be denoted in [7] by tZ/(p)(i∗E)Z/(p) . In particular if E is a
ring spectrum, then so is tE .

The starting point of this paper is a calculation on coefficients, which is by now
well known (see Lemma 2.1). If E is a complex oriented ring spectrum in which
the series [p](x) is not a zero divisor in E∗[[x]] = E∗CP∞ , then

π−∗(tE) = E∗((x))/([p](x)),

where |x| = 2 and Ek = π−k(E). Here we use the awkward grading to em-
phasize that the ring is related to E∗CP∞ and E∗BZ/(p). Graded more
conventionally, we have

π∗(tE) = E∗((x))/([p](x))

where |x| = −2.

Throughout this paper we will use R((x)) to denote the ring of formal Laurent
series over R that are allowed to be infinite series in x, but only finite in x−1 .
If E is a ring spectrum and x an indeterminate in degree −d < 0, we write
E((x)) for the ring spectrum given by lim

←−i
∨
j≥i Σ

djE . The multiplication is
defined by the inverse limit of the obvious maps

(
∨
j≥i0

ΣdjE) ∧ (
∨
k≥i1

ΣdkE) −→
∨

l≥i0+i1

ΣldE. (1.1)

This gives π∗[E((x))] = E∗((x)). (Note that the theoretical possibility of phan-
tom maps in (1.1) means the multiplicative structure there may not be unique,
but we are content to use whichever multiplicative structure might occur. Ac-
tually work of Hovey and Strickland shows that there are no phantom maps in
this situation [14], so the multiplication is defined uniquely.) Note also that if
E is connective,

lim
←−
i

∨
j≥i

ΣdjE =
∏
j∈Z

ΣdjE. (1.2)
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In the succeeding, if we refer to a multiplication on
∏
j∈Z ΣdjE it will be the

one coming from the equivalence (1.2), and the ring structure on
∏
j∈Z ΣdjR

for a connective graded ring R will be understood to be the one given by the
additive isomorphism with R((x)).

If M is a flat module over E∗ , we write M ⊗ E for the spectrum representing
the homology theory

X 7→M ⊗E∗ E∗(X).

This is a module spectrum over E (again, it will not matter for us that the
module structure is well-defined only up to phantom maps). We also use [p](x)
for the p–series of the formal group law over E given by the orientation. When
necessary we will decorate [p] with a subscript indicating the formal group law.

We will work with a number of different spectra E , all closely related. The
cohomology theory closest to BP is BP 〈n〉, the version of BP with singular-
ities satisfying BP 〈n〉∗ = Z(p)[v1, . . . , vn] where vi is the ith Araki generator.
The Johnson–Wilson theory E(n) = v−1

n BP 〈n〉 has the obvious coefficient ring
obtained from inverting vn ∈ BP 〈n〉∗
We will also need to consider some simple variants of E(n). We list the theories
below and their coefficient rings. They are all flat over E(n) and are thus
determined by their coefficients:

E∧(n) = LK(n)E(n) so

E∧(n)∗ = Zp[[v1, . . . , vn−1]][vn, v−1
n ] = (E(n)∗)∧In−1

(En)∗ = E∧(n)∗[u]/(up
n−1 − vn)

and in later sections

E(n)[w]∗ = E(n)∗[w]/(wp
n−1−1 − vn−1).

The “∧” is meant to suggest “complete.” The reader should note that our
choice of En so that En,∗ = Zp[[u1, . . . , un−1]][u, u−1] conflicts with the common
convention that En denote the same theory extended by the Witt vectors of
Fpn . We make no use of that theory in this paper, so this should cause no
confusion. The multiplicative structure on E∧(n) is given by the composite

LK(n)E(n) ∧ LK(n)E(n)→ LK(n)(LK(n)E(n) ∧ LK(n)E(n)) =

LK(n)(E(n) ∧ E(n))→ LK(n)E(n).

The other two spectra are finite extensions of E∧(n), so the multiplicative
structure is determined in the obvious way from the coefficients.
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History

Perhaps a few words of history are relevant here. Lin’s theorem [18, 9] shows
that for any finite CW–spectrum X , the map

X → lim
←−
k

(P−k ∧ ΣX) = tX

is p–completion. This is not true [3, 2] for E = BP or various other BP –
module spectra, though there is some predictable behavior, which is quite dif-
ferent from that of finite complexes. In particular, tX is quite large in these
cases.

By a lovely but simple argument involving the thick subcategory theorem, Ma-
howald and Shick [22] showed (for p = 2) that if X is a type n finite complex,
and v is a vn–self map, then t(v−1X) ' ∗. This is the starting point for a series
of observations. For example, it turns out that tK(n) ' ∗; indeed [8] proves
that tGK(n) ' ∗ for any finite group G. Hopkins has shown that if X is of
type n then t(LnX) ' ∗ if X is type n (this is proved in [12]). Calculations of
Hopkins and Mahowald (including a proof when n = 1) lead them to conjecture
that if X is type n− 1, then

t(LnX) = Ln−1Xp̂ ∨ Σ−1Ln−1Xp̂. (1.3)

This is related to the chromatic splitting conjecture [11].

In light of (1.3), it seems worthwhile to investigate tE(n). In [8] it is shown
that tE(n) is vn−1–periodic in an appropriate sense. Using this, one sees in
[12] that when X is finite, the Bousfield class of t(LnX) is compatible with the
conjecture (1.3) (for p = 2, this is also proved by different techniques in [17]).
The goal of the present paper is to give as precise a description as possible
of tE(n) in terms of familiar vn−1–periodic spectra like E(n − 1). We hope
that with the results of this paper in hand, it may be possible to make further
headway on (1.3).

Results

The first step, in section 2, is a series of calculations of π∗tE in terms of more
familiar objects for various E . It turns out to be useful to complete with respect
to In−1 = (p, . . . , vn−2). Since tE(n) is already E(n − 1) local, this amounts
to localizing with respect to K(n − 1). This completion is in some sense not
very dramatic; in particular if X is type n−1 as in (1.3), the completion leaves
t(LnX) unchanged. The main result, for the case of E(n), is:
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Theorem A (Proposition 2.11) There is an isomorphism of rings(
tE(n)∗

)∧
In−1

= E(n− 1)∗((x))∧In−1
. (1.4)

Section 3 gives splittings of the spectra v−1
n tBP 〈n〉 and tE(n) in the manner

suggested by Theorem A. For tE(n) the result is:

Theorem B (Theorem 3.10) There is a map of spectra

lim
←−
i∈N

∨
j≥−i

Σ2iE(n − 1)→ tE(n)∧In−1
,

which after completion at In−1 (or equivalently after localization with respect
to K(n− 1)) induces the isomorphism of Theorem A on homotopy groups.

We emphasize that the map in Theorem B is not multiplicative, even though
the left hand side can be given a multiplication as in equation (1.1) and the
right hand side is a ring spectrum by [7], and Theorem A gives an isomorphism
of rings. Now the homotopy calculation in section 2 also shows that the obvious
formal group law over tE(n) has height n− 1, so one might view the map

E(n)→ tE(n)

as a sort of Chern character, the classical Chern character being the case n = 1.
To make sense of this, one ought to use the calculations of section 2 to construct
a map of ring spectra.

To do this, we give an isomorphism between the natural formal group law over
tE(n) and the Honda formal group law of height n− 1. This can be done after
a dramatic base extension, but in section 4 we show that it can then be done in
a canonical way. Section 5 uses section 4 and the Lubin–Tate theory of lifts to
construct an isomorphism of ring spectra between an extended version of tE(n)
and an extended version of E(n− 1).

Theorem C (Corollary 5.11) These is a canonical equivalence of complex
oriented ring spectra

CFp((y))sep ⊗̂
CFp((y))

TE → CFp((y))sep ⊗̂
Zp
En−1.

The objects discussed in Theorem C are defined precisely in sections 4 and
5. Briefly, the ring CFp((y)) is isomorphic to the p–adic completion of Zp((y))
(see Lemma 5.5). The ring CFp((y))sep is a complete discrete valuation ring with
maximal ideal (p) and residue field Fp((y))sep . TE is a finite extension of tE(n)
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completed at In−1 and defined in equation (4.3), and En−1 is defined as usual
to be a completed 2–periodic extension of E(n−1) as usual so that (4.1) holds.

The authors thank Johns Hopkins University, at which the conversations leading
to this paper took place, and Max-Planck-Institut für Mathematik, at which the
last fragments were committed to paper. The authors were partially supported
by the NSF.

2 Calculations on homotopy groups

The homotopy of tE for E complex oriented

We assume that E is complex oriented, and that [p](x) is not a 0 divisor
in E∗[[x]]. In [7, §16] it is shown that tE is an inverse limit of E smashed
with Thom spectra over BZ/(p). In particular, [7, 16.3] shows that π−∗tE =
E∗((x))/([p](x)) as a module over E∗[[x]]/([p](x)) = E∗(BZ/(p)+).

Now [7, 3.5] proves that the map

E∗(BZ/(p)+)→ π−∗tE

is a map of rings. It follows that the element “x−1” in π−∗tE = E∗((x))/([p](x))
satisfies x · x−1 = 1 in the ring π∗tE , so really is the inverse of x. From this
one concludes that

Lemma 2.1 There is an isomorphism of rings

π−∗(tE) = E∗((x))/([p](x)). (2.2)

An isomorphism after completion

Recall R((x)) is S−1R[[x]] where S is the multiplicatively closed subset gener-
ated by x. If R is graded connected, and x has degree −2, then additively
R((x)) =

∏
k∈Z Σ2kR. As remarked in the introduction, wherever this notation

occurs, we will also consider
∏
k∈Z Σ2kR to have the ring structure given by

this isomorphism. Similarly, when E is a connective ring spectrum, we will
consider the ring structure on

∏
k∈Z Σ2kE = lim

←−i
∨
k≥i Σ

2kE as in (1.1).

The following observation motivates Conjecture 1.6 of [3] (which was corrected
as Conjecture 1.2 of [2]).
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Proposition 2.3

π∗(tBP 〈n〉) = BP 〈n〉∗((x))/([p](x))

'
∏
k∈Z

Σ2kBP 〈n− 1〉p̂∗ (2.4)

' BP 〈n− 1〉p̂∗((x)).

Proof The first line is equation (2.2). We wish to simplify the right hand side.

For convenience, we introduce degree 0 elements

wi = vix
pi−1.

Then the ideal in the quotient above is generated by the relation

px+F w1x+F w2x+F · · ·+F wnx = 0

where F is the formal group law over BP 〈n〉∗ induced by the orientation from
BP . Expanding the formal sums and dividing by x, we can write the relation
in the form

wn = −(p+ a formal series in w1, ..., wn),

and this equation implies

wn ≡ −(p+w1 + ...+ wn−1) (mod decomposables). (2.5)

By iterating this relation some finite number of times (depending on the multi-
index (i0, . . . , in−1)), we produce a polynomial Wn so that

wn = Wn(w1, ..., wn−1) ∈ Z/(pi0)[w1, . . . , wn−1]/(wi11 , . . . , w
in−1

n−1 ).

We thus produce a power series Wn ∈ Zp[[w1, . . . , wn−1]] so that

wn = Wn(w1, ..., wn−1) ∈ Zp[[w1, . . . , wn−1]] ⊆ Zp[v1, . . . , vn−1][[x]].

Thus the map

π∗(tBP 〈n〉)→ BP 〈n− 1〉p̂∗((x))

which sends vi to vi (i < n), x to x and vn to x−(pn−1)Wn(w1, ..., wn−1) is a
well defined ring map. There is a map

BP 〈n− 1〉∗((x))→ π∗(tBP 〈n〉)

defined in the obvious way, that becomes an inverse map upon extending it to
BP 〈n− 1〉p̂∗((x)). This extension exists, because the relation

[p](x) = 0
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together with Araki’s formula for the p–series [24, A2.2.4] allows us to write

px = [−1](v1x
p +F · · ·+F vnx

pn) (2.6)

where F is the formal group law on BP 〈n〉 induced by the complex orientation
from BP . Now dividing (2.6) by x lets us to write any p–adic integer as a
power series in x.

The conjecture of [3, 2] is that the isomorphism (2.4) is the effect on homotopy
groups of an equivalence of spectra

tBP 〈n〉 '
∏
k∈Z

Σ2kBP 〈n− 1〉p̂.

This is proved for n = 1 in [3] and for n = 2 in [2] using the Adams spectral
sequence. Of course in general an isomorphism in homotopy doesn’t give an
isomorphism of spectra, but it does if it is an isomorphism of MU∗–modules
satisfying Landweber exactness. This suggests inverting vn to produce an iso-
morphism of spectra. We shall show that there is an isomorphism of the ex-
pected form after an appropriate completion, taking as our starting point the
spectra v−1

n (tBP 〈n〉) and tE(n). The first point is that these spectra are not
the same.

The map BP 〈n〉 → E(n) gives a map tBP 〈n〉 → tE(n), and since vn is a unit
on the right, this gives a map v−1

n tBP 〈n〉 → tE(n). On homotopy we get

π∗(v−1
n (tBP 〈n〉)) = v−1

n [BP 〈n〉∗((x))/([p](x))]
↪→ E(n)∗((x))/([p](x))
= (tE(n))∗ = π∗t(v−1

n BP 〈n〉).

To see that the inclusion is proper, set r = |vn|/|v1| + 1 and notice that the
series

1 + v−1
n vr1x

p−1 + v−2
n v2r

1 x
2(p−1) + . . .

is an element of E(n)∗((x))/([p](x)) but not of v−1
n BP 〈n〉∗((x))/([p](x)). This

reflects the fact that t need not commute with direct limits (nor in fact does it
generally commute with inverse limits).

We treat the case v−1
n (tBP 〈n〉) first.

We would like to extend the isomorphism of (2.4) to an isomorphism

π∗v
−1
n tBP 〈n〉 → v−1

n−1BP 〈n− 1〉p̂∗((x)). (2.7)
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For the map to exist we need the image of wn under the isomorphism in (2.4) to
be a unit after inverting vn−1 on the range of that map. This is false for n > 1.
We can see this by checking that the image of wn after inverting vn−1 is not
a unit even modulo (v1, . . . , vn−2). The range of (2.7) in dimension 0, modulo
(v1, . . . , vn−2), is Zp[[wn−1]][w−1

n−1]. We have im (xwn) = −(px+F wn−1x), so

im (wn) = −(p+ wn−1) (mod pwn−1Zp[[wn−1]]).

Since wn−1 is a unit in the range, the image of wn is a unit if and only if
the image of wn divided by wn−1 , which we will abuse notation by writing
wn/wn−1 , is a unit. Continuing to work modulo (v1, . . . , vn−2),

wn/wn−1 = −(1 +
p

wn−1
) (mod pZp[[wn−1]]).

Now if we examine the inclusion of rings

η : Zp[[wn−1]][w−1
n−1] ⊆ (Zp[[wn−1]][w−1

n−1])p̂,

we see that since wn/wn−1 = −1 + pε, wn/wn−1 is a unit in the completion,
with inverse given by −(1 + pε + p2ε2 + . . . ). If we write this element as a
power series in wn−1 plus a power series in w−1

n−1 , we see that (wn/wn−1)−1 is
the sum of a power series in wn−1 with

a1

wn−1
+

a2

w2
n−1

+
a3

w3
n−1

+ . . .

where ai = (−1)ipi (mod pi+1). The power series in wn−1 is neccessarily in
the image of η , but a1

wn−1
+ a2

w2
n−1

+ a3

w3
n−1

+ . . . is clearly not. It follows that

(wn/wn−1)−1 is not in the image of η , and hence wn/wn−1 is not a unit in
Zp[[wn−1]][w−1

n−1].

Similarly, if the map existed, it could be an isomorphism only if vn−1 were a
unit in the domain after inverting vn . This also is not the case for n > 1, for
similar reasons. When n = 1 both of these conditions are met, the map above
exists, and is an isomorphism.

Proposition 2.8 If the map from (2.4) is completed at the ideal

In−1 = (p, v1, . . . , vn−2)

then there is an isomorphism

(π∗v−1
n tBP 〈n〉)∧In−1

→ (v−1
n−1[BP 〈n− 1〉p̂∗((x))])∧In−1

. (2.9)
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Proof We follow the isomorphism of (2.4)

π∗(tBP 〈n〉) = BP 〈n〉∗((x))/([p](x))
' BP 〈n− 1〉p̂∗((x))

by the inclusion

BP 〈n− 1〉p̂∗((x))→ (v−1
n−1[BP 〈n− 1〉p̂∗((x))])∧In−1

into the module obtained by inverting vn−1 and then completing. Now note
that wn has image as in (2.5). So dividing by vn−1x

pn−1
= wn−1 we see the

image of wn divided by wn−1 is −1 plus terms in the ideal In−1 and terms in
xBP 〈n− 1〉p̂∗[[x]]. This is a unit, so since we have inverted vn−1 , the image of
wn is a unit. This allows us to extend our map to the domain given by inverting
vn . Since the range is complete, we can also extend to the completion.

On the other hand, a similar argument allows us construct the inverse map
from the inverse map of (2.4).

Now we shall show that the isomorphism in (2.9) is induced by a map of spectra

(v−1
n tBP 〈n〉)∧In−1

−→ (v−1
n−1

∏
Z

Σ2kBP 〈n− 1〉)∧In−1
.

Both sides are ring spectra with obvious MU –module structures. They would
be isomorphic as MU –algebras by the Landweber exact functor theorem if we
could make them MU –algebras so that the coefficient isomorphism preserves
the map from MU∗ .

Let R be the ring spectrum on the right. In order to construct a map of ring
spectra inducing the isomorphism in (2.9), it is necessary that the FGL induced
by

v−1
n tBP 〈n〉∗ → R∗ → R∗/(p, . . . , vn−2)

be isomorphic to the “usual” FGL on R∗/(In−1) (induced by BP 〈n − 1〉∗ →
R∗ ). We cannot demonstrate such an isomorphism, but we can exhibit an
isomorphism of spectra (that preserves neither the MU –module structure, nor
the multiplicative structure). We do this in section 3.

The situation for tE(n) is very similar. We can attempt to construct a map

tE(n)∗ → E(n− 1)p̂∗((x)) (2.10)

as in (2.4), but we immediately run into the problem that wn , and hence vn ,
does not go to a unit for n > 1. Also as before, vn−1 is not a unit on the left.
The solution is the same; after completing both sides at In−1 we can construct
an isomorphism.
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Proposition 2.11 The map of (2.4) extends to an isomorphism

E(n)∗((x))/[p](x)∧In−1
= E(n− 1)∗((x))∧In−1

(2.12)

where

π∗(tv−1
n BP 〈n〉)∧In−1

= π∗tE(n)∧In−1
= E(n)∗((x))/[p](x)∧In−1

and

E(n− 1)∗((x))∧In−1
= (v−1

n−1BP 〈n− 1〉)((x)))∧In−1
.

In the next section, we use this calculation to construct an isomorphism of
spectra. We are able to do this without showing the corresponding formal
group laws are isomorphic, so we do not get an isomorphism of MU –modules.
In section 5, we extend scalars suitably to construct an isomorphism of formal
group laws, yielding isomorphisms of MU –algebra spectra.

3 Structure of E(n) as an E(n−1)–module spectrum

We begin with an algebraic observation.

Lemma 3.1 Let (A,m) be a complete local ring, k = A/m. Let M be an
A–module such that the map m⊗ x 7→ mx induces isomorphisms

(mr/mr+1)⊗k (M/mM) = mrM/mr+1M.

Let I be an index set for a vector space basis of M/mM , so that M/mM '⊕
I k . Then there is a map ⊕

I

A
ε−→M

which is an isomorphism when completed at m.

Proof We construct a map as follows. Let {x̄α}, α ∈ I be a basis for M/mM
as a A/m–vector space. Let {xα} be lifts to M . Then we map ⊕IA to M by
ε(1α) = xα .

Our hypotheses imply that this map gives an isomorphism on the associated
graded with respect to the filtration induced by powers of m. This implies that
the completion of the map is an isomorphism.
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Note that if the index set I in Lemma 3.1 is infinite, M will not generally be
isomorphic to a free A–module. For example if A = Zp and M = (⊕NZp)p̂
then M is not a free Zp–module. To see this, observe that no free Zp–module
of infinite rank can be p–complete.

Next we recall the result proved in [13, Theorem 4.1]. The identification
BP∗BP = BP∗[t1, t2, . . . ] gives a splitting

ψ : BP ∧BP '
∨
R

Σ|R|BP (3.2)

where R ranges over multi-indices of non-negative integers (with only finitely
many positive coordinates) R = (r1, r2, r3, . . . ), tR = tr11 t

r2
2 . . . and

|R| = |tR| = 2(r1(p− 1) + r2(p2 − 1) + r3(p3 − 1) + . . . ).

To build a map from right to left of (3.2), take Σ|R|BP to BP ∧BP by using
the homotopy class tR ∈ π|R|(BP ∧ BP ), smashing on the left with BP and
then multiplying the left pair of BP ’s:

BP ∧ S|R| 1BP∧tR−−−−−→ BP ∧BP ∧BP µ∧1BP−−−−→ BP ∧BP. (3.3)

The wedge over all R of these maps is an isomorphism on homotopy groups, so
is invertible, and ψ is that inverse.

Theorem 4.1 of [13] states that the composite

BP
ηR−→ BP ∧BP ψ−→

∨
R

Σ|R|BP
ρ−→
∨
R∈R

Σ|σR|BP θ−→
∨
R∈R

Σ|σR|BP 〈j〉 (3.4)

is a homotopy equivalence after smashing with a type j spectrum and inverting
vj . The map ρ is induced by leaving out wedge summands, and θ by the usual
reduction of ring spectra BP → BP 〈j〉. We use the notation of [13], derived
from [15]: R is the set of multi-indices with the first j − 1 indices 0, and
σR = (pjej , pjej+1, . . . ).

We shall use the following facts about MU –module spectra M :

M ∧ LjZ = v−1
j M ∧ Z = M ∧ v−1

j Z (3.5)

when Z is a finite type j spectrum (which follows from [25, Theorem 1]);

M∧Ij−1
= lim
←−
Z

M ∧ Z (3.6)

where Z runs through finite type j spectra under S0 . Use of the nilpotence
theorem, [4], is required to produce a sufficient supply of such Z and to ensure
there are enough maps between them, as in [21, Proposition 3.7]. For our
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purposes equation (3.6) can be taken to be a definition, but see the remark
below. Inverting vj , we get

LK(j)M = lim
←−
Z

(M ∧ v−1
j Z) = (v−1

j M)∧Ij−1
.

This last equality is by equation (3.5) combined with, say, the proof of [10,
Proposition 7.4] which verifies that LK(n)X = lim

←−Z
(X ∧ LnZ) as Z runs over

finite type n spectra under S0 .

So if vj is already a unit on M then

LK(j)M = M∧Ij−1

and we will generally use the first notation rather than the second below.

Remark Although we use (3.6) as the definition of M∧Ij−1
, there are other

approaches that can be taken for specific M . For certain MU –modules M , one
can define a spectrum M̃ with homotopy groups (π∗M)∧Ij−1

by using Landweber
exactness. In those cases, also by using Landweber exactness, one can prove
that M̃ ' M∧Ij−1

as given in (3.6). If M has enough structure, one may also
be able to define a completion of M using either Baas–Sullivan bordism with
singularities [1], or structured ring spectra using the techniques of [5]. In either
case, one can use the nilpotence theorem to verify that the construction is
homotopy equivalent to the one in (3.6).

Each map in (3.4) except ηR is a map of left BP –modules. Recall Ij is the ideal
(p, . . . , vj−1) ⊆ BP∗ . Since Ij is invariant, ηR(Ij) = ηL(Ij), and thus each map
in (3.4) is compatible on homotopy with the Ij –adic filtration. Let Z be a finite
type j spectrum; then smashing (3.4) with LjZ gives an equivalence, and thus
an E(j)–module structure on BP∧v−1

j Z = BP∧LjZ or, by taking inverse lim-
its, a (possibly not unique) module structure on LK(j)BP = lim

←−Z
BP ∧ v−1

j Z .

We prove the following proposition as a warm-up to our additive splitting of the
Tate cohomology spectrum. The construction is a general method for splitting
LK(j)F when F is a nice enough BP –module, given the splitting of LK(j)BP .
A theorem equivalent to Proposition 3.7 is proved as [13, Theorem 4.7].

Proposition 3.7 If n > j , there is a map

s :
∨
V

Σ|V |E(j) −→LK(j)E(n) (3.8)
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which gives an equivalence after completing with respect to (p, . . . , vj−1), or
equivalently, after localizing with respect to K(j). The index V runs through
the monomials in

Fp[vj+1, . . . , vn−1, v
±1
n ].

Proof LK(j)E(n) is an LK(j)BP –module, and thus an E(j)–module. Let
m = Ij = (p, . . . , vj−1). Since

LK(j)E(n) = lim
←−
Z

(E(n) ∧ v−1
j Z) (3.9)

where Z runs through finite type j spectra,

π∗LK(j)E(n) = Zp[[v1, . . . , vj−1]][v±1
j , vj+1, . . . , vn−1, v

±1
n ].

Now since m is an invariant ideal mπ∗LK(j)BP is well-defined, whether we
think of m as an ideal in E(j)∗ acting on M = π∗LK(j)E(n) via the E(j)–
module action on LK(j)BP or as an ideal in BP∗ acting via the associated
localization map to π∗LK(j)BP .

We calculate that the associated graded to the m–adic filtration on M is

E0M = ⊕V Σ|V |Fp[[v0, . . . , vj−1]][v±1
j ]

where V runs through monomials in Fp[vj+1, . . . , vn−1, v
±1
n ].

M satisfies the hypotheses of Lemma 3.1 (for the left m–structure which comes
from the map BP → E(n)→ LK(j)E(n)), where

A = π∗E
∧(j) = Zp[[v1, . . . , vj−1]][v±1

j ].

Now the splitting of LK(j)BP gives LK(j)E(n) an E∧(j)–structure, and thus
an associated A–action; the m–adic filtration is the same, so M also satisfies
the hypotheses of Lemma 3.1 for that m–adic filtration.

We can now make the usual homotopy theoretic argument: take generators of
M/mM and lift them to elements of M . Use the E(j) structure of LK(j)E(n)
to make maps E(j)→ LK(j)E(n) realizing these generators on the unit of the
ring spectrum E(j). This gives a map∨

V

Σ|V |E(j)→ LK(j)E(n).

By Lemma 3.1, this map induces an isomorphism on homotopy groups after
completion with respect to (p, . . . , vj−1), ie after applying LK(j) , which leaves
the right hand side unchanged.
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We apply techniques similar to those used in Proposition 3.7 to prove the fol-
lowing.

Theorem 3.10 There is a map of spectra

lim
←−
i∈N

∨
j≤i

Σ2iE(n − 1)→ tE(n)∧In−1

that becomes an isomorphism on homotopy groups after completion at In−1

(or equivalently after localization with respect to K(n− 1)).

Proof We proceed as in the proof of Proposition 3.7. We have given M =
π∗tE(n)∧In−1

as a BP∗–module in Proposition 2.11. It satisfies the hypotheses of
Lemma 3.1 with m = (p, . . . , vn−2) ⊆ BP∗ , A = E∧(n−1)∗ . Since tE(n)∧In−1

=
LK(n−1)tE(n), we have an LK(n−1)BP –action and hence an E(n − 1)–action.

As above, the two available m–adic filtrations on π∗tE(n)∧In−1
(one from BP∗ ,

the other from E(n − 1)∗ via the E(n − 1)–structure on LK(n−1)BP ) are the
same since m is an invariant ideal. We now proceed in a slightly different
manner. Note that

M/m = K(n− 1)∗((x)) =
⊕
i∈I

ΣciK(n− 1)∗ (3.11)

for some indexing set I , since K(n − 1)∗ is a graded field. We could apply
Lemma 3.1 and proceed as before, but we would actually like better control over
our expression for tE(n)∧In−1

. In particular, the index set I in equation (3.11)
must be uncountable, but we would like to find a countable set of topological
generators for tE(n)∧In−1

. In fact, we would like these generators to correspond
to the (positive and negative) powers of x.

To accomplish this, we first recall [7, Theorem 16.1] which states that tE =
lim
←−i

[(BZ/(p))−iξ ∧ ΣE], where ξ is the usual complex line bundle. Recall also

that the Thom class of (BZ/(p))−iξ is in dimension −2i, and is not torsion.
In fact the spectrum (BZ/(p))−iξ has a CW–structure with exactly one cell
in each dimension greater than or equal to −2i. Since the −2i–cell generates
a non-torsion element of homology, the attaching map of the −2i + 1 cell to
the −2i skeleton is null. So the cell in dimension −2i+ 1 is spherical, and the
inclusion of that −2i + 1 cell, smashed with the unit of E when E is a ring
spectrum, gives

x−i+1 ∈ π−2i+2[(BZ/(p))−iξ ∧ ΣE].
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Now, we take xj ∈ π2jtE(n)∧In−1
, and use the E∧(n−1)–structure to construct

a sequence of maps ∨
j≥−i

Σ2jE∧(n− 1) −→ tE(n)∧In−1
. (3.12)

We make a map µ−i by composing the map of (3.12) with the map

tE(n)∧In−1
→ (BZ/(p))−(i+1)ξ ∧ ΣE∧In−1

given by [7, Theorem 16.1].

Taking inverse limits of the maps µ−i gives a map

lim
←−
i

(
∨
j≤i

Σ2jE∧(n− 1))
f−→ tE(n)∧In−1

.

This map defines an isomorphism on the associated graded modules with respect
to m. It follows that f is an equivalence after completion, that is[

lim
←−
i

(
∨
j≤i

Σ2jE∧(n− 1))
]∧
In−1

= tE(n)∧In−1
.

By a very similar argument one can prove the analog to Proposition 2.8:

Proposition 3.13 There is an equivalence of spectra

[v−1
n−1 lim

←−
i

(
∨
j≤i

Σ2jBP 〈n− 1〉)]∧In−1
→ (v−1

n tBP 〈n〉)∧In−1
.

We leave the proof to the interested reader.

Given all the completions that occur in this section and in section 2, one might
hope that by using some other, already complete theory like E∧(n) or En , we
could prove a theorem with a simpler statement. This is unfortunately not the
case. There are similar results for these theories, but even if E is complete
with respect to (p, v1, . . . , vn−2), tE will generally not be, and so will need to
be completed again. There are variants of Theorem 3.10 for these other spectra
as well, but the statement is not simpler.

4 A Honda coordinate on the formal group over tE

In this section we shall take p to be an odd prime and n > 1 to be an integer. It
will ease the superabundance of superscripts to use the abbreviation q = pn−1 .

We define a number of formal group laws in this section that are used in the
remainder of the paper. For reference, we list them here.
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G(n): a homogeneous formal group law of degree 2 on E(n)∗ induced by
the usual orientation of E(n).

Gn : a twist of the pushforward of G(n) to π∗En by the element u. This
is homogeneous of degree 0.

F : a twist of the pushforward of G(n) to E(n)[w]∗ of G(n) by w . This
is also homogeneous of degree 0.

F0 : the pushforward of F to the residue field of π0TE ; TE is defined in
equation (4.3).

H : the Honda formal group law of height n− 1 over Fp .

F : A formal group law introduced in the proof of Proposition 4.15 that
is shown in that proof to be the same as H .

We use the canonical orientation of E(n), which provides a coordinate so that

E(n)∗(CP∞) = E(n)∗[[x]],

and as usual, if µ is the multiplication on CP∞ ,

µ∗(x) ∈ E(n)∗[[x, y]] = E(n)∗[[x]]⊗̂E(n)∗[[y]] = E(n)∗(CP∞ ×CP∞)

is a formal group law which we will denote G(n)(x, y).

This formal group law has the feature that its p–series is given by
∑G(n)

i≤n vix
pi .

Recall that

π∗En = Zp[[u1, . . . , un−1]][u, u−1] (4.1)

with |ui| = 0 and |u| = 2. There is an isomorphism

E0
n(CP∞) ∼= π0En[[t]]

in terms of which the coproduct on E0
n(CP∞) is determined by the formula

t 7→ Gn(s, t)

where Gn is the group law

Gn(s, t) def= uG(n)(u−1s, u−1t)

over π0En .

Since vn−1 is a unit in π∗
(
tE(n)

)∧
In−1

, we shall also consider the theory E(n)[w]
obtained by adjoining an element w of degree 2 such that

wq−1 = vn−1 (4.2)
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and then completing with respect to the ideal In−1 = (p, . . . , vn−2). We prefer
this choice to the usual parameter u = v

1/(pn−1)
n (which gives En ) because the

functor t will emphasize height n − 1 behavior instead of height n, and the
normalization we choose to make things 2–periodic leads to simpler statements
in section 4 and this section.

Equation (2.2) shows that there is an isomorphism

π∗tE(n)[w] ∼= π∗E(n)[w]((x))/[p]G(n)(x).

Proposition 2.11 shows that vn−1 , and so also w , is a unit in the homotopy of
the In−1–adic completion

TE
def=
(
tE(n)[w]

)∧
In−1

(4.3)

which is thus 2–periodic. If F denotes the formal group law

F (s, t) def= wG(n)(w−1s,w−1t) (4.4)

(which implies [p]F (s) = w[p]G(n)(w−1s)) and we introduce elements

wi = viw
−(pi−1)

y = wx

of degree zero, then the argument of Proposition 2.11 shows that there are
isomorphisms

π0TE ∼=
[
Zp[w1, . . . , wn−2, w

±1
n ]((y))/([p]F (y))

]∧
In−1

∼=
[
Zp[w1, . . . , wn−2]((y))

]∧
In−1

(4.5)

π∗TE ∼=
[
Zp[w1, . . . , wn−2]((y))

]∧
In−1

[w,w−1].

The group law F is defined over π0E(n)[w] and hence over π0TE ; it is p–
typical, and its p–series satisfies the functional equation

[p]F (t) = pt+
F
w1t

p +
F
. . .+

F
wn−2t

pn−2
+
F
tq +

F
wnt

pq. (4.6)

We denote by F0 the image of the group law F in the residue field of π0TE .

Proposition 4.7 The residue field of π0TE is Fp((y)). The element wn of
π0TE maps to −y(1−p)q in the residue field. The formal group law F0 has coef-
ficients in the subring Fp[y−1], and its p–series satisfies the functional equation

[p]F0(t) = tq −
F0

y(1−p)qtpq. (4.8)
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Proof The statement about the residue field follows from equation (4.5).
Before we proceed further, recall that since F0 is p–typical and p is odd,
[−1]F0(t) = −t. Note that the image of equation (4.6) in the residue field
is

[p]F0(t) = tq +
F0

wnt
pq,

so equation (4.8) follows from the assertion that wn maps to −y(1−p)q .

Since [p]F0(y) = 0 we have

0 = yq +
F0

wny
pq

and so

yq = [−1]F0(wnypq) = −wnypq

wn = −y(1−p)q.

Finally, F0 is defined over the subring Fp[y−1] since F is actually defined over
the polynomial ring in w1, . . . , wn , and (1− p)q is negative.

So F0 is a p–typical formal group law over Fp[y−1], of height n− 1 in the field
Fp(y) or Fp((y)). On the other hand, let H be the Honda law of height n− 1
over Fp , characterized by the fact that it is p–typical with p–series

[p]H(t) = tq.

Comparison with equation (4.8) shows that

F0 ≡ H mod y−1. (4.9)

Now Lazard [16, 6] proves that over the separable closure Fp(y)sep , there is an
isomorphism of formal group laws

F0
∼= H,

which is in general not at all canonical. In this section we show that there is
a unique isomorphism Φ: F0

∼= H which preserves equation (4.9) in a suitable
sense.

To make this precise, note that expanding a rational function as a power series
at infinity gives a map of fields

Fp(y)→ Fp((y−1))

which extends to

Fp(y)sep → Fp((y−1))sep.
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Theorem 4.10 There is a unique isomorphism Φ: F0 → H of formal group
laws over Fp(y)sep such that the image of Φ in Fp((y−1))sep has coefficients in
the image of

Fp[[y−1]]→ Fp((y−1))sep.

Φ gives an isomorphism over Fp[[y−1]] satisfying

Φ(t) ≡ t mod y−1.

We build up to the proof gradually; the proof itself appears after Proposition
4.15.

Lemma 4.11 There is a unique series τ(t) ∈ Fp[y−1][[t]] such that

[p]F0 = [p]H ◦ τ.
This power series has the properties that

τ(t) ≡ t mod t2

τ(t) ≡ t mod y−1.

Proof The equation which τ must satisfy is

[p]F0(t) = τ(t)q.

If

F0(s, t) =
∑
i,j

bijs
itj

then the functional equation (4.8) becomes

[p]F0(t) =
∑
i,j

bij(tq)i(−y(1−p)qtpq)j

=
∑
i,j

bij(−y1−p)jqt(i+pj)q.

So we must show that bij has a unique q th root. If it does then

τ(t) =
∑
i,j

b
1/q
ij (−y1−p)jt(i+pj)

which shows that τ(t) ≡ t mod t2 .

If

G(n)(s, t) =
∑
i,j

aijs
itj
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then by definition

F (s, t) =
∑
i,j

aijw
1−i−jsitj,

with bij = aijw
1−i−j homogeneous of degree zero. The (p, v1, . . . , vn−2) reduc-

tion of aij is of the form

aij =
∑
a,b

cabv
a
n−1v

b
n ∈ Fp[vn−1, vn] (4.12)

for coefficients cab depending on i, j . Substituting

vn−1 = wq−1

vn = wpq−1wn

= −wpq−1y(1−p)q,

into equation (4.12), one has

bij = w1−i−j
∑
a,b

cabw
a(q−1)(−wpq−1y(1−p)q)b.

As bij is homogeneous of degree zero, the exponent of w in each term must add
to zero, and so

bij =
∑
a,b

cab(−y1−p)bq

b
1/q
ij =

∑
a,b

cab(−y1−p)b

since cab ∈ Fp so c
1/q
ab = cab . Thus one has

τ(t) =
∑
i,j

rijt
(i+pj), with

rij =
∑
a,b

cab(−y1−p)b+j

(recall the cab depend on i and j ), which shows that τ(t) ≡ t mod y−1 as
well.

Proposition 4.13 There is a unique power series Φ(t) ∈ Fp[[y−1]][[t]] such that

Φ(t) ≡ t mod t2;

Φ(t) ≡ t mod y−1; and

[p]H ◦ Φ = Φ ◦ [p]F0

in Fp[[y−1]][[t]].
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Proof If f in A[[t]] is a series with coefficients in a ring A of characteristic
p, let fσ be the corresponding series with coefficients those of f , raised to the
q th power; thus

fσ(tq) = (f(t))q.

In this notation, the equation supposedly satisfied by Φ takes the form

Φσ = Φ ◦ τσ

where τ ∈ Fp[y−1][[t]] is the power series constructed in Lemma 4.11. If τ−1 de-
notes the compositional inverse (not reciprocal) of τ , and similarly τ−σ denotes
(τ−1)σ , then this equation can be rewritten in the form

Φ = Φσ ◦ τ−σ

= [Φσ ◦ τ−σ]σ ◦ τ−σ = . . . .

If Φ is to be of the form

Φ(t) ≡ t mod y−1,

then as r grows, Φσr will converge to the identity in the (y−1)–adic topology,
and we must have

Φ = lim
r→∞

τ−σ
r ◦ τ−σr−1 ◦ · · · ◦ τ−σ. (4.14)

On the one hand, if the limit exists, then it certainly intertwines the p–series.
On the other hand, the limit exists: Lemma 4.11 asserts that

τ(t) ∈ t+ y−1Fp[y−1][[t]],

so τ−σ
r

converges to the identity in the (y−1)–adic topology. The group of
formal power series under composition is complete with respect to the non-
archimedean norm defined by the degree of the leading term, so the infinite
composite (4.14) converges because the sequence of composita converges to the
identity. It is easy to see in addition that Φ inherits the property

Φ(t) ≡ t mod t2

from τ .

Proposition 4.15 The power series Φ is the unique strict isomorphism

F0
Φ−→ H

of formal group laws over Fp[[y−1]] such that

Φ(t) ≡ t mod y−1.
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Proof Let us write F for the formal group law FΦ
0 where

FΦ
0 (x, y) = Φ(F0(Φ−1(x),Φ−1(y))).

Since [p]F (t) = tq , the uniqueness of Φ follows from Proposition 4.13.

We need to show F = H. There is a canonical strict isomorphism

G
ρ−→ F,

from a p–typical formal group law G, defined over Fp[[y−1]]. Indeed ρ is given
by the formula [24, A2.1.23]

ρ(t) =
∑F

p-r≥1

[µ(r)]F [1
r ]F

r∑F

i=1

ζit, (4.16)

where

µ(r) =

{
0 r is divisible by a square
(−1)k r is the product of k distinct primes

and ζ is a primitive rth root of 1. We first claim that G = H ; then we shall
show that ρ is the identity.

As G and H are both are p–typical, it suffices to show that [p]G = [p]H . Since
ρ is a homomorphism of groups, one has

[p]F ◦ ρ = ρ ◦ [p]G (4.17)

Using equation (4.16), one has

[p]F ◦ ρ(t) =
∑F

p-r≥1

[µ(r)
r ]F

r∑F

i=1

[p]F (ζit)

=
∑F

p-r≥1

[µ(r)
r ]F

r∑F

i=1

ζiqtq

= ρ(tq)

since q = pn−1 and [p]F (t) = tq. Thus

ρ([p]G(t)) = ρ(tq) = ρ([p]H(t)).

Next we must show that ρ is the identity. As

Φ(t) ≡ t mod y−1
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we have

F0 ≡ F mod y−1.

But F0 is p–typical, so

[1
r ]F0

r∑F0

i=1

ζit = 0

for p - r > 1; it follows from equation (4.16) that

ρ(t) ≡ t mod y−1. (4.18)

But equation (4.17) and [p]F (t) = tq imply that

ρ(tq) = ρ(t)q;

if ρ =
∑

i≥1 ρit
i then we must have

ρi = ρqi .

Together with equation (4.18) this implies ρ1 = 1. For i > 1 we have ρi ∈
y−1Fp[[y−1]], so ρi = 0.

Proof of Theorem 4.10 If

Ψ(t) =
∑
i≥0

Ψit
i+1

is any isomorphism from the group law F0 to the group law H over Fp(y)sep ,
then it must satisfy the equation

[p]H ◦Ψ = Ψ ◦ [p]F0.

By Lemma 4.11, we must have

Ψσ = Ψ ◦ τσ. (4.19)

Because

τ(t) ≡ t mod t2,

the intertwining equation (4.19) can be rewritten inductively as a sequence of
generalized Artin–Schreier equations

Ψq
i −Ψi = a polynomial in Ψj ’s with j < i, (4.20)

beginning with

Ψq
0 −Ψ0 = 0.
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Because of (4.20), the Ψi are all algebraic, and the Galois group of the extension
they generate acts by translating the solutions by an element of the field with
q elements.

The coefficients of Φ satisfy the same equations in Fp((y−1)). Starting with
Ψ0 = 1, we may adjust each Ψi by a Galois transformation so that its image in
Fp((y−1))sep is Φi . The resulting power series Ψ is an isomorphism of formal
group laws in Fp(y)sep , since it becomes one in Fp((y−1))sep .

The uniqueness of Ψ satisfying the hypotheses is a trivial consequence of the
uniqueness of Φ in Proposition 4.13.

It is the field Fp((y)) rather than Fp((y−1)) which appears in the Tate homology
calculations. Expanding a rational function as a power series at zero gives an
embedding Fp(y)→ Fp((y)), which extends to an embedding

Fp(y)sep → Fp((y))sep.

Thus we have

Corollary 4.21 There is a unique strict isomorphism Φ: F0 → H , satisfying

(1) the coefficients of Φ are in the subfield Fp(y)sep and

(2) the expansion of Φ at y =∞ is a power series with coefficients in Fp[[y−1]],
congruent to the identity modulo y−1 .

5 A map of ring spectra

Lubin and Tate’s theory of lifts

We recall briefly the deformation theory of Lubin and Tate [19]. Suppose that
F is a field of characteristic p.

Definition 5.1 A lift of F is a pair (A, i) consisting of

(1) a Noetherian complete local ring A with residue field A0 ;

(2) a map of fields i : F→ A0 .

A map f : (A, i)→ (B, j) (or (A, i)–algebra) is a local homomorphism

A
f−→ B

such that j = f0 ◦ i, where f0 : A0 → B0 is induced by f .
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We shall abbreviate (A, i) to A when i is clear from context.

Suppose that Γ is a formal group law of finite height n over a field F of
characteristic p, that (A, i) is a lift of F, and that (B, j) is an (A, i)–algebra.

Definition 5.2 A deformation of Γ to (B, j) is a pair (G,φ) consisting of

(1) a formal group law G over B ;

(2) an isomorphism of group laws φ : j∗Γ ≈ G0 , where G0 denotes the group
law over B0 induced by G.

Two deformations (G,φ) and (G′, φ′) are ?–isomorphic if there is an isomor-
phism c : G→ G′ such that

φ′ = c0 ◦ φ : j∗Γ→ G′0

in B0 .

The set of ?–isomorphism classes of deformations to (B, j) is a functor from
(A, i)–algebras to sets; Lubin and Tate show that this functor is representable.
Namely, let

R = A[[u1, . . . , un−1]],

Cpi(x, y) =
1
p

[(x+ y)p
i − xpi − ypi ],

and let (G,φ) be any deformation of Γ to R such that

G0 = Γ

G(s, t) ≡ s+ t+ uiCpi(x, y) mod u1, . . . , ui−1, and degree pi + 1
(5.3)

for ε a unit of A0 and 1 ≤ i ≤ n− 1. Lubin and Tate show that such deforma-
tions exist; we shall call such a group law a Lubin-Tate lift of Γ. Theorem 3.1
of [19] may be phrased as follows.

Theorem 5.4 If (G′, φ′) is a deformation of Γ to an (A, i)–algebra (B, j),
then there is a unique map of (A, i)–algebras f : R→ (B, j) such that there is
a ?–isomorphism

(f ∗G, f∗0φ) c−→ (G′, φ′).

Moreover the ?–isomorphism is unique.
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The map of ring theories

A classical theorem of I Cohen (see [27]) asserts that for any field F of char-
acteristic p, there is an essentially unique complete discrete valuation ring CF

with maximal ideal generated by p and residue field F; in particular, CF is
Noetherian. If F is perfect, then CF is just the ring WF of Witt vectors of F,
but in general it is a subring of the Witt vectors, and (although it is a functor)
it is not very easily described. However, when the degree [F : Fp] is finite
(instead of 1 as in the perfect case), eg if F = Fp((y)), then the Cohen ring is
still relatively tractable. In this case, for example, we have

Lemma 5.5 The Cohen ring of Fp((y)) is isomorphic to the p–adic completion
of Zp((y)). Any such isomorphism extends to an isomorphism

CFp((y))[[w1, . . . wn−2]] ∼= π0TE.

Proof The p–adic completion of Zp((y)) is a complete discrete valuation ring
with maximal ideal generated by p and residue field Fp((y)), so it is isomorphic
to the Cohen ring of Fp((y)). Indeed Schoeller [27, §8] shows that an isomor-
phism is given by a choice of p–base for Fp((y)) and representatives of that
p–base in (Zp((y)))∧p .

Equation (4.5) reduces the second part of the lemma to the observation that
the rings (

Zp((y))
)∧
p

[[w1, . . . , wn−2]] ∼=
(
Zp[[w1, . . . , wn−2]]((y))

)∧
In−1

are isomorphic.

Proposition 5.6 The formal group law F over π0TE is a Lubin–Tate lift of
the group law F0 of height n− 1 over Fp((y)) to CFp((y)) –algebras.

Proof It is a standard fact about G(n) that

G(s, t) ≡ s+ t+ viCpi(s, t) mod v1, . . . , vi−1, and degree pi + 1

for 1 ≤ i ≤ n− 1. By the definition (4.4) of F , one then has

F (s, t) ≡ s+ t+ wiCpi(s, t) mod w1, . . . , wi−1, and degree pi + 1

for 1 ≤ i ≤ n− 2. It follows that F satisfies equations (5.3) for the group law
Γ = F0 .
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The formal group law Gn−1 over π0En−1 has image H in Fp , so by Corol-
lary 4.21 the pair (CFp((y))sep ⊗̂Gn−1,Φ) is a deformation of F0 to the CFp((y)) –
algebra

CFp((y))sep ⊗̂
Zp
π0En−1

∼= CFp((y))sep [[u1, . . . , un−2]].

Theorem 5.4 provides a ring homomorphism

π0TE
f−→ CFp((y))sep ⊗̂

Zp
π0En−1 (5.7)

and an isomorphism of formal group laws

f∗F
c−→∼= CFp((y))sep ⊗̂

Zp
Gn−1 (5.8)

such that c0 = Φ.

Proposition 5.9 The map

CFp((y))sep ⊗̂f : CFp((y))sep ⊗̂CFp((y))
π0TE → CFp((y))sep ⊗̂

Zp
π0En−1

is an isomorphism.

Proof The ring on the left represents deformations of Fp((y))sep⊗̂F0 to
CFp((y))sep –algebras, while the ring on the right represents deformations of
Fp((y))sep⊗̂H to CFp((y))sep –algebras. The isomorphism Φ of Corollary 4.21
induces an isomorphism between these functors.

There are isomorphisms

TE0(CP∞) ∼= TE0[[t1]]

E0
n−1(CP∞) ∼= E0

n−1[[t2]]

such that the formal group law F expresses the coproduct on TE0(CP∞),
and the formal group law Gn−1 expresses the coproduct on En−1 . A standard
argument [23] using Landweber’s exact functor theorem gives:

Theorem 5.10 There is a canonical map of ring theories

TE
Θ−→ CFp((y))sep ⊗̂

Zp
En−1

whose value on coefficients is f , and whose value on TE0(CP∞) is determined
by the equation

Θ(t1) = c(t2).

Here c is the isomorphism (5.8).
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Corollary 5.11 CFp((y))sep ⊗̂
Zp

Θ gives an equivalence of complex oriented ring

spectra

CFp((y))sep ⊗̂
CFp((y))

TE → CFp((y))sep ⊗̂
Zp
En−1.

Composing the map from Theorem 5.10 with the maps

E(n)→ E(n)[w]→ TE

gives a canonical map of ring theories

E(n)→ CFp((y))sep ⊗̂
Zp
En−1,

our generalized Chern character.
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