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1 Introduction

The problem of describing all �nite-dimensional Lie algebras of vector �elds is
a starting point for the symmetry analysis of ordinary di�erential equations,
because, having solved this problem, one �nds all possible algebras of contact
symmetries for ordinary di�erential equations.

Over the complex numbers this classi�cation was done at the end of the last
century by Sophus Lie [5]. He showed that, with three exceptions, all Lie alge-
bras of contact vector �elds, viewed up to equivalence, are lifts of Lie algebras of
vector �elds on the plane. The largest algebra of the three exceptions (so-called
irreducible algebras of contact vector �elds) is the algebra of contact symmetries
of the equation y000 = 0 and is isomorphic to sp(4;C), while the other two are
its subalgebras of dimension 6 and 7.

In this paper we show that the problem of describing algebras of vector �elds
can be formulated in a natural way in terms of �ltered and graded Lie algebras.
This allows not only to give a new up-to-date proof of Sophus Lie’s classi�cation,
which is as yet missing in the literature, but also to solve this problem over the
�eld of real numbers. It turns out that in the real case there are 8 irreducible
contact Lie algebras of vector �elds on the plane, and one of them involves an
arbitrary parameter.

Lie algebras of vector �elds on the plane were also classi�ed (both in real and
complex case) by Sophus Lie [4], so that the description of irreducible Lie alge-
bras of vector �elds on the plane which is given in the present paper, basically
concludes the description of all �nite-dimensional contact Lie algebras of vector
�elds over the �eld of real numbers.

It should be noted that the problem of �nding all irreducible contact Lie algebras
over the real numbers was also considered by F. Engel in [1], which is mentioned
in Sophus Lie’s three-volume treatise [5] (volume 3, chapter 29, pages 760{761).
P Olver, in his recently published book [7], cites this problem as unsolved.

2 Jet space

2.1 Contact vector �elds

Let M = J1(R;R) be the set of 1{jets of mappings from R to R, and let �
denote the natural projection J1(R;R) ! R2 . We �x a coordinate system
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(x; y; z) on M in which the 1{jet of the mapping f : R! R at the point x0 has
the coordinates (x0; f(x0); f 0(x0)). The projection � has in these coordinates
the form � : (x; y; z) 7! (x; y).

We can introduce a natural contact structure M . Indeed, there is a two-
dimensional distribution C on M which is not completely integrable and has
the property that all its integral curves whose projection onto the plane is di�eo-
morphic, are precisely the curves of the form (x; f(x); f 0(x)) with f 2 C1(I),
I � R. In terms of coordinates, this distribution is given by the vector �elds @

@z

and @
@x + z @

@y or, alternatively, by the di�erential 1{form ! = dy − z dx. A
(local) di�eomorphism � of the manifold M is said to be contact if � preserves
the contact distribution C , ie, if dp�(Cp) = C�(p) for all p 2M . A vector �eld
on M is called contact if it generates a local one-parameter transformation
group that consists solely of contact di�eomorphisms. It is easy to show that a
vector �eld X is contact if and only if LX! = �! for some smooth function �.

If X is a contact vector �eld, then the function f = !(X) is called the char-
acteristic function of X . It completely determines the �eld X , which in this
case is denoted by Xf and has the form

Xf = −@f
@z

@

@x
+
�
f − z @f

@z

�
@

@y
+
�
@f

@x
+ z

@f

@y

�
@

@z
:

The mapping f 7! Xf establishes an isomorphism between the space of all
smooth functions and that of contact vector �elds on M . This allows to make
the space C1(M) into a Lie algebra by letting ff; gg = !([Xf ;Xg]).

2.2 Prolongation operations

If � is a (local) di�eomorphism of the plane, then there exists a unique lo-
cal contact transformation �(1) : J1(R;R) ! J1(R;R) such that the following
diagram is commutative:

J1(R;R)
�(1)

−−−! J1(R;R)

�

??y �

??y
R2 �−−−! R2

The transformation �(1) is then called the (�rst) prolongation of the di�eomor-
phism � and, in terms of coordinates, has the from

�(1) : (x; y; z) 7!
�
A(x; y); B(x; y);

Bx +Byz

Ax +Ayz

�
:
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Similarly, for any vector �eld X on the plane there exists a unique contact
vector �eld X(1) on J1(R;R) such that ��(X(1)) = X . This vector �eld X(1)

is called the (�rst) prolongation of the vector �eld X and has the form

X(1) = A(x; y)
@

@x
+B(x; y)

@

@y
+ (Byz2 + (Bx −Ay)z −Ax)

@

@z
:

Its characteristic function is B(x; y)−A(x; y)z .

The mapping X 7! X(1) is an embedding of the Lie algebra of vector �eld on
the plane into the Lie algebra of contact vector �elds on J1(R;R). The contact
vector �elds that lie in the image of this mapping are called point contact vector
�elds. Point vector �elds Y are characterized by the following two equivalent
properties:

(1) any point vector �eld Y is an in�nitesimal symmetry of the vertical dis-
tribution V on J1(R;R) (Vp = ker dp�);

(2) the characteristic function of Y is linear in z .

2.3 Reducible Lie algebras of contact vector �elds

De�nition A Lie algebra g of contact vector �elds is called reducible if there
is a local contact di�eomorphism � such that the Lie algebra ��(g) consists
only of point vector �elds. Otherwise, g is said to be irreducible.

Theorem 1 A Lie algebra g of contact vector �elds is irreducible if and only
if it preserves no one-dimensional subdistribution of the contact distribution.

Proof Every Lie algebra that consists of point vector �elds preserves the ver-
tical distribution V , which is a one-dimensional subdistribution of the contact
distribution C . Consequently, any reducible Lie algebra of contact vector �elds
also preserves a one-dimensional subdistribution of C .

Conversely, let g be a Lie algebra of vector �elds that preserves some one-
dimensional subdistribution E of the contact distribution. If A and B are two
functionally independent �rst integrals of E , then, as one can easily verify, the
local di�eomorphism

� : (x; y; z) 7!
�
A;B;

Bz
Az

=
Bx + zBy
Ax + zAy

�
is contact and transforms the vertical distribution V to E . It follows that
the Lie algebra �−1

� (g) preserves the vertical distribution and hence consists of
point vector �elds.

Boris M Doubrov and  Boris P Komrakov

Geometry and Topology, Volume 3 (1999)

4



Corollary Any irreducible Lie algebra of contact vector �elds is transitive at
a point in general position.

Proof Let g be an irreducible Lie algebra of contact vector �elds. For an
arbitrary point p 2 J1(R;R), we let g(p) = fXp j X 2 gg and de�ne r =
maxp2J1(R;R) dim g(p) and U = fp 2 J1(R;R) j dim g(p) = rg. Then U is
obviously an open subset in J1(R;R).

The Lie algebra g is transitive at point in general position if and only if r = 3.
Assume the contrary. Then the subspaces g(p) form a completely integrable
distribution E in U which is invariant under g. Consider the following two
possibilities:

1� : r = 2 Then the intersection Ep \ Cp is one-dimensional at the points in
general position, and this family of subspaces forms a one-dimensional subdis-
tribution of the contact distribution which is invariant under g.

2� : r < 2 In this case E can be locally embedded into a two-dimensional
completely integrable distribution which, as follows from its construction, is
also invariant under g. Then, arguing as in the previous case, we conclude that
the Lie algebra g preserves a one-dimensional subdistribution of the contact
distribution.

In this paper we restrict ourselves to a local description of �nite-dimensional
Lie algebras of contact vector �elds at a point in general position. In particular,
from now on we shall assume that all irreducible algebras of contact vector �elds
are transitive.

3 An algebraic model of contact homogeneous space

Let g be a transitive Lie algebra of contact vector �elds on M = J1(R;R), let
o be an arbitrary point in J1(R;R), and let g0 = go be the subalgebra of g
that consists of all vector �elds in g vanishing at the point o. It is easy to show
that the subalgebra g0 is e�ective, ie, contains no nonzero ideals of g (see, for
example, [3, Theorem 10.1]).

We can identify ToM with g=g0 in the obvious way. Then Co is identi�ed with
a certain submodule W of the g0{module g=g0 . Since the distribution C is
not completely integrable, the subspace fx 2 g j x+g0 2Wg will not be closed
with respect to the multiplication in g.
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We de�ne a decreasing chain of subspace in g as follows: gp = g for all p � −2,

g−1 = fx 2 g j x+ g0 2Wg; gp+1 = fx 2 gp j [x; g−1] � gpg for all p � 0:

It is easily shown by induction that [gp; gq] � gp+q for all p; q 2 Z, so that the
family of subspaces fgpgp2Z de�nes a �ltration of the Lie algebra g.

De�nition A �ltered Lie algebra g is called a contact Lie algebra if

a) gp = g for all p � −2;
b) codimg g−1 = 1, codimg g0 = 3, and [g−1; g−1] + g−1 = g;
c) gp+1 = fx 2 gp j [x; g−1] � gpg for all p � 0;
d) \p2Zgp = f0g.

Two contact Lie algebras are said to be isomorphic if they are isomorphic as
�ltered Lie algebras.

Show that any transitive Lie algebra g of contact vector �elds is a contact Lie
algebra with respect to the above �ltration. The properties a) and c) follow
immediately from the way that the �ltration in g is introduced. Let us prove b).
Since the contact distribution has codimension 1, we get codimg g−1 = 1. From
transitivity of g on M we get codimg g0 = 3. Next, since C is not completely
integrable, the subspace [g−1; g−1]+g−1 is strictly greater than g−1 and, hence,
is equal to g.

Finally, Let a = \p2Zgp . Then, obviously, a is an ideal in g contained in g0 .
Now since g0 is an e�ective subalgebra, it follows that a = f0g. This proves d).

Conversely, let g be an arbitrary �nite-dimensional contact Lie algebra. Then
the pair (g; g0) determines a unique (up to local equivalence) realization of g
as a transitive Lie algebra of vector �elds on R3 . And the subspace g−1 allows
us to de�ne a g{invariant two-dimensional distribution on R3 which is not
completely integrable. Therefore, the Lie algebra g admits a unique (up to
local equivalence) realization as a transitive Lie algebra of contact vector �elds.

Thus, the local classi�cation of �nite-dimensional transitive Lie algebras of con-
tact vector �elds on J1(R;R) is equivalent to the classi�cation (up to isomor-
phism) of the corresponding contact Lie algebras. Observe that the latter prob-
lem is algebraic and, as we shall see later, can be solved by purely algebraic
means.

All g{invariant distributions on J1(R;R) are in one-to-one correspondence with
the submodules of the g0{module g=g0 . In particular, the contact distribution
corresponds to the submodule g−1=g0 . From Theorem 1 now easily follows the
next algebraic criterion for the irreducibility of g.
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Lemma 1 A transitive Lie algebra g of contact vector �elds is irreducible if
and only if the g0{module g−1=g0 is irreducible.

4 Graded contact Lie algebras

The major tool in the study of �ltered Lie algebras is to consider graded Lie
algebras associated with them. As we shall see later on, with a few exceptions,
irreducible contact Lie algebras can be completely restored from their associated
graded Lie algebras.

De�nition A Z{graded Lie algebra h =
P

p2Z hp is called a graded contact
Lie algebra if

a) hp = f0g for all p < −2;

b) dim h−1 = 2, dim h−2 = 1, and [h−1; h−1] = h−2 ;

c) fx 2 hp j [x; h−1] = 0g = f0g for all p � 0.

If g is a contact Lie algebra, then it is clear that the associated graded Lie
algebra h =

P
p gp=gp+1 satis�es all three conditions in the above de�nition and

is therefore a graded contact Lie algebra. Moreover, if g is a �ltered Lie algebra
such that the associated graded Lie algebra h is contact and \pgp = f0g, then
it is easy to show that g itself is a contact Lie algebra.

The concept of irreducibility for contact Lie algebras can be carried over to
graded contact Lie algebras. From Lemma 1 it immediately follows that a
contact Lie algebra g is irreducible if and only if so is the h0 {module h−1

in the corresponding graded contact Lie algebra h. The graded contact Lie
algebras that satisfy this condition will be called irreducible.

The classi�cation of all irreducible graded contact Lie algebras can be carried
out using the methods developed in the works of Tanaka [9, 10]. Slightly modi-
fying the terminology of those papers (see also [2]), we introduce the concept of
transitive graded Lie algebra, which generalizes the concept of graded contact
Lie algebra.

De�nition A graded Lie algebra g = �gp is said to be transitive if it satis�es
the following conditions:

(i) there exists a natural number � 2 N such that g−p = f0g for all p > �;

(ii) [g−1; g−p] = g−p−1 for all p � 1;
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(iii) if x 2 gp for p � 0 and [x; g−1] = f0g, then x = 0.

It immediately follows from this de�nition that m =
L
p<0
gp is the graded nilpo-

tent Lie algebra generated by g−1 . Following Tanaka [9, 10], we shall call graded
nilpotent Lie algebras of this kind fundamental. In particular, the fundamental
nilpotent Lie algebra corresponding to a graded contact Lie algebra is none
other than the three-dimensional Heisenberg algebra.

Let m =
L
p<0
gp be an arbitrary fundamental graded Lie algebra. Then, as

was shown by Tanaka [9], there exists a unique transitive graded Lie algebra
g(m) =

L
p2Z
gp(m) that satis�es the following conditions:

(1) gp(m) = gp for p < 0;

(2) g(m) is the largest among all transitive graded Lie algebras satisfying
condition (1).

This Lie algebra g(m) is called the (algebraic) extension of g. In particular,
any transitive graded Lie algebra g may be identi�ed with a graded subalgebra
of g(m), where m =

L
p<0
gp .

The Lie algebra g(m) has a clear geometrical meaning. Namely, let M be a
connected Lie group with Lie algebra m, and let D be a left-invariant distri-
bution on M such that De = g−1 . Denote by A the Lie algebra of all germs
of in�nitesimal symmetries of D at the identity element e of M . Consider the
following two subspaces in A:

A0 =fX 2 A j Xe = 0g
A−1 =fX 2 A j Xe 2 Deg

where X denotes the germ of the vector �eld X at the point e. Now let

A−p−1 =[A−p;A−1] for all p � 1
Ap =f� 2 Ap−1 j [�;A−1] � Ap−1g for all p � 1:

Then the family of subspaces fApgp2Z forms a decreasing �ltration of the Lie
algebra A, and g(m) can be identi�ed with the associated graded algebra, ie,
gp(m) � Ap=Ap+1 for all p 2 Z.

This geometrical interpretation allows to describe, without di�culty, the struc-
ture of g(m) in the case that we are interested in, namely in the case of graded
contact Lie algebras.
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Let n be the three-dimensional Heisenberg algebra and n−2 = [n; n], while n−1

is a two-dimensional subspace complementary to [n; n]. In this case we may
assume without loss of generality that D is precisely the contact distribution
on J1(R;R).

Using the description of all in�nitesimal symmetries of the contact distribution,
it is not hard to determine the structure of the Lie algebra g(n). It can be iden-
ti�ed with the space of polynomials in x; y; z with the bracket operation given
by Xff;gg = [Xf ;Xg]. The space gp(n) consists of all homogeneous polynomi-
als of degree p+ 2, assuming that the variables x; y; z are of degree 1, 2 and 1
respectively. For example,

g−2(n) = h1i
g−1(n) = hx; zi
g0(n) = hx2; xz; z2; yi:

We shall now �x some fundamental graded Lie algebra m and describe how one
can classify all �nite-dimensional graded subalgebras h of the Lie algebra g(m)
such that h−p = m−p for all p � 0.

In what follows we shall always assume that h−p = m−p = g−p(m) for all p < 0.
Suppose that for some k 2 N[f0g we have a collection of subspaces hi � gi(m),
i = 0; : : : ; k , such that [hp; hq] � hp+q 8p; q � k , p + q � k . Using induction,
we de�ne a sequence of subspaces hk+1; hk+2; : : : as follows:

hp+1 = fx 2 gp+1(m) j [x; h−1] � hpg
for all p � k . It can be easily shown that

g(m; h0; : : : ; hk) =
M
p2Z
hp

is a graded subalgebra of g(m). This subalgebra is called the extension of the
collection (h0; : : : ; hk). Note that g(m; h0; : : : ; hk) is the largest of all graded
subalgebras whose ith grading space coincides with hi for all i � k .

One the other hand, we can associate (h0; : : : ; hk) with the graded subalgebra
~g(m; h0; : : : ; hk) generated by these subspaces.

Now let h be an arbitrary graded subalgebra of g(m) such that h−p = g−p(m)
for all p > 0. Then, obviously, for any k � 0 we have

~g(m; h0; : : : ; hk) � h � g(m; h0; : : : ; hk):

Finally, notice that g0(m) is precisely the algebra of all derivations of m that
preserve the grading (see [9]), and all the subspaces hp � gp(m) are invariant
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under the natural action of h0 on gp(m). Based on these remarks, the follow-
ing algorithm for the classi�cation of the desired kind of subalgebras in g(m)
suggests itself.

Step I Describe, up to conjugation, all subalgebras h0 � g0(m) = Der(m). Go
to Step III.

Step II Suppose that for some k 2 N [ f0g, a collection of subspaces hi �
gi(m), i = 0; : : : ; k , is already constructed such that

(i) [hp; hq] � hp+q 8p; q � k; p+ q � k
(ii) dim ~g(m; h0; : : : ; hk) <1:

Let

~gk+1(m; h0; : : : ; hk) =
M

i+j=k+1
1�i;j�k

[hi; hj ];

gk+1(m; h0; : : : ; hk) = fx 2 gk+1(m) j [x; h−1] � hkg:

At this point we describe all h0 -invariant subspaces hk+1 in gk+1(m; h0; : : : ; hk)
such that

(i) ~gk+1(m; h0; : : : ; hk) � hk+1

(ii) dim ~g(m; h0; : : : ; hk+1) <1:

Step III Find the subalgebras ~g(m; h0; : : : ; hk+1) and g(m; h0; : : : ; hk+1). If
these subalgebras are not the same, go to Step II. If, however, they coincide,
then

h = ~g(m; h0; : : : ; hk+1) = g(m; h0; : : : ; hk+1)

is one of the desired subalgebras.

Now we shall use this algorithm to classify all irreducible graded contact Lie
algebras over the �eld of real numbers.

Theorem 2 Let n denote the three-dimensional real Heisenberg algebra, con-
sidered as a graded Lie algebra, and let g(n) be the universal extension of n.
Then any �nite-dimensional irreducible graded contact Lie algebra h is isomor-
phic to one and only one of the following subalgebras of g(n):

1� h1; x; y; z; x2; xz; z2; x(2y − xz); z(2y − xz); (2y − xz)2i
2� h1; x; y; z; x2; xz; z2i
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3� h1; x; z; x2; xz; z2i
4� h1; x; z; x2 + z2; 2y − xz; x(x2 + z2) − 2z(2y − xz); z(x2 + z2) + 2x(2y −

xz); (x2 + y2)2 + 4(2y − xz)2i
5� h1; x; z; x2 + z2; 2y − xzi
6� h1; x; z; x2 + z2 + �(2y − xz)i, � � 0

Proof Fix a basis fx; zg in the space g−1(n). Then the action of the elements
of g0(n) on g−1(n) is given by the following matrices:

x2 7! ( 0 2
0 0 ) ; xz 7!

(−1 0
0 1

�
; z2 7!

(
0 0
−2 0

�
; y 7!

(−1 0
0 0

�
:

Therefore, the Lie algebra g0(n) may be identi�ed with gl(2;R), and the g0(n){
module g−1(n) with the natural gl(2;R){module.

Lemma 2 Any irreducible subalgebra of gl(2;R) is conjugate to one and only
one of the following subalgebras:

(i)
��

�x −x
x �x

� ���� x 2 R� ; � � 0 (ii)
��

x y
−y x

� ���� x; y 2 R�
(iii) sl(2;R) (iv) gl(2;R)

Proof If a subalgebra of gl(2;R) is nonsolvable, then it is either three-dimen-
sional and coincides with sl(2;R), or four-dimensional and is equal to the whole
of gl(2;R). Any solvable irreducible subalgebra is commutative. If it is one-
dimensional, then, as follows from the classi�cation of real Jordan normal forms
of 2�2 matrices, it is conjugate to the subalgebra (i). If g is two-dimensional, it
coincides with the centralizer of one of the Jordan normal forms, which implies
that it is conjugate to the subalgebra (ii).

If we identify gl(2;R) and g0(n), the subalgebras listed in Lemma 2 are iden-
ti�ed with the following subspaces h0 � g0(n):

(i) hx2 + z2 + �(2y − xz)i; � = 2� � 0 (ii) hx2 + z2; 2y − xzi

(iii) hx2; z2; 2y − xzi (iv) hx2; xz; z2; yi

Consider separately each one of these cases:

(i) It is easily veri�ed that in this case we have g1(n; h0) = f0g. Therefore
h = n � h0 , and we arrive at the algebra which is listed in the theorem under
the number 6� .
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(ii) Here we have

g1(n; h0) = hx(x2 + z2)− 2z(2y − xz); z(x2 + z2) + 2x(2y − xz)i;

and the action of the subalgebra h0 on this space is irreducible. Therefore, the
space h1 � g1(n; h0) is either zero or coincides with the whole of g1(n). In the
former case we immediately �nd that h = n�h0 (subalgebra 5� ). In the second
case the subalgebras g(n; h0; h1) and ~g(n; h0; h1) coincide and are equal to the
subalgebra 4� of the theorem.

(iii) Here g1(n; h0) = hx3; x2z; xz2; z3i, and the h0 {module g1(n; h0) is irre-
ducible. Hence either we have h1 = f0g and then h = n� h0 (subalgebra 3� ),
or h1 = g1(n; h0). In the latter case, however, the space h1 generates a �nite-
dimensional subalgebra.

(iv) Here g1(n; h0) = g1(n), and the h0 {module g1(n) is a sum of two irre-
ducible submodules W1 and W2 of the form

W1 = hx3; x2z; xz2; z3i; W2 = hx(2y − xz); z(2y − xz)i:

The submodule W1 generates a �nite-dimensional subalgebra, so that either
h1 = f0g or h1 = W2 . In the former case h = n� h0 (subalgebra 2� ), while in
the latter the subalgebras g(n; h0; h1) and ~g(n; h0; h1) coincide and are equal to
the subalgebra 1� of the theorem.

5 Classi�cation of contact Lie algebras

In order to classify all �nite-dimensional irreducible contact Lie algebras, it will
su�ce to describe all �ltered Lie algebras whose associated graded Lie algebras
are listed in Theorem 2. To solve this latter problem, we shall need the following
result.

Lemma 3 Let g be a �nite-dimensional �ltered Lie algebra, and h the asso-
ciated graded Lie algebra. If there is an element e 2 h0 such that

[e; xp] = pxp 8xp 2 hp
then h, viewed as a �ltered Lie algebra, is isomorphic to g.

Proof Suppose e = �e + g1 for some �e 2 g0 . For every p 2 Z, consider the
subspace

g
p(�e) = fx 2 g j [�e; x] = pxg:
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It is easy to show that, gp = gp(�e)�gp+1 for all p 2 Z. Thus, the subspace gp(�e)
may be identi�ed with hp , and since [gi(�e); gj(�e)] � gi+j(�e), this identi�cation
is in agreement with the structure of the Lie algebras g and h. Hence, we have
found an isomorphism of the Lie algebras g and h which is compatible with
their �ltrations.

For the graded Lie algebras listed in Theorem 2 under the numbers 1� , 2� ,
4� , 5� , we can choose e to be equal to xz − 2y , as this element is contained
in all of these algebras. Then, in view of Lemma 3, the description of the
corresponding �ltered Lie algebras in these four cases is trivial. Consider the
remaining two cases 3� and 6� .

3� Let h be the graded Lie algebra that appears under the number 3� in Theo-
rem 2, and let g be a contact Lie algebra whose associated graded Lie algebra is
isomorphic to h. Since g1 = f0g, the subalgebra g0 can be identi�ed with the
subalgebra h0 , which is isomorphic to sl(2;R). Consider the g0{module g.
It is completely reducible, and its decomposition into a sum of irreducible
submodules has the form: g = V−2 � V−1 � g0 , where the submodule V−2

is one-dimensional and is a complement of g−1 , while the submodule V−1 is
two-dimensional and complements g0 in g−1 . Therefore, the submodules V−p ,
p = 1; 2 can be identi�ed with the subspaces h−p of the graded Lie algebra h,
which allows to identify g and h as vector spaces.

The structure of the Lie algebra g is completely determined by the mappings
� : V−2�V−1 ! g and � : V−1 ^ V−1 ! g de�ned as restrictions of the bracket
operation in g to the corresponding subspaces. The Jacobi identity shows that
these mappings are both g0{invariant. Since the g0{module V−1 ^ V−1 is one-
dimensional and trivial, we have im � � V−2 . Similarly, im� � V−1 . Now,
computing the Jacobi identity for the basis vectors of V−2 and V−1 , we �nd
that the mapping � is zero. Thus, the identi�cation of the spaces g and h is
in agreement with the Lie algebra structures of these spaces, so that the Lie
algebra g is isomorphic to h, viewed as a �ltered Lie algebra.

6� As in the above case, we can identify g0 and h0 . Now, since the h0 {
modules h0 and h−1 are not isomorphic for any value of �, we conclude that
g−1 contains a g0{invariant subspace V−1 which is a complement of g0 . Choose
a basis feg for g0 and a basis fu1; u2g for V−1 in such a way that

[e; u1] = �u1 − u2

[e; u2] = u1 + �u2:
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Then the elements e; u1; u2 , together with the element u3 = [u1; u2], will, obvi-
ously, form a basis of g, and [e; u3] = 2�u3 . Furthermore, checking the Jacobi
identity, we �nd that in case � 6= 0 we have [u1; u2] = [u1; u3] = 0, and the
Lie algebra g is isomorphic to h, viewed as a �ltered Lie algebra. If � = 0,
we have [u1; u2] = �u3 and [u1; u3] = −�u2 for some � 2 R. Note that the
parameters � and x2� with x 2 R� give here isomorphic Lie algebras, whatever
the value of x may be. Therefore, up to isomorphism of contact Lie algebras
we may assume that � = 0;�1. If � = 0, we �nd that g is again isomorphic
to h, viewed as a �ltered Lie algebra. If � = 1 or � = −1, the Lie algebra g
is isomorphic to gl(2;R) or u(2) respectively, while the subalgebras g can be
written, under this identi�cation, in matrix form as follows:�

x x
−x x

�
; x 2 R:

Summing up what has been said, we obtain the following result:

Theorem 3 Any �nite-dimensional irreducible contact Lie algebra is isomor-
phic to one and only one of the following:

I any of the graded contact Lie algebras listed in Theorem 2, if they are
viewed as �ltered Lie algebras;

II.1 g = gl(2;R), where gp = f0g for p � 1,

g0 =
��

x x
−x x

����� x 2 R� ; g−1 =
��

x+ y x+ z
z − x x− y

����� x; y; z 2 R� ;

II.2 g = u(2), where gp = f0g for p � 1,

g0 =
��

x x
−x x

����� x 2 R� ; g−1 =
��

x+ iy x+ iz
iz − x x− iy

����� x; y; z 2 R� :
From now on, to refer to irreducible contact algebras of type I, we shall employ
the notation I.n, where n is the number of the corresponding graded contact
Lie algebra in Theorem 2.

6 Applications

6.1

Now we shall �nd explicit representations in contact vector �elds for the Lie
algebras of vector �elds described above. Note that the mapping f 7! Xf that
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maps an arbitrary function f of the variables x; y; z into the vector �eld whose
characteristic function is f , de�nes an embedding of the Lie algebra g(n) into
the algebra of all contact vector �elds. In this way we immediately obtain the
explicit representations in vector �elds for those contact algebras g which are
isomorphic to their corresponding graded algebras.

Below we list three di�erent representations of the space of characteristic func-
tions for each of the contact algebras II.1 and II.2:

II.1 (a) h(2y − xz)2 + 1; x− z(2y − xz); z + x(2y − xz); x2 + z2i
(b) hx2 + z2; 2x(2y − xz) + z(x2 + z2 + 4); 2z(2y − xz) − x(x2 + z2 +

4); 16 + 4(2y − xz)2 + (x2 + z2)2i
(c) h1; z;

p
1 + z2 shx;

p
1 + z2 chxi

II.2 (a) h(2y − xz)2 + 1; x+ z(2y − xz); z − x(2y − xz); x2 + z2i
(b) hx2 + z2; 2x(2y − xz) + z(x2 + z2 − 4); 2z(2y − xz) − x(x2 + z2 −

4); 16 + 4(2y − xz)2 + (x2 + z2)2i
(c) h1; z;

p
1− z2 sinx;

p
1− z2 cos xi

In particular, from the representations (a) and (b) it follows that these two
algebras of contact vector �elds can both be embedded into the 10{dimensional
algebra I.1 and into the 8{dimensional algebra I.4. The representations (c) are
notable for the fact that the characteristic functions here are independent of y .

6.2

Consider the set of all contact vector �elds of the form Xf , where the function f
has the form f = ay + g(x; z) with a 2 R and g being an arbitrary function
of x; z . It is easy to show that this condition is equivalent to the requirement
that Xf be an in�nitesimal symmetry of the one-dimensional distribution E
generated by the vector �eld @

@y . Thus we see that this space of vector �elds
forms an in�nite-dimensional subalgebra S of the Lie algebra of all contact
vector �elds.

Consider the projection � : S! D(R2) given by

Xf = −gz
@

@x
+ (g − zgz)

@

@y
+ (gx + az)

@

@z
7! −gz

@

@x
+ (gx + az)

@

@z
:

It is easily veri�ed that this mapping is a homomorphism of Lie algebras whose
kernel is one-dimensional and is generated by X1 , while its image coincides with
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the set of all vector �elds on the plane that preserve, up to a constant factor,
the volume form ! = dx ^ dz on the plane:

�(S) =
�
X 2 D(R2) j Lx(!) = �!; � 2 R

}
: (1)

Thus, with every Lie algebra of contact vector �elds that preserves a one-
dimensional distribution complementary to the contact one, we can associate
a Lie algebra of vector �elds on the plane. Conversely, the inverse image of
any subalgebra of the Lie algebra (1) of vector �elds on the plane is some Lie
algebra of contact vector �elds in the jet space.

Note that all irreducible Lie algebras of contact vector �elds, except I.1 and I.4,
preserve a one-dimensional distribution complementary to the contact distribu-
tion, and hence can be embedded into S. The corresponding Lie algebras of
vector �elds on the plane are as follows:

I.2 the Lie algebra corresponding to the group of a�ne transformations of
the plane;

I.3 the Lie algebra corresponding to the group of equi-a�ne transformations
of the plane (ie, area-preserving a�ne transformations);

I.5 the Lie algebra corresponding to the group of similitude transformations;

I.6 h @@x ;
@
@z ; (�x − z)

@
@x + (x + �z) @

@z i, � = �=2 (if � = 0, this Lie algebra
corresponds to the group of Euclidean transformations);

II.1 the Lie algebra corresponding to the group of all transformations of the
hyperbolic plane;

II.2 the Lie algebra corresponding to the group of rotations of the sphere.

6.3

The above correspondence allows to describe without any di�culty all di�er-
ential and integral invariants for all Lie algebras g of contact vector �elds that
satisfy the following conditions:

(a) g preserves a one-dimensional distribution complementary to the contact
one;

(b) g 3 X1 = @
@y .

Indeed, let (x; y0 = y; y1 = z; y2; : : : ; yn) be the standard coordinate system in
the space Jn(R2) of nth jets of curves on the plane. (See [7] for de�nition of jet
spaces and notions of di�erential and integral invariants.) Denote by g(n) the
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nth prolongation of the Lie algebra g. It then follows from the condition (b)
that the di�erential and integral invariants of g that have the order n are
independent of y and may be considered on the manifold of the trajectories of
the vector �eld X

(n)
1 . These trajectories are given by the equations y = const

and can be parametrized by the coordinates (x; y1; : : : ; yn). Furthermore, it
turns out that if n � 2, the action of the algebra g(n) on that quotient manifold
is equivalent to the action of the Lie algebra �(g)(n−1) on the space of (n−1)th
jets, and the mapping Jn(R2) ! J (n−1)(R2) that establishes this equivalence
has the form:

(x; y1; : : : ; yn) 7! (x; y0; : : : ; yn−1):

Therefore, all di�erential and integral invariants of g may be derived from the
invariants of �(g) by substituting yi+1 instead of yi for i � 0.

We remark that Sophus Lie [4] found all invariants for those Lie algebras of
vector �elds on the plane that correspond to the cases I.2 and I.3. The invariants
of the 10{dimensional irreducible Lie algebra I.1 were computed in [7] over the
complex numbers, and they remain unchanged on passing to the real case.
Now we shall specify nontrivial integral and di�erential invariants of the least
order for the rest of irreducible contact Lie algebras of vector �elds; all other
invariants can be derived from these by means of di�erentiation (see [7]).

Di�erential invariant Integral invariant

I.4 P
Q8=3

Q1=3dx
y2
2+1

I.5 (1+y2
2)y4−3y2y2

3

y2
2

y3dx
1+y2

2

I.6 y3e−� arctg y2

(1+y2
2)3=2 e� arctg y2(1 + y2)1=2dx

II.1
p

1+y2
1((1+y2

1)y3−3y1y2
2−y1(1+y2

1)2)

((1+y2
1)2+y2

2)3=2

�
(1+y2

1)2+y2
2

1+y2
1

�1=2
dx

II.2
p

1−y2
1((1−y2

1)y3+3y1y2
2+y1(1−y2

1)2)

((1−y2
1)2+y2

2)3=2

�
(1−y2

1)2+y2
2

1−y2
1

�1=2
dx

where

P = (y2
2 + 1)2

(
QD2(Q)− 7

6D(Q)
�

+ 2(y2
2 + 1)y2y3QD(Q)−

−
(
9(y2

2 + 1)y2y4 − 1
2(9y2

2 − 19)y2
3

�
Q2

Q = 9(y2
2 + 1)2y5 − 90(y2

2 + 1)y2y3y4 + 5(27y2
2 − 5)y3

3

D =
@

@x
+ y1

@

@y
+ � � �+ y7

@

@y6
(the operator of total di�erentiation).

For the algebras II.1 and II.2, we have chosen here their representations in
contact vector �elds that appear earlier under the letter (c).
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Notice that all contact Lie algebras listed in the table above are reducible over
the �eld of complex numbers. Hence, for each of these algebras there exists a
certain complex analytic contact transformation which takes it to one of the
known canonical forms for contact Lie algebras over C. Thus, the inverse
thatsformation (prolonged as many times as needed) brings known invariants
to the invariants of the initial Lie algebra.

For example, the contact transformation

T : (x; y; z) : (x; y; z) 7! (x+ iz;−2iy + 1=2(x2 + 2ixz + z2); x− iz)

takes the contact Lie algebra I.5 to the algebra with the following space (over
C) of characteristic functions:

h1; x; y; z; xzi:

This contact Lie algebra is reducible and is the �rst prolongation of the following
Lie algebra of vector �elds on the plain:�

@

@x
; x

@

@x
; y

@

@y
;
@

@y
; x

@

@y

�
:

The di�erential invariants of the least order for this Lie algebra were computed
already (see, for example, [7]) and have the form:

di�erential invariant: y2y4

y2
3

integral invariant: y3

y2
dx.

The third prolongation of the inverse transformation T−1 takes these invariants
to those given in the table above. In the similar way we can compute invariants
for other contact Lie algebras of vector �elds given in the table.

6.4

Consider the problem of classifying those in�nite-dimensional subalgebras in
the Lie algebra of contact vector �elds that correspond to Lie pseudo-groups of
contact transformations (ie, those that can be de�ned with the help of a �nite
number of di�erential equations; see [2]). As in the �nite-dimensional case, all
these algebras can be naturally divided into two classes: reducible ones, which
are actually extensions of in�nite-dimensional Lie algebras of vector �elds on
the plane, and irreducible ones. Over the �eld of complex numbers all irre-
ducible in�nite-dimensional Lie algebras of contact vector �elds were described
by Sophus Lie [6], who showed that, apart from the Lie algebra of all contact
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vector �elds, there exist exactly two in�nite-dimensional irreducible subalge-
bras, namely, the Lie algebra S = fXay+g(x;z)g, which we already mentioned
earlier, and its commutant [S;S] = fXg(x;z)g.

The methods for the description of contact Lie algebras that have been devel-
oped in this paper, can be easily generalized to the in�nite-dimensional case.
In particular, with these Lie algebras we can again associate graded contact
Lie algebras that can be embedded into the universal extension g(n) of the
three-dimensional Heisenberg algebra. Let h be an in�nite-dimensional graded
subalgebra in g(n) such that hp = gp(n) for p < 0 and such that the h0{module
h−1 is irreducible. Then all possible types of subalgebras h0 over the real num-
bers are listed in Lemma 2. As follows from the proof of Theorem 2, in the
cases (i) and (ii) the Lie algebra h is �nite-dimensional. The consideration of
the remaining cases (iii) and (iv) is the same over the complex and real numbers,
and gives the in�nite-dimensional Lie algebras of contact vector �elds described
above. Thus the classi�cation of irreducible in�nite-dimensional Lie algebras
of contact vector �elds remains unchanged on passing from the complex to the
real case.
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