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Abstract

The deformation space of a simplicial G{tree T is the set of G{trees which
can be obtained from T by some collapse and expansion moves, or equivalently,
which have the same elliptic subgroups as T . We give a short proof of a rigidity
result by Forester which gives a su�cient condition for a deformation space to
contain an Aut(G){invariant G{tree. This gives a su�cient condition for a
JSJ splitting to be invariant under automorphisms of G. More precisely, the
theorem claims that a deformation space contains at most one strongly slide-
free G{tree, where strongly slide-free means the following: whenever two edges
e1; e2 incident on a same vertex v are such that Ge1 � Ge2 , then e1 and e2 are
in the same orbit under Gv .
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322 Vincent Guirardel

In [5], Forester introduced the notion of deformation for simplicial trees with a
cocompact action of a group G, or equivalently, for splittings of G as a �nite
graph of groups. A deformation consists in a sequence of collapse and expansion
moves in the following sense: a collapse move consists in replacing an edge in a
graph of groups corresponding to an amalgamated product A �C C by a vertex
with vertex group A, and an expansion move is the inverse operation.

Remember that a subgroup of G is elliptic in a G{tree T if it �xes a point in T .
Forester proves that two cocompact simplicial G{trees can be deformed into one
another if and only if they have the same elliptic subgroups [5, Theorem 1.1].
In terms of the geometric realization of the trees, this can also be reformulated
by saying that two G{trees T and T 0 can be deformed into one another if and
only if there is an equivariant continuous map from T to T 0 and one from T 0

to T .

This notion of deformation is interesting because the various JSJ splittings in-
troduced by Rips{Sela, Dunwoody{Sageev, Fujiwara{Papasoglu [12, 3, 6] are
unique up to deformation [4]. On the other hand, the JSJ splittings introduced
by Bowditch for one-ended hyperbolic groups and by Scott{Swarup for �nitely
presented groups are really unique, up to G{equivariant isomorphism of trees
[2, 13]. In particular, Aut(G) acts naturally by isometries on the correspond-
ing simplicial tree, or equivalently, any outer automorphism of G is induced
by an automorphism of the corresponding graph of groups. Therefore, this al-
lows one to understand the automorphism group of G by understanding the
automorphisms of the JSJ splitting (see [1, 10]).

Forester’s rigidity theorem gives a su�cient condition for the existence of a
canonical point in a deformation space and hence gives a criterion for a JSJ
splitting �a la Rips{Sela, Dunwoody{Sageev or Fujiwara{Papasoglu to be invari-
ant under Aut(G).

In the sequel, we assume that all actions are without inversions (ie, no element
exchanges the two endpoints of an edge) since one can get rid of inversions by
taking the �rst barycentric subdivision of T . We will also assume that the
actions are minimal, ie, with no proper invariant subtree. Note that if T is not
assumed to be minimal, but if at least one element of G is not elliptic, then T
contains a unique minimal invariant subtree. We denote by Gv (resp. by Ge )
the stabilizer of a vertex v (resp. of an edge e).

De�nition (Strongly slide-free, reduced G{tree) A G{tree is strongly slide-
free if it sati�es the following condition: if two edges e1; e2 having a common
vertex v are such that Ge1 � Ge2 , then e1 and e2 are in the same orbit under
Gv .
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A very short proof of Forester’s rigidity result 323

A G{tree T is reduced if one cannot perform a collapse on T , ie, if for each
edge e incident on some vertex v such that Ge = Gv , then the two endpoints
of e are in the same orbit.

Note that in a minimal strongly slide-free G{tree, no vertex stabilizer can �x
an edge, thus a minimal strongly slide-free splitting is itself reduced. In the
following result, the deformation space of a G{tree T , is the set of all G{trees
T 0 which can be deformed into T .

Rigidity Theorem (Forester [5, Corollary 1.3]) There is at most one strongly
slide-free minimal G{tree in each deformation space.

More precisely, let T; T 0 be two minimal simplicial G{trees which have the
same elliptic subgroups. Assume that T is strongly slide-free and that T 0 is
reduced. Then there is a G{equivariant isomorphism between T and T 0 (and
the isomorphism is unique).

Corollary (Forester [4]) If a group G has a JSJ splitting which is strongly
slide-free, then this splitting is Aut(G){invariant.

In particular, the action of Aut(G) on the Bass{Serre tree of the JSJ splitting
provides a splitting of Aut(G) as a graph of groups.

This result extends an earlier result by Gilbert{Howie{Metaftsis{Raptis and
Pettet essentially claiming that a deformation space contains at most one min-
imal strongly slide-free G{tree satisfying the additional assumption that if two
adjacent edges have nested stabilizers, then these stabilizers coincide [7, 11].
This result is in turn an extension of a result by Karrass{Pietrowski{Solitar
applying to amalgamated products [9].

A similar result in a di�erent situation is proved in [8]: it is shown that in each
deformation space, if there is a G{tree with cyclic edge stabilizers which is
acylindrical, then the deformation space contains a 2{acylindrical G{tree with
cyclic edge stabilizers, and the set of such 2{acylindrical G{trees is a simplex.
This gives a way to produce an Aut(G){invariant JSJ{splitting for torsion free
commutative transitive groups.

The proof given in [5] is quite long and involved. The goal of this note is to
give a very short alternative proof, in the spirit of the proof in [7].
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324 Vincent Guirardel

1 De�nitions

We recall shortly a few de�nitions and elementary properties. Consider a G{
tree T . Given a vertex v 2 V (T ) and an edge e 2 E(T ), we will denote by Gv
and Ge their stabilizer. If an element γ has a �x point in T , γ is called elliptic,
and γ is called hyperbolic otherwise. Similarly, we say that a subgroup H < G
is elliptic if it �xes a point in T . Given an elliptic element γ 2 G, the �x set
Fix γ of γ is a subtree of T (and the same of course holds for a subgroup).
Serre’s Lemma claims that if Fix γ \ Fix γ0 = ;, then γγ0 is hyperbolic [14,
Corollary 1, section 6.5].

Given two disjoint subtrees A;B � T , the bridge between A and B is the
smallest arc joining A to B : it is the arc [a; b] such that a 2 A, b 2 B , and
any arc joining a point of A to a point of B contains [a; b]. The projection
p(x) of x on A is the closest point to x in A; if x =2 A, [p(x); x] is the bridge
between A and fxg.
We will often blur the distinction between T and its geometric realization, thus
identifying the edge e with endpoints a; b to an homeomorphic copy [a; b] of the
interval [0; 1] in R, while

�
e will represent the open segment (a; b) = [a; b]nfa; bg.

Note that if an element (or a subgroup) of G �xes a point in T , then it �xes a
vertex of T and the �xed subtree of an element (or a subgroup) is a simplicial
subtree (this uses the absence of inversion).

2 Proof of Forester’s rigidity Theorem

Proof of the rigidity Theorem In a minimal strongly slide-free G{tree, no
vertex stabilizer can �x an edge. In particular, vertex stabilizers of T �x no
more than one vertex; thus vertex stabilizers are characterized as maximal
elliptic subgroups of G.

Let’s now de�ne a G{equivariant map f : T ! T 0 . For each vertex v 2 V (T ),
choose equivariantly a vertex f(v) 2 V (T 0) �xed by Gv , and extend f linearly
and equivariantly on edges. First, the restriction of f to V (T ) is injective: if
f(u) = f(v), then hGu; Gvi is elliptic in T 0 , hence it is also elliptic in T . Since
vertex stabilizers of T are maximal elliptic, one gets Gu = Gv = hGu; Gvi, so
u = v . Note that this implies that the image of every edge of T is a non-
degenerate arc in T 0 .

We will prove that f is an isomorphism. Since T 0 minimal, f is onto (as a
topological map: some vertices of T 0 may have no preimage in V (T )).
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A very short proof of Forester’s rigidity result 325

The strongly-slide free condition gives the following fact (see [7]):

Lemma 2.1 Assume that e1; e2 2 E(T ) are two edges sharing a common
vertex v and that f(e1) \ f(e2) is not reduced to one point. Then e1 and e2

are in the same Gv {orbit and f(e1)\ f(e2) is strictly contained in f(e1) (resp.
in f(e2)).

Remark The lemma implies that f(e1) and f(e2) have the same length.

Proof Consider the group H = hGe1 ; Ge2i < Gv .

First assume that H �xes only v and argue towards a contradiction. Consider
the vertex w0 at distance 1 from f(v) on f(e1)\f(e2). Since Gw0 �xes a vertex
in T , and since H � Gw0 , Gw0 �xes v (and only v). Therefore, Gw0 � Gv �
Gf(v) . Since T 0 is reduced, f(v) and w0 are in the same orbit, hence w0 has a
preimage w in the orbit of v (w is thus a vertex of T ). Now Gw � Gw0 � Gv ,
hence w = v by maximality of vertex stabilizers, contradicting f(w) = w0 6=
f(v).

Thus H �xes a vertex di�erent from v . Since H also �xes v , H �xes an edge
e3 incident on v . Since Ge1 ; Ge2 � Ge3 , the strongly-slide free condition says
that e1; e2; e3 are in the same Gv {orbit.

Finally, if one had f(e1) \ f(e2) = f(e1), then one would have f(e1) = f(e2)
since those two arcs have the same length (they are in the same orbit), and f
would identify two vertices, a contradiction.

Lemma 2.2 Assume that e1; e2; e3 are three consecutive edges in T , then
f(e1) \ f(e2) \ f(e3) = ;.

Proof Denote by v1 the common vertex of e1 and e2 , and by v2 the common
vertex of e2 and e3 (note that v2 6= v1 ). Assume that f(e1) \ f(e2) \ f(e3)
contains a point p0 . Then f(e1) must meet f(e2) in more than one point since
otherwise, f(e2) would be contained in f(e3), a contradiction. By the previous
lemma, there is an element γ1 2 Gv1 sending e1 on e2 , so γ1 �xes pointwise
f(e1)\f(e2), hence γ1 �xes p0 . Similarly, there is an element γ2 2 Gv2 sending
e2 on e3 , and which �xes p0 .

Now γ1γ2 is elliptic in T 0 (it �xes p0) and is hyperbolic in T by Serre’s Lemma
since Fix γ1 \ Fix γ2 is empty in T because neither γ1 nor γ2 �x e2 . This is a
contradiction.
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326 Vincent Guirardel

The following lemma will say that the image under f of a non-backtracking
path v0; : : : ; vn cannot backtrack too much.

Lemma 2.3 (Backtracking lemma) Consider a sequence of vertices u0; : : : ; un
in a tree T such that

(1) ui 6= ui+1 for all i 2 f0; : : : ; n− 1g;
(2) [ui−1; ui]\ [ui; ui+1] is strictly contained in [ui−1; ui] and in [ui; ui+1] for

each i 2 f1; : : : ; n− 1g;
(3) [ui−1; ui] \ [ui; ui+1] \ [ui+1; ui+2] = ; for each i 2 f1; : : : ; n− 2g.

Then for jj − ij � 2, [ui−1; ui] \ [uj−1; uj ] = ;.

u1 u2 uiui−1

: : :

ui+2

ui+1
u0

Ci−1 Ci

Figure 1: Backtracking lemma

Proof Let Ci be the convex hull of fu0; : : : ; uig. We prove by induction the
following property for 1 � i � n− 1:

(Pi) : ui+1 =2 Ci and [ui; ui+1] \ Ci−1 = ;:

The lemma will then follow immediately.

Since the property clearly holds for i = 1, we prove Pi ) Pi+1 . Assume that
ui+2 2 Ci+1 . Since ui+2 =2 [ui; ui+1] by hypothesis (2), ui+2 lies in Ci−1 or in
the bridge joining [ui; ui+1] to Ci−1 . Thus [ui+2; ui+1] must meet the bridge
between [ui; ui+1] and Ci−1 , hence must meet [ui; ui−1], which contradicts hy-
pothesis (3).

If [ui+1; ui+2] meets Ci , then [ui+1; ui+2] contains the projection p of ui+1 on
Ci . Note that by de�nition p 2 [ui; ui+1], so p 2 [ui; ui+1] \ [ui+1; ui+2]. By
(3), p =2 [ui−1; ui]. This implies that p 2 Ci−1 since p belongs to Ci but not to
the bridge joining ui to Ci−1 . Hence p 2 Ci−1 \ [ui; ui+1], which contradicts
the induction hypothesis.
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Now let’s conclude the proof of the theorem. Assume that f is not an isomor-
phism. Then there exist two edges e1; e2 incident on a common vertex v such
that f(e1) \ f(e2) contains more than one point. Denote v0 = f(v), and let
w0 6= v0 be the vertex at distance 1 from v0 on f(e1) \ f(e2).

Let w be a point of T (vertex or not) such that f(w) = w0 . Denote by
v0 = v; v1; : : : ; vn the vertices on the smallest simplicial arc containing [v;w]
(in particular, w 2 [vn−1; vn], and w = vn if and only if w is a vertex). Up
to exchanging the roles of e1 and e2 , we may assume that [v0; vn] meets e1

only at v . De�ne v−1 so that [v−1; v0] = e1 . Thus, the vertices of the arc
[v−1; vn] are v−1; v0; v1; : : : ; vn . Lemma 2.1 and 2.2 say that one can apply
the backtracking lemma to the sequence ui = f(vi), i 2 f−1; 0; : : : ; ng. Since
w0 2 [u−1; u0]\ [un−1; un], one gets n = 1. By the Lemma 2.1, the edge [v0; v1]
is in the orbit of e1 , and w 6= v1 cannot be a vertex.

This proves that f−1(w0) � Gv:
�
e1 . In particular, since there are no inversions

on T , Gw0 � Gv , therefore Gw0 � Gv0 . Since T 0 is reduced, this means that
w0 is in the same orbit as v0 , which contradicts the fact that f−1(w0) does not
contain any vertex.

It follows that f maps edges to edges, so f is an isomorphism. In particular,
f induces a bijection from V (T ) onto V (T 0).

The uniqueness of f will then follow from the following fact: given v 2 V (T ),
there is at most one vertex v0 2 V (T 0) such that Gv � Gv0 . As a matter of
fact, consider w0 2 V (T 0) with Gv � Gw0 and let w be a preimage of w0 in
V (T ). Then hGw; Gvi � Gw0 so hGw; Gvi is elliptic in T . Therefore, v = w
since vertex stabilizers of T �x no more than one vertex in T , and v0 = w0 .
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