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542 Joseph D Masters

1 Introduction

Let M be a 3{manifold. De�ne the virtual �rst Betti number of M by the
formula vb1(M) = supfb1(fM) : fM is a �nite cover of M g.
The following well-known conjecture is a strengthening of Waldhausen’s con-
jecture about virtually Haken 3{manifolds.

Conjecture 1.1 Let M be a closed irreducible 3{manifold with in�nite fun-
damental group. Then either �1M is virtually solvable, or vb1(M) =1.

Combining the Seifert Fiber Space Theorem, the Torus Theorem, and argu-
ments involving characteristic submanifolds, Conjecture 1.1 is known to be true
in the case that �1M contains a subgroup isomorphic to Z�Z. However, little
is known in the atoroidal case.

In [3], Gabai called attention to Conjecture 1.1 in the case that M �bers over
S1 . This seems a natural place to start, in light of Thurston’s conjecture that
every closed hyperbolic 3{manifold is �nitely covered by a bundle. The purpose
of this paper is to give some a�rmative results for this case. In particular, we
prove Conjecture 1.1 in the case where M is a genus 2 bundle.

Throughout this paper, if f : F ! F is an automorphism of a surface, then Mf

denotes the associated mapping torus. Our main theorem is the following:

Theorem 1.2 Let f : F ! F be an automorphism of a surface. Suppose
there is a �nite group G of automorphisms of F , so that f commutes with
each element of G, and F=G is a torus with at least one cone point. Then
vb1(Mf ) =1.

We have the following corollaries:

Corollary 1.3 Suppose F has genus at least 2, and f : F ! F is an au-
tomorphism which commutes with a hyper-elliptic involution on F . Then
vb1(Mf ) =1.

Proof Let � be the hyper-elliptic involution. Since f commutes with � , f
induces an automorphism �f of F=� , which is a sphere with 2g+ 2 order 2 cone
points. F=� is double covered by a hyperbolic orbifold T , whose underlying
space is a torus. By passing to cyclic covers of M , we may replace f (and �f )
with powers, and so we may assume �f lifts to T . Corresponding to T , there is
a 2{fold cover eF of F to which f lifts, and an associated cover fM of M whose
monodromy satis�es the hypotheses of Theorem 1.2.
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Corollary 1.4 Let M be a surface bundle with �ber F of genus 2. Then
vb1(M) =1.

Proof Since the �ber has genus 2, the monodromy map commutes (up to
isotopy) with the central hyper-elliptic involution on F . The result now follows
from Corollary 1.3.

To state our next theorem, we require some notation. Recall that, by [4],
the mapping class group of a surface is generated by Dehn twists in the loops
pictured in Figure 1. If ‘ is a loop in a surface, we let D‘ denote the right-
handed Dehn twist in ‘.

����������

γ

τ
1x

x2 x2g

Figure 1: The mapping class group is generated by Dehn twists in these loops.

With the exception of Dγ , these Dehn twists each commute with the involution
� pictured in Figure 1. Let H be the subgroup of the mapping class group
generated by the Dxi ’s. For any monodromy f 2 H , we may apply Corollary
1.3 to show that the associated bundle M has vb1(M) =1. The proof provides
an explicit construction of covers{ a construction which may be applied to any
bundle, regardless of monodromy. These covers will often have extra homology,
even when the monodromy does not commute with � . For example, we have
the following theorem, which is proved in Section 7.

Theorem 1.5 Let M be a surface bundle over S1 with �ber F and mon-
odromy f : F ! F . Suppose that f lies in the subgroup of the mapping class
group generated by Dx1 ; :::;Dx2g and D8

γ . Then vb1(M) =1.

None of the proofs makes any use of a geometric structure. In fact, for a
bundle satisfying the hypotheses of one of the above theorems, we may give an
alternative proof of Thurston’s hyperbolization theorem for �bered 3{manifolds.
For example, we have:

Theorem 1.6 (Thurston) Let M be an atoroidal surface bundle over S1

with �ber a closed surface of genus 2. Then M is hyperbolic.
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Proof By Corollary 1.4, M has a �nite cover fM with b1(fM ) � 2. Therefore,
by [12], fM contains a non-separating incompressible surface which is not a
�ber in a �bration. Now the techniques of the non-�ber case of Thurston’s
Geometrization Theorem (see [8]) may be applied to show that fM is hyperbolic.
Since M has a �nite cover which is hyperbolic, the Mostow Rigidity Theorem
implies that M is homotopy equivalent to a hyperbolic 3{manifold. Since M is
Haken, Waldhausen’s Theorem ([13]) implies that M is in fact homeomorphic
to a hyperbolic 3{manifold.

We say that a surface automorphism f : F ! F is hyper-elliptic if it commutes
with some hyperelliptic involution on F . Corollary 1.3 prompts the question:
is a hyper-elliptic monodromy always attainable in a �nite cover? Our �nal
theorem shows that the answer is no.

Theorem 1.7 There exists a closed surface F , and a pseudo-Anosov auto-
morphism f : F ! F , such that f does not lift to become hyper-elliptic in any
�nite cover of F .

The proof of Theorem 1.7 will be given in Section 8.

Acknowledgements I would like to thank Andrew Brunner, Walter Neu-
mann and Hyam Rubinstein, whose work suggested the relevance of punctured
tori to this problem. I also thank Mark Baker, Darren Long, Alan Reid and
the referee for carefully reading previous versions of this paper, and providing
many helpful comments. Alan Reid also helped with the proof of Theorem 1.7.
Thanks also to The University of California at Santa Barbara, where this work
was begun.

This research was supported by an NSF Postdoctoral Fellowship.

2 Homology of bundles: generalities

In what follows, we shall try to keep notation to a minimum; in particular we
shall often neglect to distinguish notationally between the monodromy map f ,
and the various maps which f induces on covering spaces or projections. All
homology groups will be taken with Q coe�cents.

Suppose f is an automorphism of a closed 2{orbifold O . The mapping torus
Mf associated with O is a 3{orbifold, whose singular set is a link. We have the
following well-known formula for the �rst Betti number of Mf :

b1(Mf ) = 1 + dim(�x(f�)); (1)
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where �x(f�) is the subspace of H1(O) on which f� acts trivially. This can be
derived by abelianizing the standard HNN presentation for �1Mf .

Suppose now that O is obtained from a punctured surface F by �lling in
the punctures with disks or cone points, and suppose that f restricts to an
automorphism of F . Let V � H1(F; @F ) be the subspace on which the induced
map f� acts trivially. Then the �rst Betti number for the mapping torus of O
can also be computed by the following formula.

Proposition 2.1 For Mf and V as above, we have b1(Mf ) = 1 + dim(V ).

Proof By Formula 1, b1(Mf ) = 1 + dim(W ), where W � H1(O) is the sub-
space on which f� acts trivially.

Let i: F ! O be the inclusion map, and let K be the kernel of the quotient map
from H1(F ) onto H1(F; @F ). The cone-point relations imply that every element
in i�K is a torsion element in H1(O); since we are using Q{coe�cients, i�K
is in fact trivial in H1(O). The action of f� on H1(O) is therefore identical
to the action of f� on H1(F; @F ), so dim(W ) = dim(V ), which proves the
formula.

We will also need the following technical proposition.

Proposition 2.2 Let F be a punctured surface, and let f : F ! F be an
automorphism which �xes the punctures. Let F+ be a surface obtained from
F by �lling in one or more of the punctures, and let f+: F+ ! F+ be the

map induced by f . Suppose fF+ is a cover of F+ , such that f+ lifts, and

suppose �+ 2 fF+ is a loop which misses all �lled-in punctures, and such that

f+[�+] = [�+] 2 H1(fF+; @fF+). Let eF be the cover of F corresponding to

the cover fF+ of F+ , and let i: eF ! fF+ be the natural inclusion map. Let
� = i−1�+ . Then f [�] = [�] 2 H1( eF; @ eF ).

Proof The surface fF+ is obtained from eF by �lling in a certain number of
punctures, say �1; :::; �k , of eF . The map f : H1( eF; @ eF ) ! H1( eF; @ eF ) may be
obtained from the map f : �1

eF ! �1
eF by:

(1) First add the relations �1; :::; �k = id. There is an induced map

f : �1
eF= < �1 = ::: = �k = id >! �1

eF= < �1 = ::: = �k = id > :

(2) Add the relations which kill the remaining boundary components.
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(3) Add the relations [x; y] = id for all x; y 2 �1
fF+ .

After completing step 1, one has precisely the action of f on �1
fF+ . After

completing steps 2 and 3, one then has the action of f on H1(fF+; @fF+). So
the action of f on these groups is identical, and [�] is a �xed class.

If Γ is a group, we may de�ne b1(Γ) to be the Q{rank of its abelianization,
and the virtual �rst Betti number of Γ by

vb1(Γ) = supfb1(eΓ) : eΓ is a �nite index subgroup of Γg:
Clearly, for a 3{manifold M , vb1(M) = vb1(�1(M)). We have the following:

Lemma 2.3 Suppose Γ maps onto a group �. Then

(vb1(Γ)− b1(Γ)) � (vb1(�)− b1(�)):

Before proving this, we will need a preliminary lemma. We let H1(Γ) denote
the abelianization of Γ, tensored over Q. Representing Γ by a 2{complex CΓ ,
then H1(Γ) �= H1(CΓ).

Any subgroup eΓ of Γ determines a 2{complex fCΓ and a covering map p: fCΓ !
CΓ . We can de�ne a map j: H1(CΓ)! H1(fCΓ) by the rule j([‘]) = [p−1‘], for
any loop ‘ in CΓ . If ‘ bounds a 2{chain in CΓ , then p−1‘ bounds a 2{chain infCΓ , so this map is well-de�ned. Using the isomorphisms between the homology
of the groups and the homology of the 2{complexes, we get a map, which we
also call j , from H1(Γ) to H1(eΓ).

Lemma 2.4 If eΓ has �nite index, then the map j is injective.

Proof Suppose [γ] 2 Ker(j), where γ is an element of Γ, and let ‘ 2 CΓ be a
corresponding loop. Then [‘] 2 Ker(j), so [p−1‘] = 0, and therefore

0 = p�[p−1‘] = n[‘];

where n is the index of eΓ. Since we are using Q{coe�cients, H1(CΓ) is torsion-
free, so [‘] = 0 in H1(CΓ), and therefore [γ] = 0 in H1(Γ).

Proof of Lemma 2.3 Let f : Γ ! � be a surjective map. We have the fol-
lowing commutative diagram:

i1
1 −! eΓ −! Γ

# g i2 # f
1 −! e� −! �;
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where i1 and i2 are inclusion maps, and the surjective map g is induced from
the other maps. There is an induced diagram on the homology:

i1�
H1(eΓ) −! H1(Γ)
# g� i2� # f�
H1(e�) −! H1(�):

Let j1: H1(Γ) −! H1(eΓ) and j2: H1(�) −! H1(e�) be the injective maps given
by Lemma 2.4. These maps give rise to the following diagram, which can be
checked to be commutative:

j1
H1(eΓ)  − H1(Γ)  − 0
# g� j2 # f�
H1(e�)  − H1(�)  − 0:

The de�nitions of the maps give that

(�) i1�j1([γ]) = n[γ];

and a similar relation for i2� and j2 . Therefore Ker(i1�) and Image(j1) are
disjoint subspaces of H1(eΓ). Also,

dim(H1(eΓ)) = dim(Ker(i1�)) + dim(Image(i1�))
= dim(Ker(i1�)) + dim(H1(Γ)); by the relation (*)
= dim(Ker(i1�)) + dim(Image(j1));

so we get H1(eΓ) = Ker(i1�) � Image(j1), and similarly H1(e�) = Ker(i2�) �
Image(j2). Substituting these decompositions into the previous diagram gives:

j1
Ker(i1�)� Image(j1)  − H1(Γ)  − 0

# g� j2 # f�
Ker(i2�)� Image(j2)  − H1(�)  − 0:

By the commutativity of this diagram, we have that g�Image(j1) � Image(j2).
Also, by the commutativity of a previous diagram, we have g�Ker(i1�) �
Ker(i2�). Since g� is surjective, we must therefore have g�Ker(i1�) = Ker(i2�),
so
dim(Ker(i1�)) � dim(Ker(i2�)), from which the lemma follows.
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3 Reduction to a once-punctured torus

We are given an automorphism of a torus with an arbitrary number, k , of cone
points. We denote this orbifold T (n1; :::; nk), where ni is the order of the i-th
cone point. Let M(T (n1; :::; nk)) be the mapping class group of T (n1; :::; nk).
In general, these groups are rather complicated. However, the mapping class
group of a torus with a single cone point is quite simple, being isomorphic to
SL2(Z).

Let M0(T (n1; :::; nk)) denote the �nite-index subgroup of the mapping class
group which consists of those automorphisms which �x all the cone points of
T (n1; :::; nk). The following elementary fact allows us to pass to the simpler
case of a single cone point.

Lemma 3.1 For any i, there is a homomorphism �i: M0(T (n1; :::; nk)) onto
M(T (ni)).

Proof Let f 2 M0(T (n1; :::; nk)). Since f �xes the cone points, it restricts
to a map on the punctured surface which is the complement of all the cone
points except the ith one. After �lling in these punctures, there is an induced
map �i(f) on Tni . It is easy to see that this is well-de�ned, surjective, and a
homomorphism.

Lemma 3.2 Let f 2M0(T (n1; :::; nk)). Then there is a surjective homomor-
phism from �1Mf ! �1M�if .

Proof Let F be the punctured surface obtained from T (n1; :::; nk) by remov-
ing all the cone points. Let x1; :::; xk 2 �1F be loops around the k cone points,
and complete these to a generating set with loops xk+1; xk+2 . We have:

�1Mf
�=< x1; :::; xk+2; t > = < tx1t

−1 = fx1; ::: ; txk+2t
−1 = fxk+2;

xn1
1 = ::: = xnkk = 1 > :

From this presentation a presentation for �1M�if may be obtained by adding
the additional relations xj = id, for all j � k; j 6= i.

Corollary 3.3 Let f 2 M(T (n1; :::; nk)). Then there is a �nite index sub-
group of �1Mf which maps onto �1Mg , where g is an automorphism of a torus
with a single cone point.

Proof By passing to a �nite-index subgroup, we may replace f with a power,
and then apply Lemma 3.2.

Geometry & Topology, Volume 6 (2002)



Virtual Betti numbers of genus 2 bundles 549

4 Increasing the �rst Betti number by at least one

Before proving Theorem 1.2, we �rst prove:

Lemma 4.1 Let Mf be as in the statement of Theorem 1.2. Then

vb1(Mf ) > b1(Mf ).

We remark that this result, combined with Lemma 2.3 and the arguments in
the proof of Cor 1.4, implies that the �rst Betti number of a genus 2 bundle
can be increased by at least 1.

By Corollary 3.3, Lemma 4.1 will follow from the following lemma.

Lemma 4.2 Let f 2 M(T (n)) be an automorphism of a torus with a single

cone point. Then Mf has a �nite cover gMf such that b1(gMf ) > b1(Mf ).

Proof of Lemma 4.2 We shall use T to denote the once-punctured torus
obtained by removing the cone point of T (n). There is an induced map f : T !
T . In order to construct covers of T , we require the techniques of [6]. For
convenience, the relevant ideas and notations are contained in the appendix. In
what follows, we assume familiarity with this material.

Case 1 n = 2

We let J denote the subgroup of the mapping class group of T generated by Dx

and D4
y . By Lemma 8.2, J has �nite index, so we may assume, after replacing

f with a power, that the map f : T ! T lies in J .

As explained in the appendix, any four permutations �1; :::; �4 on r letters will
determine a 4r{fold cover eT of T . We set:

I �2 = �−1
1 and �4 = �−1

3 ,

so f lifts to eT by Lemma 8.3. We shall require every lift of @T to unwrap once
or twice in eT . This property is equivalent to the following:

II (�i�−1
i+1)2 = id for all i.

To �nd permutations satisfying I and II, we consider the abstract group gener-
ated by the symbols �1; :::; �4 , satisfying relations I and II. If this group surjects
a �nite group G, then we may take the associated permutation representation,
and obtain permutations �1; :::; �4 on jGj letters satisfying I and II. In the case
under consideration, we may take G to be a cyclic group of order 4. This leads

Geometry & Topology, Volume 6 (2002)
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T

δ *δ

1 3 2 4 3 1 4 2

δ

1 3 2 4 3 1 4 2

T

δ*

Figure 2: The cover eT of T

to the representation �1 = �3 = (1234), �2 = �4 = �−1
1 . The associated cover

is pictured in Figure 2.

Lemma 8.3 now guarantees that non-trivial �xed classes in H1(eT ; @ eT ) exist.
Rather than invoke the lemma, however, we shall give the explicit construction
for this simple case. Consider the classes [�]; [��] 2 H1(eT ; @ eT ) pictured in
Figure 2.

Proposition 4.3 [�]; [��] 2 H1( eT ; @ eT ) are non-zero classes which are �xed by
any element of J .

In the proof, the notation I(:; :) stands for the algebraic intersection pairing on

Geometry & Topology, Volume 6 (2002)
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H1 of a surface.

Proof The fact that [�] and [��] are non-peripheral follows from the fact that
I([�]; [�� ]) = 2. The loops � and �� have algebraic intersection number 0 with
each lift of y , and therefore their homology classes are �xed by the lift of D4

y .

By Property I and by Lemma 8.1, Dx lifts to eT , and acts as the identity on
Rows 2 and 4. In particular, [�] and [��] are �xed by the lift of Dx . Therefore,
[�] and [��] are �xed by any element of J .

Since @T unwraps exactly twice in every lift to eT , then by �lling in the punc-
tures of eT , we obtain a manifold cover T̃ (n) of T (n). Since f lifts to eT , then
f lifts to T̃ (n). An application of Propositions 4.3 and 2.1 �nishes the proof of
Lemma 4.2 in this case.

Case 2 n � 3

In this case, we shall require a cover of T in which the boundary components
unwrap n times. We construct a cover eT of T , mimicking the construction
given in Case 1. We start with the standard Z=r � Z=4 cover of T , and alter
it by cutting and pasting in a manner speci�ed by permutations �1; :::; �4 . By
raising f to a power, we may assume that f lies in J , the subgroup of the
mapping class group of T generated by Dx and D4

y . Again, D4
y lifts to Dehn

twists in the lifts of y . Lemma 8.1 shows that, if we set:

I �2 = �−1
1 and �4 = �−1

3 ,

then Dx lifts also, so f lifts. To ensure that the boundary components unwrap
appropriately, we also require (�i�−1

i+1)n = 1. Combining this with condition I
gives:

II (�1)2n = (�3)2n = (�1�3)n = 1.

If we consider the symbols �1 and �3 as representing abstract group elements,
Conditions I and II determine a hyperbolic triangle group Γ. It is a well-known
property of triangle groups that �1; �3 , and �1�3 will have orders in Γ as given
by the relators in Condition I. Also, it is a standard fact that in this case Γ
is in�nite, and residually �nite. Therefore, Γ surjects arbitrarily large �nite
groups such that the images of �1; �3 , and �1�3 have orders 2n; 2n, and n,
respectively. Let G be such a �nite quotient, of order N for some large number
N . By taking the left regular permutation representation of G, we obtain
permutations on N letters satisfying Conditions I and II, as required.
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Let V denote the subspace of H1(eT ; @ eT ) �xed by f . By Lemma 8.3, dim(V ) �
2genus(R2), where R2 is the subsurface of eT corresponding to Row 2.

The formula for genus is:

genus(R2) = 1
2 (2− �(R2)− (# of punctures of R2)):

Any permutation � decomposes uniquely as a product of disjoint cycles; we
denote the set of these cycles by cycles(�). The punctures of R2 are in 1{
1 correspondence with the cycles of �1 , �3 and �3�1 . Also, since R2 is an
N {fold cover of a thrice-punctured sphere, we have the Euler characteristic
�(R2) = −N , and so we get:

genus(R2) = 1
2 (2 +N − (jcycles(�1)j+ jcycles(�3)j+ jcycles(�1�3)j)):

Recall that an m{cycle is a permutation which is conjugate to (1:::m). Any
permutation � coming from the left regular permutation representation of G
decomposes as a product of N=order(�) disjoint order(�){cycles, and therefore

jcycles(�1�3)j = 2jcycles(�1)j = 2jcycles(�3)j = jGj=n = N=n:

Combining the above formulas gives

dim(V ) � 2 +N(1− 2=n):

So dim(V ) can be made arbitrarily large.

There are corresponding covers eT of T , and T̃ (n) of T (n). Proposition 2.1
then shows that, in this case, vb1(Mf ) =1.

5 In�nite virtual �rst Betti number

In this section we prove Theorem 1.2.

Lemma 5.1 Let f 2 M(T (n)) be an automorphism of a torus with a single
cone point. Then vb1(Mf ) =1.

Proof In the course of proving Lemma 4.1, we actually proved Lemma 5.1 in
the case n > 2, so we assume n = 2. The proof of Lemma 4.1 also shows how
to increase b1(Mf ) by at least 2; next we will show how to increase b1(Mf ) by
at least 4, and �anlly we will indicate how to iterate this process to increase
b1(Mf ) arbitrarily.

Again, let T be the once punctured torus obtained by removing the cone point
of T (2). By replacing T with a 2{fold cover, and by replacing f with a power
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(to make it lift), we may assume that T has two boundary components, denoted
�1; �2 . By again replacing f with a power, we may assume that f �xes both
�i ’s.

Let T+
1 denote the once punctured torus obtained by �lling in �2 . Since f

�xes both �i ’s, there is an induced automorphism f : T+
1 ! T+

1 . Let fT+
1 be

the 16{fold cover of T+
1 as constructed in the previous section, and let �+

1 ; �
+�
1

be the loops constructed previously, whose homology classes are �xed by (a
power of) f .

Let eT1 denote the cover of T corresponding to fT+
1 (see Figure 3). By replacing

f with a power, we may assume that f lifts to fT1 . Let �1; �
�
1 � eT1 denote the

pre-images of �+
1 and �+�

1 under the natural inclusion map (after an isotopy,
we may assume that �+

1 and �+�
1 are disjoint from all �lled-in punctures, so

that �1 and ��1 are in fact loops).

Since [�+
1 ] and [�+�

1 ] are �xed classes in H1( eT+
1 ; @

eT+
1 ), then by Proposition 2.2,

[�1] and [��1 ] are �xed classes in H1(eT1; @ eT1). Note that I([�1]; [��1 ]) = 2.

Starting with �2 instead of �1 , we may perform the analogous construction to
obtain a cover fT2 of T containing �xed classes [�2]; [��2 ] 2 H1( eT2; @ eT2), with
algebraic intersection number 2. Moreover, as indicated by Figure 3, �2 and ��2
may be chosen so that their projections to T are disjoint from the projections
of �1 and ��1 to T .

Let eT denote the cover of T with covering group �1(fT1)\�1(fT2). Since f lifts
to fT1 and fT2 , then f also lifts to eT . Let e�i and e��i denote the full pre-images
in eT of �i and ��i , respectively. Recall that by construction, �i and ��i have
the following properties, for i = 1; 2:

(1) [�i]; [��i ] 2 H1( eTi; @ eTi) are �xed classes.

(2) I([�i]; [��i ]) 6= 0.

(3) The projections of �1 [ ��1 and �2 [ ��2 to T are disjoint.

Therefore, by elementary covering space arguments, we deduce that e�i and e��i
have the following properties for i = 1; 2:

(1) [e�i]; [e��i ] 2 H1( eT ; @ eT ) are �xed classes.

(2) I([e�i]; [e��i ]) 6= 0.
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1

1 3 2 4 3 1 4 2

1 3 2 4 3 1 4 2
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Figure 3: We may arrange for �1 [ ��1 and �2 [ ��2 to have disjoint projections.

(3) e�1 [ e��1 and e�2 [ e��2 are disjoint.

Claim The subspace of H1(eT ; @ eT ) on which f acts trivially has dimension at
least 4.

Proof By Property (1) above, it is enough to show that the vectors [�1]; [��1 ];
[�2]; [��2 ] are linearly independent in H1( eT ; @ eT ). Let Vi be the space generated
by [�i] and [��i ]. It follows from Property (2) that dim(Vi) = 2. By Property
(3), we have I(v1; v2) = 0 for any v1 2 V1 and v2 2 V2 . The intersection form

I restricted to V2 is a non-zero multiple of the form
�

0 1
−1 0

�
, which is non-

singular. So, for any v2 2 V2 , there is an element v�2 2 V2 such that I(v2; v
�
2) 6=

0. Therefore V1 \ V2 = ;, so the four vectors are linearly independent, and the
claim follows.

Each lift of the puncture �1 unwraps twice in fT1 and once in fT2 . Therefore
each lift of �1 unwraps twice in eT ; similarly, each lift of �2 unwraps twice in
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eT . Hence there is an induced manifold cover T̃ (2) of T (2) obtained by �lling
in the punctures of eT . There is then an induced manifold cover gMf of Mf ,
and by Proposition 2.1, b1(gMf ) � 4 + 1.

The proof of the general result is similar. We start with an arbitrary positive
integer k , and replace T with a k{times punctured torus.

We then obtain, for each i � k , a cover eTi of T , such that each puncture of T
unwraps once or twice in eTi . We construct �xed classes [�i]; [��i ] 2 H1(eTi; @ eTi)
with algebraic intersection number 2, so that the projection of �i [ ��i to T is
disjoint from the projection of �j [ ��j whenever i 6= j (see Figure 4).

By an argument similar to the one given in the k = 2 case, we conclude that
there is a 2k{dimensional space in H1( eT ; @ eT ) on which f acts trivially. Since
every puncture of T unwraps twice in eT , there is an induced manifold cover
T̃ (2) of T (2) obtained by �lling in the punctures of eT . Therefore there is an
induced bundle cover of Mf , and by Proposition 2.1, b1(gMf ) � 2k + 1. Since
k is an arbitrary positive integer, the result follows.

Proof of Theorem 1.2 This is an application of Lemma 5.1 and Corollary
3.3

6 Proof of Theorem 1.5

We sketch the proof that M has a �nite cover fM with b1(fM) > b1(M). The
generalization to vb1(M) = 1 then follows by direct analogy with the proof
of Theorem 1.2. Recall the construction of the cover eF of F in the case of
a hyper-elliptic monodromy: we remove a neighborhood of the �xed points of
� to obtain a punctured surface F− . The surface F− double covers a planar
surface P ; we construct a punctured torus T which double covers P , and then
a 16{fold cover eT of T . The cover eF of F corresponds to �1

eT \�1F
− . A loop

� � eT is constructed, whose full pre-image e� in eF represents a homology class
which is �xed by (a power of) any element of H =< Dx1 ; :::;Dx2g >.

The covers T and eT of P are not characteristic. Any element h of H sends
T to a cover hT of P , and eT to a cover heT of hT ; let h0 = id; h1; :::; hn 2 H
denote the elements necessary for a full orbit of eT . Let Kj � H1(hj eT ; @hj eT )
denote the kernel of the projection to H1(hjT; @hjT ). By construction, we
have � 2 K0 . Let γ be the loop pictured in Figure 1, and let pγ denote the
projection of γ to P . We claim that every component of the pre-image of pγ
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Figure 4: Each boundary component of T gives rise to a di�erent cover.

in hj eT has intersection number 0 with every class in Kj : this may be checked
by constructing an explicit basis for the Kj ’s.

Now, �x an element h 2 H . The Kj ’s are permuted by H , so h[�] has 0 inter-
section number with each component of the pre-image of pγ in h eT . Therefore,
every component of the pre-image of γ in h eF has 0 intersection number with
h[e�]. Since the pre-images of γ unwrap at most 8 times, we see that D8

γ lifts
to Dehn twists in h eF , and �xes h[e�]. Therefore, the action of f on [e�] is un-
changed if we remove all the D8

γ ’s, and we deduce from the hyper-elliptic case
that, for some integer m, fm lifts to a map ffm such that ffm�[e�] = [e�].
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7 Proof of Theorem 1.7

Let K be the knot 932 in Rolfsen’s tables, and let M = S3−K . The computer
program SnapPea shows that M has no symmetries. A knot complement is
said to have hidden symmetries if it is an irregular cover of some orbifold. In
our example, M has no hidden symmetries, since by [7], a hyperbolic knot
complement with hidden symmetries must have cusp parameter in Q(

p
−1) or

Q(
p
−3), but it is shown in [11] that the cusp �eld of M has degree 29.

Since M has no symmetries or hidden symmetries, and is non-arithmetic (see
[9]), it follows from results of Margulis that M is the unique minimal orbifold
in its commensurability class.

Let M(0; n) be the orbifold �lling on K obtained by setting the n-th power of
the longitude to the identity. Then, by Corollary 3.3 of [10], if n is large enough,
M(0; n) is a hyperbolic orbifold which is minimal in its commensurability class.
We choose a large n which satis�es this condition and is odd.

Since K has monic Alexander polynomial and fewer than 11 crossings, it is
�bered (see [5]), and therefore M(0; n) is 2{orbifold bundle over S1 . This
orbifold bundle is �nitely covered by a manifold which �bers over S1 ; let f : F !
F denote the monodromy of this �bration. We claim that no power of f lifts
to become hyper-elliptic in any cover of F .

For suppose such a cover eF of F exists. Then there is an associated cover
M̃(0; n) of M(0; n), and an involution � on M̃(0; n) with one-dimensional
�xed point set. The quotient Q = M̃(0; n)=� is an orbifold whose singular
set is a link labeled 2, which is commensurable with M(0; n). By minimality,
Q must cover M(0; n). But this is impossible, since every torsion element of
M(0; n) has odd order, by our choice of n.

8 Appendix: Constructing Covers of Punctured Tori

We review here the relevant material from [6]. This builds on work of Baker
([1], [2]).

We are given a punctured torus T and a monodromy f , and we wish to �nd
�nite covers of T to which f lifts. Let x and y be the generators for �1T
pictured in Figure 5. Let r and s be positive integers, and let T̂ be the rs{
fold cover of T associated to the kernel of the map �: �1(T ) ! Zr � Zs , with
�([x]) = (1; 0) and �([y]) = (0; 1) (see Figure 5).
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s

r

x
y

Figure 5: The cover T̂ of T

Now we create a new cover, eT , of T by making vertical cuts in each row of
T̂ , and gluing the left side of each cut to the right side of another cut in the
same row. An example is pictured in Figure 6, where the numbers in each row
indicate how the edges are glued.

We now introduce some notation to describe the cuts of eT (see Figure 6). eT
is naturally divided into rows, which we label 1; :::; s. The cuts divide each
row into pieces, each of which is a square minus two half-disks; we number
them 1; :::; r . If we slide each point in the top half of the ith row through the
cut to its right, we induce a permutation on the pieces f1; :::; rg, which we
denote �i . Thus the cuts on eT may be encoded by elements �1; :::; �s 2 Sr ,
the permutation group on r letters.

Let Dx and Dy be the right-handed Dehn twists in x and y , which generate
the mapping class group of T . We observe that, regardless of the choice of �i ’s,
Ds
y lifts to a product of Dehn twists in eT . It will be useful to have a condition
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Figure 6: The permutations encode the combinatorics of the gluing

on the �i ’s which will guarantee that Dx lifts to eT . The following lemma (in
slightly di�erent form) appears in [6].

Lemma 8.1 Dx lifts to eDx: eT ! eT if

(1) �1:::�i commutes with �i+1 for i = 1; :::; s − 1, and

(2) �1:::�s = 1.

Moreover, if these conditions are satis�ed, then we may choose eDx so that
its action on the interior of the ith row of eT corresponds to the permutation
�1:::�i .

Proof We shall attempt to lift Dx explicitly to a sequence of \fractional Dehn
twists" along the rows of eT . Let exi denote the disjoint union of the lifts of x
to the ith row of eT . We �rst attempt to lift Dx to row 1, twisting one slot
to the right along ex1 . Considering the e�ect of this action on the bottom
half of row 1, we �nd the cuts there are now matched up according to the
permutation �−1

1 �2�1 . Thus, for Dx to lift to row 1 we assume �1 and �2

commute. We now twist along ex2 . The top halves of the squares in row 2 are
moved according to the permutation �1�2 , and the lift will extend to all of
row 2 if �3 commutes with �1�2 . We continue in this manner, obtaining the
conditions in 1. After we twist through exn , we need to be back where we started
in row 1; if the permutations satisfy the additional condition �1�2:::�s = 1, then
this is the case, and we have succeeded in lifting Dx . Note that in the course of
constructing the lift, we have also veri�ed the last assertion of the lemma.

For the purposes of this paper, we restrict attention to the case s = 4. Consider
the subgroup J =< Dx;D

4
y > of the mapping class group of T . If �1; :::; �4
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satisfy the conditions of Lemma 8.1, then any element of J lifts to eT . What
makes this useful is the following lemma.

Lemma 8.2 The subgroup J has �nite index in the mapping class group of
T .

Proof The mapping class group of T may be indenti�ed with SL2(Z), and un-

der this indenti�cation, J is the group generated by
�

1 0
4 1

�
and

�
1 1
0 1

�
.

Let γ =

 p
2 0

0 1p
2

!
. Then γ conjugates the generators of J to

�
1 0
2 1

�
and

�
1 2
0 1

�
, which are well known to generate the kernel of the reduction

map from SL2(Z) to SL2(Z=2). Therefore J is a �nite co-area lattice in
SL2(R), and therefore it has �nite index in SL2(Z).

The next lemma shows that with some additional hypotheses on the �i ’s we
are also guaranteed that the lifts of elements of J �x non-peripheral homology
classes of eT .

Lemma 8.3 Let eT be as constructed above, and suppose �2 = �−1
1 and

�4 = �−1
3 . Let f be an element of J . Then

(i) f lifts to an automorphism ef : eT ! eT , and

(ii) For every non-peripheral loop ‘ in Row 2, there is a loop ‘� in Row 4,
such that ef�[‘ [ ‘�] = [‘ [ ‘�] 6= [0] 2 H1( eT ; @ eT ).

Proof Assertion (i) is an immediate consequence of Lemma 8.1. To prove
Assertion (ii), we explicitly construct the loop ‘� , so that it intersects the same
components of ey as ‘ does, but with opposite orientations. Figure 7 indicates
the procedure for doing this.

Therefore [‘[ ‘�] has 0 intersection number with each component of ey , and so
it is �xed homologically by eD4

y . Moreover, ‘ [ ‘� is entirely contained in Rows
2 and 4, and Lemma 8.1 implies that the action of eDx is trivial there, so [‘[‘�]
is also �xed by eDx , and by every element of J .
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Figure 7: Corresponding to each segment of ‘ , we construct a corresponding segment
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