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Abstract
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Zdravkovska.

AMS Classi�cation numbers Primary: 57R90

Secondary: 57M50

Keywords: Hyperbolic 3{manifold, flat manifold, totally geodesic, �{inv-
ariant

Proposed: Walter Neumann Received: 18 June 2000
Seconded: Jean-Pierre Otal, Robion Kirby Accepted: 19 July 2000

ISSN 1364-0380

Copyright Geometry and Topology

171



1 Introduction

It is a classical result of Rohlin that the bordism group of closed orientable
3{manifolds is zero, so that every such M3 can be identi�ed with @W 4 for
some appropriate compact W 4 .

This paper deals with two geometric incarnations of this situation. The �rst,
motivated in part by considerations in physics, (see [7], [16] and [20]), asks
whether a closed orientable hyperbolic 3{manifold can be the totally geodesic
boundary of a compact complete hyperbolic 4{manifold. The second, moti-
vated by a theorem of Hamrick and Royster [10] (which shows that that in
every dimension a flat k{manifold is nullbordant), concerns the question of
whether every flat 3{manifold is, up to homeomorphism, a cusp cross-section
of a complete �nite volume 1{cusped hyperbolic 4{manifold.

We introduce the following notation. If a hyperbolic 3{manifold M is the
totally geodesic boundary of a hyperbolic 4{manifold W , we say M bounds
geometrically. Also recall that the �{invariant of M , denoted �(M) is de�ned
as �(0) where �(s) is formed from a signed collection of eigenvalues of a certain
�rst order self adjoint operator on M .

In this note we show:

Theorem 1.1 If a closed hyperbolic M3 bounds geometrically, then �(M) 2
Z.

It has been shown in [13], that as we run over surgeries on a hyperbolic knot in
S3 the �{invariant takes on a dense set of values in R, so we deduce:

Corollary 1.2 There are closed hyperbolic 3{manifolds which do not bound
geometrically.

These are the �rst known examples of hyperbolic 3{manifolds, that while they
are nullbordant, are not nullbordant in this geometrical sense; see question 4
of [20].

In the flat case, we show a similar theorem:

Theorem 1.3 If a closed flat M3 is the cusp cross-section of a complete �nite
volume one{cusped hyperbolic W 4 , then �(M) 2 Z.
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In [14] (see also [12]) it is shown that the homemorphism type of every flat
3{manifold appears as a cusp cross-section of a complete �nite volume cusped
hyperbolic 4{manifold, possibly with several cusps. Using some calculations of
[15], one can show that there are flat 3{manifolds with nonintegral �{invariant
(see the calculations below) so that we deduce:

Corollary 1.4 There are closed flat 3{manifolds which are not homeomorphic
to the cusp cross-section of any complete �nite volume one{cusped hyperbolic
4{manifold.

The proof of Theorems 1.1 and 1.3 use a celebrated formula of Atiyah{Patodi{
Singer, but less re�ned geometrical considerations still give information:

Theorem 1.5 Let M(n) be an in�nite sequence of distinct closed hyperbolic
3{manifolds. Suppose that, for each n, M(n) is the totally geodesic boundary
of a hyperbolic 4{manifold W (n).

Then �(W (n))!1 as n!1, where � denotes Euler characteristic.

Using the above and a result of Gordon [6] we deduce:

Corollary 1.6 There are hyperbolic integral homology 3{spheres that bound
rationally acyclic (in fact contractible) 4{manifolds but cannot geometrically
bound any rationally acyclic hyperbolic manifold.

2 Proofs

The starting point of this work is the following theorem of Atiyah, Patodi and
Singer:

Theorem 2.1 (See [1], [2]) Let W be a compact oriented Riemannian 4{
manifold with boundary M and assume that near M , the metric is isometric
to a product.

Then

sign(W ) =
1
3

Z
W
p1 − �(M):
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We briefly explain the terminology of the theorem. The left hand side is the
signature of the nondegenerate symmetric form on the image of H2(W;M ; Z)
in H2(W ; Z) induced via the cup product, p1 is the di�erential 4{form rep-
resenting the �rst Pontryagin class; in [2] this is de�ned as (2�)−2tr(R ^ R),
where R is the curvature matrix.

We wish to apply this theorem in the contexts provided by 1.1 and 1.3 and
there is a technical point that in neither case is the hyperbolic metric going
to be a product near the boundary. However, as pointed out in [2] page 61,
(see also [8]) the correction term necessary if the metric is not a product near
the boundary is expressible in terms of an integral involving the curvature and
the second fundamental form � ; this expression is given explicitly in [5] pages
348{9 as Z

@W
tr(� ^R):

We do not need to appeal to the details of this formula, for the two cases that
interest us we will argue that the correction term must be zero.

We now complete the proof of Theorem 1.1. Suppose that M is hyperbolic and
bounds geometrically the hyperbolic 4{manifold W . Since we are assuming
that the boundary is totally geodesic, it follows that the second fundamental
form is zero (see [4] Theorem 2 page 194) and the formula of 2.1 holds without
correction. Now hyperbolic manifolds are conformally flat, (one simply notes
that the standard injection SO0(n; 1)! SO0(n+1; 1) preserving a codimension
one totally geodesic subspace of Hn+1 gives a conformal action on Sn) and since
the Pontryagin form is a conformal invariant (see [2]), it must be identically zero.
Then the formula reduces to

sign(W ) = −�(M)

so that �(M) is an integer as required.

The proof of Theorem 1.3 is similar, but we need to argue a little di�erently to
compute the correction since in this case the second fundamental form is not
zero.

Truncate the manifold W with a small horoball, of Euclidean height k say.
This gives a compact 4{manifold which we denote by W (k). This manifold has
flat boundary and we may write the Index formula in this case as:

sign(W )− 1
3

Z
W
p1 + �(M(k)) = correction(k);
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where M(k) is isometric to the flat manifold M . As above there is no contri-
bution from the integral term on the left hand side. Moreover, the �{invariant
of a flat 3{manifold is independent of choice of flat metric ([15] and see the
calculation of �(M) below) so that the left hand side does not depend on k .

Now from above, the term correction(k) is formed by integrating over the
boundary a continuous locally computable quantity which is isometry invari-
ant, so that the correction is bounded above by C � volume(M(k)) where C is
a constant independent of k .

Since volume(M(k)) tends to 0 as the horoballs get smaller, it follows that the
correction term must be zero.

Thus sign(W ) = −�(M) is integral as required.

Remarks (1) In the closed case, Theorem 2.1 (which reduces to the Hirze-
bruch signature formula in this case) and the same argument shows sign(W ) = 0
for a closed hyperbolic 4k{manifold.

(2) All known examples of hyperbolic 4{manifolds of �nite volume contain
immersed totally geodesic hyperbolic 3{manifolds which give embedded totally
geodesic hyperbolic 3{manifolds in �nite covers. However, until recently, no
single example of a hyperbolic 3{manifold that did bound geometrically was
known; the �rst example was given [16].

(3) The smallest known hyperbolic 3{manifold with �(M) 2 Z is the manifold
identi�ed as Vol3, with volume that of the regular ideal simplex in H3 ; one
description of this manifold being (3;−2), (6;−1) surgery in the Whitehead
link complement (see [13]). In fact �(Vol3) = 0 (see [13]). Note the volume
of the 3{manifold constructed in [16] that does bound geometrically is of the
order of 200. It has �{invariant 0.

Proof of Theorem 1.5 In even dimensions, hyperbolic volumes are basically
the same as Euler characteristics [9]. In dimension 4, the exact statement is
that if M is a complete hyperbolic 4{manifold of �nite volume, then

Vol(M) =
4�2

3
�(M):

Furthermore by results of Wang [19], there at most a �nite number of isometry
classes of �nite volume hyperbolic 4{manifolds of given volume. Thus for a
given constant C , there are only a �nite number of distinct closed hyperbolic
4{manifolds whose Euler characteristic is < C .
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In the notation of 1.5, suppose that there were an in�nite sequence with bounded
Euler characteristics and let D(W (n)) be the closed hyperbolic 4{manifolds
formed by doubling along the boundary. These have bounded Euler character-
istics so we may pass to a subsequence so that the doubled manifolds are all
homeomorphic, hence isometric by Mostow rigidity.

This is already a contradiction to a theorem of Basmajian [3] if the volumes of
the the M(n) are unbounded. If the volumes of the M(n) remain bounded,
then since they are all isometrically embedded in a single closed hyperbolic
4{manifold, there is a global lower bound on the injectivity radius in the se-
quence and this is also a contradiction, since there are only a �nite number of
distinct closed hyperbolic 3{manifolds with injectivity radius bounded below
and volume bounded above, [18].

It is observed in [6] that 1=n surgery on a slice knot bounds a contractible
manifold; 1.5 shows that only �nitely many such manifolds could geometrically
bound anything rationally acyclic.

Calculation of �(M) for flat 3{manifolds

In [15], formulae for the �{invariants of Seifert �bered 3{manifolds were devel-
oped. In particular for a flat 3{manifold M , it is shown that �(M) depends only
on the topology of M and is independent of the flat metric. From the theory of
flat Seifert �bered manifolds, there is a unique orientable flat 3{manifold with
base for the Seifert �bration S2 and Seifert invariants (2; 1), (3;−1), (6;−1).

From [15], �(M) is given by:

�(M) = 4(
1
8

cot2 �=2 +
1
12

(− cot2 �=3 + cot2 2�=3)

+
1
24

�5
k=1 cot(−k�=6) cot(k�=6):

This calculation gives �(M) = −4=3, as required in Corollary 1.4.

On repeating this calculation for the six other orientable flat 3{manifolds, the
�{invariant is integral except for the unique Seifert manifold with base S2 and
Seifert invariants (3; 2), (3;−1), (3;−1) for which the answer is −2=3.

Higher dimensional manifolds

Although the focus of this note has been motivated by the considerations com-
ing from 4{manifolds, many of our results continue to hold to obstruct 4n− 1
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manifolds as the totally geodesic or cusp cross-sections of 4n{manifolds. The
Atiyah{Patodi{Singer theorem holds verbatim as does the formula for the cor-
rection term. It follows that geometric bounding in the totally geodesic case
is obstructed exactly as above by the �{invariant. However, in contrast to the
low dimensional case, we do not know how to compute any higher dimensional
�{invariants. There is no analogue of the results of [13] in dimensions � 4.

The case of a cusp cross-section also works similarly, but we need to make the
additional observation (see [2]) that scaling the metric does not change the �{
invariant. Since the flat metrics on horoball cross-sections at di�erent heights
di�er only by scaling, the term correction(k) continues to be independent of k
and the geometrical argument above still works to show correction(k) = 0. We
do not have explicit flat 4n− 1{manifolds (n > 1) for which the �{invariant is
non-integral, but it seems likely that such do exist.
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