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320 Selman Akbulut and Burak Ozbagci

0 Introduction

The existence of a positive allowable Lefschetz fibration on a compact Stein sur-
face with boundary was established by Loi and Piergallini [10] using branched
covering techniques. We give an alternative simple proof of this fact and con-
struct explicitly the vanishing cycles of the Lefschetz fibration, obtaining a
direct identification of compact Stein surfaces with positive allowable Lefschetz
fibrations over D2 . In the process we associate to every compact Stein surface
infinitely many pairwise nonequivalent such Lefschetz fibrations.

We would like to thank Lee Rudolph, Yasha Eliashberg, Emmanuel Giroux and
Ko Honda for useful discussion about the contact geometry literature.

The first named author is partially supported by NSF grant DMS 9971440.

1 Preliminaries

1.1 Mapping class groups

Let F be a compact, oriented and connected surface with boundary. Let
Diff+(F, ∂F ) be the group of all orientation preserving self diffeomorphisms
of F , fixing boundary pointwise and let Diff+

0 (F, ∂F ) be the subgroup of
Diff+(F, ∂F ) consisting of all self diffeomorphisms isotopic to the identity. Then
we define the mapping class group of the surface F as

Map(F, ∂F ) = Diff+(F, ∂F )/ Diff+
0 (F, ∂F ).

A positive (or right-handed) Dehn twist D(α) : F → F about a simple closed
curve α is a diffeomorphism obtained by cutting F along α, twisting 360◦ to
the right and regluing. Note that the positive Dehn twist D(α) is determined
up to isotopy by α and is independent of the orientation on α.

It is well-known that the mapping class group Map(F, ∂F ) is generated by Dehn
twists. We will use the functional notation for the products in Map(F, ∂F ),
eg, D(β)D(α) will denote the composition where we apply D(α) first and then
D(β).
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Lefschetz fibrations on compact Stein surfaces 321

1.2 Surface bundles over circle

In this paper we use the following convention for the monodromy of a surface
bundle over a circle. We say that an F –bundle W over S1 has monodromy h
iff W is diffeomorphic to

(F × I)/ (h(x), 0) ∼ (x, 1)

where h ∈Map(F, ∂F ). In other words, h is the monodromy if we travel around
the base circle in the positive normal direction to the surface F . Consider the
closed 3–manifold

W ′ = W ∪∂ (∂F ×D2).

We say that W ′ has an open book decomposition with binding ∂F , page F and
monodromy h. It is well-known that every closed 3–manifold admits an open
book decomposition.

1.3 Positive Lefschetz fibrations

Let M be a compact, oriented smooth 4–manifold, and let B be a compact,
oriented smooth 2–manifold. A smooth map f : M → B is a positive Lefschetz
fibration if there exist points b1, . . . , bm ∈ interior (B) such that

(1) {b1, . . . , bm} are the critical values of f , with pi ∈ f−1(bi) a unique
critical point of f , for each i, and

(2) about each bi and pi , there are local complex coordinate charts agreeing
with the orientations of M and B such that locally f can be expressed
as f(z1, z2) = z2

1 + z2
2 .

It is a consequence of this definition that

f |f−1(B−{b1,... ,bm}) : f−1(B − {b1, . . . , bm})→ B − {b1, . . . , bm}

is a smooth fiber bundle over B − {b1, . . . , bm} with fiber diffeomorphic to an
oriented surface F .

Two positive Lefschetz fibrations f : M → B and f ′ : M ′ → B′ are equivalent
if there are diffeomorphisms Φ: M →M ′ and φ : B → B′ such that f ′Φ = φf.

If f : M → D2 is a positive Lefschetz fibration, then we can use this fibration
to produce a handlebody description of M . We select a regular value b0 ∈
interior (D2) of f , an identification f−1(b0) ∼= F , and a collection of arcs si
in interior (D2) with each si connecting b0 to bi , and otherwise disjoint from
the other arcs. We also assume that the critical values are indexed so that the
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322 Selman Akbulut and Burak Ozbagci

arcs s1, . . . , sm appear in order as we travel counterclockwise in a small circle
about b0 . Let V0, . . . , Vm denote a collection of small disjoint open disks with
bi ∈ Vi for each i. (cf Figure 1).
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Figure 1: Fibration over the disk

To build our description of M , we observe first that f−1(V0) ∼= F ×D2 , with
∂(f−1(V0)) ∼= F × S1. Let ν(si) be a regular neighborhood of the arc si .
Enlarging V0 to include the critical value b1 , it can be shown that f−1(V0 ∪
ν(s1) ∪ V1) is diffeomorphic to F ×D2 with a 2–handle H1 attached along a
circle γ1 contained in a fiber F × pt ⊂ F × S1. Moreover, condition (2) in the
definition of a Lefschetz fibration requires that H1 is attached with a framing
−1 relative to the natural framing on γ1 inherited from the product structure
of ∂(f−1(V0)). γ1 is called a vanishing cycle. In addition, ∂((F ×D2)∪H1) is
diffeomorphic to an F –bundle over S1 whose monodromy is given by D(γ1), a
positive Dehn twist about γ1 . Continuing counterclockwise about b0 , we add
the remaining critical values to our description, yielding that

M0
∼= f−1(V0 ∪ (

m⋃
i=1

ν(si)) ∪ (
m⋃
i=1

Vi))

is diffeomorphic to (F ×D2)∪ (
⋃m
i=1 Hi), where each Hi is a 2–handle attached

along a vanishing cycle γi in an F –fiber in F × S1 with relative framing −1.
(For a proof of these statements see [9] or [6].)
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Furthermore,

∂M0
∼= ∂((F ×D2) ∪ (

m⋃
i=1

Hi))

is an F –bundle over S1 with monodromy given by the composition D(γm) · · ·
D(γ1). We will refer to this product D(γm) · · ·D(γ1) as the global monodromy
of this fibration.

We note that we can reverse this argument to construct a positive Lefschetz
fibration over D2 from a given set of vanishing cycles.

We say that a positive Lefschetz fibration is allowable iff all its vanishing cycles
are homologically non-trivial in the fiber F . Note that a simple closed curve
on a surface is homologically trivial iff it separates the surface.

Notation PALF means a positive allowable Lefschetz fibration over D2 with
bounded fibers.

Remark 1 With this new notation, we can summarize the handle attaching
procedure as

PALF ∪ Lefschetz 2–handle = PALF

where a Lefschetz 2–handle is a 2–handle attached along a nonseparating simple
closed curve in the boundary with framing −1 relative to the product framing.

1.4 Contact structures

We use the standard tight contact structures on R3 , S3 and #nS
1 × S2 (for

n ≥ 1 ) compatible with their standard orientations. The structures on S3

and #nS
1 × S2 are uniquely (up to blowups) holomorphically fillable — S3

as the boundary of D4 ⊂ C2 and #nS
1 × S2 as the boundary of D4 union n

1–handles. The tight contact structure on R3 ⊂ S3 will be represented by the
kernel of the 1–form dz + xdy .

A link L in a contact manifold is called Legendrian if its tangent vectors all lie
in the contact planes. Legendrian link theory in R3 or S3 reduces to the theory
of the corresponding front projections in R2 . We will use projections onto the
yz–plane in this paper. The Thurston–Bennequin invariant of a Legendrian
knot L, denoted by tb(L), can be computed from a front projection diagram
of L as

bb(L)−#left cusps

where bb(L) is the blackboard framing of L.
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Figure 2: Legendrian trefoil knot

2 Torus knots

Let p and q be relatively prime integers such that p, q ≥ 2.

Theorem 1 The monodromy of a (p, q) torus knot is a product of (p−1)(q−1)
nonseparating positive Dehn twists.

Proof It is well-known that a torus knot is fibered with fiber being its minimal
Seifert surface. We will describe how to construct this fiber by plumbing left-
handed Hopf bands (cf [7]).

Figure 3: Left-handed Hopf band

The monodromy of a left-handed Hopf band is a positive Dehn twist along its
core circle as shown in Figure 3. Note that our convention for monodromy (see
section 1.2) differs from Harer’s in [7].

It is proven in [16] (see also [4]) that the monodromy of a surface obtained
by plumbing two surfaces is the composition of their monodromies. We can
plumb two left-handed Hopf bands to get a (2, 3) torus knot with its fibered
surface. Simply identify a neigborhood of the arc α in one Hopf band with a
neighborhood of the arc β in the other Hopf band, transversally as shown in
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Lefschetz fibrations on compact Stein surfaces 325

Figure 4. The resulting monodromy will be the product of two positive Dehn
twists along the curves also drawn in Figure 4. Note that the two curves (one
of which is drawn thicker) intersect each other only once and they stay parallel
when they go through the left twist on the surface. It is clear that we can iterate
this plumbing operation to express the monodromy of a (2, q) torus knot as a
product of (q − 1) positive Dehn twists.

α
β

Figure 4: Plumbing two Hopf bands

By attaching more left-handed Hopf bands we can construct the fibered surface
of a (p, q) torus knot for arbitrary p and q . First construct the gate in the
back and then plumb a Hopf band in the front face of that gate and proceed
as above to obtain a second gate. We can iterate this process to get as many
gates as we want. This is illustrated for p = 3 and q = 5 in Figure 5.

Figure 5: Monodromy of a (3, 5) torus knot
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326 Selman Akbulut and Burak Ozbagci

Hence the monodromy of the fibration of the complement of a torus knot in
S3 is a product of positive Dehn twists. These twists are nonseparating by our
construction.

Remark 2 Our construction also shows that the monodromy of an arbitrary
torus link is a product of positive Dehn twists.

Theorem 2 [11] Let L be a link in S3 . There exists a torus knot K ⊂ S3

such that K ∩ L = ∅ and L ⊂ F where F is a minimal Seifert surface for K .
Moreover no component of L separate the surface F .

Proof We describe Lyon’s construction given in [11]. We say that a link
in R3 is in a square bridge position with respect to the plane x = 0 if the
projection onto the plane is regular and each segment above the plane projects
to a horizontal segment and each one below to a vertical segment. Clearly any
link can be put in a square bridge position.

z

y

Figure 6: Trefoil knot in a square bridge position

Suppose that the horizontal and vertical segments of the projection of the link
in the yz–plane are arranged by isotopy so that each horizontal segment is a
subset of

{0} × [0, 1] × {zi}

for some 0 < z1 < z2 < . . . < zp < 1 and and each vertical segment is a subset
of

{0} × {yj} × [0, 1]
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Lefschetz fibrations on compact Stein surfaces 327

for some 0 < y1 < y2 < . . . < yq < 1. Now consider the 2–disk

Di = [ε, 1]× [0, 1] × {zi}

for each i = 1, 2, . . . , p and the 2–disk

Ej = [−1,−ε]× {yj} × [0, 1]

for each j = 1, 2, . . . , q , where ε is a small positive number. Attach these
disks by small bands (see Figure 7) corresponding to each point (0, yi, zj) for
i = 1, . . . , p and j = 1, . . . q . If p and q are relatively prime then the result is
the minimal Seifert surface F for a (p, q) torus knot K such that K ∩ L = ∅
and L ⊂ F . Each component of the link L is a nonseparating embedded curve
on the surface F since we can find an arc connecting that component to the
boundary K from either side of the component. Moreover we can choose p and
q arbitrarily large by adding more disks of either type D or type E .

x

z

y

D

E

L

i

j

Figure 7: Attaching disks

3 Main theorems

Let K be a torus knot in S3 . Since K is a fibered knot, this gives an open book
decomposition of S3 with monodromy h which is a product D(γm) · · ·D(γ1)
of nonseparating positive Dehn twists given by Theorem 1. Then S3 bounds a
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328 Selman Akbulut and Burak Ozbagci

(PALF )K with global monodromy D(γm) · · ·D(γ1) and fiber F which is the
minimal Seifert surface for K .

Proposition 3 For any torus knot K , (PALF )K is diffeomorphic to D4 and
has a canonical Stein structure.

Proof Consider the handle decomposition of the (PALF )K for a torus knot
K . Theorem 1 gives an explicit description of the vanishing cycles. Cancel each
1–handle with a 2–handle so that the result is just the 0–handle D4 .

Theorem 4 (Eliashberg [3], see also Gompf [5]) A smooth oriented compact
4–manifold with boundary is a Stein surface, up to orientation preserving dif-
feomorphisms, iff it has a handle decomposition M1 ∪H1 ∪ . . .∪Hn , where M1

consists of 0– and 1–handles and each Hi is a 2–handle attached to M1 along
some attaching circle Li with framing tb(Li)− 1.

We are now ready to state and prove our main theorem.

Theorem 5 Let M be a compact Stein surface with boundary. Then M
admits infinitely many pairwise nonequivalent PALF’s. Conversely every PALF
has a Stein structure.

Proof Let M be a compact Stein surface with boundary. We use Eliashberg’s
characterization of compact Stein surfaces.

Case 1 : no 1–handles and one 2–handle

Suppose that the compact Stein surface M with boundary is obtained by at-
taching a 2–handle H to D4 along a Legendrian knot L, with framing tb(L)−1.
Figure 2 shows the front projection of a Legendrian trefoil knot. First of all,
we smooth all the cusps of the diagram and rotate everything counterclockwise
to put L into a square bridge position as in Figure 6.

Now we use Lyon’s algorithm (cf Theorem 2) to find a torus knot K with its
minimal Seifert surface F such that L is an embedded circle on the surface
F . For example, we can embed the trefoil knot into the Seifert surface of a
(5,6) torus knot as shown in Figure 8. Let L+ be a copy of L pushed in the
positive normal direction to F , and let lk(L,L+) be the linking number of L
and L+ computed with parallel orientations. We need the following observation
to prove our theorem.

Lemma 6 tb(L) = lk(L,L+) .
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x

z

y

Figure 8: Trefoil knot embedded into the Seifert surface of a (5, 6) torus knot

Proof When we push L in the positive normal direction to F , we observe
that lk(L,L+) will be exactly the Thurston–Bennequin framing of L, by simply
counting the linking number of L and L+ .

Therefore attaching a 2–handle to D4 along a given Legendrian knot L in S3 ,
with framing tb(L) − 1, is the same as attaching a 2–handle along the same
knot L (which is isotoped to be embedded in a fiber of the boundary of a
(PALF )K ) with framing lk(L,L+)−1. But then the framing lk(L,L+)−1 is
the framing −1 relative to the product framing of L. In other words, we proved
that attaching a Legendrian 2–handle is the same as attaching a Lefschetz 2–
handle in our setting.

The global monodromy of D4 ∪H ∼= (PALF )K ∪H will be the monodromy of
the torus knot K composed with a positive Dehn twist along L.

Case 2 : no 1–handles

Let L be a Legendrian link in S3 with components L1, L2, . . . , Ln . Suppose
that the compact Stein surface M with boundary is obtained by attaching a
2–handle Hi to D4 along Li for each i = 1, 2, . . . , n. First smooth all the cusps
of the diagram and rotate everything counterclockwise to put L into a square
bridge position. Then find a torus knot K with its minimal Seifert surface
F such that each Li is an embedded circle on F for i = 1, 2, . . . , n. Now
for each i, attach a 2–handle Hi simultaneously to D4 along Li with framing
lk(Li, L+

i )− 1. The result is going to be a PALF by Lemma 6 and Remark 1,
since the link components are disjointly embedded nonseparating circles in F .
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So we showed the global monodromy of D4∪H1∪ . . .∪Hn
∼= (PALF )K ∪H1∪

. . . ∪Hn is the monodromy of the torus knot K composed with positive Dehn
twists along Li ’s. Note that the Dehn twists along Li ’s commute since they
are pairwise disjoint on the surface F .

General case

First we represent the 1–handles by dotted circles stacked over the front pro-
jection of a Legendrian tangle. Here we assume that the framed link diagram is
in standard form (cf [5]). Then we put the diagram in a square bridge position
as in case 2 and find a torus knot K such that the attaching circles of the 2–
handles are embedded in the Seifert surface of K . Now we push the attaching
regions of the 1–handles to the binding K of the open book decomposition of
S3 . This way we can extend (PALF )K to a PALF on D4 union 1–handles.
Since the attaching region (a pair of 3–balls) of the 1–handle is in a neighbor-
hood of the binding K , we can assume that the pages of the open book will
intersect the pair of balls transversally, so that afer gluing the 1–handle to D4

we can extend the fibration over the 1–handle by adding a 1–handle to the
surface of the fibration without altering the monodromy.

pages

2–handles

binding K

attaching region of a 1–handle

Figure 9: Attaching a 1–handle

Suppose that we attached all the 1–handles to D4 . Then case 2 implies that at-
taching a Legendrian 2–handle at this stage is the same as attaching a Lefschetz
2–handle, since neither the product framing nor the Thurston–Bennequin fram-
ing will change by going over a 1–handle. In other words, we showed that by
attaching 1–handles to D4 we attach 1–handles to the fiber of the (PALF )K ,
extending the monodromy by identity over the 1–handles and then by attaching
Legendrian 2–handles we add more vanishing cycles to the global monodromy.

Finally, we note that the (p, q) torus knot in Theorem 2 can be constructed
using arbitrarily large p and q . Therefore our construction yields infinitely
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many pairwise nonequivalent PALF’s, since for chosen p and q the genus of the
regular fiber will be at least (p− 1)(q − 1)/2.

Conversely, let X be a PALF, then it is obtained by a sequence of steps of
attaching 2–handles X0 = D2 × F ; X1 ; X2.. ; Xn = X , where each
Xi−1 is a PALF and Xi is obtained from Xi−1 by attaching a 2–handle to a
nonseparating curve C lying on a fiber F ⊂ ∂Xi−1 . Furthermore this handle
is attached to C with the framing k − 1, where k is the framing induced from
the surface F . Inductively we assume that Xi−1 has a Stein structure, with
a convex fiber F ⊂ ∂Xi−1 . By [17] we can start the induction, and assume
that the convex surface F is divided by ∂F . By the “Legendrian realization
principle” of [8] (pages 323–325), after an isotopy of (F,C), k can be taken to
be the Thurston–Bennequin framing, and then the result follows by Eliashberg’s
theorem (L. Rudolph has pointed out that, in case of i = 1 identification of
k with Thurston–Bennequin framing also follows from [12]–[15]). Though not
necessary, in this process, by using [8] we can also make the framing of ∂F
induced from F to be the Thurston–Bennequin framing if we wish.

Remark 3 Our proof shows that the PALF structure on a compact Stein
surface contains a natural smaller PALF B4 → D2 given by the associated
torus knot.

Remark 4 Our proof shows that by relaxing the condition of positivity, one
can identify smooth bounded 4–manifolds which are built by 1– and 2–handles
with ALF’s (allowable Leschetz fibrations over D2 ’s). In this case in the proof
we start with the binding K ] (−K) where K is the torus knot, to adjust the
framings (ie, we use the general form of [11]). In particular by [17], the bound-
aries of these manifolds also have contact structures (though not necessarily
tight).

4 Examples

4.1 Example 1

Let M be the Stein surface given as in Figure 10.

We claim that M admits a PALF with 13 singular fibers where the regular
fiber is a genus 6 surface with 2 boundary components.

First we embed the attaching curve of the 2–handle into the Seifert surface of a
torus knot, such that the top two horizontal lines (running over the 1–handle) in
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0 0

Figure 10

Figure 10 are placed on the same disk of type D (cf Theorem 2 and Figure 9).
So we attach 4 disks of type D and 5 disks of type E to obtain the Seifert
surface of a (4, 5) torus knot. By attaching the 1–handle we attach a 1–handle
to the Seifert surface. Hence the fiber is a genus 6 = (4 − 1)(5 − 1)/2 surface
with two boundary components. There are 12 = (4 − 1)(5 − 1) singular fibers
coming from the torus knot and one additional singular fiber corresponding to
the 0–framed 2–handle.

The global monodromy of this PALF is the monodromy of the (4, 5) torus
knot, extended by identity over the 1–handle and composed with a Dehn twist
corresponding to the 2–handle.

4.2 Example 2

Let N be the Stein surface given as in Figure 11. Then N admits a PALF with
43 singular fibers where the regular fiber is a genus 21 surface with 2 boundary
components. The global monodromy of this PALF is the monodromy of the
(7, 8) torus knot, extended by identity over the 1–handle and composed with a
Dehn twist corresponding to the 2–handle.

Remark 5 Clearly the PALF’s in the above examples are not the most eco-
nomical ones; often with a little care one can find smaller PALF structures in
the sense of having fewer singular fibers.

Remark 6 In [1] it was shown that every smooth closed 4–manifold X can
be decomposed as a union of two compact Stein surfaces along their boundaries

X = M ∪∂ N.
Hence, every X is a union two PALF’s along their boundaries. This gives 4–
manifolds a structure somewhat similar to Heegaard decomposition of 3 mani-
folds (we can consider a 3–dimensional solid handlebody as a Lefschetz fibration
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0

0

Figure 11

over an interval, with fibers consisting of disks). Recall that in [1] there is also
a relative version of this theorem; that is, any two smooth closed simply con-
nected h–cobordant manifolds X1,X2 can be decomposed as union of Stein
surfaces Xi = M ∪ϕiWi , where ϕi : ∂Wi → ∂M are diffeomorphisms i = 1, 2,
M is simply connected, and W1,W2 are contractible manifolds which are dif-
feomorphic to each other. See also [2] for more about the topology of Stein
surfaces.
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