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Theorem 3.1 is false as stated. The error in the argument occurs in the proof
of Lemma 3.6. See below for a counterexample.

Lemma 3.6 asserts that, under suitable hypotheses, X crosses Y if and only
if there is an element λ in Λ such that either λY $ Y or λY ∗ $ Y ∗. One of
these implications is correct. If such a λ exists, then it is true that X must
cross Y. However, I failed to give any argument for this, and I provide one
below. The other implication is false. The mistake is contained in the second
sentence of the second paragraph on page 28. A simple fix is to amend the
statements of Theorem 3.1 and Lemma 3.6 to take this into account. Thus we
need the additional hypothesis for Lemma 3.6 that if X crosses Y, then δX
must contain points which are arbitrarily far from δY on each side of δY. We
also need the additional hypothesis for Theorem 3.1 that if X crosses gY then
δX must contain points which are arbitrarily far from δgY on each side of δgY.
This technical assumption is often but not always satisfied.

Here is the half of the proof of Lemma 3.6 which was omitted. This asserts
that if there is an element λ in Λ such that either λY $ Y or λY ∗ $ Y ∗, then
X must cross Y. We will assume that λY $ Y, as the argument in the other
case is essentially identical. As Y is associated to a splitting of G, it is easy
to see that the distance of λnδY from δY must tend to infinity as n → ∞.
(For example, if G = A ∗C B, and Y is the set of words in G which begin
in A − C, then λ must begin in A − C and end in B − C.) Now consider an
element g ∈ G, and let d denote the distance of g from δY. Then d is also
the distance of λng from λnδY. Hence, for any element g of G, all translates
λng lie in Y, for suitably large n. If we apply these statements to an edge of
δX, and recall that δX is preserved by λ, we see that δX must contain points
which are arbitrarily far from δY and lie in Y. By applying the same discussion
to λ−1, we see that δX must also contain points which are arbitrarily far from
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δY and lie in Y ∗. Hence δX must contain points which are arbitrarily far from
δY on each side of δY as required.

Now we come to the promised counterexample. Let G denote the fundamental
group of the closed orientable surface M of genus two. Let D denote a simple
closed curve on M which separates M into two once-punctured tori S and T
and let D′ denote a non-separating simple closed curve in the interior of S. Let
W denote the surface obtained from S by removing a regular neighbourhood of
D′. Let C denote a non-separating simple closed curve on M whose intersection
number with D is two, and which is disjoint from D′. We will describe two
splittings of G. The first will be the HNN splitting over an infinite cyclic group
determined by C. The second will be the amalgamated free product splitting of
G over π1(W ) with vertex groups π1(S) and π1(W ∪ T ). These two splittings
satisfy the hypotheses of Theorem 3.1. If one considers π1(C) as a subgroup of
the splitting over π1(W ), the minimal graph of groups obtained has no edges,
because π1(C) is contained in π1(W ∪ T ) which is a vertex group. If one
considers π1(W ) as a subgroup of the HNN splitting determined by C, the
minimal graph of groups obtained has at least one edge because π1(W ) does
not lie in a conjugate of any vertex group. (The graph in question has exactly
one edge, but this fact is not needed here.) This shows that Theorem 3.1 must
fail for this example, because the numbers of edges in these two graphs are
not equal. It also true that Lemma 3.6 fails for this example. Let X and Y
be the usual subsets of G associated to the two splittings. I claim that X
crosses Y but δX does not contain points which are arbitrarily far from δY
on each side of δY. To see this, consider the picture in the cover MC of M
whose fundamental group equals π1(C). This cover is an open annulus which
contains a lift of C which we will continue to denote by C. As in section 2, we
pick a generating set for G which can be represented by a bouquet of circles
embedded in M, so that the pre-image in the universal cover M̃ of M of this
bouquet is a copy of the Cayley graph Γ of G, and we identify the vertices of
this graph with G. Now let E denote the set of all vertices of π1(C)\Γ in MC

which lie on one side of C. Then E represents an almost invariant subset of
π1(C)\G and the pre-image of E in Γ can be taken to be X. Now consider the
picture in the cover MW of M whose fundamental group equals π1(W ). This
cover consists of a lift of W, which we will continue to denote by W and open
collars attached to the boundary components of W. Let F denote the set of
all vertices of π1(W )\Γ which lie in the union of W together with the collar
attached to the component D of ∂W. Then F represents an almost invariant
subset of π1(W )\G and the pre-image of F in G can be taken to be Y. The
pre-image in M̃ of C is a line whose image in MW is a properly embedded line
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meeting W in a compact arc which projects homeomorphically to C ∩W. Now
inspection shows that each of the four sets X(∗) ∩ Y (∗) has infinite image in
MW so that X crosses Y but δX does not contain points which are arbitrarily
far from δY on each side of δY.

The new version of Theorem 3.1 described here is, of course, rather unsatis-
factory as the extra hypothesis is technical and it is not clear when it holds.
However, there is a little more which can be said without any extra work. For
it follows from the preceding discussion that the number of edges in each of the
minimal graphs of groups described above is always less than or equal to the
intersection number of the two splittings being considered.
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