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Abstract
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522 Ruth Charney and Alexander Lytchak

0 Introduction

In recent years, much attention has been given to curvature properties of
piecewise Euclidean and piecewise spherical complexes. A notion of curvature
bounded above for such complexes was introduced by Alexandrov in the 1950’s
and further developed in the 1980’s by Gromov. The curvature bound is de-
fined as a condition on the shape of triangles (they must be sufficiently “thin”)
and is known as a CAT–inequality (Comparison inequality of Alexandrov–
Toponogov). Some particularly nice examples of spaces satisfying CAT–inequal-
ities are spherical and Euclidean buildings which come equipped with a natural
piecewise spherical or Euclidean metric.

Buildings also satisfy other nice metric properties. A spherical building X ,
for example, is easily seen to have diameter π , as does the link of any sim-
plex in X . It is natural to ask whether Euclidean and spherical buildings are
characterized by their metric properties. In this paper, we give several metric
characterizations of buildings. For example we prove

Theorem Let X be a connected, piecewise spherical (respectively Euclidean)
complex of dimension n ≥ 2 satisfying

(1) X is CAT(1) (respectively CAT(0)).

(2) Every (n − 1)–cell is contained in at least two n–cells.

(3) Links of dimension ≥ 1 are connected.

(4) Links of dimension 1 have diameter π .

Then X is isometric to a spherical building (respectively a metric Euclidean
building).

Metric Euclidean buildings are products of irreducible Euclidean buildings,
cones on spherical buildings, trees, and nonsingular Euclidean spaces (see Sec-
tion 5).

Another metric property of buildings is that for every local geodesic γ , the
set of directions in which γ can be geodesically continued is non-empty and
discrete. We call this the “discrete extension property”.

Theorem Let X be a connected, piecewise spherical (respectively Euclidean)
complex of dimension n ≥ 2 satisfying

(1) X is CAT(1) (respectively CAT(0)).

(2) X has the discrete extension property.

Then X is isometric to a spherical building (respectively metric Euclidean
building).
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Werner Ballmann and Michael Brin, studying the question of rank rigidity
for piecewise Euclidean complexes of nonpositive curvature, have obtained re-
lated results in [2] and [3], including a metric characterization of spherical and
Euclidean buildings of dimension 2. Bruce Kleiner has also described (unpub-
lished) a metric characterization of Euclidean buildings under the assumption
that every geodesic is contained in an n–flat.

The first two sections of the paper contain background about buildings and
geodesic metric spaces. The key problem in identifying a building is the con-
struction of enough apartments. Sections 3, 4, and 5 are devoted to this task.
Section 6 considers the 1–dimensional case, and Section 7 combines these results
to arrive at the main theorems.

The first author would like to thank Bruce Kleiner for helpful conversations.
The second author is indebted to Werner Ballmann for suggesting the question
and for his continued support during the development of this paper. The first
author was partially supported by NSF grant DMS-9803374.

1 Buildings

In this section we review some definitions and terminology. For more details
about buildings, see [6] and [5].

Let S be a finite set. A Coxeter matrix on S is a symmetric function m: S×S →
{1, 2, . . . ,∞} such that m(s, s) = 1 and m(s, t) ≥ 2 for s 6= t. The Coxeter
group associated to m is the group W given by the presentation

W = 〈 S | (st)m(s,t) = 1, s, t ∈ S 〉.
The pair (W,S) is called a Coxeter system. If T ⊂ S , then the subgroup WT

generated by T is the Coxeter group associated to m|T×T . The Coxeter system
(W,S) is irreducible if there is no non-trivial partition S = S1 q S2 such that
W = WS1 ×WS2 .

The Coxeter group W can be realized as a discrete group of linear transforma-
tions of an n–dimensional vector space V , with the generators s ∈ S acting as
reflections across the walls of a simplicial cone. This action preserves a bilinear
form B on V represented by the matrix B(s, t) = −cos ( π

m(s,t) ) (where π
∞ is

taken to be 0). W is finite if and only if this form is positive definite. In this
case, W acts as a group of orthogonal transformations and the action restricts
to the unit sphere S(V ) in V . Hence W is called a spherical Coxeter group.

If B is positive semi-definite (but not definite) and W is irreducible, then
the action of W on V induces an action on an (n-1)-dimensional affine space
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Rn−1 = V/V ⊥ with the generators acting as affine reflections across the walls
of a simplex. In this case, W is called an irreducible Euclidean Coxeter group.
A key fact about irreducible Euclidean Coxeter groups is that for any proper
subgroup T ⊂ S , WT is a spherical Coxeter group. More generally, we call
W a Euclidean Coxeter group if it is a direct product of irreducible Euclidean
Coxeter groups.

To any Coxeter group W , one can associate a simplicial complex ΣW called
the Coxeter complex for W . In the case of spherical and Euclidean Coxeter
groups, the Coxeter complex has a simple, geometric description. Let M =
Sn−1 = S(V ) if W is spherical or M = Rn−1 = V/V ⊥ if W is irreducible
Euclidean. For each element r ∈ W which acts as a reflection on M (namely,
r is a generator or conjugate of a generator), r fixes some hyperplane, called
a wall of M . The walls divide M into simplices. The resulting simplicial
complex, ΣW , is the Coxeter complex for W . If W is a product of irreducible
Euclidean Coxeter groups, then ΣW is the product of the corresponding Coxeter
complexes. The top dimensional simplices (or cells) of ΣW are called chambers.
W acts freely transitively on the set of chambers of ΣW and the stabilizer of
any lower dimensional cell σ is conjugate to WT for some T ⊂ S .

There are several equivalent definitions of buildings. The most convenient for
our purposes is the following (see [6]).

Definition 1.1 A building is a simplicial complex X together with a collection
of subcomplexes A, called apartments, satisfying

(1) each apartment is isomorphic to a Coxeter complex,

(2) any two simplices of X are contained in a common apartment,

(3) if two apartments A1, A2 share a chamber, then there is an isomorphism
A1 → A2 which fixes A1 ∩A2 pointwise.

If, in addition, every codimension 1 simplex is contained in at least three cham-
bers, then X is a thick building. It follows from conditions (2) and (3) that
all of the apartments are isomorphic to the same Coxeter complex ΣW . We
say that a building X is spherical (respectively Euclidean) if W is spherical
(respectively Euclidean).

Although the collection of apartments A is not, in general unique, there is a
unique maximal set of apartments. We will always assume A to be maximal.

If X1,X2 are spherical buildings with associated Coxeter groups W1,W2 , then
the join X1 ∗ X2 is a spherical building with Coxeter group W1 × W2 . In
particular, the suspension ΣX2 = S0 ∗ X2 is a building with Coxeter group
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Z/2 ×W2 . (Note that for k > 0, the simplicial structure on Sk ∗X2 depends
on a choice of identification of Sk with the (k+1)-fold join S0 ∗ · · · ∗S0 . Despite
this slight ambiguity, we will consider the k–fold suspension of a building to
be a building.) Conversely, if X is a spherical building whose Coxeter group
W splits as a product W1 ×W2 , then X can be decomposed as the join of a
building for W1 and a building for W2 (see [13], Theorem 3.10). Similarly, any
Euclidean building splits as a product of irreducible Euclidean buildings.

2 Metrics

A metric space (X, d) is a geodesic metric space if for any two points x, y ∈ X ,
there is an isometric embedding γ: [0, a] → X with γ(0) = x and γ(a) = y .
Such a path is called a geodesic segment or simply a geodesic from x to y . An
isometric embedding of R into X is also called a geodesic, and an isometric
embedding of [0,∞) is called a ray.

A piecewise Euclidean (respectively piecewise spherical) complex is a polyhedral
cell complex X together with a metric d such that each cell of X is isometric
to a convex polyhedral cell in Rn (respectively Sn ) for some n, and

d(x, y) = inf { length(γ) | γ is a path from x to y}
for any x, y ∈ X . We will also assume that the metric d is a complete, geodesic
metric. In particular, the infimum d(x, y) is realized by the length of some path
γ .

If X is a piecewise spherical or Euclidean complex and x is a point in X , then
the set of unit tangent vectors to X at x is called the link of x and denoted
lk (x,X). It comes equipped with the structure of a piecewise spherical complex,
since the link of x in a single n–cell is isometric to a polyhedral cell in Sn−1 .
If σ is a k–cell in X , we define lk (σ,X) to be the set of unit tangent vectors
orthogonal to σ at any point x in the relative interior of σ . This set also has
a natural piecewise spherical structure and we can identify

lk (x,X) = lk (x, σ) ∗ lk (σ,X) = Sk−1 ∗ lk (σ,X)

where the joins ∗ are orthogonal joins in the sense of [7]. (See [4] or the appendix
of [7] for a discussion of joins of piecewise spherical complexes.)

In some cases, we may wish to consider spaces which do not have a globally
defined cell structure. For this, we introduce the notion of a locally spherical
space of dimension n. The definition is inductive. A locally spherical space
of dimension 0 is a nonempty disjoint union of points. A locally spherical
(respectively Euclidean) space of dimension n, n > 0, is a complete geodesic
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metric space (X, d) for which every point x has a neighborhood isometric to
a spherical (respectively Euclidean) cone on a locally spherical space Lx of
dimension n − 1. We call such a neighborhood a conelike neighborhood of x.
Clearly, Lx = lk (x,X). A piecewise spherical (respectively Euclidean) complex
is a locally spherical (respectively Euclidean) space of dimension n if and only
if every cell is contained in an n–dimensional cell.

The basis for our metric characterization of buildings will be the CAT–inequal-
ities defined by Gromov in [9]. Let (X, d) be a complete, geodesic metric space
and let T be a geodesic triangle in X . A Euclidean comparison triangle for
T is a triangle T ′ in R2 with the same side lengths as T . We say X is a
CAT(0) space if every geodesic triangle T is “thin” relative to its comparison
triangle T ′ . That is, given any points x, y ∈ T , the distance from x to y in
X is less than or equal to the distance in R2 between the corresponding points
x′, y′ ∈ T ′ . We define a CAT(1) space similarly by comparing geodesic triangles
T in X with spherical comparison triangles T ′ in S2 . In this case, however,
we only require the thinness condition to hold for triangles T of perimeter ≤ π
(since no comparison triangle exists with perimeter > π).

In the next two theorems we collect some facts about CAT(0) and CAT(1)
spaces. These are due to Gromov, Ballmann, Bridson and others. A good
source of proofs is [4] or [1].

Theorem 2.1 Let X be a piecewise (or locally) Euclidean geodesic metric
space.

(1) X is locally CAT(0) if and only if lk (σ,X) is CAT(1) for every cell σ .

(2) X is CAT(0) if and only if it is locally CAT(0) and simply connected.

(3) If X is CAT(0), then any two points in X are connected by a unique
geodesic and any path which is locally geodesic, is geodesic.

Theorem 2.2 Let X be a piecewise (or locally) spherical geodesic metric
space.

(1) X is locally CAT(1) if and only if lk (σ,X) is CAT(1) for every cell σ .

(2) X is CAT(1) if and only if it is locally CAT(1), any two points of dis-
tance < π are connected by a unique geodesic, and these geodesics vary
continuously with their endpoints.

(3) If X is CAT(1), then any path of length ≤ π which is locally geodesic, is
geodesic.
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A Euclidean (respectively spherical) building X of dimension n comes equipped
with a natural piecewise Euclidean (respectively piecewise spherical) metric in
which each apartment is isometric to Rn (respectively Sn) with the Coxeter
group W acting by isometries. In the spherical case, there is a unique such
metric. In the Euclidean case, this metric is determined only up to scalar
multiple on each irreducible factor. In this paper, for a piecewise Euclidean
(respectively spherical) complex (X, d), the statement that X is a Euclidean
(respectively spherical) building will mean that, the cell structure on X satisfies
the conditions of Definitions 1.1 and that the metric on X is the natural building
metric.

Define the diameter of X to be

diam(X) = sup {d(x, y)|x, y ∈ X}.

The natural metric on a building satisfies a number of nice properties which
are described in the proposition below.

Proposition 2.3 Let X be a Euclidean (respectively spherical) building of
dimension n with the natural metric. Then:

(1) X is CAT(0) (respectively X is CAT(1) and daim (X) = π).

(2) For any simplex σ of codimension ≥ 2, lk (σ,X) is a spherical building.
In particular, lk (σ,X) is CAT(1) and diam (lk (σ,X)) = π.

(3) A subspace A ⊂ X is an apartment if and only if the intrinsic metric on
A is isometric to Rn (respectively Sn ). Moreover, the inclusion A ↪→ X
is an isometric embedding.

Proof (1) and (2) are well known. (1) follows from the fact that every geodesic
in X is contained in an apartment (see [8] or [6]). (2) follows from the fact
that the isotropy group of a simplex σ in ΣW is a spherical Coxeter group Wσ .
The action of Wσ on the sphere lk (σ,ΣW ) gives a natural identification of
lk (σ,ΣW ) with the Coxeter complex for Wσ . These constitute the apartments
of lk (σ,X).

For (3), let M = Rn if X is Euclidean and M = Sn if X is spherical. Consider
the collection of subspaces

A = {A ⊂ X|A is isometric to M }.

By definition of the metric on X , A contains all the apartments of X . Since
we are assuming the set of apartments to be maximal, it suffices to show that
A satisfies the conditions in Definition 1.1 for a system of apartments.
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Observe first that any subspace A isometric to M is necessarily a subcomplex
of X since its intersection with any n–simplex σ must be both open and closed
in σ . By induction on the dimension of X , we may assume that for any
simplex σ ⊂ A, lk (σ,A) ↪→ lk (σ,X) is an isometric embedding. It follows
that the embedding A ↪→ X preserves local geodesics. If X is Euclidean, then
it is CAT(0), hence local geodesics are geodesics. If X is spherical, then it
is CAT(1), hence local geodesics of length ≤ π are geodesics. In either case,
we conclude that A ↪→ X maps geodesics to geodesics, so it is an isometric
embedding.

Let A ∈ A and let σ ⊂ A be an n–simplex. Fix an isometry α0 of σ with
the fundamental chamber σ0 of a Coxeter complex ΣW . This isometry extends
uniquely to an isometry α: A→ ΣW . Since every n–simplex in A is isometric
to σ0 , α is also a simplicial isomorphism. Thus, A is a Coxeter complex.
Moreover, if A′ ∈ A also contains σ , and α′: A′ → ΣW is an isometry extending
α0 , then α−1◦α′: A→ A′ is an isometry fixing σ and hence fixing all of A∩A′ .
Finally, since A contains a system of apartments, any two simplices of X are
contained in some A ∈ A. Thus, A satisfies the conditions for a system of
apartments.

3 Spherical buildings

In this section we prove a partial converse to Proposition 2.3. It will form the
inductive step to one of the main theorems in Section 7.

Theorem 3.1 Suppose X is a connected, piecewise spherical cell complex of
dimension n ≥ 2 satisfying

(1) X is CAT(1),

(2) lk (x,X) is a spherical building for every vertex x ∈ X .

Then X is a spherical building.

Before embarking on the proof, we make several observations about the hy-
potheses. First, If σ is any cell in X , then Lσ = lk (σ,X) is a spherical
building. For if v is any vertex of σ , then

Lσ = lk (lk (v, σ), lk (v,X))

and lk (v,X) is a spherical building by hypothesis. Thus, it follows from Propo-
sition 2.3(2) that Lσ is a spherical building. Moreover, if x is any point in X ,
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not necessarily a vertex, then lk (x,X) is also a spherical building. For if x lies
in the relative interior of a k–cell σ , then lk (x,X) = Sk−1 ∗ Lσ = Σk(Lσ).

By Proposition 2.3, there is an obvious candidate for a system of apartments
for X , namely

A = {A ⊂ X|A is isometric to Sn}.

As in the proof of Proposition 2.3(3), it is easy to show that any such subspace
A is a subcomplex of X and the inclusion A ↪→ X is an isometric embedding.

The key problem in the proof of Theorem 3.1 is to construct enough of these
subcomplexes. The idea is as follows. For any pair of antipodal points (two
points are antipodal if they have distance π) and any apartment Ax in lk (x,X),
we construct an apartment A in X by propagating geodesics from x to y in
every direction in Ax .

We begin with a key technical lemma. Some additional notation will be needed
for the proof. If x ∈ X and γ is a geodesic emanating from x, let γx ∈ lk (x,X)
denote the tangent vector to γ at x. Let st (x) denote the closed star of x,
that is, st (x) is the union of the closed simplices containing x. (In the locally
spherical context, st (x) will denote a conelike polyhedral neighborhood of x.)

For σ a spherical (n − 1)–cell, the spherical suspension Σ(σ), viewed as a
subspace of Sn , is called a spherical sector. When n = 2, it is also called a
spherical lune.

We prove the next lemma under slightly more general hypotheses for use in the
next section. In particular, we do not assume that X is globally CAT(1).

Lemma 3.2 Suppose X is a locally spherical space of dimension n ≥ 2 such
that the link of every point in X is isometric to a building. Let γ be a local
geodesic of length π from x to y and let Ax be an apartment in Lx containing
γx . Then there is a neighborhood Nx ⊂ Ax of γx and a unique locally isometric
map F of the spherical sector Σ(Nx) into X such that

(1) for any v ∈ Nx , the restriction of F to Σ(v) (= S0 ∗ {v}) is a local
geodesic from x to y with tangent vector v , and

(2) the restriction of F to Σ(γx) is precisely γ .

Proof Divide γ into segments γ1, γ2, . . . , γk with endpoints x = x0, x1, . . . , xk
such that each γi lies in st (xi−1). Let Nx be an ε–ball in Ax centered at γx
and let S be the spherical sector S = Σ(Nx).

For each vector v ∈ Nx , there is a unique geodesic segment γv1 in st (x) from x
to ∂(st (x)) whose tangent at x is v . Let B1 be the subspace of st (x) consisting
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of the union of these geodesic segments. Identifying γv1 with an initial segment
of Σ(v) gives an isometry F1 of a polyhedral subspace of S onto B1 .

Next, consider the (n− 1)–dimensional building L1 = lk (x1,X). The tangent
vectors to γ1 and γ2 at x1 form a pair of antipodal points a1, a2 in L1 (since
the concatenation γ1 · γ2 is geodesic), and lk (x1, B1) is a neighborhood of a1

in L1 isometric to a spherical (n− 1)–cell. The union of geodesics in L1 from
a1 to a2 with an initial segment lying in this spherical cell forms an apartment
A1 ⊂ L1 . The geodesic segments emanating from x1 in directions A1 form
a spherical n–cell C in st (x1). Shrinking the original ε–neighborhood Nx if
necessary, we may assume that all of the segments γv1 end in C . There is then a
unique locally geodesic continuation of γv1 across C , ending in ∂(st (x1)). Call
this new segment γv2 . Let B2 be the union of the local geodesics γv1 ·γv2 , v ∈ Nx .
Then F1 extends in an obvious manner to a local isometry F2 from a polyhedral
subspace of S onto B2 .

We repeat this process at each xi until we get geodesics γv = γv1 · γv2 · · · γvk for
every v ∈ Nx and a local isometry F from S onto Bk =

⋃
γv as required.

Returning to the hypothesis of Theorem 3.1, we can now construct apartments
in X .

Lemma 3.3 Let X be as in Theorem 3.1. Suppose x, y ∈ X are antipodal
points and Ax is an apartment in Lx = lk (x,X). Then the following hold.

(1) For every v ∈ Ax , there exists a unique geodesic γv from x to y whose
tangent vector at x is v .

(2) The union of all such γv , v ∈ Ax , is isometric to Sn .

Proof First note that since X is CAT(1), any local geodesic of length ≤ π is
a geodesic. Moreover, if two geodesics from x to y , γ and γ′ , have the same
tangent vectors γx = γ′x = v , then they must agree inside st (x), hence they
must agree everywhere. (Otherwise, we get a geodesic digon of length < 2π .)
Thus, geodesics from x to y are uniquely determined by their tangents at x.

Consider the set C = {v ∈ Ax|γv exists}. By Lemma 3.2, this set is open in
Ax . We claim that it is also closed. To see this, first note that if v1, v2 ∈ C
are points of distance α in Ax , then for any t ∈ [0, π], d(γv1 (t), γv2(t)) ≤ α.
This can be seen by comparing the digon formed by γv1 , γv2 in X with a digon
γ′1, γ

′
2 of angle α connecting a pair of antipodal points x′, y′ in S2 . Inside st (x),

these two digons are isometric. That is, for sufficiently small ε, the distance
from z1 = γv1(ε) to z2 = γv2(ε) in X is the same as the distance between
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the corresponding points z′1, z
′
2 in S2 . Thus, z′1, z

′
2, y
′ is a spherical comparison

triangle for z1, z2, y . It follows from the CAT(1) condition that the distance
between γv1(t) and γv2(t) in X is less than or equal to the corresponding
distance in S2 for all t. In particular, if (vi) is a sequence of points in Ax
converging to v with vi ∈ C , then (γvi) converges uniformly to a path γ from
x to y with γx = v . This path has length π since each γvi has length π . Hence
γ is geodesic and v ∈ C .

Since C is both open and closed, it is either empty or all of Ax . Since X is
a geodesic metric space, there must exist at least one geodesic γ from x to y .
If v is any point in Lx , then there exists an apartment Ax containing both
γx and v . For this apartment, C is nonempty, hence v ∈ C . Thus, there is a
geodesic γv with tangent vector v as desired. This proves (1).

By Lemma 3.2, we know that the map F : Σ(Ax) → X taking Σ(v) to γv is
locally isometric. Since local geodesics of length ≤ π are geodesic in X , this
map is an isometry onto its image. This proves (2).

The spheres constructed in Lemma 3.3 give us a large number of apartments.
It is now easy to show that X is a building.

Lemma 3.4 X has diameter π .

Proof Since every point in lk (x,X) has an antipodal point, geodesics in X
are locally extendible. Since X is CAT(1), any local geodesic of length π is a
geodesic. Thus, diam(X) ≥ π . Suppose there exists a geodesic γ: [0, d] → X
with d > π . Let y = γ(0) and let x = γ(π). Let v ∈ lk (x,X) be the outgoing
tangent vector to γ (ie, the tangent vector to γ|[π,d]). By Lemma 3.3, there is
a geodesic α from x to y with tangent vector equal to v . But this means that
α and γ|[π,d] agree in a neighborhood of x. This is clearly impossible since the
distance from y decreases along α and increases along γ|[π,d] .

Lemma 3.5 If A ∈ A, then A is a Coxeter complex ΣW or a suspension
Sk ∗ ΣW .

Proof Let A ∈ A. We first show that the (n − 1)–skeleton of A, An−1 , is a
union of geodesic (n − 1)–spheres which is closed under reflection across each
such sphere.

Suppose x is a point in the relative interior of a (k − 1)–simplex σ ⊂ An−1 .
Then lk (σ,A) is isometric to Sn−k , hence it is an apartment in the (n − k)–
dimensional building lk (σ,X). The (n − k − 1)–skeleton of this apartment
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is a union of geodesic (n − k − 1)–spheres closed under reflection. Taking
the join with Sk−2 = lk (x, σ), we see that lk (x,An−1) is a union of geodesic
(n−2)–spheres in lk (x,A) closed under reflections. It follows that, in a conelike
neighborhood of x in A, the (n − 1)–skeleton consists of a union of geodesic
(n − 1)–disks, D1,D2, . . . ,Dk . In particular, any geodesic through x which
enters this neighborhood through An−1 must also leave through An−1 . Since
this is true at every point x ∈ A, we conclude that any geodesic in A containing
a non-trivial segment in An−1 , lies entirely in An−1 .

Now let Di be one of the geodesic disks at x as above. The geodesic segments in
Di emanating from x extend to form a geodesic (n−1)–sphere Hi in A which,
by the discussion above, lies entirely in An−1 . We call Hi a “wall” through x.
Reflection of A across Hi fixes x and permutes the disks D1, . . . ,Dk , hence it
permutes the walls through x. Moreover, if H ′ is a wall through some other
point x′ ∈ An−1 , then H ′ must intersect Hi (since they are two geodesic
(n − 1)–spheres in a n–sphere). Say z ∈ Hi ∩ H ′ . Applying the argument
above with x replaced by z shows that reflection across Hi takes H ′ to some
other wall through z . Thus, it preserves An−1 .

Let W be the group generated by reflection across the walls of A. By the
previous lemma, W acts on A as a group of simplicial isomorphisms. Since A
is a finite complex, W is a finite reflection group, or in other words, a spherical
Coxeter group. Let AW be the fixed set of W which consists of the intersection
of all the walls. Then AW is a geodesic k–sphere for some k , and A decomposes
as a join, A = AW ∗ ΣW .

It follows from Lemma 3.5, that cells in X are simplices or suspensions of
simplices.

Lemma 3.6 Any two cells σ1, σ2 in X are contained in some A ∈ A.

Proof Since any cell is contained in an n–cell, it suffices to prove the lemma
for two n–cells. Let x1, x2 be points in the interior of σ1, σ2 , respectively. Let γ
be a geodesic from x1 to x2 and continue γ to a geodesic of length π . Let y be
the endpoint of γ antipodal to x1 and note that lk (x1,X) = lk (x1, σ1) ∼= Sn−1 .
It follows from Lemma 3.3 that the union of all geodesics from x1 to y forms
a subspace A ∈ A. Since A is a subcomplex and contains both x1 and x2 , it
must contain σ1 and σ2 .

Lemma 3.7 If A1, A2 ∈ A share a common chamber σ , then there is a
simplicial isomorphism φ: A1 → A2 fixing A1∩A2 pointwise. Moreover, AW1 =
AW2 .
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Proof Let x be a point in the relative interior of σ . Let p denote the north
pole of Sn and fix an isometry θ: lk (x, σ) → Sn−1 = lk (p,Sn). Then there
is a unique isometry φi: Ai → Sn with φi(x) = p and the induced map on
lk (x,Ai) = lk (x, σ) equal to θ . Let φ = φ−1

2 ◦ φ1 . Since the cell structure
of Ai is completely determined by reflection in the walls of σ , the isometry φ
is also a simplicial isomorphism. For any point y ∈ A1 ∩ A2 not antipodal to
x, there is a unique geodesic γ from x to y which necessarily lies in A1 ∩ A2 .
Since φ1 and φ2 agree on the tangent vector γx , they agree on all of γ .

The last statement of the lemma follows from the fact that AWi = σW .

It follows from Lemma 3.7, that X itself decomposes as a join of AW and a
spherical building with Coxeter group W . This completes the proof of Theorem
3.1.

If we are not given an a priori cell structure, we can work in the setting of
locally spherical spaces and use the singular set (ie, the branch set) of X to
define a cell structure. In this setting we get the following theorem.

Theorem 3.8 Suppose X is a locally spherical space of dimension n ≥ 2
satisfying

(1) X is CAT(1),

(2) lk (x,X) is isometric to a building for every point x ∈ X .

Then X is isometric to a spherical building. The cell structure determined by
the singular set is that of a thick, spherical building or a suspension of a thick,
spherical building.

4 More on spherical buildings

In contrast to the locally Euclidean case, a locally spherical space which is sim-
ply connected and locally CAT(1) need not be globally CAT(1). However, as we
now show, under the stronger hypothesis that links are isometric to buildings,
a simply connected locally spherical space of dimension ≥ 3 is CAT(1), and
hence is also isometric to a spherical building.

Theorem 4.1 Suppose X is a locally spherical space of dimension n ≥ 3
satisfying

(1) X is simply connected,

(2) lk (x,X) is isometric to a building for every point x ∈ X .

Then X is CAT(1), hence it is isometric to a building.
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The hypothesis that n ≥ 3 is essential here. In the 1980’s there was much
interest in the the relation between incidence geometries and buildings (see for
example [14] and [10]). In [14], Tits proves a theorem analogous to Theorem
4.1 for incidence geometries, with the same dimension hypothesis. A coun-
terexample in dimension n = 2 is given by Neumaier in [12]. It is a finite
incidence geometry of type C3 , with a transitive action of A7 (the alternating
group on 7 letters). The flag complex associated to Neumaier’s A7 –incidence
geometry is a 2–dimensional simplicial complex, all of whose links are buildings,
but which cannot be covered by a building. One can metrize Neumaier’s exam-
ple by assigning every 2–simplex the metric of a spherical triangle with angles
π
2 ,

π
3 ,

π
4 . Passing to the universal cover gives a counterexample to Theorem 4.1

in dimension n = 2.

Before proving the theorem, we will need some preliminary lemmas. We begin
with an easy consequence of Lemma 3.2.

Lemma 4.2 Let X be as in Theorem 4.1 and let γ be a local geodesic in X
of length π from x to y . Then there is a unique locally isometric extension
Fγ : Σ(Lx)→ X of γ (in the sense of Lemma 3.2, (1) and (2)).

Proof Suppose A is an apartment in Lx containing the tangent vector v = γx .
Then by Lemma 3.2, there is a neighborhood U of v in A and a unique locally
isometric map FU : Σ(U)→ X whose restriction to Σ(v) is γ . Using the maps
FU , we can extend γ uniquely along any geodesic in Lx beginning at v . Since
Lx is simply connected for n ≥ 3, these extensions are compatible.

Suppose γ1 and γ2 are two local geodesics of length π from x to y and let
vi = (γi)x . Then it follows from the construction of Fγi that the following are
equivalent.

(1) Fγ1 = Fγ2 .

(2) γ2 is the restriction of Fγ1 to Σ(v2) (and vice versa).

(3) There exists a locally isometric map of a spherical lune into X with sides
γ1 and γ2 .

We say that a geodesic η: [0, a] → X from x is nonbranching if any other
geodesic η′: [0, a]→ X from x with ηx = η′x is equal to η . (Or in other words,
η has unique continuation at every point in its interior.) In particular, if η is
contained in a cone-like neighborhood of x, then it is non-branching.

The following is an immediate consequence of Lemma 4.2.
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Lemma 4.3 Suppose γ and η are geodesics of length ≤ π starting at x and
assume η is nonbranching. Then there is a locally isometric map of a spherical
triangle into X (possibly a geodesic or a spherical lune) which restricts on two
sides to γ and η .

The local isometry in the corollary above is essentially unique. More precisely,
we have the following.

Lemma 4.4 Let T1 and T2 be spherical triangles and Θ1: T1 → X and
Θ2: T2 → X be local isometries. If Θ1 and Θ2 agree along two edges of the
triangle, then one of the following holds.

(1) T1 = T2 (ie, they are isometric) and Θ1 = Θ2 ,

(2) T1 and T2 are hemispheres and Θ1,Θ2 agree along their entire boundary.

(3) T1 and T2 are spherical lunes and the two edges along which they agree
form one entire side of the lune.

Proof By hypothesis, Θ1 and Θ2 restrict along two edges to local geodesics
γ and η emanating from some point x. The angle between these two edges is
the distance in Lx between γx and ηx . Suppose this angle less than π . Then
clearly T1 = T2 . Since X is locally CAT(1), the subspace of T1 on which
Θ1 = Θ2 must be locally convex, and hence must be all of T1 .

If the angle between the edges is exactly π , then Ti is either a geodesic (if
length (γ) + length (η) < π), a spherical lune (if length (γ) + length (η) = π), or
a hemisphere (if length (γ) + length (η) > π). In the last case, we may assume
without loss of generality that length (γ) = π . then Θ1 and Θ2 are both
restrictions of Fγ : ΣLx → X . In particular, they agree along (Σγx) ∪ (Σηx)
which forms the boundary of Ti .

Lemma 4.5 The diameter of X is at most π .

Proof The proof is the same as that of Lemma 3.4 (using Lemma 4.2 in place
of Lemma 3.3).
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Proof of Theorem 4.1 Fix a point x in X . Define an equivalence relation
on the set of geodesics of length π starting at x by

γ1 ∼ γ2 ⇐⇒ Fγ1 = Fγ2

To prove Theorem 4.1, we define a covering space f : X̃ → X as follows. As a
set, X̃ is defined as the quotient

X̃ = {γ | γ is a local geodesic of length ≤ π with γ(0) = x}/ ∼
Note that only local geodesics of length π can be identified in X̃ .

The topology on X̃ is defined as follows. Let Br(y) denote the ball of radius r
in X centered at y . Given a local geodesic γ from x to y and a real number
r such that Br(y) is conelike, define

Br(γ) = {η ∈ X̃ | ∃ a locally isometric map of a spherical triangle
into X which restricts on two sides to γ and η

and whose third side lies in Br(y)}.
If γ has length π , then these locally isometric maps are all restrictions of Fγ .
In particular, Br(γ) depends only on the class of γ in X̃ . These sets form a
basis for the topology on X̃ . They also define a metric (locally) on X̃ . Namely,
the distance between γ and η ∈ Br(γ) is the length of the third side of the
triangle.

Define f : X̃ → X to be the map taking γ to its endpoint. By Lemma 4.3,
f restricts to an isometry of Br(γ) onto Br(y). Letting γ run over all local
geodesics from x to y , we claim that these balls make up the entire inverse image
of Br(y). For suppose η ∈ X̃ with f(η) = z ∈ Br(y). Since z lies in a conelike
neighborhood of y , the geodesic δ from z to y is nonbranching. It follows from
Lemma 4.3, applied to η and δ , that there exists a local isometry of a spherical
triangle into X which restricts on two side to η and δ . The restriction to the
third side, γ , is a local geodesic from x to y such that η ∈ Br(γ).

It remains to show that for distinct γi ∈ X̃ , the balls Br(γi) are disjoint.
Suppose δ ∈ Br(γ1) ∩Br(γ2). Then there is a local isometry Θi of a spherical
triangle with sides γi and δ , for i = 1, 2. Since Br(y) is conelike, there is a
unique geodesic η from y to the endpoint z of δ . Thus Θ1 and Θ2 agree along
two edges, δ and η . It follows from Lemma 4.4 that γ1 = γ2 in X̃ .

This proves that f : X̃ → X is a covering map. By hypothesis, X is simply
connected, and it is easy to verify that X̃ is connected, thus f is injective. In
particular, for any y ∈ X of distance less than π from x, there is a unique local
geodesic from x to y . Moreover, it follows from Lemma 4.3 that this geodesic
varies continuously with the endpoint y . Since x was chosen arbitrarily, this
applies to all x and y . By Theorem 2.2(2), we conclude that X is CAT(1).
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5 Euclidean buildings

Theorem 5.1 Suppose X is a connected, locally Euclidean complex satisfying

(1) X is CAT(0),

(2) for every point x ∈ X , Lx = lk (x,X) is isometric to a spherical building.

Then X decomposes as an orthogonal product X = Rl×X1× · · · ×Xk , where
l ≥ 0, and each Xi is one of the following,

(1) a thick, irreducible Euclidean building,

(2) the Euclidean cone on a thick, irreducible spherical building,

(3) a tree.

Remark The reader may object that a tree is a 1–dimensional irreducible
Euclidean building whose apartments are Coxeter complexes for the infinite
dihedral group. However, the standard building metric on a 1–dimensional
Euclidean building would assign the same length to every edge of the tree.
Since this need not be the case in our situation, we list these factors separately.

In [11], Kleiner and Leeb introduce a more general notion of a Euclidean build-
ing, which we will call a “metric Euclidean building”, and prove an analogous
product decomposition theorem (Prop. 4.9.2) for these buildings. We review
their definition in the context of locally Euclidean spaces. (Kleiner and Leeb
work in a more general setting.)

Call a group W of affine transformations of Rn an affine Weyl group if W is
generated by reflections and the induced group of isometries on the sphere at
infinity is finite. Affine Weyl groups include Euclidean and spherical Coxeter
groups, as well as nondiscrete groups generated by reflections across parallel
walls.

Let A be a collection of isometric embeddings of Rn into a locally Euclidean
space X of dimension n. We call A an atlas for X and the images of the
embeddings are called apartments.

Definition 5.2 Suppose X is a CAT(0), locally Euclidean space of dimension
n. Then X is a metric Euclidean Building if there is an atlas A and an affine
Weyl group W such that

(1) Every geodesic segment, ray, and line is contained in an apartment.

(2) A is closed under precomposition with W .

(3) If two apartments φ2(Rn), φ2(Rn) intersect, then φ−1
1 ◦φ2 is the restriction

of some element of W .
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(In the context of locally Euclidean spaces, this definition agrees with that of
Kleiner and Leeb since their first two axioms hold automatically for locally
Euclidean spaces.) It is an immediate consequence of Theorem 5.1 that the
space X is a metric Euclidean building.

Corollary 5.3 Let X be as in Theorem 5.1. Then X is a metric Euclidean
building.

Conversely, it is easy to see that a metric Euclidean building satisfies the hy-
potheses of Theorem 5.1. Thus, for locally Euclidean spaces, Theorem 5.1 also
provides another proof of Kleiner and Leeb’s product decomposition theorem.

The proof of Theorem 5.1 will occupy the remainder of this section. As in
the spherical case, the key is to find lots of apartments. By Proposition 2.3,
the apartments in X are isometrically embedded copies of Rn , known as n–
flats. The crucial step to constructing n–flats is to find flat strips (isometrically
embedded copies of R× [0, a] for some a > 0).

Definition 5.4 Let X be a CAT (0)–space. We will call the triangle ∆ in X
a Euclidean (or flat) triangle, if its convex hull is isometric to a triangle in Rn .

For a triangle ∆(x, y, z) we denote the segment from x to y by xy , etc. The
angle between xy and xz is defined as the distance in Lx between the tangent
vectors to xy and xz and it is denoted by ∠x(xy, xz). The following lemma
follows immediately from Proposition 3.13 of [1].

Lemma 5.5 Let X be a CAT (0) space, ∆ = ∆(a, b, c) a triangle in X . Let d
be a point between a and b. Suppose the triangles ∆(a, d, c) and ∆(b, d, c) are
Euclidean. If in addition ∠d(da, dc) +∠d(db, dc) = π , then the original triangle
∆(a, b, c) is Euclidean.

The condition on the angles is automatically satisfied if the geodesic ab is non-
branching, for example if b lies in a cone-like neighborhood of a.

If L is a locally spherical space and r > 0, let Cr(L) denote the Euclidean cone
on L of radius r (ie, the geodesics emanating from the cone point have length
r). The following lemma is an analogue of Lemma 3.2. The proof is essentially
the same and the details are left to the reader.
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Lemma 5.6 Suppose X is a locally Euclidean space of dimension n ≥ 2 such
that the link of every point in X is isometric to a spherical building. Let γ
be a locally geodesic ray from x and let Ax be an apartment in Lx containing
γx . Then for any r > 0, there is a neighborhood Nx ⊂ Ax of γx and a unique
locally isometric map Θ of the Euclidean cone Cr(Nx) into X such that

(1) for any v ∈ Nx , the restriction of Θ to Cr(v) is a local geodesic with
tangent vector v , and

(2) the restriction of Θ to Cr(γx) is precisely γ|[0,r] .

Suppose γ is as in Lemma 5.6, and α is a geodesic in Lx originating at γx .
Then Lemma 5.6 implies that there is a unique extension of γ|[0,r] to a locally
isometric map of Cr(α) into X . If X is CAT(0), the map is an isometric
embedding. This enables us to construct Euclidean triangles in X since the
image of any triangle in Cr(α) is Euclidean.

From now on, we assume that X satisfies the hypotheses of Theorem 5.1.

Lemma 5.7 Let γ: R → X be a geodesic ray with x = γ(0). If y lies in a
conelike neighborhood of x, then for any t ∈ R, the triangle ∆(x, y, γ(t)) is
Euclidean.

Proof Assume, without loss of generality, that t > 0. Since y lies in a conelike
neighborhood of x, the geodesic η from x to y is non-branching. Choose a
geodesic α in Lx from γx to ηx and extend γ|[0,t] to an isometric embedding
Θ of Ct(α) into X . Since η is non-branching, it agrees with Θ on Ct(ηx).
Thus, x, y, γ(t) span a Euclidean triangle.

Lemma 5.8 Let γ , x, and y be as above and let η be the geodesic from x to
y . Suppose ∠x(η, γ+) +∠x(η, γ−) = π . Then y and γ span a Euclidean strip.

Proof By the previous lemma, for each t ∈ R, the triangle 4(x, y, γ(t)) is
Euclidean. By Lemma 5.5, every triangle of the form 4(y, γ(t1), γ(t2)) is Eu-
clidean. Since any two points in the span of y and γ lie on such a triangle, the
lemma follows.

For any subspace Y of X , and any point x ∈ Y , we denote the link of x in Y
by LxY .

Lemma 5.9 Let F be an m–flat in X . Let η: [0, r]→ X be a geodesic from
x ∈ F to a point y lying in a conelike neighborhood of x. Suppose that the
distance in Lx from ηx to any point in LxF is π

2
. Then y and F span a flat

Rm × [0, r].
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Proof Let Z = Rm× [0, r] = F × [0, r]. Let Y be the subspace of X spanned
by F and y . Consider the natural map f : Z → Y that takes F × {0} via the
identity map to F and takes the line segment between (z, 0) and (0, r) to the
geodesic in Y from z to y . By Lemma 5.8, the restriction of f to the strip
γ × [0, r] is an isometry for any geodesic γ: R→ F through x. We must show
that f is isometric on all of Z .

Any two points y1, y2 in Y lie on the image of a triangle T ⊂ Z with vertices
(0, r), (z1, 0), (z2, 0). By the discussion above, T is a comparison triangle for its
image f(T ) in Y . Hence, by the CAT(0) condition, the distance between y1

and y2 is at most the distance between the corresponding points in T . Thus,
f is distance non-increasing. Moreover, if y1 or y2 lies on η , then they both
lie in a Euclidean strip, as above, so these two distances agree.

To prove the reverse inequality, choose r′ < r and let y′ = η(r′) = f((0, r′))
(Figure 1). Consider the induced map df between the links L(0,r′)Z ∼= Sm and
Ly′Y . It suffices to prove that df is an isometry, for in this case, the triangle
with vertices y′, y1, y2 has the same angle and same two side lengths at y′ as
its comparison triangle in Z , so by the CAT(0) condition, the opposite side is
at least as long as in the comparison triangle.

To see that df is an isometry, note that the fact that f restricts to an isometry
on strips γ × [0, r] implies that df maps points of distance π in L(0,r′)Z to
points at distance π in Ly′Y . On the other hand, since f is distance non-
increasing at all points, it must also be distance non-increasing on links. But
these two facts contradict each other unless df is an isometry.

Lemma 5.10 Every geodesic and every flat strip in X is contained in an
n–flat.

Proof Let F be an m–flat in X with m < n. Let a ∈ [−∞, 0], b ∈ [0,∞] be
chosen so that F is contained in a flat embedded F × [a, b] (with F = F ×{0})
and such that a, b are maximal, (that is, one cannot embed this F × [a, b] in a
bigger F × [a0, b0]).

We claim that a = −∞, b =∞ . Assume the contrary. Say, for example, b <∞.
Let x be a point in F×{b}. F×[a, b] determines an m–dimensional hemisphere
H in LxX containing LxF . (If a = b = 0, choose any hemisphere containing
LxF .) Choose an m–sphere in LxX containing H and let v be the point of
the sphere, which has distance π

2 from H . Let η be a ray emanating from x
in the direction of v . By the previous lemma, for small r , η(r) and F × {b}
span a flat F × [0, r]. The choice of v , together with Lemma 5.5, guarantee
that F × [a, b] and F × [0, r] fit together to form a flat strip F × [a, b+ r]. This
contradicts the maximality of b.
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Thus, any m–flat, and more generally, any geodesically embedded Rm × [a, b],
m < n, can be embedded in an (m+ 1)–flat. It follows inductively, that every
geodesic and every flat strip is contained in an n–flat.

Proof of Theorem 5.1 Let F be an n–flat in X . The set Y of the singular
points in F is closed and locally it is a union of hyperplanes, so Y is globally
a union of hyperplanes too. We call these the singular hyperplanes. The set
of singular hyperplanes is locally invariant under reflection in each of these
hyperplanes, so if two singular hyperplanes H1 and H2 are not parallel, the
reflection, H ′1 , of H1 across H2 is also singular. Moreover, if H1 and H2 are
parallel, and there exists a singular hyperplane not orthogonal to H1 and H2 ,
then a simple exercise shows that H ′1 can be obtained by a series of reflections
across intersecting singular hyperplanes. Thus, again, H ′1 must be a singular
hyperplane.

Let Y1, Y2, . . . , Yk be a maximal decomposition of Y into mutually orthogonal
families of singular hyperplanes. It follows from the discussion above that each
Yi is either a discrete family of parallel hyperplanes or the set of walls of an
irreducible spherical or Euclidean Coxeter group (compare [6], VI.1).

Taking Fi to be the subspace of F generated by the normal vectors to the
hyperplanes in Yi , we obtain an orthogonal decomposition of F into F =
F0 × F1 × · · · × Fk , where F0 is a subspace parallel to all of the singular
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hyperplanes. If Yi is a family of parallel hyperplanes, then Fi is 1–dimensional.
Otherwise, Yi gives Fi the structure of a Euclidean Coxeter complex or an
(infinite) Euclidean cone on a spherical Coxeter complex.

We now choose an n–flat E such that, in the decomposition E = E0 × E1 ×
· · · × Ek , the dimension l of the factor E0 is minimal, and among all flats
with dim(E0) = l , we require that E minimize the number k . (As we will
see below, the number k is actually independent of the choice of E .) In this
flat E , we choose a point x, such that for j = 1, . . . , k , the hyperplanes Yj
determine a full-dimensional, irreducible, spherical Coxeter group in the sphere
LxEj . Intuitively, we have chosen E to be the most complicated n–flat and x
to be the most complicated point in E .

The product decomposition of E gives rise to a decomposition of LxE as an
orthogonal join, LxE = LxE0∗LxE1∗· · ·∗LxEk . Since LxE is an apartment in
the spherical building LxX , it follows that LxX splits as a join of k irreducible
buildings and an (l − 1)–sphere, LxX = L0 ∗ L1 ∗ · · · ∗ Lk .

Let G be another flat through x. As above, we can factor G as an orthogonal
product G = G0 ×G1 × · · · ×Gk′ Since LxG is also an apartment in LxX , it
must have the same simplicial structure as LxE . Clearly this is possible only if
dim (G0) = dim (E0), k′ = k and (up to permutation) LxGj ∼= LxEj for all j .
(Note that although we have shown that the simplicial structure of Gj and Ej
agree in a neighborhood of x, we do not yet know that they agree globally.)

If y is any other point in X , then by Lemma 5.10, there is a flat G containing
x and y , so the decomposition of G gives rise to a decomposition of LyX as
a join Ly,0 ∗ Ly,1 ∗ · · · ∗ Ly,k of spherical buildings. In this case, however, the
factors need not be irreducible. (Consider, for example, the case where y is a
nonsingular point.)

Next, we prove that if the decomposition of E is not the trivial one, we can
decompose X as a product. Let Xi be the union of the geodesic rays emanating
from x in the direction of Li . Then Xi is connected and by Lemma 5.7, it is
locally convex, hence it is convex. To prove that X = X0 × X1 × · · · × Xk ,
we apply Theorem II.9.24 of [4] which states that splittings of X as a product
correspond to splittings of the Tits boundary ∂TX as a join. The Tits boundary
may be viewed as the set of rays emanating from x. To show that X =
X0 ×X1 × · · · ×Xk , it suffices to show that ∂TX = ∂TX0 ∗ ∂TX1 ∗ · · · ∗ ∂TXk .
For this we must verify (cf [4] Lemma II.9.25):

(1) Every ray γ lies in the span of rays γ0, γ1, . . . , γk with γi ⊂ Xi .

(2) Rays γi, γj lying in distinct factors Xi,Xj have distance π
2

in the Tits
metric.
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The first of these conditions follows from the fact that any ray γ at x is con-
tained in an n–flat G which, by the discussion above, decomposes as a product
G = G0 ×G1 × · · · ×Gk with Gi ⊂ Xi .

For the second condition, it is enough to show, that any geodesic γ in Xi
through x and any ray η in Xj emanating from x (i 6= j ) span a flat halfplane.
If not, then there is a largest t such that η(t) and γ span a flat strip. By Lemma
5.8, we can assume that t is bigger than 0. By Lemma 5.10, we can embed
this strip in an n–flat T . Let z = η(t) and let γ1 be the line in T parallel to γ
through z . The product decomposition of T gives rise to a join decomposition
of the building LzX = Lz,0 ∗ Lz,1 ∗ · · · ∗ Lz,k . The tangent vectors to γ1 at
z lie in Lz,i while the tangent vectors to η at z lie in Lz,j . It follows that
the angle condition of Lemma 5.8 is satisfied, so that for small ε, η(ε+ t) and
γ1 span a flat strip. This strip fits together with the strip between γ1 and
γ , contradicting the maximality of t. This proves condition (2) and we have
shown that X decomposes as an orthogonal product of the Xi ’s.

It remains to identify the factors Xi . Since Xi is convex in X , it is CAT(0),
and at any point y ∈ Xi , LyXi = Ly,i is a building. Thus, each factor satisfies
the hypotheses of Theorem 5.1. The factor X0 contains no singular points,
for if y ∈ X0 is singular, then we could find an n–flat F through y with
dimF0 < dimE0 . In other words, X0 = Rl .

Assume i > 0. If Xi is 1–dimensional, then the CAT(0) condition implies that
it is a tree. If dimXi ≥ 2, then Xi contains an apartment Ei which is either an
irreducible Euclidean Coxeter complex or the cone on an irreducible spherical
Coxeter complex. Thus, chambers in Ei are simplices or cones on simplices, and
the simplicial structure of Ei is completely determined by a single chamber. It
follows that any other apartment in Xi sharing a chamber with Ei has the same
simplicial structure. By Lemma 5.10, any two points (hence any two chambers)
in Xi lie in a common apartment, so any two apartments are isomorphic. If
Ei is a Euclidean Coxeter complex, then we conclude that Xi is an irreducible
Euclidean building. In the case that Ei is the cone on a spherical Coxeter
complex, it has only one vertex, namely x, which must be the cone point for
every apartment. Thus, in this case, Xi is the cone on the irreducible spherical
building Li . In either case, since the simplicial structure on Xi is defined by
its singular set, these buildings must be thick. This completes the proof of
Theorem 5.1.

It is reasonable to ask whether an analogous theorem holds for locally hyperbolic
spaces; that is, if X is locally hyperbolic and CAT(-1), and every link in X
is isometric to a spherical building, can we conclude that X is a hyperbolic
building (ie, a buildings whose apartments are copies of Hn cellulated by the
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walls of a discrete, hyperbolic reflection group)? The answer is no. Although
one can construct lots of embedded copies of Hn under these hypotheses, these
“apartments” need not have the structure of a Coxeter complex. For example,
let γ1, . . . γ5 be five geodesics γi: R→ H2 which form a right-angled pentagon.
The reflections across these lines generate a hyperbloic Coxeter group. Now
let γ6 be another geodesic line intersecting γ1 orthogonally and disjoint from
the other γi ’s. We can choose γ6 so that the three geodesics intersecting γ1

generate a nondiscrete group of reflections. Then γ1, . . . , γ6 cannot be the
walls of a reflection group acting on H2 . (Note that these six lines are locally,
but not globally closed under reflections.) It is now possible to construct a
simply connected, locally hyperbolic space X , all of whose links are spherical
buildings (in fact we can take the link of every vertex to be the K3,3 graph
with edge lengths π

2
) and such that X contains an isometrically embedded H2

whose singular set consists of the six lines above. This cannot be a hyperbolic
building.

6 One-dimensional spherical buildings

In this section we give a metric characterization of one-dimensional spherical
buildings. An equivalent characterization appears as Lemma 6.1 in [3]. We
include a proof here for completeness.

Theorem 6.1 Suppose X is a connected, one-dimensional piecewise spherical
complex satisfying

(1) X is CAT(1) and diam (X) = π ,

(2) every vertex of X has valence ≥ 3.

Then X is either a thick spherical building or X = ΣY for some discrete set
Y .

Remark We can also apply this theorem in cases where every vertex has
valence ≥ 2 simply by ignoring those vertices of valence 2. In this case, however,
some information about the original cell structure will be lost since vertices of
valence 2 are invisible to the metric.

Assume throughout this section that X satisfies the hypotheses of Theorem
6.1. In this situation, the analogue of Lemma 3.3 is easy to prove.

Lemma 6.2 Let x, y ∈ X be antipodal points and v ∈ lk (x,X) a tangent
vector at x. Then there exits a unique geodesic γ from x to y such that γx = v .
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Proof Choose a point z in the open star of x so that the geodesic α from x
to z satisfies αx = v . We first observe that z cannot be antipodal to y . For if
w is a point on α between x and z , then the geodesic from w to y must pass
through either z or x. If both z and x are antipodal to y , then d(w, y) > π ,
contradicting diam (X) = π . Thus, d(x, z) < π and hence there is a unique
geodesic β from z to y . This geodesic cannot pass through x (since this would
imply d(z, y) > d(z, x) = π), so it must leave z in the opposite direction from
α. Thus, the concatenation α · β is a local geodesic from x to y . Moreover,
since α contains no antipodal points to y (other than x), the length of α · β
cannot be more than π . Thus, γ = α · β is the desired geodesic.

Lemma 6.3 Suppose x, y ∈ X are antipodal points. If x is a vertex of X ,
then so is y .

Proof If x is a vertex of X , then lk (x,X) contains at least 3 distinct points
v1, v2, v3 . By the previous lemma, there are geodesics γ1, γ2, γ3 from x to y
with (γi)x = vi . Any two of these geodesics intersect only at x and y since,
otherwise, they would form a circuit of length < 2π . Thus, lk (y,X) has at
least 3 distinct points, so y is a vertex.

Lemma 6.4 All edges of X have the same length, π
m for some integer m ≥ 1.

Proof Since X is connected, if any two edges have different lengths, then we
can find a pair of adjacent edges, e1, e2 of different lengths. Let x be their
common vertex and let x1, x2 be the other endpoints of e1, e2 respectively.
Say d(x, x1) < d(x, x2). Choose a point y antipodal to x and a third edge
e3 emanating from x. By Lemma 6.2, there are geodesics γ1, γ2, γ3 from x to
y which begin with e1, e2, e3 respectively. Any two of these geodesics, γi, γj ,
form a loop of length 2π . Consider the loop γ1 · γ3 . Let z be the point on γ3

antipodal x1 . By Lemma 6.3, z is a vertex. Next, consider the loop γ2 · γ3 .
Let z′ be the point on γ2 antipodal to z . By Lemma 6.3, z′ is a vertex. But
d(x, z′) = d(y, z) = d(x, x1) < d(x, x2). Thus, z′ lies in the interior of the edge
e2 . This is a contradiction. We conclude that all edges of X have the same
length. Since antipodal points to vertices are also vertices, this length must be
π
m for some integer m ≥ 1.

If all edges of X have length π , then the distance between any two vertices of
X is exactly π . It follows that X has only two vertices (otherwise, it would
have diameter > π). Thus, X is the suspension of the discrete set Y consisting
of the midpoints of the edges.
From now on, we will assume that every edge has length π

m
for some m ≥ 2.

In this case, every circuit of length 2π is a Coxeter complex for the dihedral
group D2m . We will refer to such circuits as apartments.
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Lemma 6.5 Any two simplices of X are contained in a common apartment.
If A1 and A2 are apartments containing a common edge e, then there is a
simplicial isomorphism φ: A1 → A2 fixing A1 ∩A2 pointwise.

Proof It suffices to prove the first statement for two edges e1, e2 . Choose a
point x in the interior of e1 . Suppose e2 contains a point y antipodal to x
(which, by Lemma 6.3 must lie in the interior of e2 ). Then lk (x, e1) consists
of two points v1, v2 each of which gives rise to a geodesic γ1, γ2 from x to y .
Together, these two geodesics form an apartment containing e1 and e2 .

Suppose, on the other hand, that no point of e2 is antipodal to x. Let γ1 be
a geodesic from x to a point y in the interior of e2 . Extend γ1 to a geodesic
of length π . Note that this extended geodesic (which we still denote γ1 ) must
contain all of e2 . Let z be the endpoint of γ1 , so z is antipodal to x. Then
there exists a geodesic γ2 from x to z which begins along e1 in the direction
opposite to γ1 . The union, γ1 ∪ γ2 is the desired apartment.

The second statement is obvious since the CAT(1) hypothesis implies that A1∩
A2 is connected.

7 Main theorems

Combining the results of the previous sections, we arrive at our main theorems.

Theorem 7.1 Suppose X is a connected, piecewise spherical complex of di-
mension n ≥ 2 satisfying the following conditions.

(1) X is CAT(1).

(2) Every (n − 1)–cell is contained in at least two n-cells.

(3) The link of every k–cell, k ≤ n− 2, is connected.

(4) The link of every (n− 2)–cell has diameter π .

Then X is isometric to a spherical building. The cell structure determined by
the singular set is that of a thick spherical building or a suspension of a thick
spherical building.

Proof Let Lσ = lk (σ,X). By Theorem 2.2, if X is CAT(1), then so is Lσ for
every cell σ . In particular, for an (n− 2)–cell σ , Lσ is a 1–dimensional, piece-
wise spherical complex which is CAT(1), diameter π , and has every vertex of
valence ≥ 2. Ignoring vertices of valence 2 gives a complex satisfying Theorem
6.1. Thus, Lσ is isometric to a 1-dimensional spherical building. The theorem
now follows by induction from Theorem 3.8.
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In the theorem above, we could have assumed that X was locally spherical in-
stead of piecewise spherical if we interpret “k–cell” as meaning k–dimensional
strata of the singular set. In fact, in ignoring vertices of valence 2, some infor-
mation about the given cell structure on X may be lost. For example, any cell
decomposition of the standard 2–sphere satisfies the conditions of the theorem,
but need not be the cell structure of a building. To guarantee that the original
cell structure is reflected in the metric, we would need to assume that X is
thick.

Theorem 7.2 Suppose X is a connected, piecewise spherical complex of di-
mension n ≥ 2 satisfying the following conditions.

(1) X is CAT(1).

(2) Every (n − 1)–cell is contained in at least three n–cells.

(3) The link of every k–cell, k ≤ n− 2, is connected.

(4) The link of every (n− 2)–cell has diameter π .

Then, with respect to its given cell structure, X is a spherical building.

Proof The proof is the same using Theorem 3.1 instead of Theorem 3.8.

Analogous results hold in the piecewise Euclidean setting.

Theorem 7.3 Suppose X is a connected, piecewise Euclidean complex of
dimension n ≥ 2 satisfying the following conditions.

(1) X is CAT(0).

(2) Every (n − 1)–cell is contained in at least two n–cells.

(3) The link of every k–cell, k ≤ n− 2, is connected.

(4) The link of every (n− 2)–cell has diameter π .

Then X is a metric Euclidean building. If, in addition, X is thick, then X is
a product of irreducible Euclidean buildings and trees with respect to its given
cell structure.

Proof The first hypothesis implies that lk (σ,X) is CAT(1) for every σ . By
Theorem 7.1, we conclude that for v a vertex of X , lk (v,X) is isometric to
a spherical building. It follows by Theorem 5.1 and Corollary 5.3 that X is
a metric Euclidean building and that it factors as a product of irreducible
Euclidean buildings, cones on spherical buildings, trees, and a nonsingular Eu-
clidean space. If X is thick, the components of the nonsingular set of X are
the interiors of the n–cells. In particular, they are bounded. Thus, only the
first and last type of factor can occur in this situation.
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Replacing the CAT(1) condition in Theorem 7.1 by a simply connectedness
condition does not give a satisfying characterization because of the problem
in dimension 2. It does, however, give an analogue of Tit’s theorem about
incidence geometries ([14], Theorem 1).

Theorem 7.4 Suppose X is a piecewise spherical (respectively Euclidean)
complex of dimension n ≥ 3 satisfying

(1) X is simply connected.

(2) The link of every k–cell, k ≤ n− 4, is simply connected.

(3) The link of every (n− 3)–cell is isometric to a building.

Then X is isometric to a spherical building (respectively metric Euclidean
building).

Proof In the spherical case, the theorem follows from Theorem 4.1 and induc-
tion. In the Euclidean case, links in X are spherical buildings (by the spherical
case of the theorem) so X is locally CAT(0). Since X is simply connected,
it is also globally CAT(0) (Theorem 2.1(2)). The theorem now follows from
Corollary 5.3.

Another interesting metric characterization involves extensions of geodesics. A
local geodesic γ ending at x extends discretely if the set of directions in which
γ can be geodesically continued through x is a non-empty discrete subset of
lk (x,X), or equivalently, if the set of points v ∈ lk (x,X) at distance ≥ π
from γx is non-empty and discrete. We say a geodesic metric space X has the
discrete extension property if γ extends discretely for every local geodesic γ .

Theorem 7.5 Suppose X is a connected, locally spherical (respectively Eu-
clidean) space of dimension n ≥ 2, and suppose

(1) X is CAT(1) (respectively CAT(0)),

(2) X has the discrete extension property.

Then X is isometric to a spherical building (respectively metric Euclidean
building).
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Proof First note that if X has the discrete extension property, then so does
Lx = lk (x,X) for every x. For if v ∈ Lx and γ is a geodesic emanating from
x in direction v , then for any point y = γ(t) in a conelike neighborhood of x,
Ly = S0 ∗ lk (v, Lx). Thus, if every point in Ly has a non-empty discrete set of
points at distance ≥ π , then the same holds in lk (v, Lx). (See the appendix of
[7] for details on distances in spherical suspensions.)

The discrete extension property also implies that Lx is connected. For if σ is
a spherical (n − 1)–cell in Lx and v ∈ Lx is not in the connected component
of σ , then all of σ has distance ≥ π from v .

The theorem now follows by induction on n. If n = 2, then the discrete
extension property implies that Lx is connected, has diameter π , and every
vertex has valence at least 2. Thus, by Theorem 6.1, and the remark following it,
Lx is isometric to a 1-dimensional spherical building for all x. By Theorem 3.8,
(respectively Corollary 5.3) X is isometric to a spherical (respectively metric
Euclidean) building.

If n > 2, then Lx is a connected, locally spherical space satisfying conditions (1)
and (2) of the theorem. By induction Lx is isometric to a spherical building for
every x, and the conclusion follows from Theorem 3.8 (respectively Corollary
5.3).
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