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Abstract

The Jones—Witten theory gives rise to representations of the (extended) mapping class
group of any closed surface Y indexed by a semi-simple Lie group G and a level k. In
the case G = SU(2) these representations (denoted V4(Y')) have a particularly simple
description in terms of the Kauffman skein modules with parameter A a primitive 47
root of unity (r = k + 2). In each of these representations (as well as the general
G case), Dehn twists act as transformations of finite order, so none represents the
mapping class group M(Y) faithfully. However, taken together, the quantum SU(2)
representations are faithful on non-central elements of M(Y). (Note that M(Y) has
non-trivial center only if Y is a sphere with 0,1, or 2 punctures, a torus with 0,1, or 2
punctures, or the closed surface of genus = 2.) Specifically, for a non-central h € M(Y')
there is an ro(h) such that if r > ro(h) and A is a primitive 47" root of unity then
h acts projectively nontrivially on V4(Y'). Jones’ [9] original representation p,, of the
braid groups B,,, sometimes called the generic g—analog—SU (2)-representation, is not
known to be faithful. However, we show that any braid h # id € B,, admits a cabling
c=¢1,...,0, sothat py(c(h)) #id, N =¢1 + ...+ ¢cy.
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524 Freedman, Walker and Wang

1 Introduction

Let Y denote a compact, connected, oriented surface. The mapping class group
M(Y) = Diff 7 (V) /Diff§ (V) is defined as the orientation preserving diffeomor-
phisms modulo isotopy. (We do not put base points on boundary components.)
Lickorish [13] showed that M is finitely generated, Hatcher and Thurston [7]
showed that M is finitely presented and explicit presentation have been written
down [15]. It is known that M is always residually finite [6]. Bigelow [3] [4]
has shown that M is a matrix group when genus(Y) = 0 and when Y is closed
and genus(Y) = 2. Of course, M(T?) = SL(2, Z) is also a matrix group.

In this note we study the quantum SU(2) representations of M. Except when
M(Y) is the trivial group (Y = sphere or disk), all these representations, and
in fact all quantum representations of which the authors are aware!, have kernel
because Dehn twists are carried to operators of finite order. We prove, however,
that the direct sum of all the quantum SU(2) representations is faithful except
on central elements of M(Y) which are never detected. It is well-known [8]
that Z(M(Y)) = {e} unless Y = St x I,T?,T? — pt,T? — 2 pts, T?#T? in
which case the center is the group generated by the elliptic or hyper-elliptic
involution.

These quantum SU(2) representations are an outgrowth of Jones—Witten the-
ory. We use the [5] construction of these representations based on the skein
theory of the Kauffman bracket. This construction produces a projective repre-
sentation V4(Y) of M(Y) whenever Kauffman’s variable A is a primitive 4™
root of unity. (When A is a primitive 2r*" root of unity a quantum-SO(3)
representation is the result. All our faithfulness results are true for this family
as well. Experts will have no difficulty guessing the proof of this extension:
simply restrict the present proof to “even labels”.)

First we consider surfaces Y without boundary.
Theorem 1.1 Let Y be a closed connected oriented surface and M(Y') its

mapping class group. For every non-central h € M, there is an integer ro(h)
such that for any r > ro(h) and any A a primitive 4r'" root of unity, the

! Bigelow’s representation is equivalent to the BMW representation but at a generic
value. At a generic value Dehn twist has infinite order but unfortunately, generic values
lead to infinite dimensional — not quantized — representations except in the genus =0
case. (To see the difference consider admissible labelling of trees and graphs. Even if
the label set is infinite, if the labels on valence = 1 vertices are fixed then there are
only finitely many admissible labellings in the tree case.)
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Quantum SU (2) faithfully detects mapping class groups modulo center 525

operator (h): Va(Y) — Va(Y) is not the identity, (h) # 1 € PEnd(Va), the
projective endomorphisms. In particular, any infinite direct sum of quantum
SU(2) representations faithfully represents these mapping class groups modulo
center.

Theorem 1.1 and Theorem 3.3, which treats surfaces with boundary, have a
formal corollary outside quantum topology (which was previously known [6].)

Corollary 1.2 For all compact orientable surfaces Y M(Y') is residually fi-
nite. D

Proof Exploit the fact that finitely generated matrix groups over C are resid-
ually finite. m]

Within quantum topology the theorem also has an immediate corollary.

Corollary 1.3 Let Y be a closed connected compact orientable surface. Let
N be the mapping torus of a non-central h: Y — Y. Let ()a denote the
closed 3-manifold invariant associated to (SU(2),A), A a primitive 47" root
of unity. For all r > some 1o(h), [(N)a| < [(S* x Y)4|.

Proof In the case of Y -bundles over a circle S' the gluing relations for a
TQFT imply that ()4 is simply trace (monodromy) = tr(h)4. If (h)4 # id
then [tr(h)a| < |tridy, |. O

The proof of Theorem 1.1 is relatively simple. If h is a non-central element of
M(Y'), then there is an embedded curve « in Y such that a and h(«) are not
isotopic. Associated to any curve « on Y there is a operator T,: Va(Y) —
Va(Y), and Ty = (h)Ta(h™'). We show that for r sufficiently large T, is
not equal (even projectively) to Tj,,). It follows that (h) acts projectively
nontrivially on V4 (Y').

The rest of the paper is organized as follows. Section 2 reviews the facts about
the SU(2) quantum invariants we will need. Section 3 contains the proofs of
the main theorems, modulo a topological lemma which is proved in Section 4.
Section 5 contains further remarks on the original Jones braid group represen-
tation.
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526 Freedman, Walker and Wang

Achknowledgements We would like to thank Jorgen Andersen for bringing
to our attention the question of the eventual faithfulness of the SU(2) represen-
tations and for explaining to us his gauge-theoretic approach to the problem,
which he has now brought to completion [2]. (For readers of both papers, we
should point out that it is not yet proven that the gauge theory and Kauff-
man bracket constructions yield the same representations.) We also thank the
referee for helpful comments.

Research by Wang is partially supported by NSF Grant CISE/EIA-0130388
and US Army Research Office Grant DAAD19-00-R0007.

2 Review of SU(2) quantum invariants

In this section we briefly review Kauffman skein modules [11] and the [5] con-
struction of the SU(2) quantum invariants. For more details, see [11] and [5].

The Kauffman skein module of a 3—manifold M is defined to the free vector
space generated by isotopy classes of unoriented framed links in M, modulo
the Kauffman skein relation and replacing trivial loops with a factor of d =
—A%2—-A~2, (See Figure 1. Throughout this paper figures follow the “blackboard
framing” convention.)

Yo 4 +A‘1;

O
Figure 1: Definition of Kauffman skein module

One can similarly define the Kauffman skein module for a 3-manifold with a
finite collection of framed points in its boundary in terms of properly embedded
framed 1-submanifolds whose boundary is the given collection of points. Note
that for M = S2 any link is equivalent to some multiple of the empty link, so
we get a C[A, A™1] valued invariant of framed links on S3.

In what follows we specialize to the case

A= 627ri/4r

(So the Kauffman “polynomial” of a link will actually be a complex number.)
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Fact 2.1 For each k < r —2 there is a unique skein (finite linear combination
of diagrams) P, in (B3,2k points) such that PP, = P, and Py is killed by
“turn backs”. (See Figure 2.)

51 =0
|\

Figure 2: Projector killed by turn-back

It follows that Py is invariant under a 180 degree rotation (Figure 3), and that
Py, is equal to the identity tangle plus terms with turnbacks (Figure 4). Py is
called the projector on k strands.

Figure 3: Projector invariant under rotation

Fact 2.2 For any n > 0, then identity tangle on n strands can be factored
though the sum of projectors Py, ..., P._s . If n < r — 2, then the coefficient
of P, is 1 (Figure 5).

The fact than only projectors up to r — 2 are needed is a consequence of A
being a 4r*™ root of 1.

Fact 2.3 Let b be a braid on k strands and c(b) be the signed number of
crossings of b. Then bP, = A p,

Geometry & Topology, Volume 6 (2002)
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Figure 4: Projector equal to identity plus turn-back terms

| B[] R |

Figure 5: Identity in terms of projectors

Fact 2.3 says that up to scalars, we can absorb a braid into a projector. The
proof follows easily from the Kauffman skein relation and Fact 2.1.

Fact 2.4 Let a, b and c be non-negative integers and let X be a “trivalent
vertex” skein as shown in the left hand side of Figure 6. If (a) the three
triangle inequalities are satisfied (a < b+ c etc.), (b) a+ b+ c is even, and (c)
a+b+c <2r—4, then X is proportional to the standard diagram on the right
hand side of Figure 6. If these conditions are not satisfied then X = 0.

Fact 2.4 follows easily from Fact 2.3 and Figure 4.

Let G C M be a trivalent ribbon graph with edges labeled by integers between
0 and r — 2, such that at each vertex the conditions of Fact 2.4 are satisfied.
We will regard G as a shorthand notation for the linear combination of framed
links in M obtained by replacing an edge of G labeled by k with P, and
replacing trivalent vertices with the right hand side of Figure 6.
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Figure 6: 1-dimensional trivalent vertex space

Let dj be the value of the skein shown in Figure 7 (unknot labeled by Pj).

Let s = cdy, where ¢ is a positive real number chosen so that Z;:g s? =

Figure 7: Loop value for projector

In a framed link diagram, a component labeled by w will mean the linear
combination shown in Figure 8.

Fact 2.5 Framed links with components labeled by w are invariant under
handle slides, balanced stabilization, and the introduction of a circumcision
pair. (See Figures 9, 10 and 11.)

Let L be a framed link in S®. Let L, be the linear combination of labeled
framed links obtained by labelling each component of L by w. It follows from
Fact 2.5 that the Kauffman polynomial of L, depends only on the 3—manifold
described by interpreting L as a surgery diagram, and on the signature of L.
For any closed, oriented 3-manifold M and integer n define Z(M,n) to be
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Figure 8: Definition of w label

Figure 9: Handle slide invariance

w w

» — OO CO
Figure 10: Balanced stabilization invariance

W

¢ (Dw
Figure 11: Circumcision pair invariance

this invariant (ie, Z(M,n) is equal to the Kauffman polynomial of L,,, where

Geometry & Topology, Volume 6 (2002)
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L C 83 is any surgery description of M with signature n.) It is easy to see that
Z(M,n) =C"™Z(M,m), where C is the value of the Kauffman polynomial
of an unknot with framing 1 (right handed twist).

(Note: n can be interpreted as an equivalence class of framings of the tangent
bundle of M, a bordism class of null-bordisms of M, or a p;—structure on M.
See [2], [16] and [5].)

Next we follow the [5] approach to construct a vector space V(Y) for each
closed, oriented 2-manifold Y, and an invariant Z (M) € V(9M) for an oriented
3-manifold with boundary. These 2-manifolds and 3-manifolds with boundary
should also be equipped with extra structure (framing, null-bordism, or pj—
structure), but we will suppress mention of this since the arguments in the
remainder of the paper work even with a projective ambiguity.

Let Y be a closed, oriented 2-manifold. Let O~'Y be the set of all isomorphism
classes of pairs (M, L), where OM =Y and L is a labeled ribbon graph in the
interior of M. Let W(Y) be the free vector space generated by 0~'Y. There
is a pairing W(Y) @ W(-Y) — C given by z ® y — Z(z Uy). Define V(Y)
to be the quotient of W (Y') by the annihilator of W (—Y") with respect to this
pairing. In other words, z ~ 2’ if Z(x Uy) = Z(2' Uy) for all y € W(-Y).

If Y is not closed choose a labelling [ of the boundary components of Y by
integers 0 < I, < r —2. Let Y be the result of capping off each boundary
component of Y by D?. Define 9~1(Y,1) to be the set of isomorphism classes
of 3—manifold M with OM identified with EA/, and with a properly embedded
framed tangle in M which coincides with a standardly embedded copy of P
in a collar neighborhood of each cap disk, where k is the label assigned to that
boundary component of Y by [. We can now define V(Y;1) as above.

The extended mapping class group of Y acts on 971Y, and thus on V(Y).
The ordinary, non-extended mapping class group of Y has a projective action
on V(Y).

The surgery formula for Z shows that V(Y) is spanned by the equivalence
classes of links in any single 3—manifold M, OM =Y . For example, we could
take M to be a handlebody H (assuming Y is connected). It then follows from
Facts 2.2 and 2.4 that:

Fact 2.6 Let H be a handlebody with spine S, (ie, S is a 1-complex with
vertices at most trivalent, and H is a regular neighborhood of S.) Then V (0H)
has a basis corresponding to all labellings of the 1—cells of S by integers between
0 and r — 2, such that the parity and quantum triangle inequalities of Fact 2.4
are satisfied at each vertex of S.
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If Y has non-empty boundary, we get a basis of V(Y,l) by letting Y bound
a handlebody H and considering spines of H which meet each cap disk of Y
once. Labellings of the spine are constrained to agree with [ on 1—cells meeting
the boundary.

If Y is closed then End(V(Y')) can be identified with V(Y [[—Y), and so is
spanned by elements of the form Z(Y x I, L), where L is a labeled framed
link in Y x I. If Y has boundary then @, End(V(Y,1)) can be identified with
V(D(Y)), where [ runs through all labellings of dY and D(Y) =Y Ugy —Y
is the double of Y along its boundary. D(Y) bounds Y x I, and as before
@, End(V(Y,1)) is spanned by elements of the form Z(Y x I, L), where L is
a labeled framed link in Y x I. In both cases the action of End(...) is given
in geometric terms by gluing (Y x I, L) onto a 3-manifold (bounded by Y')
representing an element of V(Y) (or V(Y,1)).

3 Proof of main theorems

Let Y be a closed, oriented surface, h: ¥ — Y an orientation preserving
homeomorphism, and V;,: V(Y) — V(Y) the action of h on the TQFT vector
space.

Proposition 3.1 Suppose there exists an unoriented simple closed curve a C
Y such that h(a) is not isotopic (as a set) to a. Then V}, is a multiple of the
identity for at most finitely many r. That is, as r increases h is eventually
detected.

Proof Let C(a) = Z(Y x I,a x {1/2}) € V(Y) @ V(=Y) = End(V(Y)).
Define C(h(a)) similarly. It’s easy to see that C(h(a)) = VhC(a)Vh_l. It
therefore suffices to show that C'(a) # C(h(a)).

By Lemma 4.1 there exists a handlebody H bounded by Y such that a bounds
an embedded disk in H and h(a) is a non-trivial “graph geodesic” with respect
to a spine S of H. Let Z(H) € V(Y) be the vector determined by H, and
Z(H,h(a)) € V(Y) be the vector determined by the pair (H,h(a)). (We can
push hA(a) into the interior or H.) T

C(a)(Z(H)) = Z(H,a) = d- Z(H),
and C(ha))(Z(H)) = Z(H, h(a)).

It therefore suffices to show that Z(H,h(a)) is not a multiple of Z(H).
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For each edge e of the spine S, let w, be the (unsigned) number of times h(a)
passes over e. Let m be the maximum of all we +wy + wy such that e, f and
g meet at a vertex of S. Choose r such that 2r —4 > m.

Let b, be the basis vector of V(Y) corresponding the labelling w. We claim
that Z(H, h(a)) = Aby, +v, where X # 0 and v consists of “lower order” terms
— multiples of b,, where v, < w, for all edges e of S and v # w. This follows
from Facts 2.2, 2.4 and 2.3. Apply Fact 2.2 at each edge of S. Apply Fact 2.4
at each vertex to see that the result is a linear combination of b, and lower
order terms. Fact 2.3 and the graph geodesic property of h(a) show that the
coefficient of by, is non-zero. On the other hand, Z(H) is the basis vector
corresponding to the zero (empty) labelling of S. O

Proof of Theorem 1.1 By Lemma 4.3, non-central elements of the mapping
class group must move a simple closed curve, so Theorem 1.1 follows from
Proposition 3.1. D

Next we consider the case where Y has boundary. As before, let h: Y — Y be
an orientation preserving homeomorphism and

Vi, € @ Hom(V (Y, 1), V(Y,1'))
L

be the action of h on the TQFT vector spaces.

Proposition 3.2 Suppose there exists an unoriented, homologically essential
simple closed curve a C 'Y such that h(a) is not isotopic to a. Then V}, is a
multiple of the identity for at most finitely many r. That is, as r increases h
is eventually detected.

Proof Define operators C(a) and C(h(a)) as in the proof of Proposition 3.1.
(Note that while V;, € @,y Hom(V (Y,1), V(Y,l')), C(a) and C(h(a)) lie in the
block diagonal @, End(V (Y,l).) As before, it suffices to show that C(a) #
C(h(a)).

By Lemma 4.2, a x {1/2} can be extended to a spine of Y x I. Since h(a) is
not isotopic in Y to a, h(a) must be isotopic to a graph geodesic distinct from
a x {1/2}. It follows from Fact 2.6 that C(a) and C(h(a)) are (projectively)
distinct elements in V(O(Y x I)) = @, End(V (Y,1)), provided r is sufficiently
large. O

We can now prove:
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Theorem 3.3 Let Y be a connected orientable surface with boundary and let
h be a non-central diffeomorphism of Y. Let Vi, € @, Hom(V (Y, 1), V(Y,1'))
be the action of h on the TQF'T vector spaces. Then V}, is a multiple of the
identity for at most finitely many r.

Proof In light of Proposition 3.2, it suffices to show that any diffeomorphism
of Y which fixes all homologically essential simple closed curves lies in the center
of the mapping class group. Let h be such a diffeomorphism. Then unless Y is
an annulus h cannot permute the boundary components of Y'; also A commutes
with Dehn twists along homologically essential curves and all “essential” braid
twists b (1/2 Dehn twists which permute a pair of boundary components) along
an essential scc v which bounds a pair of pants to at least one side. Letting
M(Y') denote the full mapping class group and N the number of boundary
components of Y we have a short exact sequence:
1—-Mp(Y) > MY)—0o(N)—1

where o(N) is the permutation group and My(Y) the kernel. If N = 1,
M(Y) = Mp(Y) is generated by Dehn twists along essential sccs and if N > 3,
M(Y) is generated by Dehn twists along essential sccs together with essential
braid twists b as above. In these cases h commutes with a generating set,
and therefore all, of M(Y). When N = 2 we need to include some (any)
“inessential” braid twist b’ along a scc 7/ bounding a pair of pants on one side
and null bounding on the other side. Since 7/ is null homologous, special plead-
ing is now required to prove that h(y’) = +'. We exploit the fact that we may
pick any +" we like so long as it cobounds a pair of points with dY. Choosing
~' amounts to picking a simple arc o between the two components 97 and
0~ of Y (and then thickening). Choose « so that the geometric intersection
numbers are (o, fy) =1, (o, f1) =0, , (o, fag) = 0, where {fp,..., 024} is a
chain a 2 genus (Y')+1 sccs in int(Y') so that only 8’s of adjacent indices meet
and these meet transversely in a single point and so that d" is separated from

29
0~ by z‘goﬂi (see Figure 11). Now (h(«), ;) = (h(a),h(5;)) = (o, 5i) = (7).
It follows that h(«) is isotopic back to « (The isotopy may twist 0Y".) and that
h(~") = +'. Now the proof can be finished for N = 2, as in the case N > 3, by
taking a generating set for M(Y") consisting of ¥/ = b'(v’) together with Dehn
twists about essential sccs. |

4 Some topological lemmas

For applications to closed surfaces, we need:
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Figure 12

Lemma 4.1 Let a and b be two non-trivial, non-isotopic simple closed curves
on a closed orientable surface Y. Then there exists a pants decomposition of
Y such that a is one of the decomposing curves and b is a non-trivial “graph
geodesic” with respect to the decomposition. (That is, b does not intersect any
curve of the decomposition twice in a row.)

Proof We will inductively choose a set of decomposing curves on Y, starting
with a. At each stage, let Y’ denote Y cut along the curves we have chosen
thus far, and let b denote the image of b in Y'. b’ is a properly embedded,
possibly disconnected, 1-submanifold of Y.

We say that Y/ and o’ satisfy Condition X if for each component S of Y/ and
each component e of SN’ either (a) e is non-separating or (b) each component
of S\ e has genus greater than zero.

Note that initially, when Y’ is Y \ a, Condition X is satisfied (after possibly
isotoping b to remove bigons with a). If Y’ consists only of pairs of pants
(or an annulus if Y was a torus), then Condition X implies the graph geodesic
property. Thus it suffices to show that at each stage we can choose an additional
decomposing curve such that Condition X is preserved, until we have a pants
decomposition.

Choose a component S of Y’ which is not a pair of pants or annulus. We will
find a simple closed curve (scc) ¢ in S such that S\ ¢ still satisfies condition
X.

Geometry & Topology, Volume 6 (2002)
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If S has genus greater than zero, let S be the closed surface obtained by
capping of the boundary of S with disks. Those components of & NS which
are: (1) an arc with both endpoints on the same boundary component of S,
or (2) a scc, determine a well-defined isotopy class of curves in S. In case (1)
complete the arc to a circle by coning its endpoints in the cap; in case (2) simply
include. Choose a curve ¢ in S whose image in S does not lie in any of the
aforementioned isotopy classes. If the genus of S is > 2, we further require
that ¢ is a separating curve. By pushing c¢ across punctured bigons, we may
assume that no component of S\ (¢Ub') is a punctured bigon (see Figure 13).
Thus Condition X is satisfied.

14 4
oY’ ¢

Figure 13: Push across punctured bigon

Note that for a genus 0 surface, Condition X is satisfied if and only if all compo-
nents of b’ are arcs which connect distinct boundary components. Assuming S
has four or more punctures, we need to find a scc ¢ C S" which is not boundary
parallel and meets each arc of b’ in at most one point. Cutting along ¢ perpet-
uates condition X. We use a little geometry here to avoid a greater amount
of combinatorics. A well known theorem of Kdebe?[10] represents the edges
of any spherical graph by disjoint geodesic arcs of length < 7. Regarding the
punctures of S as vertices, represent b’ in this way, with the understanding
that parallel arcs of b’ collapse to a single edge. We call two arcs of b’ parallel
if they join the same boundary components x and y, and together with an
arc in x and an arc in y, bound a rectangle in 5. Any great circle v disjoint
from the vertices and containing at least two vertices in each complementary
hemisphere is a good choice for ¢. To find such a 7, start with the great circle
~" determined by any two nonantipotal vertices and perturb it suitably. O

Lemma 4.2 Let Y be a connected orientable surface with boundary and let a

20ften called Andreev’s Theorem.

Geometry & Topology, Volume 6 (2002)



Quantum SU (2) faithfully detects mapping class groups modulo center 537

be a homologically essential simple closed curve in Y. Then a can be extended
to a spine of Y.

Proof Cut Y along a and use the classification of surfaces. O

Lemma 4.3 Suppose Y is a compact oriented surface with or without bound-
ary. Suppose h: Y — Y is an orientation preserving homeomorphism, not
isotopic to idy , which does not change the unparameterised isotopy class of any
scc in Y. Then Y is either an annulus, a torus, a torus with < 2 punctures,
or the closed surface of genus = 2 and h is either the elliptic or hyperelliptic
involution.

Proof If h: Y — Y leaves all (unoriented) isotopy classes of scc’s invariant
then h will commute with all Dehn twists. Since Dehn twists generate M(Y")
[13], h € (Center(M(Y)) =: Z(M(Y)). It is well-known ([8], Theorem 7.5D)
that the only surfaces with Z(M(Y)) # {e} are Y = T2, T?\ pt., T?\ 2 pts. ,
S1 x I, and T?#7T?. Furthermore the only nontrivial element of these centers
are the elliptic and hyperelliptic involutions respectively. m]

5 Further remarks

The Jones representation contains the Burau representation as a particular
summand. It is known that the Burau representation is not faithful for B,
with n > 5. On the other hand, the Jones representation can be obtained by
specializing the BMW representation which is faithful for B,,. It seems hard to
decide the faithfulness of Jones representation but in this direction, we prove:

Theorem 5.1 For every braid h # 1 € By, the n—strand (unframed) braid
group n > 2, there is a cabling (c1,...,¢,) of h on which the SU(2)—Jones
representation is nontrivial.

Proof The Jones representation on B, when specialized to A = e*™/4" t =
e?™i/T decomposes as a direct sum of singular and nonsingular pieces. The
nonsingular piece is a sum of the SU(2)-quantum representations on Vi, 1, m,
the Hilbert space at level £ = r—2. The subscripts of V' are admissible labels at
finite punctures and infinity. Cabling produces sums of irreducibles according
to a Clebsch—Gordon formula. In particular the Jones representation on the
c1,-..,Cp cabling contains as a summand a copy of each admissible V.,

. Cny M *
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Thus it is sufficient to prove that h acts nontrivially on at least one of these.
Theorem 3.3 says that with only finitely many exceptions h is nontrivial in
these representations, provided h is not homotopic to the identity in the n+1—
punctured sphere, that is [h] # 1 € (spherical braid group),+1 = SBp+1.-

The proof is not yet finished since the natural morphism B,, — SB,+1 has
kennel = center(B,,) = (full twist). This “full twist” is Dehn twist about
infinity and although this twist is trivial in all End((V;,,. .c,..m) its action is
computed [11] to be multiplication by the unit scalar A™™+2) Thus each
nontrivial central element is also detected in infinitely many V'’s. m|
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