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Abstract

We show that if a closed atoroidal 3{manifold M contains a genuine lamination,
then it is group negatively curved in the sense of Gromov. Speci�cally, we
exploit the structure of the non-product complementary regions of the genuine
lamination and then apply the �rst author’s Ubiquity Theorem to show that
M satis�es a linear isoperimetric inequality.
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0 Introduction

In 1985 the notion of manifold with essential lamination was introduced [11]
to simultaneously generalize the notion of Haken manifold or manifold with
Reebless foliation. A longstanding goal has been to generalize to laminar man-
ifolds various results established for Haken manifolds. See [11]; [4], [2]; [3],
[7]; for some results in this direction. In particular, a major goal is to show
that atoroidal laminar manifolds have metrics of constant negative curvature,
thereby generalizing Thurston’s hyperbolization theorem [18]. Our main result
shows that at the level of the fundamental group, an atoroidal 3{manifold is
negatively curved (ie Gromov hyperbolic) provided that it has a genuine es-
sential lamination, ie a lamination which is not a Reebless foliation split open
along leaves.

Theorem 0.1 If M is a closed atoroidal genuinely laminar 3{manifold, then
�1(M) is word hyperbolic.

Remarks 0.2 i) Recall that M is atoroidal if it contains no immersed �1 {
injective torus, equivalently �1(M) contains no rank{2 free abelian subgroup.

ii) Manifolds with essential laminations are far more plentiful then manifolds
with incompressible surfaces, eg see [17], [5], [20], [11] and section 1 of the
survey [6]. Gabai and Mosher [16] showed that if k is a hyperbolic knot in S3 ,
then o� of a line in Dehn surgery space, all manifolds obtained by surgery on k
have an essential lamination. As of this writing there is no known example of
an irreducible, atoroidal, 3{manifold with in�nite �1 which does not have an
essential lamination. Although there do exist explicit examples not known to
have essential laminations. See section 1 of [6].

iii) A genuine lamination [9] is an essential lamination � which cannot be
trivially extended to a foliation. This means that some closed complementary
region of M−� is not an I {bundle. Manifolds with genuine laminations include
manifolds with pseudo-Anosov flows, and by Gabai and Mosher [16] for each
hyperbolic knot k 2 S3 o� at most two lines in its Dehn surgery space, all
manifolds obtained by surgery.

Haken manifolds are compact orientable irreducible 3{manifolds that contain
an embedded incompressible surface. Such a surface S is always an essen-
tial lamination and is a genuine lamination except in the case that its closed
complementary region is an I {bundle. In this case S lifts to a �bre of a �bra-
tion in a 2{fold covering of the manifold. If M is atoroidal, then by [19], this
covering has a pseudo-Anosov flow and hence a genuine lamination. Thus a
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closed atoroidal Haken manifold is 2{fold covered by a manifold with a genuine
essential lamination.

iv) It is the non I {bundle complementary region that allows one to get a
grip on the manifold and thereby extend to manifolds with genuine laminations
various known properties of Haken manifolds, see [9], [10]. We remarked in [9]
that the non I {bundle part makes the manifold \reek of negative curvature".
The goal of this paper is to make that remark more precise.

v) Thurston’s hyperbolization theorem asserts that atoroidal Haken manifolds
have hyperbolic structures. Subsequently Bestvina, Feighn [1] gave an elemen-
tary argument establishing group negative curvature for such manifolds.

Idea of the Proof of Theorem 1 Suppose that the genuine lamination
� is obtained by splitting open a singular foliation � along the singular leaves
where each singular leaf is a trigon �S1 . Let C be the singular locus of �. The
Ubiquity Theorem of [8] asserts that there exists constants K;L such that if
D is a least area disk with length(@D)=area(D) < L, then jE \ Cj=area(D) >
K where E is any disk which spans @D . For reasonable disks, this means
that after homotopy of D rel @D , the induced singular foliation on D has at
least Karea(D) 3{prong complementary regions and �jD has no circle leaves.
The Poincar�e{Hopf index formula then implies that @D is tangent to � in
at least Karea(D)=3 di�erent spots. This in turn implies that length(@D) >
K 0Karea(D)=3 and hence length(@D)=area(D) > K 0K=3, for some constant
K 0 which is de�ned independently of reasonable D . For example, K 0 can be
taken to be the minimal distance between tangencies along @D . In summary,
area(D) is approximated by the geometric intersection number of @D and C .
The latter is approximately the number of tangencies of @D with �. This
in turn gives a lower bound for length(@D). Therefore, M satis�es a linear
isoperimetric inequality, and hence �1(M) is negatively curved by Gromov [12].

The actual proof is not much di�erent. Since � is genuine, there exists a
�nite, non-empty collection of characteristic annuli embedded in M −�, which
separates o� the I {bundle part of the complement of � from the non I {bundle
part (Lemma 1.3). Taking C to be the union of cores of these annuli, we obtain
length and area approximations in section 2 similar to those of the previous
paragraph to conclude that M satis�es a linear isoperimetric inequality.

The authors would like to dedicate this paper to David Epstein on the occasion
of his 60th birthday.

The �rst author was partially supported by NSF Grant DMS-9505253 and the
MSRI.
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1 Preliminaries

Notation 1.1 Let
�
E denote the interior of E and jXj denote the number of

connected components of X , if X is a space, or the number of elements of X
if it is just a set. Let �B denote the closure of B , and I denote [0; 1].

In this section we remind the reader of several fundamental properties of essen-
tial laminations.

De�nition 1.2 A 2{dimensional lamination � in a 3{manifold M is a foliation
of a closed subset of M . More precisely M has charts of the form R2�R, such
that � j R2 � R is the product lamination R2 � T , where T is a closed subset
of R. A component of M − � is called a complementary region. A closed
complementary region is a component V of M − � metrically completed with
respect to the induced path metric. Topologically it is V together with its
boundary leaves. We will assume that the leaves of � are smoothly immersed
in M , although the transverse structure may only be C0 .

A lamination � in the closed orientable 3{manifold M is essential [11] if there
are no 2{sphere leaves, each leaf is �1{injective, M − � is incompressible and
each closed complementary region is end-incompressible. The closed comple-
mentary region V is end-incompressible if for every proper map f : D2−x! V ,
x 2 @D2 such that f(@D2 − x) � L, L a leaf of �, then there exists a proper
map g: D2 − x! L such that g j @D2 − x = f j @D2 − x.

Let X be a codimension{0 submanifold of a 3{manifold V . The horizontal
boundary of X is de�ned to be X \ @V and is denoted @hX . The vertical
boundary of X is de�ned to be the closure in @X of @X −@hX and is denoted
@vX . Typically V will be a closed complementary region so that @hX = X \�
and @vX will be a union of annuli. The pair (X;@hX) is called an I {bundle if
X is the total space of an I {bundle over a surface S in such a way that @hX
consists of the boundary points of the I {bundle �bres.

A product disk is de�ned to be a proper embedding of (I�I; @I�I; I�@I) into
(X;@vX;@hX) such that each component of @I � I is mapped to an essential
arc in @vX . A product disk is essential if it is not parallel, keeping @I � I in
@vX and I � @I in @hX , to a disk in @vX .
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Lemma 1.3 Let V be the disjoint union of the closed complementary regions
of an essential lamination �. There exists a unique (up to isotopy in V ) �nite
collection A = A1 [ � � � [An of properly embedded annuli in V such that

(1) V = G [ I where G \ I = @vG = @vI = A.

(2) (I; @hI) is an I {bundle over a possibly noncompact or disconnected sur-
face. No component of (I; @hI) is an I {bundle over a compact surface
with non-empty boundary.

(3) (G; @hG) is compact, has no components homeomorphic to (D2� I;D2�
@I) and contains no essential product disks.

Proof This follows almost immediately from [14] or the Generalized Splitting
Theorem of [15]. We shall only point out the minor di�erences.

Their theorem is stated for compact pairs (V; @hV ). If N(B) is a �bred neigh-
borhood of a branched surface which carries �, then N(B) \ V gives an I {
bundle �bring of the ends of (V; @hV ). Thus their result may be applied to
the �nitely many components of the space (V; @hV ) split along @v(N(B) \ V )
which are compact.

Let (I; @hI) be those �nitely many components of the maximal I {bundle of
(V; @hV ) given by [15], [14] which either contain an end of V or are of the form
S�I where S is a closed surface. Let G = V −(I−@vI) and @hG = G\@hV . (3)
follows by the maximality of I . By construction I has no D2�S1 components
and consequently establishing uniqueness is routine.

Figures 1.1 and 1.2 show examples of the decomposition V = G [ I . Notice
in Figure 1.1 that compact I {bundles are part of the guts G . In Figure 1.2 I
is maximal among I {bundles with no compact components, but there are two
di�erent ways to add compact I {bundles to I .

G

I I

A A
I {bundle over

compact subsurface

Figure 1.1
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I I

A A

G G
�S1 �S1

Figure 1.2

De�nition 1.4 Let C denote the union of the cores of the Ai ’s. I together
with its I {bundle structure is called the interstitial bundle of �. G is called
the guts of �.

De�nition 1.5 A genuine lamination is an essential lamination in M with
non-empty guts. In other words, a genuine lamination is an essential lamination
which is not just a Reebless foliation with some leaves split open.

Lemma 1.6 If M has an essential lamination �1 , then M has an essential
lamination � which is nowhere dense and has no isolated leaves. If �1 is genuine,
then � can be taken to be genuine.

Proof If M −�1 = ;, then by �rst Denjoy splitting open a leaf we can assume
that �1 is not all of M . Let �2 be a sublamination of �1 such that each
leaf is dense in �2 . If �2 is a single compact leaf, then we may assume that
it is 2{sided by passing, if necessary, to a double cover. Finally replace it by
� = �2 � T , where T is a Cantor set. Use the fact that a sublamination of of
an essential lamination is essential by [11] to show that � is essential. Finally
if �1 is genuine, then so is �.

Remark 1.7 i) The feature of no isolated leaves allows us to assume that
distinct Ai ’s do not intersect.

ii) Let � be a properly embedded arc in a closed complementary region V of
�. We say that � is e�cient if � cannot be homotoped rel @� into @V , via a
homotopy supported in V .

To establish Theorem 0.1 we need the following special case of Theorem 1 of
[11].
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Theorem 1.8 Let � be an essential lamination in M , then

i) Interstitial �bres are e�cient arcs.

ii) If I is an e�cient arc, then I cannot be homotoped (in M ) rel @I to lie in
a leaf.

iii) If Ci is a core of Ai , then 0 6= [Ci] 2 �1(M).

iv) If  is a closed e�cient transversal curve (ie  is transverse to � and the
closure of each component of  − � is an e�cient arc), then 0 6= [ ] 2 �1(M).

2 Proof of Theorem 0.1

Let � be a genuine lamination in the closed 3{manifold M . By Lemma 1.6 we
can assume that � is nowhere dense and that no leaf of � is isolated. As in
section 1 we let fAig be the �nite set of characteristic annuli, A = [Ai and
let C be the union of the cores of the Ai ’s.

Fix a Riemannian metric on M . By Gromov [12], �1(M) is word hyperbolic if
there exists L > 0 such that for each least area mapping of a disk f : D !M ,
length(@f)=area(f) > L.

Lemma 2.1 Let K > 0. There exists � > 0 with the following property. If
the set of least area functions f : D !M satisfying

(1) d(@f(@D);A) > �,

(2) length(@f jY ) > � for each component Y of f−1(G) \ @D ,

(3) @f is transverse to � and

(4) f(@D) intersects I in interstitial �bres

all satisfy the isoperimetric inequality length(@f)=area(f) > K , then M is
negatively curved.
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Proof First observe that there exists C1 , and � such that if @g0: S1 ! M
is any smooth immersion, then @g0 is homotopic to @g1 via G: S1 � I ! M
such that @g1 satis�es the conclusions of (1){(4), area(G) � C1length(@g0)
and length(@g0) � �length(@g1). (Hint: Think of � as being carried in an
extremely thin �bred neighborhood of the smooth branched surface B , with
the various components of A lying in tiny neighborhoods of sparsely placed
embedded curves in B . The homotopy of @g0 to @g1 is more or less one which
�rst makes @g0 piecewise geodesic, then pushes @g0 o� a small neighborhood
of A and is transverse to B .)

Let g0: D !M be an arbitrary least area map. Suppose that @g1 is as above,
and g1: D !M is any least area map which extends @g1 . Let K1 = minfK; 1g.
Then

K < length(@g1)=area(g1) � 1
�

length(@g0)=area(g1)

and hence

K1 < (
1
�

length(@g0) + C1length(@g0))=(area(g1) + C1length(@g0))

� (
1
�

+ C1)length(@g0)=area(g0)

which implies that length(@g0)=area(g0) � K1=(1
� + C1).

Let E be any smooth branched immersed disk that spans @D and minimizes
geometric intersection number with C . In what follows (Claim 3) we establish
a relationship between jE \ Cj; jE \ Gj and length(@D).

After a homotopy supported away from @D we can assume that E is transverse
to � [ A. Since leaves of essential laminations are �1{injective and closed
transverse e�cient curves are homotopically nontrivial, the induced lamination
�jE is a lamination by circles and properly embedded arcs. Furthermore each
circle is homotopically trivial in its leaf. Therefore the standard Reeb stability
argument implies the following lemma.

Packet Lemma 2.2 �jE is a union of product laminations of the form I �T
or S1 � T where T is a Cantor set in I and I � I is an embedded square in E

with @E\ I� I = @I� I or S1� I is an embedded annulus in
�
E . Furthermore

the various I � I ’s and the S1 � I ’s are pairwise disjoint.

Let G;I;A, and C be as in Lemma 1.3. The proof of Theorem 0.1 consists
of an analysis of the pullback of these sets to E . These pullbacks are denoted
G;J;A, and C respectively. Claims 0,1, and 2 show how to homotop E so that
it e�ciently intersects G;I;A, and C .
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Claim 0 E can be homotoped rel @E to eliminate circle components of �\E .

Proof of Claim 0 Let E1; � � � ; En be a �nite disjoint union of embedded
disks in E , which contain all the circle components of �jE and are disjoint
from the non-circle leaves. The �1{injectivity of leaves of �, implies that E
can be homotoped rel E−[Ei to eliminate the circle leaves, ie after homotopy
E \ � = (E − [Ei) \ �. Notice that such a homotopy does not increase the
number of arc components of E \ A. The resulting mapping of E will be a
branched immersion transverse to � [ A.

Claim 1 E can be homotoped rel @E so that if B is a component of E \A,
then B is an arc which connects distinct leaves of �jE . Furthermore jB\Cj � 1
and �jE still has no circle components.

Proof of Claim 1 If B is an innermost circle component of E\A let E1 �
�
E

be an embedded disk such that B �
�
E1 and E1 \ (� [ A) = B . The �1 {

injectivity of A implies that a homotopy of E supported in E1 eliminates B
and the resulting E1 will be disjoint from � [A.

Now suppose that B is an arc which connects the same leaves of �jE . By
passing to possibly another such one we can �nd an embedded disk E1 � E
with @E1 the union of B and an arc in a leaf of �\E . By Theorem 1.8 B is a
homotopically inessential arc in A. Since no leaf of � is isolated there is small
neighborhood N(E1) of E1 such that N(E1)\A = B . Thus a homotopy of E
supported in N(E1) eliminates this component B of E\A without introducing
other components of E \ A. Furthermore, the homotopy can be carried out
so that �jE continues to have no circle components. Therefore we can assume
that if B is a component of E \ A, then B is an arc which connects distinct
leaves of �jE . Since jE \ Cj is minimal it follows that jB \ Cj � 1.

Claim 2 After a homotopy of E relative to @E , there is no component G1 of
G that is contained in

�
E and is a disk homeomorphic to I � I in such a way

that G1 \ @vG = @I � I , where 0� I is mapped to an essential arc in A.

Proof of Claim 2 Suppose such a G1 exists. Let Ki = i�I . By Theorem 1.8
K0 cannot be homotoped rel @K0 into a leaf of �. It follows that K1 is also
essential. An application of the Loop Theorem shows that either G contains an
essential product disk or there exists a relative homotopy in G deforming G1

into A. (Ie a homotopy F : (I � I) � I ! G such that F0 = f jG1; Ftji � I =
f ji � I for i 2 f0; 1g; FtjI � i � @hjG for i 2 f0; 1g and F1jI � I � A.) By
Lemma 1.3 (3), the latter must occur. Therefore after a homotopy of E relative
to @E , the number jE \ Cj gets reduced by 2 contradicting the minimality
hypothesis.
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Figure 2.1 shows the Gi ’s, in grey, and the Jj ’s, in white, as subsets E . Points
of G \ J which map to C are indicated with dots. By Claim 2, regions like
G1 can be removed by an isotopy, and regions like G2 can not exist. Note
that components of J jE need not be I {bundles. Indeed had � been a singular
foliation � split open, then non I {bundle components of J jE could have arisen
from tangencies of D with �.

C

Jj

G1

G2

Figure 2.1

G1

G2
G3

C

F

2

Figure 2.2
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If F is a component of E − �, de�ne the index I(F ) to be 1 − 1
2 jF \ @Ej.

There are only �nitely many complementary regions of non zero index by the
Packet Lemma and Claim 1. Since E is a disk,

P
F I(F ) = 1. The regions

of index 1=2 are in 1{1 correspondence with the outermost arcs of � \ E ,
moreover these regions are components of G. Let N be the number of such
regions. Since 1 =

P
F I(F ) =

P
I(F )�0 I(F ) +

P
I(F )>0 I(F ) it follows that

N = 2− 2
P
I(F )�0 I(F ).

Claim 3 N > 1
3
jE \Cj − 1

3�
length(@E).

Proof of Claim 3 Let F be a closed complementary region of E − � and let
G1; : : : ; Gp (respectively J1; : : : ; Jq ) be the components of G\F (respectively
J \ F ). See Figure 2.2.

De�ne I(Gi) = 1− 1
2 jGi\(A[@E)j and I(Ji) = 1− 1

2 jJi\(A[@E)j, thus I(F ) =P
i I(Gi)+

P
j I(Jj). By construction @E intersects J only in interstitial �bres

and by Theorem 1.8 such arcs cannot be homotoped, �xing endpoints, into �,
thus

(1) I(Jj) � 0 for all j.

(2) If I(Gi) < 0 then −I(Gi) � 1
6 jGi \ Cj.

(3) If I(Gi) = 0 then jGi \ Cj � jGi \ @Ej.
(4) If I(Gi) > 0 then Gi = F , I(Gi) = I(F ) = 1

2 and jGi \ Cj = 0.

(In the following sums we suppress double subscript notation by using the same
notation

S
iGi [

S
j Jj for the various di�erent regions F .) We have,

N = 2− 2
X

I(F )�0

I(F )

> 2
X

I(F )�0

0@X
i

(−I(Gi)) +
X
j

(−I(Jj))

1A
� 2

X
I(F )�0

X
i

(−I(Gi)) (by 1)

= 2
X

I(F )�0

X
I(Gi)<0

(−I(Gi)) (by 4)

� 2
X

I(F )�0

X
I(Gi)<0

1
6
jGi \Cj (by 2)
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=
1
3

X
I(F )�0

0@ X
I(Gi)�0

jGi \Cj −
X

I(Gi)=0

jGi \ Cj

1A
=

1
3
jE \ Cj − 1

3

X
I(F )�0

X
I(Gi)=0

jGi \ Cj (by 4)

� 1
3
jE \ Cj − 1

3

X
I(F )�0

X
I(Gi)=0

jGi \ @Ej (by 3)

� 1
3
jE \ Cj − 1

3

X
F

X
Gi

jGi \ @Ej

=
1
3
jE \ Cj − 1

3
jG \ @Ej

� 1
3
jE \ Cj − 1

3�
length(@E): (by Lemma 2.1)

Proof of Theorem 0.1

By the Ubiquity Theorem, [8], there exists K;L > 0 such that if D is a least
area disk such that length(@D)=area(D) < L, then

jE \ Cj=area(D) > K (*)

where E is any disk which spans @D . This means that for disks of small
isoperimetric ratio, up to multiplicative constants, the wrapping number of @D
with C is more or less the same as area(D).

Since there are N regions of E with index 1
2

, @E \ G consists of at least N
components and therefore,

length(@D) = length(@E) � �N (by Lemma 2.1)

� �

3
jE \Cj − 1

3
length(@E) (by Claim 3)

� K�

3
area(D)− 1

3
length(@D): (by (*))

It follows that

length(@D) � K�

12
area(D):
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