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If one considers two simple closed curves L and S on a closed orientable surface
F; one can de�ne their intersection number to be the least number of intersec-
tion points obtainable by isotoping L and S transverse to each other. (Note
that the count is to be made without any signs attached to the intersection
points.) By de�nition, this number is symmetric, ie the roles of L and S are
interchangeable. This can be regarded as a de�nition of the intersection num-
ber of the two in�nite cyclic subgroups � and � of the fundamental group of
F which are carried by L and S: In this paper, we show that an analogous
de�nition of intersection number of subgroups of a group can be given in much
greater generality and proved to be symmetric. We also give an interpretation
of these intersection numbers.

In [7], Rips and Sela considered a torsion free �nitely presented group G and
in�nite cyclic subgroups � and � such that G splits over each. (A group G
splits over a subgroup C if either G has a HNN decomposition G = A�C ; or G
has an amalgamated free product structure G = A �C B; where A 6= C 6= B:)
They e�ectively considered the intersection number i(�;�) of � with �; and
they proved that i(�;�) = 0 if and only if i(�;�) = 0: Using this, they proved
that G has what they call a JSJ decomposition. If i(�;�) was not zero, it
follows from their work that G can be expressed as the fundamental group
of a graph of groups with some vertex group being a surface group H which
contains � and �: Now it is intuitively clear (and we discuss it further at the
end of section 2 of this paper) that the intersection number of � with � is the
same whether it is measured in G or in H: Also the intersection numbers of
� and � in H are symmetric because of their topological interpretation. So
it follows at the end of all their work that the intersection numbers of � and
� in G are also symmetric. In 1994, Rips asked if there was a simpler proof
of this symmetry which does not depend on their proof of the JSJ splitting.
The answer is positive, and the ideas needed for the proof are all essentially
contained in earlier papers of the author. This paper is a belated response
to Rips’ question. The main idea is to reduce the natural, but not clearly
symmetric, de�nition of intersection number to counting the intersections of
suitably chosen sets. The most general possible algebraic situation in which to
de�ne intersection numbers seems to be that of a �nitely generated group G and
two �nitely generated subgroups � and �; not necessarily cyclic, such that the
number of ends of each of the pairs (G;�) and (G;�) is more than one. Note
that any in�nite cyclic subgroup � of �1(F ) satis�es e(�1(F );�) = 2: This is
because F is closed and orientable so that the cover of F with fundamental
group � is an open annulus which has two ends. In order to handle the general
situation, we will need the concept of an almost invariant set, which is closely
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related to the theory of ends. We should note that Kropholler and Roller [6]
introduced an intersection cohomology class in the special case of PD(n− 1){
subgroups of PDn{groups. Their ideas are closely related to ours, and we will
discuss the connections at the start of the last section of this paper. Finally,
we should point out that since Rips asked the above question about symmetry
of intersection numbers, Dunwoody and Sageev [2] have given a proof of the
existence of a JSJ decomposition for any �nitely presented group which is very
much simpler and more elementary than that of Rips and Sela.

The preceding discussion is a little misleading, as the intersection numbers
which we de�ne are not determined simply by a choice of subgroups. In fact,
we de�ne intersection numbers for almost invariant sets. A special case occurs
when one has a group G and subgroups � and � such that G splits over each,
as a splitting of G has a well de�ned almost invariant set associated. This
is discussed in section 2. Thus we can de�ne the intersection number of two
splittings of G: In the case of cyclic subgroups of surface groups corresponding
to simple closed curves, these curves determine splittings of the surface group
over each cyclic subgroup, and the intersection number we de�ne for these
splittings is the same as the topological intersection number of the curves.

In the �rst section of this paper, we discuss in more detail intersection numbers
of closed curves on surfaces. In the second section we introduce the concept of
an almost invariant set and prove the symmetry results advertised in the title.
In the third section, we discuss the interpretation of intersection numbers when
they are de�ned, and how our ideas are connected with those of Kropholler and
Roller.

Acknowledgments This paper was written while the author was visiting the
Mathematical Sciences Research Institute in Berkeley in 1996/7. Research at
MSRI is supported in part by NSF grant DMS-9022140. He is also grateful for
the partial support provided by NSF grants DMS-9306240 and DMS-9626537.

1 The symmetry for surface groups

In this section, we will discuss further the special case of two essential closed
curves L and S on a compact surface F: This will serve to motivate the de�-
nitions in the following section, and also show that the results of that section
do indeed answer the question of Rips. It is not necessary to assume that F is
closed or orientable, but we do need to assume that L and S are two-sided on F:
As described in the introduction in the case of simple curves, one de�nes their
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intersection number to be the least number of intersection points obtainable by
homotoping L and S transverse to each other, where the count is to be made
without any signs attached to the intersection points. (One should also insist
that L and S be in general position, in order to make the count correctly.) Of
course, this number is symmetric, ie the roles of L and S are interchangeable.
We will show in section 2 that one can de�ne these intersection numbers in an
algebraically natural way. There is also an idea of self-intersection number for
a curve on a surface and we will discuss a corresponding algebraic idea.

For the next discussion, we will restrict our attention to the case when L and S
are simple and introduce the algebraic approach to de�ning intersection num-
bers taken by Rips and Sela in [7]. Let G denote �1(F ): Suppose that L and
S cannot be made disjoint and choose a basepoint on L \ S . Suppose that L
represents the element � of G: This element � cannot be trivial, nor can L be
parallel to a boundary component of F; because of our assumption that L and
S cannot be made disjoint. Thus L induces a splitting of G over the in�nite
cyclic subgroup � of G which is generated by �: Let � denote the element of G
represented by S: De�ne d(�; �) to be the length of � when written as a word in
cyclically reduced form in the splitting of G determined by L: Similarly, de�ne
d(�; �) to be the length of � when written as a word in cyclically reduced form
in the splitting of G determined by S: For convenience, suppose also that L
and S are separating. Then each of these numbers is equal to the intersection
number of L and S described above and therefore d(�; �) = d(�; �): What is
interesting is that this symmetry is not obvious from the purely algebraic point
of view, but it is obvious topologically because the intersection of two sets is
symmetric.

In the above discussion, we restricted attention to simple closed curves on a
surface F; because the algebraic analogue is clear. If F is closed, then not only
does a simple closed curve on F determine a splitting of �1(F ) over the in�nite
cyclic subgroup carried by the curve, but any splitting of �1(F ) over an in�nite
cyclic subgroup is induced in this way by some simple closed curve on F: Hence
the algebraic situation described above exactly corresponds to the topological
situation when F is closed.

Now we continue with further discussion of the intersection number of two closed
curves L and S which need not be simple. As in [3], it will be convenient to
assume that L and S are shortest closed geodesics in some Riemannian metric
on F so that they automatically intersect minimally. Instead of de�ning the
intersection number of L and S in the \obvious" way, we will interpret our
intersection numbers in suitable covers of F; exactly as in [3] and [4]. Let F�

denote the cover of F with fundamental group equal to �: Then L lifts to F�
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and we denote its lift by L again. Let l denote the pre-image of this lift in the
universal cover eF of F: The full pre-image of L in eF consists of disjoint lines
which we call L{lines, which are all translates of l by the action of G: Similarly,
we de�ne F�; the line s and S{lines in eF: Now we consider the images of the
L{lines in F� . Each L{line has image in F� which is a possibly singular line
or circle. Then we de�ne d(L;S) to be the number of images of L{lines in
F� which meet S: Similarly, we de�ne d(S;L) to be the number of images of
S{lines in F� which meet L: It is shown in [3], using the assumption that L
and S are shortest closed geodesics, that each L{line in F� crosses S at most
once, and similarly for S{lines in F�: It follows that d(L;S) and d(S;L) are
each equal to the number of points of L \ S; and so they are equal to each
other. (This assumes that L and S are in general position.)

Here is an argument which shows that d(L;S) and d(S;L) are equal without
reference to the situation in the surface F: Recall that the L{lines are translates
of l by elements of G: Of course, there is not a unique element of G which sends
l to a given L{line. In fact, the L{lines are in natural bijective correspondence
with the cosets g� of � in G: (Our groups act on the left on covering spaces.)
The images of the L{lines in F� are in natural bijective correspondence with
the double cosets �g�; and d(L;S) counts the number of these double cosets
such that the line gl crosses s: Similarly, d(S;L) counts the number of the
double cosets �h� such that the line hs crosses l: Note that it is trivial that
gl crosses s if and only if l crosses g −1s: Now we use the bijection from G
to itself given by sending each element to its inverse. This induces a bijection
between the set of all double cosets �g� and the set of all double cosets �h�
by sending �g� to �g−1�: It follows that it also induces a bijection between
those double cosets �g� such that gl crosses s and those double cosets �h�
such that hs crosses l; which shows that d(L;S) equals d(S;L) as required.

This argument has more point when one applies it to a more complicated situ-
ation than that of curves on surfaces. In [4], we considered least area maps of
surfaces into a 3{manifold. The intersection number which we used there was
de�ned in essentially the same way but it had no obvious topological interpre-
tation such as the number of double curves of intersection. We proved that our
intersection numbers were symmetric by the above double coset argument, in
[4] just before Theorem 6.3.
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2 Intersection Numbers in General

In order to handle the general case, we will need the idea of an almost invari-
ant set. This idea was introduced by Cohen in [1] and was �rst used in the
relative context by Houghton in [5]. We will introduce this idea and explain its
connection with the foregoing.

Let E and F be sets. We say that E and F are almost equal, and write E a= F;
if the symmetric di�erence (E − F ) [ (F − E) is �nite. If E is contained in
some set W on which a group G acts on the right, we say that E is almost
invariant if Eg a= E; for all g in G: An almost invariant subset E of W will be
called non-trivial if it is in�nite and has in�nite complement. The connection of
this idea with the theory of ends of groups is via the Cayley graph Γ of G with
respect to some �nite generating set of G: (Note that in this paper groups act
on the left on covering spaces and, in particular, G acts on its Cayley graph on
the left.) Using Z2 as coe�cients, we can identify 0{cochains and 1{cochains
on Γ with sets of vertices or edges. A subset E of G represents a set of vertices
of Γ which we also denote by E; and it is a beautiful fact, due to Cohen [1],
that E is an almost invariant subset of G if and only if �E is �nite, where �
is the coboundary operator. If H is a subgroup of G; we let HnG denote the
set of cosets Hg of H in G; ie the quotient of G by the left action of H: Of
course, G will no longer act on the left on this quotient, but it will still act on
the right. Thus we have the idea of an almost invariant subset of HnG:
Now we again consider the situation of simple closed curves L and S on a
compact surface F and let eF denote the universal cover of F: Pick a generating
set for G which can be represented by a bouquet of circles embedded in F: We
will assume that the wedge point of the bouquet does not lie on L or S: The
pre-image of this bouquet in eF will be a copy of the Cayley graph Γ of G with
respect to the chosen generating set. The pre-image in F� of the bouquet will
be a copy of the graph �nΓ; the quotient of Γ by the action of � on the left.
Consider the closed curve L on F�: Let D denote the set of all vertices of �nΓ
which lie on one side of L: Then D has �nite coboundary, as �D equals exactly
the edges of �nΓ which cross L: Hence D is an almost invariant subset of �nG:
Let X denote the pre-image of D in Γ; so that X equals the set of vertices
of Γ which lie on one side of the line l: There is an algebraic description of
X in terms of canonical forms for elements of G as follows. Suppose that L
separates F; so that G = A��B: Also suppose that L and D are chosen so that
all the vertices of Γ labelled with an element of � do not lie in X: Pick right
transversals T and T 0 for � in A and B respectively, both of which contain
the identity e of G: (A right transversal of � in A consists of a choice of coset
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representative for each coset a�:) Each element of G can be expressed uniquely
in the form a1b1 : : : anbn�, where n � 1; � lies in �; each ai lies in T − feg
except that a1 may be trivial, and each bi lies in T 0 − feg except that bn may
be trivial. Then X consists of those elements for which a1 is non-trivial. If �
is non-separating in F; there is a similar description for X: See Theorem 1.7 of
[11] for details. Similarly, we can de�ne a set E in F� and its pre-image Y ineF which equals the set of vertices of Γ which lie on one side of the line s: Now
�nally the connection between the earlier arguments and almost invariant sets
can be given. For we can decide whether the lines l and s cross by considering
instead the sets X and Y: The lines l and s together divide G into the four
sets X \ Y;X� \ Y;X \ Y � and X� \ Y �; where X � denotes G − X; and l
crosses s if and only if each of these four sets projects to an in�nite subset of
�nG: Equally, s crosses l if and only if each of these four sets projects to an
in�nite subset of �nG: As we know that l crosses s if and only if s crosses l; it
follows that these conditions are equivalent. We will show that this symmetry
holds in a far more general context.

Note that in the preceding example the subset X of G is �{invariant under
the left action of � on G; ie �X = X; for all � in �:

For the most general version of this symmetry result, we can consider any
�nitely generated group G: Note that the subgroups of G which we consider
need not be �nitely generated.

De�nition 2.1 If G is a �nitely generated group and H is a subgroup, then
a subset X of G is H {almost invariant if X is invariant under the left action
of H; and simultaneously the quotient set HnX is almost invariant under the
right action of G: In addition, X is a non-trivial H {almost invariant subset of
G if HnX and HnX� are both in�nite.

Note that if X is a non-trivial H {almost invariant subset of G; then e(G;H)
is at least 2; as HnX is a non-trivial almost invariant subset of HnG:

De�nition 2.2 Let X be a �{almost invariant subset of G and let Y be a
�{almost invariant subset of G: We will say that X crosses Y if each of the
four sets X \ Y;X� \ Y;X \ Y � and X� \ Y � projects to an in�nite subset of
�nG:

Note that it is obvious that if Y is trivial, then X cannot cross Y: Our �rst
and most basic symmetry result is the following. This is essentially proved in
Lemma 2.3 of [9], but the context there is less general.
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Lemma 2.3 If G is a �nitely generated group with subgroups � and �; and
X is a non-trivial �{almost invariant subset of G and Y is a non-trivial �{
almost invariant subset of G; then X crosses Y if and only if Y crosses X:

Remark 2.4 If X and Y are both trivial, then neither can cross the other,
so the above symmetry result is clear. However, this symmetry result fails if
only one of X or Y is trivial. Here is a simple example. Let � and � denote
in�nite cyclic groups with generators � and � respectively, and let G denote
the group � � �: We identify G with the set of integer points in the plane.
Let X = f(m;n) 2 G : n > 0g; and let Y = f(m;n) 2 G : m = 0g: Then X
is a non-trivial �{almost invariant subset of G and Y is a trivial �{almost
invariant subset of G: One can easily check that Y crosses X; although X
cannot cross Y as Y is trivial.

Proof Suppose that X does not cross Y: By replacing one or both of X and
Y by its complement if needed, we can assume that X \ Y projects to a �nite
subset of �nG: The fact that Y is non-trivial implies that �nY is an in�nite
subset of �nG; so there is a point z in �nY which is not in the image of
X \ Y: Now we need to use some choice of generators for G and consider the
corresponding Cayley graph Γ of G: The vertices of Γ are identi�ed with G
and the action of G on itself on the left extends to an action on Γ: We consider
z and the image of X \ Y in the quotient graph �nΓ: As X \ Y has �nite
image, there is a number d such that each point of its image can be joined to z
by a path of length at most d: As the projection of Γ to �nΓ is a covering map,
it follows that each point of X \ Y can be joined to some point lying above z
by a path of length at most d: As any point above z lies in X�; it follows that
each point of X \ Y can be joined to some point of X� by a path of length at
most d: Hence each point of X \ Y lies at most distance d from �X: Thus the
image of X \ Y in �nΓ lies within the d{neighbourhood of the compact set
�(�nX); and so must itself be �nite. It follows that Y does not cross X; which
completes the proof of the symmetry result.

At the start of this section, we explained how to connect the topological in-
tersection of simple closed curves on a surface with crossing of sets. One can
construct many other interesting examples in much the same way.

Example 2.5 As before, let F denote a closed surface with fundamental group
G; and let eF denote the universal cover of F: Pick a generating set of G which
can be represented by a bouquet of circles embedded in F; so that eF contains
a copy of the Cayley graph Γ of G with respect to the chosen generators. Let
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F1 denote a cover of F which is homeomorphic to a four punctured torus and
let � denote its fundamental group. For example, if F is the closed orientable
surface of genus three, we can consider a compact subsurface F 0 of F which is
homeomorphic to a torus with four open discs removed, and take the cover F1of
F such that �1(F1) = �1(F 0): For notational convenience, we identify F1 with
S1 � S1 with the four points (1; 1); (1; i); (1;−1) and (1;−i) removed. Now
we choose 1{dimensional submanifolds of F1 each consisting of two circles and
each separating F1 into two pieces. Let L denote S1�fe�i=4; e5�i=4g and let S
denote S1 � fe3�i=4; e7�i=4g: As before, we let D denote all the vertices of the
graph �nΓ in F1 which lie on one side of L; and let E denote all the vertices
of the graph �nΓ in F1 which lie on one side of S: Let X and Y denote the
pre-images of D and E in G: Now D is an almost invariant subset of �nG; as
�D equals exactly the edges of �nΓ which cross L; and E is almost invariant
for similar reasons. Hence X and Y are each �{almost invariant subsets of G:
Clearly X and Y cross. An important feature of this example is that although
X and Y cross, the boundaries L and S of the corresponding surfaces in F1

are disjoint. This is quite di�erent from the example with which we introduced
almost invariant sets, but this is a much more typical situation.

De�nition 2.6 Let � and � be subgroups of a �nitely generated group G:
Let D denote a non-trivial almost invariant subset of �nG; let E denote a
non-trivial almost invariant subset of �nG and let X and Y denote the pre-
images in G of D and E respectively. We de�ne i(D;E) to equal the number
of double cosets �g� such that gX crosses Y:

For this de�nition to be interesting, we need to show that i(D;E) is �nite,
which is not obvious from the de�nition in this general situation. In fact, it
may well be false if one does not assume that the groups � and � are �nitely
generated, although we have no examples. From now on, we will assume that
� and � are �nitely generated.

Lemma 2.7 Let � and � be �nitely generated subgroups of a �nitely gen-
erated group G: Let D denote a non-trivial almost invariant subset of �nG;
and let E denote a non-trivial almost invariant subset of �nG: Then i(D;E)
is �nite.

Proof This is again proved by using the Cayley graph, so it appears to depend
on the fact that G is �nitely generated. However, we have no examples where
i(D;E) is not �nite when G is not �nitely generated. The proof we give is
essentially contained in that of Lemmas 4.3 and 4.4 of [8]. Start by considering
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the �nite graph �D in �nΓ: As � is �nitely generated, we can add edges and
vertices to �D to obtain a �nite connected subgraph �1D of �nΓ which contains
�D and has the property that its inclusion in �nΓ induces a surjection of its
fundamental group to �: Thus the pre-image of �1D in Γ is a connected graph
which we denote by �1X: Similarly, we obtain a �nite connected graph �1E of
�nΓ which contains �E and has connected pre-image �1Y in Γ: As usual, we
will denote the pre-images of D and E in G by X and Y respectively.

Next we claim that if gX crosses Y then g(�1X) intersects �1Y: (The converse
need not be true.) Suppose that g(�1X) and �1Y are disjoint. Then g(�1X)
cannot meet �Y: As g(�1X) is connected, it must lie in Y or Y �: It follows
that g(�X) lies in Y or Y �; so that one of the four sets X \ Y;X� \ Y;X \ Y �
and X� \ Y � must be empty, which implies that gX does not cross Y:

Now we can show that i(D;E) must be �nite. Recall that i(D;E) is de�ned
to be the number of double cosets �g� such that gX crosses Y: The preceding
paragraph implies that i(D;E) is bounded above by the number of double
cosets �g� such that g(�1X) meets �1Y: Let P and Q be �nite subgraphs of
�1X and �1Y which project onto �1D and �1E respectively. If g(�1X) meets
�1Y; then there exist elements � of � and � of � such that g(�P ) meets �Q:
Thus �−1g�P meets Q: Now there are only �nitely many elements of G which
can translate P to meet Q; and it follows that i(D;E) is bounded above by
this number.

We have just shown that, as in the preceding section, the intersection numbers
we have de�ned are symmetric, but we will need a little more information.

Lemma 2.8 Let G be a �nitely generated group with subgroups � and �;
let D denote a non-trivial almost invariant subset of �nG; and let E denote
a non-trivial almost invariant subset of �nG: Then the following statements
hold:

1) i(D;E) = i(E;D);

2) i(D;E) = i(D�; E) = i(D;E�) = i(D�; E�);

3) if D0 is almost equal to D and E0 is almost equal to E; and X;X 0 and
Y; Y 0 denote their pre-images in G; then X crosses Y if and only if X 0

crosses Y 0; so that i(D;E) = i(D0; E0):

Proof The �rst part is proved by using the bijection from G to itself given
by sending each element to its inverse. This induces a bijection between all
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double cosets �g� and �h� by sending �g� to �g−1�; and it further induces
a bijection between those double cosets �g� such that gX crosses Y and those
double cosets �h� such that hY crosses X:

The second part is clear from the de�nitions.

For the third part, we note that, as E and E0 are almost equal, so are their
complements in �nG; and it follows that X crosses Y if and only if it crosses
Y 0: Hence the symmetry proved in Lemma 2.3, shows that Y crosses X if and
only Y 0 crosses X: Now the same argument reversing the roles of D and E
yields the required result.

At this point, we have de�ned in a natural way a number which can reasonably
be called the intersection number of D and E; but have not yet de�ned an
intersection number for subgroups of G: First note that if e(G;�) is equal
to 2; then all choices of non-trivial almost invariant sets in �nG are almost
equal or almost complementary. Let D denote some choice here. Suppose
that e(G;�) is also equal to 2; and let E denote a non-trivial almost invariant
subset of �nG: The third part of the preceding lemma implies that i(D;E) is
independent of the choices of D and E and so depends only on the subgroups
� and �: This is then the de�nition of the intersection number i(�;�): In the
special case when G is the fundamental group of a closed orientable surface and
� and � are cyclic subgroups of G; it is automatic that e(G;�) and e(G;�)
are each equal to 2: The discussion of the previous section clearly shows that
this de�nition coincides with the topological de�nition of intersection number
of loops representing generators of these subgroups, whether or not those loops
are simple. Note that one can also de�ne the self-intersection number of an
almost invariant subset D of �nG to be i(D;D); and hence can de�ne the
self-intersection number of a subgroup � of G such that e(G;�) = 2: Again
this idea generalises the topological idea of self-intersection number of a loop
on a surface.

If one considers subgroups � and � such that e(G;�) or e(G;�) is greater than
2; there are possibly di�erent ideas for their intersection number depending on
which almost invariant sets we pick. (It is tempting to simply de�ne i(�;�) to
be the minimum possible value for i(D;E); where D is a non-trivial �{almost
invariant subset of G and E is a non-trivial �{almost invariant subset of G:
But this does not seem to be the \right" de�nition.) However, there is a natural
way to choose these almost invariant sets if we are given splittings of G over �
and �: As discussed in the previous section in the case of surface groups, the
standard way to do this when G = A �� B is in terms of canonical forms for
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elements of G as follows. Pick right transversals T and T 0 for � in A and B
respectively, both of which contain the identity e of G: Then each element can
be expressed uniquely in the form a1b1 : : : anbn�, where n � 1; � lies in �; each
ai lies in T − feg except that a1 may be trivial, and each bi lies in T 0 − feg
except that bn may be trivial. Let X denote the subset of G consisting of
elements for which a1 is non-trivial, and let D denote �nX: It is easy to check
directly that X is �{almost invariant. One must check that �X = X; for all
� in � and that Dg a= D; for all g in G: The �rst equation is trivial, and the
second is easily checked when g lies in A or B; which implies that it holds for
all g in G: Note also that the de�nition of X is independent of the choices of
transversals of � in A and B: Then D is the almost invariant set determined
by the given splitting of G: This de�nition seems asymmetric, but if instead
we consider the �{almost invariant subset of G consisting of elements whose
canonical form begins with a non-trivial element of B; we will obtain an almost
invariant subset of �nG which is almost equal to the complement of D: There
is a similar description of D when G = A �� : For details see Theorem 1.7 of
[11]. The connection between D and the given splitting of G can be seen in
several ways. From the topologists’ point of view, one sees this as described
earlier for surface groups. From the point of view of groups acting on trees,
there is also a very natural description. One identi�es a splitting of G with an
action of G on a tree T without inversions, such that the quotient GnT has
a single edge. Let e denote the edge of T with stabiliser �; let v denote the
vertex of e with stabiliser A; and let E denote the component of T −feg which
contains v: Then we can de�ne X = fg 2 G : ge � Eg: It is easy to check
directly that this set is the same as the set X de�ned above using canonical
forms.

In the preceding paragraph, we showed how to obtain a well de�ned intersection
number of given splittings over � and �: An important point to notice is that
this intersection number is not determined by the subgroups � and � of G
only. It depends on the given splittings. In the case when G is a surface group,
this is irrelevant as there can be at most one splitting of a surface group over a
given in�nite cyclic subgroup. But in general, a group G with subgroup � can
have many di�erent splittings over �:

Example 2.9 Here is a simple example to show that intersection numbers
depend on splittings, not just on subgroups. First we note that the self-
intersection number of any splitting is zero. Now construct a group G by
amalgamating four groups G1; G2; G3 and G4 along a common subgroup �:
Thus G can be expressed as G12 �� G34; where Gij is the subgroup of G gen-
erated by Gi and Gj ; but it can also be expressed as G13 ��G24 or G14 ��G23:

Peter Scott

Geometry and Topology, Volume 2 (1998)

22



The intersection number of any distinct pair of these splittings of G is non-zero,
but all the splittings being considered are splittings over the same group �:

A question which arose in our introduction in connection with the work of
Rips and Sela was how the intersection number of two subgroups of a group
G alters if one replaces G by a subgroup. In general, nothing can be said,
but in interesting cases one can understand the answer to this question. The
particular case considered by Rips and Sela was of a �nitely presented group
G which is expressed as the fundamental group of a graph of groups with some
vertex group being a group H which contains in�nite cyclic subgroups � and �:
Further H is the fundamental group of a surface F and � and � are carried
by simple closed curves L and S on F: A point deliberately left unclear in
our earlier discussion of their work was that F is not a closed surface. It is
a compact surface with non-empty boundary. The curves L and S are not
homotopic to boundary components and so de�ne splittings of H: The edges
in the graph of groups which are attached to H all carry some subgroup of the
fundamental group of a boundary component of F: This implies that L and
S also de�ne splittings of G: It is clear from this picture that the intersection
number of � and � should be the same whether measured in G or in H; as it
should equal the intersection number of the curves L and S; but this needs a
little more thought to make precise. As usual, the �rst point to make is that
we are really talking about the intersection numbers of the splittings de�ned
by L and S; rather than intersection numbers of � and �: For the number of
ends e(H;�) and e(H;�) are in�nite when F is a surface with boundary. As
G is �nitely presented, we can attach cells to the boundary of F to construct
a �nite complex K with fundamental group G. Now the identi�cation of the
intersection number of the given splittings of G with the intersection number
of L and S proceeds exactly as at the start of this section, where we showed
how to identify the intersection number of the given splittings of H with the
intersection number of L and S:

3 Interpreting intersection numbers

It is natural to ask what is the meaning of the intersection numbers de�ned
in the previous section. The answer is already clear in the case of a surface
group with cyclic subgroups. In this section, we will give an interpretation of
the intersection number of two splittings of a �nitely generated group G over
�nitely generated subgroups. We start by discussing the connection with the
work of Kropholler and Roller.
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In [6], Kropholler and Roller introduced an intersection cohomology class for
PD(n − 1){subgroups of a PDn{group. The pairs involved always have two
ends, so the work of the previous section de�nes an intersection number in this
situation. The connection between our intersection number and their inter-
section cohomology class is the following. Recall that if one has subgroups �
and � of a �nitely generated group G; such that e(G;�) and e(G;�) are each
equal to 2; then one chooses a non-trivial �{almost invariant subset X of G
and a non-trivial �{almost invariant subset Y of G and de�nes our intersec-
tion number i(�;�) to equal the number of double cosets �g� such that gX
crosses Y: Their cohomology class encodes the information about which double
cosets have this crossing property. Thus their invariant is much �ner than the
intersection number and it is trivial to deduce the intersection number from
their cohomology class.

To interpret the intersection number of two splittings of a group G; we need
to discuss the Subgroup Theorem for amalgamated free products. Let G be a
�nitely generated group, which splits over �nitely generated subgroups � and
�: We will write G = A1�� (B1) to denote that either G has the HNN structure
A1�� or G has the structure A1 ��B1: Similarly, we will write G = A2 �� (B2):
The Subgroup Theorem, see [11] and [12] (or [13]) for discussions from the
topological and algebraic points of view, yields a graph of groups structure
�1(�) for �; with vertex groups lying in conjugates of A1 or B1 and edge
groups lying in conjugates of �: Typically this graph will not be �nite or even
locally �nite. However, as � is �nitely generated, there is a �nite subgraph
Ψ1 which still carries �: If we reverse the roles of � and �; we will obtain a
graph of groups structure �2(�) for �; with vertex groups lying in conjugates
of A2 or B2 and edge groups lying in conjugates of �; and there is a �nite
subgraph Ψ2 which still carries �: We show below that, in most cases, the
intersection number of � and � measures the minimal possible number of edges
of these �nite subgraphs. Notice that if we consider the special case when G
is the fundamental group of a closed surface and � and � are in�nite cyclic
subgroups, this statement is clear. Now the symmetry of intersection numbers
implies the surprising fact that the minimal number of edges for Ψ1 and Ψ2

are the same.

There is an alternative point of view which we will use for our proof. The
splitting A2 �� (B2) of G corresponds to an action of G on a tree T such
that the quotient GnT has one edge. The edge stabilisers in this action on T
are all conjugate to � and the vertex stabilisers are conjugate to A2 or B2

as appropriate. If one has a subgroup � of G; the quotient �nT will be the
graph underlying �2(�): There is a �{invariant subtree T 0 of T; such that the
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graph �nT 0 is the graph underlying Ψ2: Whichever point of view you take, it
is necessary to connect it with the ideas about almost invariant sets which we
have already discussed. Here is our interpretation of intersection numbers.

Theorem 3.1 Let G be a �nitely generated group, which splits over �nitely
generated subgroups � and �; such that if U and V are any conjugates of �
and � respectively, then U \ V has in�nite index in both U and V: Then the
intersection number of the two splittings equals the minimal number of edges
in each of the graphs Ψ1 and Ψ2:

Remark 3.2 This result is clearly false if the condition on conjugates is omit-
ted. For example, if � = �; then Ψ1(�) and Ψ2(�) will each consist of a single
vertex, but the intersection number of the two splittings need not be zero.

The proof will use the following sequence of lemmas.

We start with a general result about minimal G{invariant subtrees of a tree T
on which a group G acts. If every element of G �xes each point of a non-trivial
subtree T 0 of T; then any vertex of T 0 is a minimal G{invariant subtree of T:
Otherwise, there is a unique minimal G{invariant subtree of T: An orientation
of an edge e of T consists of a choice of one vertex as the initial vertex i(e) of
e and the other as the terminal vertex t(e): An oriented path in T consists of
a �nite sequence of oriented edges e1; e2; : : : ; ek of T; such that t(ej) = i(ej+1);
for 1 � j � k − 1: If we consider two oriented edges e and e0 of T we say that
they are coherently oriented if there is an oriented path which begins with one
and ends with the other. Finally, given an edge e of T and an element g of
G, we will say that e and ge are coherently oriented if for some (and hence
either) orientation on e and the induced orientation on ge; the edges e and ge
are coherently oriented.

Lemma 3.3 Suppose that a group G acts on a tree T without inversions and
without �xing a point. Let T 0 denote the minimal G{invariant subtree. Then
an edge e of T lies in T 0 if and only if there exists an element g of G such that
e and ge are distinct and coherently oriented.

Proof First consider an edge e not lying in T 0: Orient e so that it is the �rst
edge of an oriented path � in T which starts with e; has no edge in T 0; and
ends at a vertex of T 0: Thus ge; with the induced orientation, is the �rst edge
of an oriented path g� in T which starts with ge; has no edge in T 0; and ends
at a vertex of T 0: Now the unique path in T which joins e and ge must consist
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either of � and g� together with a path in T 0 or of an initial segment of e
together with an initial segment of ge: In either case, it follows that e and ge
are not coherently oriented.

Now we consider an edge e of T 0 and its image e in GnT 0:
If e is non-separating in GnT 0; let � denote an oriented path in GnT 0 which
joins the ends of e and meets e only in its endpoints. Then the loop formed
by �[ e lifts to an oriented path in T 0; which shows that there is g in G such
that e and ge are distinct and coherently oriented.

If e separates GnT 0; we can write the graph GnT 0 as Γ1 [ e [ Γ2; where each
Γi is connected and meets e in one endpoint only. Now consider the graph of
groups structure given by GnT 0: By contracting each Γi to a point, we obtain
an amalgamated free product structure of G as G1 �C G2; where C = stab(e)
and each Gi is the fundamental group of the graph of groups Γi: Let Ti denote
the tree on which Gi acts with quotient Γi: Then the complement in T 0 of the
edge e and its translates consists of disjoint copies of T1 and T2: We identify
Ti with the copy of Ti which meets e: Note that T1 and T2 are disjoint. Now
it is clear that G1 6= C 6= G2: For if G1 = C; then G = G2; which implies
that T2 is a G{invariant subtree of T 0; contradicting the minimality of T 0: As
G1 6= C; there is an element g1 of G1 such that g1e 6= e; and similarly there
is an element g2 of G2 such that g2e 6= e: For each i; there is a path �i in Ti
which begins at e and ends at gie: As T1 and T2 are disjoint, so are �1 and
�2: It follows that of the three edges e; g1e; g2e; at least one pair is coherently
oriented, which completes the proof of the lemma.

The following result is clear.

Lemma 3.4 Suppose that a group G acts on a tree T without inversions and
without �xing a point. Let e denote an edge of T; let E denote a component
of T − feg and let g denote an element of G: Then e and ge are distinct and
coherently oriented if and only if either gE $ E or gE� $ E�:

Next we need to connect this with almost invariant sets, although the following
result does not use the almost invariance property.

Lemma 3.5 Suppose that a group G acts on a tree T without inversions and
without �xing a point and suppose that the quotient graph GnT has only one
edge. Let e denote an edge of T; let E denote a component of T −feg and let
Y = fk 2 G : ke � Eg: Then the following statements hold for all elements g
of G :
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1) gY � Y if and only if gE � E; and gY � � Y � if and only if gE� � E�:
2) gY = Y if and only if gE = E; and gY � = Y � if and only if gE� = E�:

3) gY $ Y if and only if gE $ E; and gY � $ Y � if and only if gE� $ E�:

Proof Suppose that gE � E: If k lies in Y; then ke � E; so that gke � gE �
E: Thus gk also lies in Y: It follows that gY � Y:

Conversely, suppose that gY � Y and consider an edge f of E: As GnT has
only one edge, f = ke for some k in G: As f lies in E; k lies in Y; and hence
gk also lies in Y by our assumption that gY � Y: Thus gke � E; so that
gf � E: Thus implies that gE � E as required.

The proof for the second equivalence in part 1 is essentially the same.

The equivalences in part 2 follow by applying part 1 for g and g−1: Now the
equivalences in part 3 are clear.

Next we connect the above inclusions with crossing of sets.

Lemma 3.6 Suppose that a �nitely generated group G splits over a �nitely
generated subgroup � with corresponding �{almost invariant set X and also
splits over a �nitely generated subgroup � with corresponding �{almost in-
variant set Y: Suppose further that if U and V are any conjugates of � and �
respectively, then U \V has in�nite index in U: Then X crosses Y if and only
if there is an element � in � such that either �Y $ Y or �Y � $ Y �:

Proof We claim that there exists �1 2 � such that either �1Y $ Y or �1Y
� $

Y; and there exists �2 2 � such that either �2Y $ Y � or �2Y
� $ Y �: Assuming

this, either �1Y $ Y or �2Y
� $ Y �; and our proof is complete, or we have

�1Y
� $ Y and �2Y $ Y �: The last possibility implies that �2�1Y

� $ �2Y $
Y �; again completing the proof.

To prove our claim, we pick a �nite generating set for G; and consider the
Cayley graph Γ of G with respect to this generating set. As Y is a �{almost
invariant set associated to a splitting A2 �� (B2) of G over �; we can choose
Γ and Y so that, for every g in G, g�Y is disjoint from or coincides with �Y:
A simple way to arrange this is to take as generators of G the union of a set of
generators of � and of A2 and B2; so that Γ(G) contains a copy of the Cayley
graph Γ(�) of � and �nΓ contains �nΓ(�) which is a wedge of circles. (Note
that this uses the hypothesis that � is �nitely generated.) Let v denote the
wedge point, and let E denote the collection of vertices of �nΓ which can be
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joined to v by a path whose interior is disjoint from v such that the last edge
is labelled by an element of A: Then clearly �E consists of exactly those edges
of �nΓ which have one end at v and are labelled by an element of A: Further,
if we let Y denote the pre-image of E in G; then, for every g in G, g�Y is
disjoint from or coincides with �Y:

In order to prove that �1 exists, we argue as follows. As � \ � has in�nite
index in �; and as �X is �{invariant, it follows that �X must contain points
which are arbitrarily far from �Y on each side of �Y: Recall that �nX is an
almost invariant subset of �nG; so that it has �nite coboundary which equals
�n�X: Hence there is a number d such that any point of �n�X can be joined
to the image of �Y in �nΓ by a path of length at most d: It follows that any
point of �X can be joined to ��Y; for some � in �; by a path in Γ of length at
most d: Hence there is a translate of �Y which contains points on one side of
�Y and another translate which contains points on the other side of �Y: Hence
there are elements �1 and �2 of � such that �1�Y lies on one side of �Y and
�2�Y lies on the other. Without loss of generality, we can suppose that �1�Y
lies on the side containing Y so that either �1Y $ Y or �1Y

� $ Y: As �2�Y
lies on the side of �Y containing Y �; either �2Y $ Y � or �2Y

� $ Y �: This
completes the proof of the claim made at the start of the proof.

Now we can give the proof of Theorem 3.1.

Proof Recall that G splits over �nitely generated subgroups � and � such
that if U and V are any conjugates of � and �; then U \ V has in�nite index
in both U and V: Also G acts on a tree T so as to induce the given splitting
over �: Let e denote an edge of T with stabiliser � and consider the action of
� on T: Our hypothesis on conjugates of � and � implies, in particular, that
� is not contained in any conjugate of � so that � cannot �x an edge of T:
Thus there is a unique minimal �{invariant subtree T 0 of T: Lemma 3.3 shows
that an edge he of T lies in T 0 if and only if there is � in � such that he and
�he are distinct and coherently oriented. Lemma 3.4 shows that this occurs if
and only if either �hE $ hE or �hE� $ hE�; and Lemma 3.5 shows that this
occurs if and only if �hY $ hY or �hY � $ hY �: Finally Lemma 3.6 shows
that this occurs if and only if X crosses hY: We conclude that an edge he of
T lies in T 0 if and only if X crosses hY: Thus the edges of T which lie in the
minimal �{invariant subtree T 0 naturally correspond to the cosets h� such
that X crosses hY: Hence the number of edges in Ψ2(�) equals the number
of double cosets �h� such that X crosses hY; which was de�ned to be the
intersection number of the given splittings. Similarly, one can show that the
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intersection number of the given splittings equals the minimal possible number
of edges in the graph Ψ1(�): This completes the proof of Theorem 3.1.
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