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Abstract

The Mahler volume of a centrally symmetric convex body K is de�ned as
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Let V be an n{dimensional vector space and let V � be the dual vector space.
We denote the usual inner product between V and V � by h � ; � i . If K � V is a
centrally symmetric convex body centered at the origin, then there is a convex
body

K� =
�
~y 2 V � j hK;~yi � [−1; 1]

}
called the dual or polar body of K . The Mahler volume of K is de�ned as

M(K) = VolK �K� = (VolK)(VolK�):

Here V and V � are given dual volume structures, or for the �rst expression,
the natural volume structure on V � V � su�ces.

The Mahler volume arises in the geometry of numbers and in functional analysis.
By construction it is invariant under the action of GL(V ) on K . For �xed
V , the space of symmetric convex bodies divided by the action of GL(V ) is
compact in the Hausdor� topology, and M(K) is continuous under this action.
Consequently M(K) has a �nite maximum and a non-zero minimum in each
dimension. The maximum and minimum of M(K) are interesting objects of
study in asymptotic convex geometry:

Theorem 1 (Santal�o) In a �xed vector space V , M(K) is uniquely maxi-
mized by ellipsoids.

Let Cn be the standard unit cube and let Bn be the round unit ball, both in Rn .
The polar body C�n is the standard cross polytope, while obviously B�n = Bn .

Conjecture 1 (Mahler) For convex bodies K in n dimensions with n �xed,
the volume M(K) is minimized by the cube Cn .

Conjecture 1 is considered harder than Theorem 1 because a cube has much less
symmetry than an ellipsoid. Moreover, M(K) cannot be uniquely minimized
when K is a cube or a cross polytope, because there are other polytopes with
the same Mahler volume. For example,

M(Ca+b) = M(Ca � C�b ):

By contrast, Theorem 1 can be proved by an elegant symmetrization argument
[6].

Using methods from functional analysis, Bourgain and Milman [1] proved an
asymptotic version of Conjecture 1:
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Theorem 2 (Bourgain, Milman) There is a constant c > 0 such that for any
n and any centrally-symmetric convex body K of dimension n,

M(K) � cnM(Bn):

Although the proof technically constructs the constant c (and although the
proof has been simpli�ed [5]), no good value for it is currently known. The
author [2] proved the following:

Theorem 3 If K has dimension n � 4, then

M(K) � (log2 n)−nM(Bn):

Theorem 3 has no arbitrary constants and therefore has some strength in low
dimensions, but it is obviously asymptotically weaker than Theorem 2.

In this paper, we present a conjecture (Conjecture 2 below) which would pro-
duce a good value for the constant c in Theorem 2. The conjecture also moti-
vated the proof of Theorem 3.

Let

K+ =
�

(~x; ~y) 2 K �K� j h~x; ~yi = 1
}

K− =
�

(~x; ~y) 2 K �K� j h~x; ~yi = −1
}

and let K} be the convex hull of K+ [K− .

Conjecture 2 For convex bodies K in n dimensions with n �xed the volume

D(K) = VolK}

is uniquely minimized when K is an ellipsoid.

We call Conjecture 2 the bottleneck conjecture, because the equation h~x; ~yi = 1
de�nes a hyperboloid sheet H+ in V �V � that resembles the flange of a bottle,
while K+ is a topological sphere in H+ that forms a neck. Figure 1 shows
the geometry in the trivial case n = 1, which serves as a schematic for the
higher-dimensional case. The inclusion

K} � K �K�

obviously implies the inequality

D(K) �M(K):
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K}K+ K+

K−

K−

V � V

H+

Figure 1: The geometry of K+ , K− , and K}

To see the strength of Conjecture 2, consider these volume formulas:

VolCn = 2n VolC�n =
2n

n!

VolBn =
�n=2

(n=2)!
M(Cn)
M(Bn)

=
(4=�)n(

n
n=2

�
(Here n

2 ! = Γ(n2 + 1) when n is half-integral.) The body B}n is the convex hull
of two orthogonal round n{balls of radius

p
2 in R2n , so

VolB}n = (VolBn)2 2n(
2n
n

� :
Consequently, if fKng is any sequence of symmetric convex bodies with dimKn

= n, then Conjecture 1 implies that

lim
n!1

n

s
M(Kn)
M(Bn)

� 2
�

if the limit exists, while Conjecture 2 implies that

lim
n!1

n

s
M(Kn)
M(Bn)

� 1
2

if the limit exists.

1 Reformulations

The main purpose of this section is to introduce another conjecture which im-
plies Conjecture 2 and which may be equivalent.
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Conjecture 3 If K � V is a centrally symmetric convex body, then

Q(
-!
VolK+);

the energy of the directed volume enclosed by K+ , is uniquely minimized when
K is an ellipsoid.

Here is an explanation of the terminology of Conjecture 3. The space W =
V � V � has a symmetric bilinear form extending the pairing of V and V � and
such that

h~x; ~yi = 0

if ~x and ~y are both in V or both in V � . (There is an even more important
antisymmetric, or symplectic, form that extends the pairing, but in this article
the symmetric extension is the relevant one.) The function Q is the associated
quadratic form on W given by

Q(~v) = h~v;~vi:
These forms have signature (n; n), where n is the dimension of V . Both the
inner product and the quadratic form extend to the exterior algebra

V�W by
the relation

Q(!1 ^ !2) = Q(!1)Q(!2):

In this paper the quantity Q(!) is called the energy of the tensor ! . The energy
form Q on the space

VkW of k{tensors has signature

(
a+ b

2
;
a− b

2
);

where

a =
�

2n
k

�
b =

(
(−1)k

(
n
k=2

�
k even

0 k odd.

If M � W is an oriented smooth k{manifold with boundary, it has a directed
volume

-!
VolM 2

VkW:
If M is the image of a smooth embedding

~f : U !W

of some domain U � Rk , then the directed volume is given by an integral
formula:

-!
VolM =

Z
U
d~f =

Z
U

@ ~f

@x1
^ @ ~f

@x2
^ : : : ^ @ ~f

@xk
d~x:
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By Stokes’ theorem,
-!
VolM only depends on the boundary of M . If N is an

oriented, closed (k−1){manifold, we de�ne the directed volume
-!
VolN enclosed

by N as the directed volume of any oriented M with @M = N .

1.1 Conjecture 3 implies Conjecture 2

The point of Conjecture 3 is that the energy of the directed volume of K is,
up to a constant factor, the volume of the region K~ � K} enclosed by line
segments that connect K+ to K− . The bodies K~ and K} could be identical
for all K . We will develop some geometric properties of K− and K+ to argue
that

Q(
-!
VolK+)

is essentially an integral formula for the volume of K~ .

A vector ~v 2 W is spacelike if Q(~v) > 0, timelike if Q(~v) < 0, and null if
Q(~v) = 0. A manifold in W is spacelike if all tangent vectors are spacelike; it is
timelike if all tangent vectors are timelike. There is a principle of transversality
of space and time: If V + is a spacelike vector subspace of W and V − is a
timelike vector subspace, then

V − \ V + = f~0g:
Thus, any basis of V + and any basis of V − are linearly independent in W .

Let H+ and H− be the hypersurfaces de�ned by

H� =
�
~v
��Q(~v) = �1

2
}
:

Both hypersurfaces are di�eomorphic to Rn�Sn−1 . Pick some ellipsoid E � V
centered at the origin. Then E determines a self-adjoint isomorphism

� : V ! V �

such that
E =

�
~x 2 V

�� h~x; �(~x)i � 1
}
:

Let V + and V − be the n{planes in W de�ned by

V � =
�

(~x;��(~x))
}
:

Then
E� = V � \H�:

The linear space V + is spacelike, while V − is timelike. The projection of H+

onto V + along V − consists of all points of V + except those enclosed by E+ .
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The composition of this linear projection with radial projection onto E+ is a
convenient map

�+ : H+ ! E+

to E+ , which is a topological (n− 1){sphere. Each �ber �−1(~v) of this map is
a timelike section of H+ which is isometric to hyperbolic n{space.

As before, let K be a symmetric convex body in V . For simplicity, assume
that both K and K� are smooth. For each point ~x 2 @K , there is a unique
~y 2 @K� , the outward normal of @K at ~x, such that

h~x; ~yi = 1:

Moreover, for each such ~x, the body K has an osculating ellipsoid E(~x), de�ned
as the unique ellipsoid with the following three properties:

(1) ~x lies in @E(~x).

(2) ~y is the outward normal of E(~x) at ~x.

(3) @E(~x) has the same extrinsic curvature as @K at ~x.

Equivalently, E(~x)+ and K+ have the same tangent (n − 1){plane at the
point (~x; ~y). The existence of E(~x) for each ~x implies that K+ is a spacelike
manifold, that is, that its tangent spaces are spacelike. In fact, for each ~v 2 K+ ,
the n{plane spanned by T~vK

+ and ~v is spacelike. Finally, the restriction of
the projection �+ to K+ is a homeomorphism between K+ and B+

n .

Let J = K+ �K− be the topological join of K+ and K− . Explicitly,

J =
(
K+ �K− � [0; 1]

�
=�

where the equivalence relation � is given by

(~x; ~y1; 0) � (~x; ~y2; 0) (~x1; ~y; 1) � (~x2; ~y; 1):

There is a natural map
~| : J !W

de�ned by
~|(~x; ~y; t) = t~x+ (1− t)~y:

In the following proposition and below, the adverb almost means \up to a set
of measure 0".

Proposition 1 The map ~| is almost a smooth embedding. The set ~|(J) meets
almost every ray from the origin in W exactly once.
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Proof Let SW be the space of such rays, and let

�W : J ! SW

be the composition of ~| with radial projection to SW . The space J is a smooth
manifold except on K+ and K− , where it is merely a Lipschitz manifold. Let
~x 2 K+ and ~y 2 K− . By the space-time transversality principle, the vectors
and tangent spaces ~x, T~xK+ , ~y , and T~yK

− are linearly independent. Thus,
the map � has positive Jacobian at each point (~x; ~y; t) 2 J with 0 < t < 1,
because the derivative matrix can be explicitly expressed in terms of ~x, ~y , and
bases for T~xK+ and T~yK

− . In other words, � is a local di�eomorphism away
from K+ and K− . The map � is Lipschitz on K+ and K− themselves, which
implies that �W (K+) and �W (K−) are sets of measure zero.

The degree of the map �W is both an integer and continuous as a function of
K . It follows that the degree is 1, since that is its value when K is an ellipsoid.
Thus � is almost a di�eomorphism, as desired.

We conjecture that �W is a homeomorphism (without excepting a set of mea-
sure zero).

As mentioned above, K~ is de�ned as the region in W enclosed by ~|(J). By
Proposition 1, K~ is almost starlike.

Let ~x 2 K+ and let P (~x) be a tangent in�nitesimal parallelepiped at ~x. Let ~y 2
K− and de�ne P (~y) likewise. Let P (~x; ~y) be the semi-in�nitesimal polytope
which is the convex hull of P (~x), P (~y), and the origin. If the directed volume
of P (~x) is d~x and the directed volume of P (~y) is d~y , then the volume of P (~x; ~y)
is

1(2n
n

�~x ^ ~y ^ d~x ^ d~y:
The body K~ is disjoint union of all P (~x; ~y) as ~x and ~y vary, and by Propo-
sition 1, they are almost disjoint. Consequently

VolK~ =
Z
K+

Z
K−

1(
2n
n

�~x ^ ~y ^ d~x ^ d~y:
This equation factors as�

2n
n

�
VolK~ =

�Z
K+

~x ^ d~x
�
^
�Z

K−
~y ^ d~y

�
: (1)

Let L+ be the union of line segments from K+ to the origin and let L− be the
analogous cone over K− . Then

-!
VolK� =

-!
VolL� =

Z
K�

~x ^ d~x (2)
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by decomposition into in�nitesimal cones. Thus, equation (1) further simpli�es
to �

2n
n

�
VolK~ = (

-!
VolL+) ^ (

-!
VolL−)

= (
-!
VolK+) ^ (

-!
VolK−): (3)

Finally, the linear map
� : W !W

de�ned by
�(~x; ~y) = (−~x; ~y)

for ~x 2 V and ~y 2 V � sends K+ to K− and negates the quadratic form Q.
Both � and Q extend to the exterior algebra

V�W . Functoriality of directed
volume then implies that

-!
VolK− = �

-!
VolK+: (4)

If ~e1; : : : ; ~en is a basis for V , and if � is a self-adjoint isomorphism from V to
V � (as de�ned previously), then

~e1 + �(~e1); ~e2 + �(~e2); : : : ; ~en + �(~en)

is a basis for V + (also de�ned previously). Then because � is self-adjoint, the
wedge product

! = (~e1 + �(~e1)) ^ (~e2 + �(~e2)) ^ : : : ^ (~en + �(~en))

satis�es the identity

h!; �i = �(!) ^ � (5)

for an arbitrary n{tensor � . (It is easy to verify this identity with an explicit
calculation in the representative case where V is Rn with the standard basis
and � is the identity.) Because of the system of osculating ellipsoids for K ,

and because of equation (2),
-!
VolK+ is a linear combination of such tensors ! ,

which means that it satis�es equation (5) as well. In particular,
-!
VolK+ ^ �(

-!
VolK+) = Q(

-!
VolK+):

Combining this identity with equations (3) and (4) yields�
2n
n

�
VolK~ = Q(

-!
VolK+):

Since K~ is always contained in K} , and since they coincide when K is an
ellipsoid, this �nal expression shows that Conjecture 3 implies Conjecture 2, as
desired.
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1.2 A generalization

There is a plausible generalization of Conjecture 3 to a+b dimensions, by which
we mean a vector space V with an inner product of signature (a; b). Let Q be
the associated quadratic form. Let

H+ =
�
~x 2 V

��Q(~x) = 1
}

be the positive unit hyperboloid sheet associated to Q. (Note that H+ is now
slightly di�erent, because it was previously the level set Q−1(1=2).) Also for
convenience endow V with a volume form relative to which the inner product
has determinant (−1)b .

Conjecture 4 Let H+ be the positive unit hyperboloid of a non-singular
quadratic form Q on a vector space V with signature (a; b). Let N be a space-
like submanifold of H+ whose inclusion into H+ is a homotopy equivalence.

Then Q(
-!
VolN), the energy of the directed volume enclosed by N , is uniquely

minimized when N is the intersection of Q with an a{plane in V containing
the origin.

Call a manifold N as de�ned in Conjecture 4 a neck. Conjecture 3 is the special
case of Conjecture 4 when a = b, and only for those necks which can be realized
as K+ for some convex body K .

We could even more generally ask to minimize the inner product〈 -!
VolN1;

-!
VolN2

�
for two di�erent spacelike necks N1 and N2 . Or we could minimize the wedge
product

-!
VolN+ ^

-!
VolN−

for a spacelike neck N+ in H+ and a timelike neck N− in H− . (The wedge
product can be interpreted as a number using the volume form on V .) In
the author’s opinion, Conjecture 4 is a natural starting point for this family of
questions.

2 Proofs in marginally inde�nite cases

In this section we will prove Conjecture 4 in the four least inde�nite cases:
1 +n, n+ 1, n+ 2, and 2 +n dimensions. Note that in an (a+ b){dimensional
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vector space V , the set of spacelike a{planes is contractible, so we can consis-
tently orient them. Likewise we can consistently orient timelike b{planes. For
convenience, we choose orientations which are consistent with the orientation
of V induced by its volume form.

2.1 Dimensions 1 + n and n + 1

The �rst case, 1+n dimensions, is elementary. In this case H+ is a hyperboloid
with two sheets and N consists of a pair of points ~x and ~y , one on each sheet.
We can assume that ~x is a positive vector and ~y is a negative vector. The
directed volume of N is then

-!
VolN = ~x− ~y;

which is the sum of two positive unit spacelike vectors ~x and −~y . It is elemen-
tary that the sum is shortest when they are parallel. (Indeed, if we switch space
with time, this is the simplest case of the twin paradox in special relativity.)
This is equivalent to the condition that N is centered at the origin, the only
thing to prove in this case.

�W (H+)

�W (N)

Figure 2: �W (N) rings the hole of �W (H+)

The second case, n+ 1 dimensions, is instructive for the last two cases, which
are more di�cult. Let vn be the volume of the unit ball in Rn . Let W be a
spacelike n{plane passing through the origin and let

S = W \H+

be the unit sphere in W . Let

�W : V !W

be the orthogonal projection onto W , and let

�S : H+ ! S

The bottleneck conjecture
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be the radial projection onto S , generalizing the map �+ of Section 1.1. By the
argument of Section 1.1, �S , if restricted to N , is a homeomorphism. Equiva-
lently, �W (N) is starlike. At the same time, �W (H+) is the complement of S .
Consequently the area enclosed by �W (N) is at least vn , the volume enclosed
by B , because �W (N) must go around the hole in �W (H+), as indicated in
Figure 2.

Thus for any spacelike n{plane W , the component of
-!
VolN which is orthogonal

to W is at least vn . This implies that
-!
VolN is dual to a timelike vector. If we

choose an orthonormal basis

~e1; ~e2; : : : ; ~en

of W and extend with a postive orthogonal unit timelike vector ~en+1 ,
-!
VolN

becomes the monomial tensor
-!
VolN = c~e1 ^ : : : ^ ~en:

Moreover, c � vn , so by computation in this basis,

Q(
-!
VolN) � v2

n:

The point is that in a suitable basis for V , the only non-vanishing terms of
-!
VolN all have non-negative self inner product.

2.2 Dimensions n + 2 and 2 + n

The third case, n + 2 dimensions, requires a preliminary lemma about the
exterior square

V2V interpreted as a Lie algebra:V2V �= so(V ) �= so(n; 2):

Note that the �rst isomorphism is canonical, and that using this isomorphism,

hX;Y i = −1
2

Tr(XY ):

Among the elements of so(V ) there are spacelike and timelike rotations. Since
the timelike planes are all oriented, the timelike rotations can be divided into
positive and negative. Also say that an element of so(V ) is elliptic if it is a
product of commuting spacelike and timelike rotations (positive or negative).

Lemma 1 (Paneitz) A convex combination of positive timelike rotations is
elliptic.
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Here are some comments about the results and terminology of Paneitz [3, 4].
Among all convex cones in so(V ) which are invariant under conjugation, there
is a unique minimal closed cone C0 and a unique maximal cone C1 (necessarily
closed). De�ne the in�nitesimal angle d > 0 of a rotation R (either spacelike
or timelike) by the relation

Tr(R2) = 2d2:

Then according to Paneitz [3, page 340], the elements of C int
0 are precisely those

that are a commuting product of a positive timelike rotation by an angle d0

and spacelike rotations by angles d1; : : : ; dk (necessarily 2k � n) such that

d0 > d1 + d2 + : : :+ dk:

Every timelike rotation is of this form (with k = 0), hence any convex combi-
nation is as well.

Recall that an alternating k{tensor is simple if it is a wedge product of vectors.
For a general quadratic form Q on V of signature (a; b), say that a simple
k{tensor in

VkV is spacelike (respectively timelike) if it is the wedge product
of vectors that span a spacelike k{plane (resp. a timelike k{plane). A spacelike
simple a{tensor (resp. a timelike simple b{tensor) is positive if its factors are
positively ordered relative to the orientation of the a{plane (resp. the b{plane)
they span. Recall that the Hodge star operator on k{tensors is de�ned as the
unique linear operator

� :
VkV !

Vn+2−kV

such that
�(~e1 ^ ~e2 ^ : : : ^ ~ek) = ~ek+1 ^ ~ek+2 ^ : : : ^ ~en+2

for any positively oriented orthonormal frame

~e1; ~e2; : : : ; ~en+2:

We will need two facts about the Hodge star operator: �rst, that

Q(�!) = (−1)bQ(!)

for any tensor ! , and second that ! is a positive, spacelike, simple a{tensor if
and only if �! is a positive, timelike, simple b{tensor.

In terms of 2{tensors, Lemma 1 says that a convex combination of positive,
timelike, simple 2{tensors can be expressed in the form

d0~e0 ^ ~e1 + d1~e2 ^ ~e3 + : : :+ dk~e2k ^ ~e2k+1;

where the vectors ~e0; ~e1; : : : ; ~e2k+1 are orthonormal, and ~e0 and ~e1 are timelike.
In addition if the pair (~e0; ~e1) forms a positive basis of the plane it spans, then
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d0 is positive. We will need the dual statement that a convex combination of
positive, spacelike, simple n{tensors can be expressed in the form

d0 �(~e0 ^ ~e1) + d1 �(~e2 ^ ~e3) + d2 �(~e4 ^ ~e5) + : : :

+ dk �(~e2k ^ ~e2k+1): (6)

Finally, if N is a neck, then
-!
VolN is realized as a convex combination of posi-

tive, spacelike, simple n{tensors by the obvious generalization of equation (2).

Consequently �
-!
VolN can be expressed in the form of expression (6). If W is

a spacelike n{plane spanned by the vectors ~e2; : : : ; ~e2k+1 , then the projection
of N encloses a volume of at least vn by the idea illustrated in Figure 2. Thus

d0 � vn;

and

Q(
-!
VolN) =

kX
i=0

d2
i � d2

0 � v2
n;

as desired.

Conjecture 4 is argued the same way in 2+n dimensions as in n+2 dimensions,
except without the complication of applying Hodge duality.

2.3 Trivial cases and open cases

The case of n+ 0 dimensions is trivially true, since there is only one candidate
for the neck N . The case of 0 + n dimensions is vacuous.

The basic reason that the above arguments do not work in a + b dimensions
when both a and b are at least 3 is that the space of alternating a{tensors is
bigger than the Lie group SO(a; b). Asymptotically

dim
VaRa+b

grows exponentially in min(a; b), while

dim SO(a; b)

grows quadratically. The general a{tensor does not admit an orthonormal basis
such that all terms have positive energy.
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3 Local stability

In this section we argue that a flat neck is a local minimum of the energy

Q(
-!
VolN) relative to the C1 topology in a+ b dimensions.

Consider Ra+b together with the standard quadratic form Q of signature (a; b)
given by

Q(~x; ~y) = ~x � ~x− ~y � ~y;

using the standard dot products on Ra and Rb . Let h � ; � i be the associated
bilinear form. Let Sa−1 be the standard unit (a − 1){sphere in the standard
timelike Ra � Ra+b . The hyperboloid sheet H+ is perpendicular to Ra at the
sphere Sa−1 . Given a C1 function

~f : Ra ! Rb;

let N be the set

N =
n(
~x
p

1 + f2(~x); ~f(~x)
� �� ~x 2 Sa−1

o
:

For suitable ~f , N is a neck, and every neck N can be uniquely expressed in
this form.

Let ~e1; : : : ; ~ea+b be the standard basis of Ra+b . Given a linear map

L : Ra ! Rb;

we de�ne an alternating a{tensor

Ψ(L) =
aX
k=1

(−1)k+1L(~ek) ^ ~e1 ^ : : : ^ b~ek ^ : : : ^ ~ea:
In other words, Ψ is the natural linear transformation

Ψ: Hom(Ra;Rb)!
Va−1Ra ⊗

V1Rb �
VaRa+b

induced by the standard Hodge star operator on Ra and the standard dot
product on Rb . Using this notation, if ~f and its derivative D~f are of order �,
then

-!
VolN =

�
va−1 +

Z
af2(~x) d~x+ o(�2)

�
~e1 ^ : : : ^ ~ea

+
Z

Ψ(D~f(~x)) d~x+ o(�): (7)
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Here all integrals are over the sphere Sa−1 , as before va−1 is the volume enclosed
by Sa−1 , and the last term o(�) consists of monomials with at least two wedge
factors ~ek with k > a. If we set

Q[~f ] = Q(
-!
VolN);

then the �rst variational derivative of Q at ~f = 0 vanishes by symmetry, while
the second variational derivative is given by

�2Q

(� ~f )2

�����
0

=
Z
af2(~x) d~x −

�Z
Ψ(D~f(~x)) d~x

�2

def= A[~f ] − B[~f ]

(8)

from equation (7). In the second line of equation (8), we de�ne the functional
A[~f ] to be the �rst term of the �rst line and the functional B[~f ] to be the
second term.

We claim that the second variational derivative of Q (equation (8)) is positive
de�nite except for null directions given by the action of the symmetry group
SO(a; b). These null directions correspond to the variations ~f which are linear.
The general ~f has a harmonic expansion

~f = ~f0 + ~f1 + ~f2 + : : : ;

where ~fk is given by a degree k polynomial which is orthogonal to lower-degree
polynomials on the sphere Sa−1 . The functional A is proportional to the L2

norm of ~f :

A[~f ] = ajj~f jj2 = ajj~f0jj2 + ajj~f1jj2 + ajj~f2jj2 + : : : : (9)

On the other hand, the functional B is a quadratic function composed with the
linear transformation

~f 7!
Z

Ψ(D~f(~x)) d~x:

This transformation is equivariant under SO(a)�SO(b), the stabilizer in SO(a; b)
of the flat neck Sa−1 . Its target is the irreducible representation

Va−1Ra ⊗V1Rb . Therefore it must annihilate all terms of the harmonic expansion of ~f
except for ~f1 , the sole term which lies in an isomorphic summand of the L2

completion of the function space C1(Sa−1;Rb). In other words,

B[~f ] = B[~f1] = cjj~f1jj2 (10)

for some constant c. This constant c can be determined by noting that if ~f is
linear, that is, ~f = ~f1 , then

A[~f ]−B[~f ] = 0;
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because then ~f represents an in�nitesimal motion of the neck given by the action
of the Lie algebra so(a; b). Consequently c = a. Subtracting equation (10) from
equation (9), we obtain

�2Q

(� ~f)2

�����
0

= ajj~f0jj2 + ajj~f2jj2 + ajj~f3jj2 + ajj~f4jj2 + : : : :

Thus the second variational derivative has the desired positivity property.
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