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684 Boris Botvinnik

1 Introduction

1.1 Motivation It is well-known that the question of existence of positive
scalar curvature metric is hard enough for regular manifolds. This question
was studied extensively, and it is completely understood, see [9], [29], for simply
connected manifolds and for manifolds with few particular fundamental groups,
see [4], and also [23], [24] for a detailed discussion. At the same time, the central
statement in this area, the Gromov–Lawson–Rosenberg Conjecture is known to
be false for some particular manifolds, see [26]. To motivate our interest we
first address a couple of naive questions. We shall consider manifolds with
boundary, and we always assume that a metric on a manifold is product metric
near its boundary. We use the abbreviation “psc” for “positive scalar curvature”
throughout the paper.

Let (P, gP ) be a closed Riemannian manifold, where the metric gP is not as-
sumed to be of positive scalar curvature. Let X be a closed manifold, such that
the product X × P is a boundary of a manifold Y .

Naive Question 1 Does there exist a psc-metric gX on X , so that the prod-
uct metric gX × gP could be extended to a psc-metric gY on Y ?

Examples (1) Let P =
〈k〉 = {k points}, then a man-
ifold Y with ∂Y = X × 〈k〉 is
called a Z/k–manifold. When
k = 1 (or X = ∂Y ) the
above question is essentially
trivial. Say, if X and Y are
simply connected Spin mani-
folds, and dimX = n− 1 ≥ 5,
there is always a psc-metric gX
which could be extended to a
psc-metric gY .

X X X

Y

Figure 1: Z/k–manifold

To see this one can delete a small open disk Dn ⊂ Y , and then push the
standard metric on Sn−1 through the cobordism W = Y \Dn to the manifold
X using the surgery technique due to Gromov, Lawson [9] and Schoen, Yau
[27].

(2) The case P = 〈k〉 with k ≥ 2 is not as simple. For example, there are
many simply connected Spin manifolds X of dimension 4k (for most k) which
are not cobordant to zero, and, in the same time, two copies of X are. Let
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Manifolds with singularities of positive scalar curvature 685

∂Y = 2X . It is not obvious that one can find a psc-metric gX on X , so that
the product metric gX × 〈2〉 extends to a psc-metric gY on Y .

(3) Let Σm (where m = 8l + 1 or 8l + 2, and l ≥ 1) be a homotopy sphere
which does not admit a psc-metric, see [12]. We choose k ≥ 2 disjoint discs
Dm

1 , . . . ,D
m
k ⊂ Σm and delete their interior. The resulting manifold Y m has the

boundary Sm−1×〈k〉. Clearly it is not possible to extend the standard metrics
on the spheres Sm−1 × 〈k〉 to a psc-metric on the manifold Y since otherwise
it would give a psc-metric on the original homotopy sphere Σm . However, it is
not obvious that for any choice of a psc-metric g on Sm−1 the metric g × 〈k〉
could not be extended to a psc-metric on Y m .

(4) Let P be again k points. Consider a Joyce manifold J8 (Spin, simply
connected, Ricci flat, with Â(J8) = 1, and holonomy Spin(7)), see [16]. Delete
k open disks Dm

1 , . . . ,D
m
k ⊂ J8 to obtain a manifold M , with ∂M = S7×〈k〉.

Let g0 be the standard metric on S7 . Then clearly the metric g0 × 〈k〉 on the
boundary S7 × 〈k〉 cannot be extended to a psc-metric on M since otherwise
one would construct a psc-metric on J8 . However, there are so called “exotic”
metrics on S7 which are not in the same connective component as the standard
metric. Nevertheless, as we shall see, there is no any psc-metric g′ on S7 , so
that the metric g′ × 〈k〉 could be extended to a psc-metric on M .

(5) Let P = S1 with nontrivial Spin structure, so that [P ] is a generator of
the cobordism group ΩSpin

1 = Z/2.

Let dθ2 be the standard metric on the
circle. The analysis of the ring structure
of ΩSpin

∗ shows that there exist many ex-
amples of simply connected manifolds X
which are not Spin cobordant to zero,
however, the products X × P are, say
∂Y = X × P .
Again, in general situation there is no ob-
vious clue whether for some psc-metric gX
on X the product metric gX+dθ2 on X×P
could be extended to a psc-metric on Y or
not.

X × P1 × P2

Z1 × P1 Z2 × P2

Y

Figure 2

Now let (P1, g1), (P2, g2) be two closed Riemannian manifolds, again, the met-
rics g1 , g2 are not assumed to be of positive scalar curvature. Let X be a
closed manifold such that

• the product X × P1 is a boundary of a manifold Z2 ,
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686 Boris Botvinnik

• the product X × P2 is a boundary of a manifold Z1 ,

• the manifold Z = Z1 ×P1 ∪ εZ2 ×P2 is a boundary of a manifold Y (where
ε is an appropriate sign if the manifolds are oriented), see Figure 2.

Naive Question 2 Does there exist a psc-metric gX on X , so that

(a) the product metric gX × g1 on X × P1 could be extended to a psc-metric
gZ2 on Z2 ,

(b) the product metric gX × g2 on X × P1 could be extended to a psc-metric
on gZ1 Z1 ,

(c) the metric gZ1 × gP1 ∪ gZ2 × gP2 on the manifold Z = Z1 × P1 ∪ εZ2 × P2

could be extended to a psc-metric gY on Y ?

1.2 Manifolds with singularities Perhaps, one can recognize that the
above naive questions are actually about the existence of a psc-metric on a
manifold with the Baas–Sullivan singularities, see [28], [2]. In particular, a Z/k–
manifold M is a manifold with boundary ∂M diffeomorphic to the product
βM × 〈k〉. Then a metric g on M is a regular Riemannian metric on M such
that it is product metric near the boundary, and its restriction on each two
components βM ×{i}, βM ×{j} are isometric via the above diffeomorphism.
To get the singularity one has to identify the components βM × {i} with a
single copy of βM . Similarly a Riemannian metric may be defined for the case
of general singularities. We give details in Section 7.

Thus manifolds with the Baas–Sullivan singularities provide an adequate en-
vironment to reformulate the above naive question. Let Σ = (P1, . . . , Pq) be
a collection of closed manifolds, and M be a Σ–manifold (or manifold with
singularities of the type Σ), see [2], [19], [3] for definitions. For example, if
Σ = (P ), where P = 〈k〉, a Σ–manifold M is Z/k–manifold. Then the above
questions lead to the following one:

Question Under which conditions does a Σ–manifold M admit a psc-metric?

Probably it is hard to claim anything useful for a manifold with arbitrary sin-
gularities. We restrict our attention to Spin simply connected manifolds and
very particular singularities. Now we introduce necessary notation.

Let ΩSpin
∗ (·) be the Spin–cobordism theory, and MSpin be the Thom spectrum

classifying this theory. Let ΩSpin
∗ (pt) = ΩSpin

∗ be the coefficient ring. Let
P1 = 〈2〉 = {two points}, P2 be a circle with a nontrivial Spin structure,
so that [P2] = η ∈ ΩSpin

1
∼= Z/2, and P3 , [P3] ∈ ΩSpin

8 , is a Bott manifold,

Geometry & Topology, Volume 5 (2001)



Manifolds with singularities of positive scalar curvature 687

ie, a simply-connected manifold such that Â(P3) = 1. There are different
representatives of the Bott manifold P3 . Perhaps, the best choice is the Joyce
manifold J8 , [16]. Let Σ1 = (P1), Σ2 = (P1, P2), Σ3 = (P1, P2, P3), and
η = (P2). We denote by ΩSpin,Σi∗ (·) the cobordism theory of Spin–manifolds
with Σi–singularities, and by MSpinΣi the spectra classifying these theories,
i = 1, 2, 3. We also study the theory ΩSpin,η

∗ (·), and the classifying spectrum for
this theory is denoted as MSpinη . We use notation Σ for the above singularities
Σ1 , Σ2 , Σ3 or η .

Let KO∗(·) be the periodic real K–theory, and KO be the classifying Ω–
spectrum. The Atiyah–Bott–Shapiro homomorphism α: ΩSpin

∗ −→ KO∗ in-
duces the map of spectra

α: MSpin −→ KO. (1)

It turns out that for our choice of singularities Σ the spectrum MSpinΣ splits as
a smash product MSpinΣ = MSpin∧XΣ for some spectra XΣ (see Theorems
3.1, 6.1). We would like to introduce the real K–theories KOΣ

∗ (·) with the
singularities Σ. We define the classifying spectrum for KOΣ

∗ (·) by KOΣ =
KO ∧ XΣ . The K–theories KOΣ

∗ (·) may be identified with the well-known
K–theories. Indeed,

KOΣ1
∗ (·) = KO∗(·; Z/2), KOη∗(·) = K∗(·), KOΣ2

∗ (·) = K∗(·; Z/2),

see Corollary 5.4. The K–theory KOΣ3∗ (·) is “trivial” since the classifying
spectrum KOΣ3 is contractible, see Corollary 6.4. Now the map α from (1)
induces the map

αΣ: MSpinΣ = MSpin ∧XΣ
α∧1−→ KO ∧XΣ = KOΣ

and the homomorphism of the coefficient rings

αΣ: ΩSpin,Σ
∗ −→ KOΣ

∗ . (2)

We define the integer d(Σ) as follows:

d(Σ1) = 6, d(Σ2) = 8, d(Σ3) = 17, d(η) = 7.

Recall that if M is a Σ–manifold, then (depending on the length of Σ), the
manifolds βiM , βijM , βijkM (as Σ–manifolds) are defined in canonical way.
In particular, for Σ = Σ1, η , there is a manifold βiM such that ∂M = βiM×Pi ,
for Σ = Σ2 , there are Σ–manifolds β1M , β2M ,β12M , and for Σ = Σ3 there
are Σ–manifolds βiM , βijM , βijkM . These manifolds may be empty. The
manifolds βiM , βijM and βijkM are called Σ–strata of M .

We say that a Σ–manifold M is simply connected if M itself is simply connected
and all Σ–strata of M are simply connected manifolds.
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688 Boris Botvinnik

1.3 Main geometric result The following theorem is the main geometric
result of this paper.

Theorem 1.1 Let Mn be a simply connected Spin Σ–manifold of dimension
n ≥ d(Σ), so that all Σ–strata manifolds are nonempty manifolds. Then M
admits a metric of positive scalar curvature if and only if αΣ([M ]) = 0 in the
group KOΣ

n .

We complete the proof of Theorem 1.1 only at the end of the paper. However,
we would like to present here the overview of the main ingredients of the proof.

1.4 Key ideas and constructions of the proof There are two parts of
Theorem 1.1 to prove. The first “if” part is almost “pure topological”. The
second “only if” part has more analytical flavor. We start with the topological
ingredients.

The first key construction which allows to reduce the question on the existence of
a psc-metric to a topological problem, is the Surgery Lemma. This fundamental
observation originally is due to Gromov–Lawson [9] and Schoen–Yau [27]. We
generalize the Surgery Lemma for simply connected Spin Σ–manifolds.

This generalization is almost straight-
forward, however we have to de-
scribe the surgery procedure for Σ–
manifolds.
To explain the difference with the case
of regular surgery, we consider the ex-
ample when M is a Z/k–manifold, ie,
∂M = βM ×〈k〉. There are two types
of surgeries here. The first one is to
do surgery on the interior of M , and
the second one is to do surgery on each
manifold βM .

M

V

V

V

β′M

β′M

β′M

Figure 3: The manifold M ′

We start with the second one. Let M be a Z/k -manifold, with a psc-metric gM .
We have ∂M = βM×〈k〉, where gβM is a psc-metric. Let Sp×Dn−p−1 ⊂ βM ,
and V be a trace of the surgery along the sphere Sp , ie, ∂V = −βM ∪ β′M .
We assume that n − p − 1 ≥ 3, so we can use the regular Surgery Lemma to
push a psc-metric through the manifold V to obtain a psc-metric gV which is a
product near the boundary. Then we attach k copies of V to obtain a manifold
M ′ = M ∪∂M V × 〈k〉, see Figure 3. Clearly the metrics gM and gV match
along a color of the common boundary, giving a psc-metric g′ on M ′ .
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Manifolds with singularities of positive scalar curvature 689

The first type of surgery is standard. Let S`×Dn−` ⊂M be a sphere together
with a tubular neighborhood inside the interior of the manifold M . Denote by
M ′′ the result of surgery on M along the sphere S` . Notice that ∂M ′′ = ∂M .
Then again the regular Surgery Lemma delivers a psc-metric on M ′′ .

The case of two and more singularities requires a bit more care. We discuss the
general Surgery procedure for Σ–manifolds in Section 7. The Bordism Theorem
(Theorem 7.3) for simply connected Σ–manifolds reduces the existence question
of a positive scalar curvature to finding a Σ–manifold within the cobordism class
[M ]Σ equipped with a psc-metric.

To solve this problem we use the ideas and results due to S Stolz [29], [30]. The
magic phenomenon discovered by S Stolz is the following. Let us start with the
quaternionic projective space HP2 equipped with the standard metric g0 (of
constant positive curvature). It is not difficult to see that the Lie group

G = PSp(3) = Sp(3)/Center,

acts by isometries of the metric g0 on HP2 . Here Center ∼= Z/2 is the center
of the group Sp(3). Then given a smooth bundle E

p−→ B of compact Spin–
manifolds, with a fiber HP2 , and a structure group G, there is a straightforward
construction of a psc-metric on the manifold E , the total space of this bundle.
(A bundle with the above properties is called a geometric HP2–bundle.) The
construction goes as follows. One picks an arbitrary metric gB on a manifold
B . Then locally, over an open set U ⊂ B , a metric on p−1(U) ∼= U ×HP2 is
given as product metric gE |p−1(U) = gB |U × g0 . By scaling the metric g0 , one
obtains that the scalar curvature of the metric gE |p−1(U) is positive. Since the
structure group of the bundle acts by isometries of the metric g0 , one easily
constructs a psc-metric gE on E .

Perhaps, this general construction was known for ages. The amazing feature of
geometric HP2–bundles is that their total spaces, the manifolds E , generate
the kernel of the Atiyah–Bott–Shapiro transformation α: ΩSpin

n −→ KOn . In
more detail, given an HP2–bundle En

p−→ Bn−8 , there is a classifying map
f : Bn−8 −→ BG which defines a cobordism class [(B, f)] ∈ ΩSpin

n−8 (BG). The
correspondence [(B, f)] 7→ [E] ∈ ΩSpin

n defines the transfer map

T : ΩSpin
n−8 (BG) −→ ΩSpin

n .

Stolz proves [29] that Im T = Ker α. Thus the manifolds E deliver represen-
tatives in each cobordism class of the kernel Ker α.

We adopt this construction for manifolds with singularities. First we notice
that if a geometric HP2–bundle E

p−→ B is such that B is a Σ–manifold,
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690 Boris Botvinnik

then E is also a Σ–manifold. In particular we obtain the induced transfer map

TΣ: ΩSpin,Σ
∗ (BG) −→ ΩSpin,Σ

∗+8 .

The key here is to prove that Im TΣ = Ker αΣ . This requires complete infor-
mation on the homotopy type of the spectra MSpinΣ . Sections 3–6 are devoted
to study of the spectra MSpinΣ .

The second part, the proof of the “only if” statement, is geometric and analytic
by its nature. We explain the main issues here for the case of Z/k–manifolds.
Recall that for a Spin manifold M the direct image α([M ]) ∈ KOn is nothing
else but the topological index of M which coincides (via the Atiyah–Singer index
theorem) with the analytical index ind(M) ∈ KOn of the corresponding Dirac
operator on M . Then the Lichnerowicz formula and its modern versions imply
that the analytical index ind(M) vanishes if there is a psc-metric on M .

Thus if we would like to give a similar line of arguments for Z/k–manifolds,
we face the following issues. To begin with, we should have the Dirac opera-
tor to be well-defined on a Spin Z/k–manifold. Then we have to define the
Z/k–version of the analytical index indZ/k(M) ∈ KO〈k〉n and to prove the van-
ishing result, ie, that indZ/k(M) = 0 provided that there is a psc-metric on
M . Thirdly we must identify the analytical index indZ/k(M) with the direct

image α〈k〉([M ]) ∈ KO〈k〉n , ie, to prove the Z/k–mod version of the index theo-
rem. These issues were already addressed, and, in the case of Spinc–manifolds,
resolved by Freed [5], [6], Freed & Melrose [7], Higson [11], Kaminker & Wo-
jciechowski [14], and Zhang [34, 35]. Unfortunately, the above papers study
mostly the case of Spinc Z/k–manifolds (with the exception of [34, 35] where
the mod 2 index is considered), and the general case of Spin Z/k–manifolds is
essentially left out in the cited work. The paper [22] by J. Rosenberg shows that
the Dirac operator and its index are well-defined for Z/k–manifolds and there
the index vanishes if a Spin Z/k–manifold has psc-metric. The case of general
singularities Σ require more work. Here we use the results of [22] to prove that
if a Σ–manifold M has a psc-metric, then αΣ([M ]) = 0 in the group KOΣ . In
order to prove this fact we essentially use the specific homotopy features of the
spectra MSpinΣ .

The plan is the following. We give necessary definitions and constructions on
manifolds with singularities in Section 2. The next four sections are devoted
to homotopy-theoretical study of the spectra MSpinΣ . We describe the ho-
motopy type of the spectra MSpinΣ1 , MSpinΣ2 , and MSpinη in Section 3.
We describe a product structure of these spectra in Section 4. In Section 5 we
describe a splitting of the spectra MSpinΣ into indecomposable spectra. In
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Manifolds with singularities of positive scalar curvature 691

Section 6 we describe the homotopy type of the spectrum MSpinΣ3 . We prove
the Surgery Lemma for manifolds with singularities in Section 7. Section 8 is
devoted to the proof of Theorem 1.1.

It is a pleasure to thank Hal Sadofsky for helpful discussions on the homotopy
theory involved in this paper, and acknowledge my appreciation to Stephan
Stolz for numerous discussions about the positive scalar curvature. The au-
thor also would like to thank the Department of Mathematics of the National
University of Singapore for hospitality (this was Fall of 1999). The author is
thankful to Jonathan Rosenberg for his interest to this work and useful discus-
sions. Finally, the author thanks the referee for helpful suggestions.

2 Manifolds with singularities

Here we briefly recall basic definitions concerning manifolds with the Baas–
Sullivan singularities. Let G be a stable Lie group. We will be interested in
the case when G = Spin. Consider the category of smooth compact manifolds
with a stable G–structure in their stable normal bundle.

2.1 General definition Let Σ = (P1, . . . , Pk), where P1, . . . , Pk are arbi-
trary closed manifolds (possibly empty). It is convenient to denote P0 = pt.
Let I = {i1, . . . , iq} ⊂ {0, 1, . . . , k}. We denote P I = Pi1 × . . .× Piq .

Definition 2.1 We call a manifold M a Σ–manifold if there are given the
following:

(i) a partition ∂M = ∂0M ∪ ∂1M ∪ . . . ∪ ∂kM of its boundary ∂M such that
the intersection ∂IM = ∂i1M ∩ . . . ∩ ∂iqM is a manifold for every collection
I = {i1, . . . , iq} ⊂ {0, 1, . . . , k}, and its boundary is equal to

∂ (∂IM) =
⋃
j /∈I

(∂IM ∩ ∂jM) ;

(ii) compatible product structures (ie, diffeomorphisms preserving the stable
G–structure)

φI : ∂IM −→ βIM × P I .

Compatibility means that if I ⊂ J and ι: ∂JM −→ ∂IM is the inclusion, then
the map

φI ◦ ι ◦ φ−1
J : βJM × P J −→ βIM × P I

is identical on the direct factor P I .
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692 Boris Botvinnik

To get actual singularities we do the following. Two points x, y of a Σ–manifold
M are equivalent if they belong to the same manifold ∂IM for some I ⊂
{0, 1, . . . , k} and pr ◦ φI(x) = pr ◦ φJ(y), where pr: βIM × P I −→ βIM is the
projection on the direct factor. The factor-space of M under this equivalence
relation is called the model of the Σ–manifold M and is denoted by MΣ .
Actually it is convenient to deal with Σ–manifolds without considering their
models. Indeed, we only have to make sure that all constructions are consistent
with the projections π: M −→ MΣ. The boundary δM of a Σ–manifold M
is the manifold ∂0M . If δM = ∅, we call M a closed Σ–manifold. The
boundary δM is also a Σ–manifold with the inherited decomposition ∂I(δM) =
∂IM ∩ δM . The manifolds βIM also inherit a structure of a Σ–manifold:

∂j(βIM) =

{ ∅ if j ∈ I,

β{j}∪IM × Pj otherwise.
(3)

Here we denote βIM = βi1
(
βi2
(
· · · βiqM

)
· · ·
)

for I = {i1, . . . , iq} ⊂ {1, . . . , k}.
Let (X,Y ) be a pair of spaces, and f : (M, δM) −→ (X,Y ) be a map. Then
the pair (M,f) is a singular Σ–manifold of (X,Y ) if the map f is such that for
every index subset I = {i1, . . . , iq} ⊂ {1, . . . , k} the map f |∂IM is decomposed
as f |∂IM = fI ◦ pr ◦ φI , where the map φI as above, pr: βIM × P I −→ βIM
is the projection on the direct factor, and fI : βIM −→ X is a continuous map.
The maps fI should be compatible for different indices I in the obvious sense.

Remark 2.2 Let (M,f) be a singular Σ–manifold, then the map f factors
through as f = fΣ ◦ π , where π: M −→ MΣ is the canonical projection, and
fΣ: MΣ −→ X is a continuous map. We also notice that singular Σ–manifolds
may be identified with their Σ–models.

The cobordism theory ΩG,Σ
∗ (·) of Σ–manifolds is defined in the standard way. In

the case of interest, when G = Spin, we denote MSpinΣ a spectrum classifying
the cobordism theory ΩSpin,Σ

∗ (·).

2.2 The case of two and three singularities We start with the case
Σ = (P1, P2). Then if M is a Σ–manifold, we have that the diffeomorphisms

φ: ∂M
∼=−→ ∂1M ∪ ∂2M,

φi: ∂iM
∼=−→ βiM × Pi, i = 1, 2;

φ12: ∂1M ∩ ∂2M
∼=−→ β12M × P1 × P2

are given. We always assume that the manifold β12M × P1 × P2 is embedded
into ∂1M and ∂2M together with a color:
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Manifolds with singularities of positive scalar curvature 693

β12M × P1 × P2 × I ⊂ ∂1M,∂2M.

Thus we actually have the following decom-
position of the boundary ∂M :

∂M ∼= ∂1M ∪ (β12M × P1 × P2 × I) ∪ ∂2M,

so the manifold β12M ×P1×P2 is “fattened”
inside ∂M . Also we assume that the bound-
ary ∂M is embedded into M together with a
color ∂M × I ⊂M , see Figure 4.

M

β12M×P1×P2 ×I

∂1M
∂2M

Figure 4

The case when Σ = (P1, P2, P3) is the most complicated one we are going to
work with.

Let M be a closed Σ–manifold, then we
are given the diffeomorphisms:

φ: ∂M
∼=−→ ∂1M ∪ ∂2M ∪ ∂3M,

φi: ∂iM
∼=−→ βiM × Pi, i = 1, 2, 3;

φij: ∂iM ∩ ∂jM
∼=−→ βijM × Pi × Pj ,

φ123: ∂1M ∩ ∂2M ∩ ∂3M
∼=−→

β123M × P1 × P2 × P3

where i, j = 1, 2, 3, i 6= j , see Figure 5.

M

β12M×P1×P2

β13M×P1×P3
β23M×P2×P3

β123M×P1×P2×P3

∂1M

∂2M

∂3M

Figure 5

First, we assume here that the boundary ∂M is embedded into M together
with a color (0, 1] × ∂M . The decomposition

∂M
φ−→ ∂1M ∪ ∂2M ∪ ∂3M

gives also the “color” structure on ∂M .

We assume that the boundary ∂(∂iM) is embedded into ∂iM together with
the color (0, 1] × ∂(∂iM).

Even more, we assume that the manifold β123M × P1 × P2 × P3 is embedded
into the boundary ∂M together with its normal tube:

β123M × P1 × P2 × P3 ×D2 ⊂ ∂M,

Geometry & Topology, Volume 5 (2001)
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so that the colors of the manifolds

βijM × Pi × Pj ⊂ ∂iM ∩ ∂jM

are compatible with this embed-
ding, as is shown on Figure 6. As
in the case of two singularities, the
submanifolds

βijM × Pi × Pj and

β123M × P1 × P2 × P3

are “fattened” inside the bound-
ary ∂M . Furthermore, we assume
that there are not any corners in
the above color decomposition.

β12M×P1×P2×I

β13M×P1×P3×I

β23M×P2×P3×I
β123M×P1×P2×P3×D2

∂1M

∂2M

∂3M

Figure 6

2.3 Bockstein–Sullivan exact sequence Let MG be the Thom spectrum
classifying the cobordism theory ΩG

∗ (· · ·). Let Σ = (P ), and p = dimP . Then

there is a stable map Sp
[P ]−→MG representing the element [P ]. Then we have

the composition

·[P ]: ΣpMG = Sp ∧MG
[P ]∧Id−→ MG ∧MG

µ−→MG

where µ is the map giving MG a structure of a ring spectrum. Then the
cofiber, the spectrum MGΣ of the map

ΣpMG
·[P ]−→MG

π−→MGΣ (4)

is a classifying spectrum for the cobordism theory ΩG,Σ
∗ . The cofiber (4) induce

the long exact Bockstein–Sullivan sequence

· · · → ΩG
n−p(X,A)

·[P ]−→ ΩG(X,A) π−→ ΩG,Σ
n−p(X,A)

β−→ ΩG
n−p−1(X,A)→ · · · (5)

for any CW –pair (X,A). Similarly, if Σj = (P1, . . . , Pj), j = 1, . . . , k , then
there is a cofiber

ΣpjMGΣj−1
·[Pj]−→MGΣj−1

πj−→MGΣj

induce the exact Bockstein–Sullivan sequence

· · · βj−→ ΩG,Σj−1

n−pj (X,A)
·[Pj]−→ ΩG,Σj−1

n (X,A)
πj−→ ΩG,Σj

n (X,A)
βj−→ · · · (6)

for any CW –pair (X,A). We shall use the Bockstein–Sullivan exact sequences
(5), (6) throughout the paper.
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3 The spectra MSpinΣ1 , MSpinΣ2 and MSpinη

Let M(2) be the mod 2 Moore spectrum with the bottom cell in zero dimen-
sion, ie, M(2) = Σ−1RP2 . We consider also the spectrum Σ−2CP2 and the
spectrum Y = M(2) ∧ Σ−2CP2 which was first studied by M Mahowald, [17].
Here is the result on the spectra MSpinΣ1 , MSpinΣ2 and MSpinη .

Theorem 3.1 There are homotopy equivalences:

(i) MSpinΣ1 ∼= MSpin ∧M(2),

(ii) MSpinη ∼= MSpin ∧ Σ−2CP2 ,

(iii) MSpinΣ2 ∼= MSpin ∧ Y .

Proof Let ι: S0 −→MSpin be a unit map. The main reason why the above
homotopy equivalences hold is that the elements 2, η ∈ ΩSpin

∗ are in the image
of the homomorphism ι∗: S0

∗ −→ ΩSpin
∗ . Indeed, consider first the spectrum

MSpinη . Let S1 η−→ S0 be a map representing η ∈ π1(S0). We obtain the
cofibration:

S1 η−→ S0 π−→ Σ−2CP2 . (7)

Then the composition S1 η−→ S0 ι−→ MSpin represents η ∈ MSpin1 . Let ·η
be the map

·η: S1 ∧MSpin
ιη∧1−→MSpin ∧MSpin

µ−→MSpin,

where µ is a multiplication. Note that the diagram

S1 ∧MSpin
ιη∧1−−−→ MSpin ∧MSpin

µ−−−→ MSpin

1∧1

x ι∧1

x 1

x
S1 η∧1−−−→ S0 ∧MSpin

∼=−−−→ MSpin

commutes since the map ι: S0 −→ MSpin represents a unit of the ring spec-
trum MSpin. We obtain a commutative diagram of cofibrations:

S1 ∧MSpin
·η−−−→ MSpin

πη−−−→ MSpinη

1∧1

x 1

x fη

x
S1 ∧MSpin

η∧1−−−→ MSpin
π∧1−−−→ Σ−2CP2 ∧MSpin

(8)

where fη: MSpinη −→ Σ−2CP2 ∧MSpin ∼= MSpin ∧ Σ−2CP2 gives a ho-
motopy equivalence by 5–lemma. The proof for the spectrum MSpinΣ1 =
MSpin〈2〉 is similar.
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Consider the spectrum MSpinΣ2 . First we note that the bordism theory
ΩSpin,Σ2
∗ (·) = ΩSpin,(P1,P2)

∗ (·) coincides with the theory ΩSpin,(P2,P1)
∗ (·), where

the order of singularities is switched. In particular, the spectrum MSpinΣ2 is
a cofiber in the following cofibration:

S0 ∧MSpinη
·2−−−→ MSpinη −−−→ MSpinΣ2 . (9)

Here the map ·2: S0∧MSpinη −→MSpinη is defined as follows. Let S0 2−→ S0

be a map of degree 2. Then the composition S0 2−→ S0 ι−→MSpin represents
2 ∈ ΩSpin

0 . The spectrum MSpinη is a module (say, left) spectrum over MSpin,
ie, there is a map µ′L : MSpin ∧MSpinη −→MSpinη so that the diagram

MSpin ∧MSpin
µ−−−→ MSpin

1∧πη
y πη

y
MSpin ∧MSpinη

µ′L−−−→ MSpinη

commutes. Then the map ·2 is defined as composition:

S0 ∧MSpinη
2ι∧1−−−→ MSpin ∧MSpinη

µ′L−−−→ MSpinη.

Note that the diagram

S0 ∧MSpinη
2ι∧1−−−→ MSpin ∧MSpinη

µ′L−−−→ MSpinη

1∧1

x ι∧1

x 1

x
S0 ∧MSpinη

2∧1−−−→ S0 ∧MSpinη
∼=−−−→ MSpinη

commutes since S0 ι−→ MSpin represents a unit, and MSpinη is a left mod-
ule over the ring spectrum MSpin. We obtain the commutative diagram of
cofibrations:

S0 ∧MSpinη
·2−−−→ MSpin

π2−−−→ MSpinΣ2

1∧1

x 1

x f2

x
S0 ∧MSpinη

2∧1−−−→ MSpinη
π∧1−−−→ M(2) ∧MSpinη

(10)

The map f2: M(2) ∧MSpinη −→ MSpinΣ2 gives a desired homotopy equiv-
alence. Thus we have MSpinΣ2 ∼= M(2) ∧ MSpinη ∼= MSpinη ∧ M(2) =
MSpin ∧ Y .

Remark 3.2 In the above proof, we did not use any specific properties of the
spectrum MSpin except that it is a ring spectrum. In fact, MSpin may be
replaced by any other classic Thom spectrum.
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Later we prove that the homotopy equivalence

MSpinΣ3 ∼MSpin ∧Σ−2CP2 ∧ V (1) ,

where V (1) is the cofiber of the Adams map A: Σ8M(2) −→ M(2). However,
first we have to study the spectra MSpinΣ1 , MSpinΣ2 and MSpinη in more
detail.

4 Product structure

Recall that the spectrum MSpin is a ring spectrum. Here we work with the
category of spectra, and commutativity of diagrams mean commutativity up
to homotopy. Let, as above, ι: S0 −→ MSpin be the unit, and µ: MSpin ∧
MSpin −→ MSpin the map defining the product structure. Let MSpinΣ be
one of the spectrum we considered above. The natural map π: MSpin −→
MSpinΣ turns the spectrum MSpinΣ into a left and a right module over the
spectrum MSpin, ie, there are maps

µ′L: MSpin ∧MSpinΣ −→MSpinΣ, µ′R: MSpinΣ ∧MSpin −→MSpinΣ,

so that the diagrams

MSpin ∧MSpin
µ−−−→ MSpin

1∧π
y π

y
MSpin ∧MSpinΣ

µ′L−−−→ MSpinΣ

MSpin ∧MSpin
µ−−−→ MSpin

π∧1

y π

y
MSpinΣ ∧MSpin

µ′R−−−→ MSpinΣ

commute. We say that the spectrum MSpinΣ has an admissible ring structure

µΣ: MSpinΣ ∧MSpinΣ −→MSpinΣ

if the map S0 ι−→MSpin
π−→MSpinΣ is a unit, and the diagrams

MSpin ∧MSpinΣ
µ′L−−−→ MSpinΣ

π∧1

y 1

y
MSpinΣ ∧MSpinΣ µΣ

−−−→ MSpinΣ

MSpinΣ ∧MSpin
µ′R−−−→ MSpinΣ

1∧π
y 1

y
MSpinΣ ∧MSpinΣ µΣ

−−−→ MSpinΣ

commute. The questions of existence, commutativity and associativity of an
admissible product structure were thoroughly studied in [3], [19].

Theorem 4.1 (i) The spectrum MSpinΣ1 does not admit an admissible
product structure.

Geometry & Topology, Volume 5 (2001)



698 Boris Botvinnik

(ii) The spectra MSpinη , MSpinΣ2 and MSpinΣ3 have admissible product
structures µη , µΣ2 = µ(2) , and µΣ3 = µ(3) respectively.

(iii) For any choice of an admissible product structure µη , it is commutative
and associative. For any choice of admissible product structures µ(2) , and
µ(3) , they are associative, but not commutative.

Proof Recall that for each singularity manifold Pi there is an obstruction
manifold P ′i with singularity. In the cases of interest, we have: [P ′1]Σ1 = η ∈
ΩSpin,Σ1

1 , which is non-trivial; and the obstruction [P ′2] ∈ ΩSpin,Σ2
3 = 0, and

[P ′2] ∈ ΩSpin,η
3 = 0. Thus [3, Lemma 2.2.1] implies that there is no admis-

sible product structure in the cobordism theory ΩSpin,Σ1
∗ (·), so the spectrum

MSpinΣ1 does not admit an admissible product structure. The obstruction ele-
ment [P ′3]Σ3 ∈ ΩSpin,Σ3

17 , and since dimP3 = 8 is even, the obstruction manifold
P ′3 is, in fact, a manifold without any singularities (see [19]), so the element
[P ′3]Σ3 is in the image Im (ΩSpin

17 −→ ΩSpin,Σ3
17 ). However, the elements of ΩSpin

17

are divisible by η , so they are zero in the group ΩSpin,η
17 , and, consequently, in

ΩSpin,Σ3
17 .

The result of [3, Theorem 2.2.2] implies that the spectra MSpinη , MSpinΣ2

and MSpinΣ3 have admissible product structures µ(2) and µη respectively.

It is also well-known [33] that the element v1 ∈ ΩSpin,Σ2
2 is an obstruction

to the commutativity of the product structure µ(2) . An obstruction to the
commutativity for the product structure µη lives in the group ΩSpin,Σ2

5 = 0.
The obstructions to associativity are 3–torsion elements, (see [3, Lemma 4.2.4])
so they all are zero.

5 Homotopy structure of the spectra MSpinΣ

First we recall the work of Anderson, Brown, and Peterson [1] on structure of
the spectra MSpin, and of M Hopkins, M Hovey [13].

Let KO∗(·) be a periodic homological real K–theory, KO be a corresponding
Ω–spectrum. Also let ko be the connected cover of KO , and ko〈2〉 denote
the 2–connective cover of ko. It is convenient to identify the 2n–fold con-
nective covers of the spectrum KO . Indeed, the 4k–fold connective cover of
KO is Σ4kko (when k is even), and the (4k − 2)–fold connective cover is
Σ4k−2ko〈2〉. Let ku be a connected cover of the complex K–theory spectrum
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K . Let H(Z/2) denote the Z/2–Eilenberg–MacLane spectrum. Recall that ko
and ku are the ring spectra with the coefficient rings:

ko∗ ∼= Z[η, ω, b]/(2η, η3 , ωη, ω2 − 4b), deg η = 1, degω = 4,deg b = 8;

ku∗ ∼= Z[v], deg v = 2.
(11)

Let I = (i1, . . . , ir) be a partition (possibly empty) of n = n(I) =
∑r
t=1 it ,

it > 0. Each partition I defines a map πI : MSpin −→ KO (which gives the
KO–characteristic class, see [1]). If I = ∅ we denote π∅ by π0 , which coincides
with the Atiyah–Bott–Shapiro orientation α: MSpin −→ KO .

Remark 5.1 Let P be a set of all partitions, which is an abelian group. We
can make the set Z[P] of linear combinations into a ring, where multiplication
of partitions is defined by set union, and then to into a Hopf algebra with the
diagonal ∆(I) =

∑
I1+I2=I

I1 ⊗ I2 .

Let µ: MSpin ∧MSpin −→ MSpin, µ′: KO ∧ KO −→ KO denote the ring
spectra multiplications. The Cartan formula says that

MSpin ∧MSpin
µ−−−→ MSpin∑

(πI1∧πI2 )

y πI
y

KO ∧KO µ′−−−→ KO

or πI1µ =
∑

I1+I2=I

µ′(πI1 ∧ πI2). (12)

Theorem 5.2 [1]

(1) Let 1 /∈ I . Then if n(I) is even, the map πI : MSpin −→ KO lifts to a
map π̄I : MSpin −→ Σ4n(I)ko. If n(I) is odd, the map πI lifts to a map
π̄I : MSpin −→ Σ4n(I)−4ko〈2〉.

(2) There exist a countable collection zk ∈ H∗(MSpin; Z/2) such that the
map∏

1/∈I
π̄I×

∏
k

zk: MSpin −→
∏
1/∈I,

n(I) even

Σ4n(I)ko×
∏
1/∈I,

n(I) odd

Σ4n(I)−4ko〈2〉 ×
∏
k

Σdeg zkH(Z/2)

is a 2–local homotopy equivalence.

We use here the product symbol, however in the stable category of spectra the
product and the coproduct, ie the wedge, are the same. We denote by ρI the
left inverses of the maps π̄I (when 1 /∈ I ). We denote also by b an element in
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ΩSpin
8 which is the image of the Bott element under the map ρ0 . The following

Lemma due to M Hovey and M Hopkins [13]. Since some fragments of its proof
will be used later, we provide an argument which essentially repeats [13].

Lemma 5.3 [13, Lemma 1] Let I be a partition. Then πI(b) = 0 except for
π0(b) = b and possibly π1(b) ∈ KO8 and π1,1(b) ∈ KO8 . The elements π1(b),
π1,1(b) are divisible by two in the group KO8 . Further, the image of the Bott
element b is zero in MO8 .

Proof In the case 1 /∈ I , I 6= ∅, the splitting shows that πI(b) = 0. The
map πI : MSpin −→ KO (for any partitions I ) may be lifted to the 4n(I)–
connective cover of KO , as it is shown in [32]. Let S0 −→ ko be a unit map,
and ρ0: ko −→MSpin be a left inverse of π̄0 . The composition

S0 −→ ko
ρ0

−−−→ MSpin
πI−−−→ KO

is null-homotopic for I 6= ∅. Let η ∈ MSpin1 = Z/2 be a generator. It is
well-known that the image of the map S0 −→MSpin on positive dimensional
homotopy groups is

{
bnη, bnη2 | n ≥ 0

}
. It implies that πIρ0(bnη) = 0 and

πIρ0(bnη2) = 0 for all partitions I 6= ∅. Since the unit map S0 −→ MSpin is
a map of ring spectra, we have η · πIρ0(bn) = 0, so the elements πIρ0(bn) are
even for all partitions I 6= ∅. In particular, πI(b) is even for all I 6= ∅.

Let pI be the Pontryagin class corresponding to a partition I . Anderson,
Brown and Peterson show that the Chern character ch (πI(x) ⊗C) = pI(x) +
(higher terms), for x ∈ Ω∗Spin(X). It implies that pI(b) are even elements
for all I 6= ∅. The Pontryagin classes p2 and p1,1 = p2

1 determine the oriented
cobordism ring ΩSO

∗ in dimension 8, so the Bott element goes to an even element
in ΩSO

8 under the natural map MSpin −→ MSO . Thus the composition
MSpin −→MSO −→MO takes the Bott element b to zero.

We define the K–theory spectra with singularities KOΣ1 , KOη and KOΣ2 , as
the cofibers:

KO ∧ S0 1∧2−→ KO ∧ S0 π−→ KO ∧M(2) = KOΣ1

KO ∧ S1 1∧η−→ KO ∧ S0 π−→ KO ∧ Σ−2CP2 = KOη

KOη ∧ S0 1∧2−→ KOη ∧ S0 π−→ KOη ∧M(2) = KOΣ2

It is easy to derive (see, for example, [18]) the following statement.
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Corollary 5.4 The spectrum KOη is homotopy equivalent (as a ring spec-
trum) to the spectrum K , classifying the complex K–theory, and the spec-
trum KOΣ2 is homotopy equivalent (as a ring spectrum) to the spectrum K(1)
classifying the first Morava K–theory.

We introduce also the notation:

koΣ1 = ko ∧M(2), ko〈2〉Σ1 = ko〈2〉 ∧M(2),H(Z/2)Σ1 = H(Z/2) ∧M(2);

koη= ko ∧ Σ−2CP2,ko〈2〉η=ko〈2〉∧Σ−2CP2, H(Z/2)η =H(Z/2) ∧ Σ−2CP2;

koΣ2 = koη ∧M(2), ko〈2〉Σ2 = ko〈2〉η ∧M(2),H(Z/2)Σ2 = H(Z/2)η ∧M(2).

Let I be a partition as above. The KO–characteristic numbers

πI : MSpin −→ KO

which are lifted to the connective cover ko〈4n(I)〉 give the characteristic num-
bers

πIΣ1
= πI ∧ 1: MSpinΣ1 = MSpin ∧M(2) −→ KO ∧M(2) = KOΣ1 ,

πIη = πI ∧ 1: MSpinη = MSpin ∧ Σ−2CP2 −→ KO ∧ Σ−2CP2 = KOη,

πIΣ2
= πI ∧ 1: MSpinΣ1 = MSpin ∧ Y −→ KO ∧ Y = KOΣ2 ,

together with the lifts to the corresponding connective covers:

π̄IΣ1
= π̄I ∧ 1: MSpinΣ1 −→ ko〈4n(I)〉 ∧M(2) = ko〈4n(I)〉Σ1

π̄Iη = π̄I ∧ 1: MSpinη −→ ko〈4n(I)〉 ∧ Σ−2CP2 = ko〈4n(I)〉η

π̄IΣ2
= π̄I ∧ 1: MSpinΣ1 −→ ko〈4n(I)〉 ∧ Y = ko〈4n(I)〉Σ2

Now we would like to identify the spectra koΣ , ko〈4n(I)〉Σ for Σ = Σ2 or η
for those partitions I , 1 /∈ I . It is enough to determine a homotopy type of the
spectra koΣ and ko〈2〉Σ .

Let A(1) be a subalgebra of the Steenrod algebra A2 generated by 1, Sq1, Sq2 .
The cohomology H∗(ko) as a module over Steenrod algebra is H∗(ko) ∼=
A2 ⊗A(1) Z/2. The Künneth homomorphism

H∗(ko ∧X) ∼= (A2 ⊗A(1) Z/2)⊗H∗(X) ∼= A2 ⊗A(1) H
∗(X)

and the ring change formula HomA2(A2 ⊗A(1) M,N) ∼= HomA(1)(M,N) turn
the ordinary mod 2 Adams spectral sequence into the one with the E2–term

Exts,tA(1)(H
∗(X),Z/2) =⇒ kot−s(X).

Here we use regular conventions to draw the cell-diagrams for the spectra in
question. Recall that
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H∗(ko) = A2 ⊗A(1) r and H∗(ko〈2〉) = A2 ⊗A(1) r
rrr
r
���
�
��

(the joker).

Let k(1) be a connected cover of the first Morava k–theory spectrum K(1)
with the coefficient ring k(1)∗ ∼= Z/2[v1]. Here is the result for the spectra koη ,
koΣ2 :

Lemma 5.5 There are the following homotopy equivalences

koη ∼= ku, koΣ2 ∼= k(1) (13)

The following result one can prove by an easy computation:

Lemma 5.6 There are isomorphisms of the following A(1)–modules:

rrr
rr
���
�
��
a
b

c
d
e

rr ��αβ⊗ = rr ��r
r rr �
@

@

�rr

aα

⊕
rr ��
cα

(14)

rrr
rr
���
�
��
a
b

c
d
e

rrr
r
���
�
α
β

γ
δ

⊗ = rr ��
rr rr
�
@

@

�rr

aα

⊕
rr ��
rr rr
�
@

@

�rr

bα
⊕ cα
rrr
r
���
�

(15)

Using the Adams spectral sequence for the spectra ko〈2〉η and ko〈2〉Σ2 , one
obtains the following result:

Lemma 5.7 There are the following homotopy equivalences

ko〈2〉η ∼= H(Z/2) ∨Σ2ku,

ko〈2〉Σ2 ∼= H(Z/2) ∨ΣH(Z/2) ∨Σ2k(1).
(16)

It is convenient to denote:

k̂o =
∏
1/∈I,

n(I)6=0, even

Σ4n(I)ko×
∏
1/∈I,

n(I) odd

Σ4n(I)−4ko〈2〉, and ̂H(Z/2) =
∏
k

Σdeg zkH(Z/2).

The spectra k̂o
Σ are defined similarly for Σ = Σ1 , Σ2 , Σ3 or η . Theorem 5.2

implies the following result:
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Corollary 5.8 There is the following homotopy equivalence of 2–local spectra:

FΣ: MSpinΣ −→ koΣ ∨ k̂oΣ ∨ ̂H(Z/2)
Σ
, where Σ = Σ1 , Σ2 , or η .

Remark 5.9 The coefficient groups of the K–theories KOΣ are well-known
in homotopy theory. We give the table of the groups KOΣ1

n = KOn(pt,Z/2)
for convenience:

0 1 2 3 4 5 6 7 8

KOΣ1
n = KOn(pt,Z/2) Z/2 Z/2 Z/4 Z/2 Z/2 0 0 0 Z/2 · · ·

We emphasize that KO8k+2(pt,Z/2) ∼= Z/4.

Remark 5.10 We notice that there is a natural transformation

r : ΩSpin,η
∗ (·) −→ ΩSpinc

∗ (·).

Indeed, let M be an η–manifold, ie, ∂M ∼= β2M × P2 , where P2 = S1 with
nontrivial Spin structure. Then P2 is a boundary as a Spinc–manifold, even
more, P2 = ∂D2 . Then the correspondence

(M,∂M = β2M × P2) 7→ (N = M ∪ −β2M ×D2)

determines the transformation r . In particular, r gives a map of classifying
spectra: r: MSpinη −→MSpinc . It is easy to see that there is a commutative
diagram

MSpinη MSpinc

MSpin ∧ Σ−2CP2 MSpin ∧Σ−2CP∞

-r

?
∼= ?

∼=

-Id∧Σ−2j

where j: CP2 −→ CP∞ is the standard embedding. There are simple geomet-
ric reasons which imply that the transformation r is not multiplicative. In fact,
it is very similar to the transformation ΩSU,η

∗ (·) −→ ΩU
∗ (·), where ΩSU,η

∗ (·) is
the SU –cobordism theory with η–singularities. The cobordism theory ΩSU,η

∗ (·)
may be easily identified with the Conner–Floyd theory W (C, 2)∗(·), see [19].

6 The spectrum MSpinΣ3

Let A: Σ8M(2) −→M(2) be the Adams map. Let V (1) be a cofiber:

Σ8M(2) A−−−→ M(2) p−−−→ V (1).

The objective of this section is to prove the following result.
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Theorem 6.1 There is a homotopy equivalence of spectra localized at 2:

MSpinΣ3 ∼= MSpin ∧Σ−2CP2 ∧ V (1). (17)

Proof Recall that the Adams map A induces a multiplication by the Bott
element in KO∗ and connected covers ko∗ and ko〈2〉∗ . Let, as above, Y =
Σ−2CP2 ∧M(2). We apply the Cartan formula (12)

MSpin ∧MSpin ∧ Y µ∧1−−−→ MSpin ∧ Y∑
(πI1∧πI2 )∧1

y πI
y

KO ∧KO ∧ Y µ′∧1−−−→ KO ∧ Y
to obtain the formula:

MSpin ∧MSpinΣ2
µΣ2−−−→ MSpinΣ2∑

(πI1∧πI2Σ2
)

y πIΣ2

y
KO ∧KOΣ2

µ′Σ2−−−→ KOΣ2

or µΣ2π
I
Σ2

=
∑

I1+I2=I

µ′Σ2
(πI1∧πI2Σ2

). (18)

Let X be a space, x ∈ ΩSpin
∗ (X), b ∈ ΩSpin

8 be the Bott element. Then
µΣ2(b, x) = b · x ∈ ΩSpin

∗+8 (X).

Lemma 6.2 The KOΣ2 –characteristic numbers πIΣ2
: MSpinΣ2 −→ KOΣ2

commutes with a multiplication by the Bott element, ie, πIΣ2
(b ·x) = b ·πIΣ2

(x).

Proof The Cartan formula (18) and Lemma 5.3 gives:

πIΣ2
(b · x) =

∑
I1+I2=I

(πI1(b)πI2Σ2
(x) = b · πIΣ2

(x) + π(1)(b)y + π(1,1)(b)z =

b · πIΣ2
(x) + (2c) · y + (2d) · z = b · πIΣ2

(x) + c · (2y) + d · (2z) = b · πIΣ2
(x).

Here π(1)(b) = 2c, y, z ∈ KOΣ2∗ (X), and π(1,1)(b) = 2d by Lemma 5.3. We
note that 2y = 0 and 2z = 0 since the cobordism theory ΩSpin,Σ2

∗ (·) has an
admissible product structure by Theorem 4.1.

Let I be a partition, and 1 /∈ I . The map πIΣ2
: MSpinΣ2 −→ KOΣ2 lifts to

connective cover: π̄IΣ2
: MSpinΣ2 −→ ko〈4n(I)〉Σ2 . Let S8 b−→ MSpin be a

map representing the Bott element b ∈ ΩSpin
8 . We denote by ·b the composition

Σ8MSpin = S8 ∧MSpinΣ2
b∧1−−−→ MSpin ∧MSpinΣ2

µ′′−−−→ MSpinΣ2 .
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Note that the diagram

Σ8MSpinΣ2 MSpinΣ2

Σ8MSpin ∧M(2) ∧ Σ−2CP2 MSpin ∧M(2) ∧ Σ−2CP2

-·b

?∼= ?∼=
-·b∧1∧1

(19)

commutes since MSpinΣ2 is a module over MSpin.

Lemma 6.3 Let I be a partition, so that 1 /∈ I . The following diagrams
commute:

Σ8MSpinΣ2 MSpinΣ2

Σ8ko〈n(I)〉Σ2 ko〈n(I)〉Σ2

ko〈n(I)〉 ∧ Σ8M(2) ∧ Σ−2CP2 ko〈n(I)〉 ∧M(2) ∧ Σ−2CP2

Σ8MSpinΣ2 MSpinΣ2

Σ8+deg zkH(Z/2) ∧M(2) ∧ Σ−2CP2 Σdeg zkH(Z/2)∧M(2)∧Σ−2CP2

Σdeg zkH(Z/2)∧Σ8M(2)∧Σ−2CP2 Σdeg zkH(Z/2) ∧M(2)∧Σ−2CP2

-·b

?Σ8πIΣ2 ?πIΣ2

?∼= ?∼=
-1∧A∧1

-·b

?Σ8z
Σ2
k ?Σ8z

Σ2
k

?∼= ?∼=
-1∧A∧1

(20)

Proof A commutativity of the first diagram follows from Lemma 6.2 and the
diagram (19). Recall that a projection of the Bott element into the homotopy
group of Σdeg zkH(Z/2) is zero. Let X be a finite spectrum. The map

1 ∧A ∧ 1 ∧ 1: Σdeg zkH(Z/2) ∧ Σ8M(2) ∧Σ−2CP2 ∧X −→
Σdeg zkH(Z/2) ∧M(2) ∧Σ−2CP2 ∧X

in homotopy coincides with the homomorphism in mod 2 homology groups

Σdeg zkH∗(Σ8M(2)∧Σ−2CP2 ∧X) A∗⊗1⊗1−−−−−→ Σdeg zkH∗(M(2)∧Σ−2CP2 ∧X)
and is trivial for any space X since A has the Adams filtration 4. It implies
that 1 ∧A ∧ 1 is a trivial map. A commutativity of (20) now follows.

To complete the proof of Theorem 6.1 we notice that Lemmas 6.3 and 6.2 give
the commutative diagram

Σ8MSpinΣ2 MSpinΣ2 MSpinΣ3

Σ8MSpinη ∧ Σ8M(2) MSpinη ∧M(2) MSpinη ∧ V (1)

-·b

?Σ
8FΣ2

-π3

?F
Σ2

?F
Σ3

-1∧A -p
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where the map FΣ3 exists since the both rows are cofibrations. The five-lemma
implies that FΣ3 is a homotopy equivalence.

Corollary 6.4 The spectrum KOΣ3 = KO∧Σ−2CP2∧V (1) is a contractible
spectrum.

Remark 6.5 The connective spectrum koΣ3 is of some interest. It is certainly
not contractible, and it is very easy to see that

koΣ3
j =

{
Z/2 if j = 0, 2, 4, 6,

0 otherwise,

and the Postnikov tower of koΣ3 has the operation Q1 as its k–invariants.

The technique we used above may be applied to prove the following result:

Corollary 6.6 There is such admissible product structure µ(2) of the spec-
trum MSpinΣ2 , so that the map π̄0

Σ2
: MSpinΣ2 −→ koΣ2 = k(1) is a ring

spectra map, moreover, there is an inverse ring spectra map ρ0
Σ2

: koΣ2 −→
MSpinΣ2 . In other words, koΣ2 splits off of the spectrum MSpinΣ2 as a ring
spectrum.

7 Surgery Lemma for Σ–manifolds

7.1 A Riemannian metric on a Σ–manifold Here we describe what do we
mean by a Riemannian metric on manifold with singularities. We consider the
case when a manifold has of at most three singularities, Σ3 = (P1, P2, P3). We
denote Σ1 = (P1), Σ2 = (P1, P2). We assume that there are given Riemannian
metrics gPi on the manifolds Pi , i = 1, 2, 3. As we mentioned earlier, the
metrics gPi are not assumed to be psc-metrics.

If M is a Σ3–manifold, we assume that it is given a decomposition of the
boundary ∂M :

∂M = (β1M × P1 ∪ β2M × P2 ∪ β2M × P2) ∪ β123M × P1 × P3 × P2 ×D2

∪ (β12M × P1 × P2 × I12 ∪ β23M × P2 × P3 × I23 ∪ β13M × P1 × P3 × I13)

glued together as it is shown on Figure 7 (a). We start with a Riemannian
metric g123 on the manifold β123M . We assume that the manifold

β123M × P1 × P2 × P3 ×D2
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has product metric g123 × gP1 × gP2 × gP3 × g0 , where g0 is the standard flat
metric on the disk D2 .

Besides, we assume that the manifold β123M × P1 × P2 × P3 , being common
boundary of the manifolds

β12M × P1 × P2, β13M × P1 × P3, and β23M × P2 × P3,

is embedded together with the colors (see Figure 7 (a)):

β123M × P1 × P2 × P3 × I ′12 ⊂ β12M × P1 × P2,

β123M × P1 × P2 × P3 × I ′13 ⊂ β13M × P1 × P3,

β123M × P1 × P2 × P3 × I ′23 ⊂ β23M × P2 × P3.

Here I ′ij are the intervals embedded into the flat disk D2 as it is shown on
Figure 7 (b).

β12M×P1×P2×I12

β13M×P1×P3×I13

β23M×P2×P3×I23
β123M×P1×P2×P3×D2

β1M×P1

β2M×P2

β3M×P3∂M =

(b) Flat disk D2(a) The decomposition of ∂M

I ′12

I ′23

I ′13

Figure 7

Let gij be metrics on the manifolds βijM . We assume that the product metric

gij × gPi × gPj on the manifold βijM × Pi × Pj
coincides with the product metric on the color β123M ×P1×P2×P3× I ′ij near
its boundary. Finally if gi is a metric in βiM (i = 1, 2, 3), then we assume
that the product metric gi× gPi on βiM ×Pi coincides with the above product
metrics on the manifold βijM×gPi×gPj×Iij . Furthermore, the product metric
gi × gPi on βiM × Pi restricted on the manifold

(β123M × P1 × P2 × P3 ×D2) ∩ (βiM × Pi)
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coincides with the product metric g123×gP1×gP2×gP3×g0 . Finally the metric
g on the manifold M is assumed to be product metric near the boundary ∂M .
Let M , as above be a Σ–manifold with the same singularities Σ = (P1, P2, P3).
We say that a metric g on M is of positive scalar curvature, if, besides the
above conditions, the metrics g on M , gi on βiM , gij on βijM , and g123 on
β123M have positive scalar curvature functions.

7.2 Surgery theorem in the case of manifolds without singularities
Here we briefly review key results on the connection between positive scalar
curvature metric and surgery for manifolds without singularities. The first
basic result is due to Gromov–Lawson [9, Theorem A] and to Schoen–Yau [27].
A detailed “textbook” proof may be found in [25, Theorem 3.1].

Theorem 7.1 (Gromov–Lawson [9], Schoen–Yau [27]) Let M be a closed
manifold, not necessarily connected, with a Riemannian metric of positive scalar
curvature, and let M ′ is obtained from M by a surgery of codimension ≥ 3.
Then M ′ also admits a metric of positive scalar curvature.

To get started with Σ–manifolds we need an “improved version” of Theorem
7.1 which is due to Gajer [8].

Theorem 7.2 (Gajer [8]) Let M be a closed manifold, not necessarily con-
nected, with a Riemannian metric g of positive scalar curvature, and let M ′ is
obtained from M by a surgery of codimension ≥ 3. Then M ′ also admits a
metric g′ of positive scalar curvature. Furthermore, let W be the trace of this
surgery (ie, a cobordism W with ∂W = M t −M ′ ). Then there is a positive
scalar curvature metric ḡ on W , so that ḡ = g + dt2 near M and ḡ = g′ + dt2

near M ′ .

In order to use the above Surgery Theorems, one has to specify certain structure
of manifolds under consideration. This structure (known as γ–structure) is
determined by the fundamental group π1(M), and the Stiefel–Whitney classes
w1(M), and w2(M). Indeed, it is well-known that the fundamental group π
is crucially important for the existence question. Then there is clear difference
when a manifold M is oriented or not (which depends on w1(M)). On the
other hand, a presence of the Spin–structure (which means that w2(M) = 0)
gives a way to use the Dirac operator on M to control the scalar curvature
via the vanishing formulas. Stolz puts together those invariants to define a
γ–structure, see [31]. In the case we are interested in, all manifolds are simply-
connected and Spin, thus we will state only a relevant Bordism Theorem (see,
say, [25, Theorem 4.2] for a general result).
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Theorem 7.3 Let M be a simply connected Spin manifold, dimM ≥ 5.
Then M admits a metric of positive scalar curvature if and only if there is
some simply-connected Spin–manifold M ′ of positive scalar curvature in the
same Spin–bordism class.

7.3 Surgery theorem in the case of manifolds with singularities Let
M be a Σ–manifold with Σ = (Pi), (Pi, Pj) or (Pi, Pj , Pk). Here Pi are
arbitrary closed manifolds. Let dimM = n, and dimPi = pi , i = 1, 2, 3. Then
we denote dimβiM = ni = n− pi − 1, dimβijM = nij = n − pi − pj − 2, and
dimβ123M = n123 = n−p1−p2−p3−3. The manifolds βiM , βijM and βijkM
are called Σ–strata of M .

We say that a Σ–manifold M is simply connected if M itself is simply connected
and all Σ–strata of M are simply connected manifolds.

Theorem 7.4 Let M be a simply connected Spin Σ–manifold, dimM =
n, so that all Σ–strata manifolds are nonempty, and satisfying the following
conditions:

(1) if Σ = (Pi), then n− pi ≥ 6;

(2) if Σ = (Pi, Pj), then n− pi − pj ≥ 7;

(3) if Σ = (Pi, Pj , Pk), then n− pi − pj − pk ≥ 8.

Then M admits a positive scalar curvature if and only if there is some simply-
connected SpinΣ–manifold M ′ of positive scalar curvature in the same SpinΣ–
bordism class.

Remark 7.5 The role of the manifolds M and M ′ are not symmetric here.
For instance, it is important that M has all Σ–strata manifolds nonempty,
however, the manifold M ′ may have empty singularities.

Proof (1) Let W be a SpinΣ–cobordism between M and M ′ . Then βiW
is a Spin–cobordism between βiM and βiM

′ . By condition, βiM ′ is simply
connected, and dimβiM

′ = dimM ≥ 5. We notice that there is a sequence
of surgeries on the manifold βiW (relative to the boundary ∂βiM

′ ) so that
the resulting manifold is 2–connected (see an argument given in [9, Proof of
Theorem A]). Let V be a trace of this surgery. Then its boundary is decomposed
as

∂V = βiW ∪ (βiM × I) ∪ (βiM ′ × I) ∪ Li.
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We glue together the manifolds W and −V × Pi :

W ′ := W ∪βiW×Pi −V × Pi.

Then the boundary of WW ′ (as a SpinΣ–manifold) is

δW ′ = (M ∪ (βiM × I × Pi)) t
(
M ′ ∪ (βiM ′ × I × Pi)

) ∼= M tM ′,
and βiW

′ = Li, with ∂Li = βiM t βiM ′.
Now we use Theorem 7.2 to “push” a positive scalar curvature metric from
βiM

′ through Li to βiM keeping it a product metric near the boundary. At
this point a psc-metric gi on Li may be such that the product metric gi × gPi
is not of positive scalar curvature. We find ε > 0 so that the product metric
εgi × gPi has positive scalar curvature, and then we attach one more cylinder
Li × Pi × [0, a] with the metric

gi(t) :=
a− t
a

gi × gPi +
t

a
εgi × gPi + dt2.

We use metric gi(t) to fit together the metric already constructed on W ′′ with
the metric on Li×Pi× [0, a]. In particular, there is a > 0 so that the restriction
of gi(t) on βiM

′ × Pi × [0, a] has positive scalar curvature (since an isotopy of
positive scalar curvature metrics implies concordance). By small perturbation,
we can change gi(t), so that it has positive scalar curvature and it is a product
near the boundary. Then we do surgeries on the interior of W ′ to make it 2–
connected. Let W ′′ be the resulting manifold. In particular, βiW ′′ = βiW

′ =
Li . Finally we use “push” a positive scalar curvature metric from M ′ to M
through W ′′ keeping it a product metric near the singular stratum βiβiW

′ = Li .

(2) Let M be a simply connected Spin Σ–manifold, with Σ = (Pi, Pj), and
n − pi − pj ≥ 7. By condition, the singular stratum βijM 6= ∅. Let W be
a SpinΣ–cobordism between M and M ′ . In particular, we have ∂βijW =
βijM t βijM ′ . Recall that βijW × Pi × Pj is embedded to the union

(βiW × Pi) ∪ (βjW × Pj)

together with the colors

βijW × Pi × Pj × [−ε, ε]

By conditions, the manifolds βijM βijM
′ are simply connected, and dimβijM

= dimβijM
′ ≥ 5. As above, there is a surgery on βijW (relative to the

boundary ∂βijW = βijM tβijM ′ ) so that a resulting manifold is 2–connected.
Let Vij be the trace of this surgery:

∂V = βijW ∪ (βijM × I) ∪ (βijM ′ × I) ∪ Lij .
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We glue together the manifolds

W and − V × [−ε, ε]× Pi × Pj
to obtain a manifold W ′ , where we identify

βijW × Pi × Pj × [−ε, ε] ⊂ (βiW × Pi) ∪ (βjW × Pj) and

−βijW × Pi × Pj × [−ε, ε] ⊂ −∂V × [−ε, ε]× Pi × Pj ,
see Figure 8.

The resulting manifold W ′ (after smoothing corners and extending metric ac-
cording with the Surgery Theorem construction) is such that βijW ′ = Lij is
2–connected cobordism between βijM and βijM

′ . Thus we can “push” a posi-
tive scalar curvature metric from βijM

′ to βijM through the cobordism βijW
′ .

Thus we obtain a psc-metric gij on βijM
′ which is a product near boundary. In

general, the product metric gij × gPi × gPj on βijW ×Pi×Pj is not of positive
scalar curvature. Then we have to attach one more cylinder

βijW
′ × [−ε, ε]× I × Pi × Pj

to “scale” the metric gij×gPi×gPj to a positive scalar curvature metric εijgij×
gPi × gPj through an appropriate homotopy.
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−V × [−ε, ε]× Pi × Pj

Figure 8

Then we consider the manifolds βiW ′ and βjW
′ . Again, we perform surgeries

on the interior of βiW ′ , βjW ′ to get 2–connected manifolds Li and Lj . Let
Vi , Vj be the traces of these surgeries:

∂Vi = βiW
′ ∪ βijW ′ × Pj ∪ Li, ∂Vj = βiW

′ ∪ βijW ′ × Pi ∪ Lj.

Now we attach the manifolds −Vi × Pi and −Vj × Vj to W ′ by identifying

βiW
′ × Pi ⊂W ′ and βjW

′ × Pj ⊂W ′ with

−βiW ′ × Pi ⊂ −∂Vi, and − βjW ′ × Pj ⊂ −∂Vj

Geometry & Topology, Volume 5 (2001)



712 Boris Botvinnik

respectively. Let W ′′ be the resulting manifold (after an appropriate smooth-
ing and extending a metric), see Figure 9. Notice that W ′′ is still a SpinΣ–
cobordism between M and M ′ .

This procedure combined with an appropriate metric homotopy gives W ′′ to-
gether with a metric g′′ on W ′′ , so that it is a product metric near the boundary,
its restriction on M ′ has positive scalar curvature, and its restriction on the
manifolds

βiW
′′ × Pi, βjW

′′ × Pj , βiW
′′ × [−ε, ε]× Pi × Pj

are psc-metrics

gi × gPi , gj × gPj gij × gPi × gPj + dt2

respectively (for some psc-metrics gi , gj , gij ). It remains to perform surgeries
on the interior of W ′′ to get a 2–connected manifold, and finally push a psc-
metric from M ′ to M relative to the boundary.
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Figure 9

A proof of (3) is similar.

8 Proof of Theorem 1.1

First we recall the main construction from [29]. Let G = PSp(3) = Sp(3)/(Z/2),
where Z/2 is the center of Sp(3). Let g0 be the standard metric on HP2 . Re-
call that the group G acts on HP2 by isometries of the metric g0 . Let E −→ B
be a geometric HP2 –bundle, ie, E −→ B is a bundle with a fiber HP2 and
structure group G. Each geometric HP2–bundle E −→ B is given by a map
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f : B −→ BG by taking first the associated principal G–bundle, and then by
“inserting” HP2 as a fiber employing the action of G. Assume that B is a
Spin manifold. Then the correspondence (B, f) 7→ E gives the homomorphism
T : ΩSpin

n−8 (BG) −→ ΩSpin
n . Let X be a finite CW –complex. The homomorphism

T actually gives the transformation

T : ΩSpin
n−8 (X ∧BG+) −→ ΩSpin

n (X),

which may be interpreted as the transfer, and induces the map at the level of
the classifying spectra

T : MSpin ∧Σ8BG+ −→MSpin, (21)

see details in [29]. Consider the composition

ΩSpin
n−8 (X ∧BG+) T−−−→ ΩSpin

n (X) α−−−→ kon(X) (22)

Here is the result due to S Stolz, [30]:

Theorem 8.1 Let X be a CW –complex. Then there is an isomorphism at
the 2–local category:

kon(X) ∼= ΩSpin
n (X)/ Im T

Let Σ = Σ1 or Σ2 , or Σ3 or η , and XΣ be the corresponding spectrum, so that
MSpinΣ ∼= MSpin ∧XΣ . The map T : MSpin ∧ Σ8BG+ −→ MSpin induces
the map

TΣ: MSpin ∧Σ8BG+ ∧XΣ −→MSpin ∧XΣ.

Consider the composition

MSpin ∧ Σ8BG+ ∧XΣ
TΣ

−−−→ MSpin ∧XΣ
αΣ

−−−→ ko ∧XΣ.

We use Theorems 3.1 and 6.1 to derive the following conclusion from Theorem
8.1.

Corollary 8.2 Let Σ = Σ1 or Σ2 , or Σ3 or η . Then there is an isomorphism
at the 2–local category:

koΣ
n
∼= MSpinΣ

n/ Im TΣ.

We remind here that the homomorphism koΣ
n → KOΣ

n is a monomorphism for
n ≥ 0.

Corollary 8.2 describes the situation in 2–local category. Now we consider what
is happening when we invert 2. Consider first the case when Σ = Σ1 . Then we
have a cofibration:

MSpin[1
2 ] ·2−−−→ MSpin[1

2 ] −−−→ MSpinΣ1 [1
2 ]
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Clearly the map ·2: MSpin[1
2 ]→MSpin[1

2 ] is a homotopy equivalence. Thus
MSpinΣ1[1

2 ] ∼= pt. The case Σ = (η) is more interesting. Here we have the
cofibration:

S1 ∧MSpin[1
2 ]

·η−−−→ MSpin[1
2 ] πη−−−→ MSpin(η)[1

2 ].

Notice that η = 0 in p–local homotopy ΩSpin
1 ⊗ Z[1

2 ]. Thus we have a short
exact sequence:

0→ ΩSpin
n ⊗ Z[1

2 ]
πη∗−−−→ ΩSpin,η

n ⊗ Z[1
2 ]

β−−−→ ΩSpin
n−2 ⊗ Z[1

2 ]→ 0.

This sequence has very simple geometric interpretation. Let w ∈ ΩSpin,η
2

∼= Z
be an element represented by an (η)–manifold W , so that βW = 2. Let
t = w

2 ∈ ΩSpin,η
2 ⊗ Z[1

2 ].

Now let c ∈ ΩSpin,η
n ⊗ Z[1

2 ], and βc = b. Let a = c − tb, then c = a + tb

for a ∈ ΩSpin
n ⊗ Z[1

2 ], b ∈ ΩSpin
n−2 ⊗ Z[1

2 ] for any element c ∈ ΩSpin,η
n ⊗ Z[1

2 ].
Furthermore, this decomposition is unique once we choose an element t. Recall
that ΩSpin

∗ ⊗Z[1
2 ] ∼= ΩSO

∗ ⊗Z[1
2 ] is a polynomial algebra Z[1

2 ][x1, x2, . . . , xj , . . .]
with degxj = 4j . Thus we obtain

ΩSpin,(η)
n ⊗ Z[1

2 ] ∼=


ΩSpin
n ⊗ Z[1

2 ] if n = 4k

ΩSpin
n−2 ⊗ Z[1

2 ] if n = 4k + 2
0 otherwise

(23)

Furthermore, as it is shown in [15, Proposition 4.2] there are generators xj =
[M4j ] of the polynomial algebra ΩSpin

∗ ⊗ Z[1
2 ], so that the manifolds M4j are

total spaces of geometric HP2–bundles (for all j ≥ 2). In particular, it means
that the groups ΩSpin

4j ⊗ Z[1
2 ] are in the ideal Im T ⊂ ΩSpin

∗ ⊗ Z[1
2 ]. Now the

formula (23) shows that the groups ΩSpin,(η)
n ⊗Z[1

2 ] are in the ideal Im T η . We
obtain the isomorphism in integral homotopy groups: koΣ

n
∼= ΩSpin,η

n / Im T η .

The cases Σ = Σ2 or Σ = Σ3 are similar to the case Σ = Σ1 : here we have
that MSpinΣi [1

2 ] ∼= pt for i = 2, 3.

Thus in all cases we conclude that any element x ∈ Im TΣ may be represented
by a simply connected Σ–manifold admitting a psc-metric. Here the restriction
that dimx ≥ d(Σ) is essential. Thus we conclude that if a simply-connected
Spin Σ manifold M with dimM ≥ d(Σ) is such that [M ] ∈ Ker αΣ , then M
admits a psc-metric.

Now we prove the necessity.
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Let M be a simply connected Spin–manifold of dimension dimM ≥ d(Σ).
What we really must show is that if there is a psc-metric on M , then αΣ([M ]) =
0 on the group KOΣ

∗ .

The case Σ1 = (P1) = 〈2〉 is done in [22], where it is shown that αΣ([M ]) ∈
KO

〈2〉
∗ coincides with the index of the Dirac operator on M , and that the index

αΣ([M ]) vanishes if M has a psc-metric.

The next case to consider is when Σ = η = (P2). Let M be a closed Σ–
manifold, ie, ∂M = β2M × P2 , where P2 is a circle with the nontrivial Spin
structure. Let g be a psc-metric on M . In particular, we have a psc-metric
gβ2M . Then, as we noticed earlier, the circle P2 is zero-cobordant as Spinc–
manifold. More precisely, we choose a disk D2 with ∂D2 = P2 , and construct
the manifold

M = M ∪
(
−β2M ×D2

)
where we identify ∂Mβ2M × P2 with ∂(−β2M × D2). There is a canonical
map

h: M −→ CP1

which sends M ⊂ M = M ∪
(
−β2M ×D2

)
to the point, and β2M × D2 to

CP1 = S2 by the composition

β2M ×D2 −→ D2 −→ D2/S1 = CP1.

The map h composed with the inclusion CP1 ⊂ CP∞ gives the map h̄: M −→
CP∞ , and, consequently, a linear complex bundle ξ −→M which is trivialized
over M . The Spin–structure on M together with the linear bundle ξ −→ M
determines a Spinc–structure on M . To choose a metric g0 on the disk, We
identify D2 with the standard hemisphere S2

+ with a small color attached to
the circle S1 , so that the metric g0|S1 is the standard flat metric dθ2 . Then
we have the product metric gβ2M × g0 on β2M ×D2 . Together with the metric
g on M , it gives a psc-metric g on M . We choose a U(1)–connection on the
linear bundle ξ −→ M , and let F be its curvature form. We notice that since
ξ is trivialized over M ⊂M , the form F is supported only on the submanifold
−β2M ×D2 ⊂ M . Moreover, we have defined the bundle ξ −→ M as a pull-
back from the tautological complex linear bundle over CP1 . Thus locally we
can choose a basis e1, e2, . . . en of the Clifford algebra, so that F (e1, e2) 6= 0,
and F (ei, ej) = 0 for all other indices i, j . Notice also that the scalar curvature
function Rg = Rgβ2M

+ Rg0 . Let D be the Dirac operator on the canonical
bundle S(M ) of Clifford modules over M . We have the BLW–formula

D2 = ∇∗∇+
1
4

(Rg +Rg0) +
1
2
F (e1, e2) · e1 · e2. (24)
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Now we scale the metric gβ2M to the metric ε2 · gβ2M with the scalar curvature
Rε2·gβ2M

= ε−2 ·Rgβ2M
. Clearly this scaling does not effect the connection form

since the scaling is in the “perpendicular direction”. Let ε > 0 be such that
the term

1
4

(
ε−2 · Rgβ2M

+Rg0

)
will dominates the connection term 1

2F (e1, e2) · e1 · e2 . Then we attach the
cylinder β2M × [0, a] × D2 (for some a > 0) with the metric gβ2M (t) × g0 ,
where

gβ2M (t) =
a− t
a

gβ2M +
t

a
ε2β2M + dt2,

so that the metric gβ2M (t)× g0 has positive scalar curvature, and is a product
metric near the boundary. Thus with that choice of metric, the right-hand side
in (24) becomes positive, which implies that the Dirac operator D is invertible,
and hence ind(D) ∈ K∗ vanishes. This completes the case of η–singularity.

Remark 8.3 Here the author would like to thank S Stolz for explaining this
matter.

The case Σ2 = (P1, P2) is just a combination of the above argument and the
BLW–formula for Spinc Z/k–manifolds given by Freed [5].

The last case, when Σ = Σ3 = (P1, P2, P3) there is nothing to prove since
KOΣ3 is a contractible spectrum, and thus any Σ3–manifold has a psc-metric.
Indeed, we have that

ΩSpin,Σ3
n

∼= Im T, if n ≥ 17.

This completes the proof of Theorem 1.1.
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